Page 1

Animal, Gut, MicrobiomeNutrition in the 21st Century Knud Erik  Bach  Knudsen   Aarhus  University   Department  of  Animal  Science  

Ponencia patrocinada por:


Knud Erik Bach Knudsen Aarhus University Department of Animal Science Director del Departamento de Nutrición molecular y reproducción. En los últimos 25 años sus estudios se han basado en carbohidratos y fitoquímicos bioactivos. Sus trabajos más recientes han sido en la interfaz de nutrición humana que enfatiza el uso de modelos animales para comprender el modo de acción de los carbohidratos y fitoquímicos. Actualmente es el principal supervisor de varios proyectosClic de doctorado. Tiene 164 para editar publicaciones referenciadas en revistas, y 90 libros y memorias, título de la presentación entre otros.


Points to be addressed

 Introduction  Digestion and absorption in stomach and the small

intestine  Fermentation processes – the microbial community  Fermentation processes – microbial end-products  Special conditions with newly weaned piglets  The challenge for the 21st Century  Take home message


Introduction – the challenge   The world´s population is expected to increase to 9.2 billion by 2050   Due to the global change in diet preferences and lifestyle, the worldwide demand for animal derived food products is expected to increase with a growth rate that is higher than the estimated growth of the world population This   calls for considerable more efficient food production systems Paradigm shi+  required  in  animal   produc4on.  By  the  year  2050  animal   produc4on  systems  produce  “two  4mes   more  with  two  4mes  less”.  


Introduction, cont..  Improved food production systems can be obtained by improved feeds, increased feed efficiencies, reduced ecological footprint, and increased animal health and welfare.  Improvement in feed efficiency must go hand-inhand with a reduction in the use of e.g. in-feed antibiotics which have been heavily used in the past to increase efficiency but which in the long run can cause antibiotic resistance


Digestion and absorption in stomach and small intestine


The diges2on  of  carbohydrates  in  pigs   Microflora  

α-­‐amylase

Variety of  microbial  fibre  

SCFA LA   Gases  

degrading enzymes  

No endog enouiso-­‐ s  fibre   Sucrase,   degrading  enzy&m   es   maltase   glucoamylases    

Glucose Fructose  

Galactose


The small intestine is the main site for nutrient digestion and absorption Percentage Small  intes4ne  

Large intes4ne  

66

34

Protein (N*6.25)1  

89

11

Fat

99

1

Carbohydrates2

89

11

Inorganic materials   Organic  materials  

1 Apparent  values  

2 The  the  rela4ve  distribu4on  of  diges4on  in  the  small  and  large  intes4ne  will  be  

influenced by  the  dietary  fibre  level.    


Fermentation processes – the microbial community


Bacteria in the gastrointestinal tract of pigs Bacteria (cells per g digesta) pH Stomach 108-9 pH 2-5

Proximal SI 108 pH ~6

108-­‐9

Caecum 1010 pH 5.5-6.5

Distal SI 109 pH 6-7

Colon 1011 pH 6-6.5

1011


Diges2on and  fermenta2on  processes  -­‐   compe22on  

blood

Sugars Starch Protein

monosaccharides amino acids

Fiber Protein

Digestion and fermentation Compete with the host for easily digestible nutrients

blood

Fermentation acetate propionate butyrate

and anaerobic respiration Contribute with energy to the host (SCFA)


Dietary fibre fermentation – the microflora • Firmicutes and Bacterioidetes are the two dominating phyla • Bacteria belonging to: • Streptococcus  spp.   • Lactobacillus  spp.   • Eubacterium  spp.   • Fusobacterium  spp.   • Bacteriodes  spp.   • Peptostreptococuss  spp.   • Bifidobacterium  spp.     • etc.    

Kim and  Isaacson  (2015)  


Development in microbial phyla by age ~80% ~55% ~30% ~10%

(Diet: Corn and soybean meal)

Kim et al., 2011


Profiles of gut microbes in GI tracts and feces at the rank of phylum

Zhao et  al  (2015).  


Fermentation processes – microbial end-products


Fibres are  the  main  nutrient  for  the   fermenta2on  in  the  large  intes2ne 900

Flow/of/organic/ma8er/(g/d)

800

J

700

J

J J J JJ J J JJ J J J J J J J JJ J J JJ J J J JJJ J J JJ J J J JJJJ JJ JJ J J JJ J J J JJ J J J J J J J JJ J J

600 500

Barley/SBM diet

400 300 200

Wheat/SBM diet

100 0

J J J

J

0

100

200 300 400 Intake/of/fibre/(g/d)

500

The cons4tuents  most   significantly  influenced   by  fibre:   •  NSP   •  Protein  (nitrogen)   Minor  effects  on:   •  Starch   •  Fat  

600

Bach Knudsen  et  al.  (2013).  


