Built Your Own Electric Vehicle Manual - PDF DOWNLOAD

Page 224

7 3/8 x 9 1/4 T echnical / Build Your Own Electric Vehicle / Leitman / 373-2 / Chapter 8

Chapter 8:  Batteries While lead and sulfuric acid would not be my initial choice for any construction project—one of the heaviest elements mated with one of the nastiest compounds— reliability, performance, and cost all weigh heavily in the lead-acid battery’s favor. In fact, lead-acid’s suitability for so many applications has greatly diminished even the need to search for alternatives. But the recent save-the-environment, reduce-oil-dependency, and let’s-try-electricvehicles changed consciousness altered the pattern. Government, industry, and university laboratories all over the planet reflect this change. Pouring money on a problem never guarantees a solution, but it does guarantee that a lot more will be happening, and that some of what happens will be usable and good. Let’s look at future battery trends starting with the consortium that’s pushing the outside of the battery envelope—the USABC. In 1991, Ford, General Motor, and Chrysler (joined by the Department of Energy and the Electric Power Research Institute) had a better idea—the United States Advanced Battery Consortium (USABC). In short, the Electric and Hybrid Vehicle Research, Development and Demonstration Act of 1976 recognized the need for battery development; the Department of Energy defined and funded it; and the USABC focused the efforts. The near-term result was that a plethora of projects was honed down to just three high-energy battery research areas that could deliver significant vehicle range and power advantages: lithium polymer, lithium metal sulfide, and nickel metal hydride. Some of these batteries are considered the best of the best battery technologies on the market.

Future Batteries: The Big Picture Table 8-5, adapted from an SAE paper, shows the entire story at a glance. Notice that 11 different battery technologies are on the list, and they are not equal. In very general terms, higher energy density and power density are desirable and look easy to do—on paper. Getting both at the same time, along with high cycle-life and low cost in a battery that operates efficiently over a range of temperatures, can be manufactured and supported by infrastructure, and causes no harm to people or the environment, has proven to be a bit more elusive. Notice that none of the batteries developed thus far— even the tried and proved lead-acid battery—even approaches its theoretical specific energy value. We still have a long way to go.

Lead-Acid

The big money involved in the lead acid battery business made some major improvements to the lead-acid batteries of the early 2000s superior to their 1990s counterparts. Along the way to higher specific energy and specific power, lead-acid batteries evolved to add sealed as a regular option. While it is higher in cost, it is less efficient (versus convenience of not watering). The flow-through (the conventional type you’re accustomed to) has improved by greater plate thickness, improved separators, and higher specific gravity electrolyte solution). The other options available are tubular (electrode improvement) and gelled (electrolyte improvement, which I have used in some of the electric vehicles I have worked with).

Nickel-Cadmium

Close on the heels of lead-acid today, this battery type promises to be even better in the future. Its advantages over lead-acid today (less pronounced decrease in capacity under

201


Turn static files into dynamic content formats.

Create a flipbook

Articles inside

Other Related Web Sites

27min
pages 334-357

State- and Community-Related Electric Vehicle Sites

1min
page 331

Chargers

1min
page 324

Batteries

1min
page 323

General Electric Drive Information Sites

3min
pages 332-333

Controllers

1min
page 322

Conversion Kits

1min
page 320

Suppliers

1min
pages 318-319

Electric Utilities and Power Associations

1min
page 310

Conversion Specialists

1min
page 314

Emergency Kit

1min
page 299

Driving Your Electric Vehicle

5min
pages 296-297

Paint, Polish, and Sign

1min
page 291

Further Improved Cooling

1min
page 290

Improved Cooling

1min
page 289

Junction Box

3min
page 277

Charger System

3min
pages 278-282

Fabricating Battery Mounts

1min
page 267

Low-Voltage System

1min
pages 274-276

Mounting and Testing Your Electric Motor

1min
page 266

Purchase Other Components

1min
page 259

Conversion Overview

2min
pages 252-253

Checking

1min
page 251

Wiring It All Together

3min
pages 249-250

The Real-World Battery Charger

2min
page 236

Charger Overview

1min
page 230

Terminal Strip

1min
page 244

The Manzita Micro PFC-20

1min
page 237

The Ideal Battery Charger

4min
pages 233-235

Batteries and the RAV4 EV Experience

3min
pages 228-229

Future Batteries: The Big Picture

6min
pages 224-227

Tomorrow’s Best Battery Solution—Today

2min
page 223

Battery Construction

4min
pages 214-215

Five Trojan Battery Solutions

4min
pages 219-222

The Gentle Art of Battery Recharging

2min
page 209

Battery Types

2min
page 213

Today’s Best Battery Solution

2min
page 218

Battery Capacity and Rating

4min
pages 207-208

Electrolytes

1min
page 203

Battery Overview

1min
page 200

DC Motor Controller—The Lesson of the Jones Switch

4min
pages 185-187

Conclusion

1min
page 199

AC Controllers

2min
page 189

An Off-the-Shelf Curtis PWM DC Motor Controller

2min
page 188

Today’s Best Controller Solution Zilla Controller (One of the Best DC Controller for Conversions)

5min
pages 190-192

Controller Overview

2min
page 182

Tomorrow’s Best EV Motor Solution

1min
pages 179-180

The Advance FB1-4001

3min
pages 177-178

Polyphase AC Induction Motors

3min
pages 173-175

Compound DC Motors

2min
page 168

Universal DC Motors

1min
page 170

DC Motors in the Real World

2min
page 162

Horsepower

2min
page 157

Series DC Motors

3min
pages 164-165

Why an Electric Motor?

2min
page 156

Late-Model Used Vehicles (Late 1980s and Onward

2min
page 152

Calculation Overview

5min
pages 143-144

Drivetrains

2min
page 136

Going through the Gears

2min
page 139

Automatic vs. Manual Transmission

1min
page 140

Difference in Motor vs. Engine Specifications

2min
pages 137-138

Weight Affects Speed

1min
page 124

Buy Your EV Chassis

1min
page 150

Torque Required and Available Graph

4min
pages 148-149

Choose the Best Chassis for Your EV

2min
page 118

The Procedure

2min
page 112

Weight and Climbing

1min
page 123

Weight and Acceleration

2min
page 122

Converting Existing Vans

4min
pages 104-108

Your Batteries Make a Difference

1min
page 111

Converting Existing Vehicles

1min
pages 102-103

Buying Ready-to-Run

1min
page 99

Mid-1960s to 1990s

19min
pages 75-82

Near Future Trends For Electric Drive

3min
pages 96-97

Third Wave After 1979: EVs Enter a Black Hole

2min
page 74

The 1990s–2000s

14min
pages 83-89

After 1973: Phoenix Rising, Quickly

8min
pages 70-73

1940 to 1989

10min
pages 65-69

Timeline of Vehicle History

2min
page 55

Myth #3: Electric Vehicles Are Not Convenient

2min
page 39

Electric Motors

1min
page 31

Convert That Car

5min
pages 26-29

Electric Vehicles Save Money

2min
page 35

What Is an Electric Vehicle?

1min
page 30

Electric Utilities Love Electric Vehicles

1min
page 50

Why Do Electric Vehicles Save the Environment?

1min
page 44

Save the Environment and Save Some Money Too

1min
page 45
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.