Air Conditioner—System Operation
Figure 2-8
The evaporator coil as shown is of fin and tube construction. The thermostat probe is positioned in between the evaporator fins and senses the temperature.
Note:
Moisture in the air (humidity) condenses on the fins of the evaporator as water droplets which drain out of the evaporator through a drain hose. This action dehumidifies the air in the cab as part of system operation, and contributes to operator comfort.
Cab air forced across the evaporator coil gives up heat energy to the cold refrigerant inside the coil. The cooled air circulates in the cab for occupant comfort. Refrigerant continues to expand and absorb heat energy in the evaporator coil. Refrigerant changes from liquid to gas before it leaves the evaporator on the way back to the compressor. The refrigerant gas moves to the compressor through a low pressure (suction) hose. When the compressor is operating, it sucks the refrigerant gas back inside, compressing and raising its temperature and pressure. Some of AC system operation is controlled by the operator, and some is automatic. The operator can turn the system on and off, regulate the air velocity with the blower control, and in some designs adjust the thermostat control. The system and component operating range settings automatically cycle the clutch on and off. The operation of the expansion valve or other refrigerant metering device at the inlet to the evaporator is automatic. Individual system features may differ, but the basic system function remains the same. Variations in components and controls are described in Chapters 4 and 5. The engine provides the power for both air conditioner and heater operation. It drives the AC compressor and the cooling system water pump. Engine RPM affects the efficiency of both the heater and air conditioner. The slower the engine RPM, the less capacity a heater or AC system will have. WARNING
When an AC system is operating, the high pressure side components, fittings and high pressure lines or hoses can be hot enough to burn your skin if you touch them. This includes the compressor, clutch, hoses, condenser, receiver-drier, and any control devices or metal tubing. The low pressure side will be cool to the touch. In operation the AC system is under load and high side pressures normally range between 150 and 250 pounds per square inch for R-12 and higher for some other refrigerants.
3-35