1)  Epithelial and  inner  mucin   layer   2)  Diffuse  mucin  layer   3)  Gut  lumen-­‐liquid  phase   (diverse  microbial   community)   4)  Gut  lumen-­‐substrate   par4cles  (specialist  primary   colonizers)  

Flint, H.  J.  et  al.  (2012).    

Microbial microenvironments  within  the   large  intes2ne


Fermenta2on processes  –  microbial   compe22on   ›  The  metabolic  output  from  the   microbiota  is  regulated  through   several  mechanisms:   ›  Within  individual  species  where  the   same  substrate  can  give  rise  to  different   products  due  to  fermenta4on  via   different  metabolic  routes   ›  The  same  substrate  can  be  processed   via  different  routes  depending  on  the   rate  of  supply  or  the  physiology  and  the   environment  of  the  bacteria  cell   ›  Cross  u4lisa4on  –  acetate  to  butyrate  as   influenced  by  pH    


Concentration of microbial endproducts Concentra2on, mmol/L   Substrate  

LA

SCFA

3-­‐18

2-­‐9

21-­‐25

22-­‐25

Stomach

Sugars, OS  

Cranial 2/3  of  small  intes4ne  

OS, starch  deg.   products,  sNSP    

Last 1/3  of  small  intes4ne  

OS, starch  deg.   Products,  sNSP  

Caecum and  proximal  colon  

sNSP, iNSP  

3-­‐6

85-­‐116

Middle and  distal  colon  

iNSP

<1

56-­‐95

OS, oligosaccharides;  sNSP,  soluble  non-­‐starch  polysaccharides;  iNSP,  insoluble   non-­‐starch  polysaccharides.  


Special conditions with newly weaned piglets


The challenging weaning process Sows diet   (liquid  milk)  

Separa4on from  the  mother   Moving  and  mixing   Change  in  environmental  temperature  

Plant based  diet   (solid  complex)   Change  in  structure  and  func4on  of  the  gut   Frequently  outbreaks  of  diarrhoea   Low  level  of  feed  intake   Ac4ons  in  the  past:  In-­‐ feed  an2bio2cs  

Challenges for  the  future:   Op2misa2on  of  the  gut  environment  by   dietary  means  


Acute and  adap2ve  phases  in  development   of  early-­‐weaned  pigs  

Burrin &  Stoll  (2003)  


Morphologically adaptation of the gut in the immediate p.w. period Unweaned

Weaning diet

Unweaned

Weaning diet

Milk at high level

Milk at low level

Milk at high level

Milk at low level

600

140 abc fg

hi

ade

400 fh ce bd

300

d

130

gi

Crypt depth, µm

Villous height, µm

500

c ab

120

cd

110

200

a

b

100 0

4 Days after weaning

7

0

Feed intake of greater importance than the dietary composition

4 Days after weaning

7

Beers-­‐Schreurs et  al  (1998)  


Digestion carbohydrates (% of intake) in the small intestine as influenced by age N

Starch

NSP

Piglets, 0-­‐10  days  post-­‐weaning  

9

73

3

Piglets, 14-­‐28  days  post  weaning  

8

95

14

Growing pigs  

78

96

21

Sows

3

93

30

NSP, non-­‐starch  polysaccharides.  


Piglets are  more  sensi2ve  to  fibre  than   older  pigs  


The challenge for the 21st Century •  Piglets •  Growing-­‐finishing  pigs  


Different elements in the gut ecosystem Diet

Macronutrients Indigestible components Micronutrients Additives ANF

Gut mucosa Mucus layer Epithelium GALT

Microflora Commensal bacteria Transient bacteria (pathogens) Conway (1994) and Montagne et al. (2003).


The capacity  to  digest  in  the  small  intes2ne   influences  amount  and  composi2on  of   substrate  for  the  large  intes2ne   NSP, g/kg DM 7

80

120

52

46

42

2

24

36

54

70

78

15

13

12

4

43

65

19

56

77

Intake: 300 g/d Recovery (g), 0-14 d p.w. Starch NSP T-CHO Intake 600 g/d Recovery (g), >14 d p.w. Starch NSP T-CHO


Digestibility of starch in non-heated feeds 9-28 days post weaning

Heat treated  

Lærke et  al.  (2003);  Hopwood  et  al.  (2004);  Pluske  et  al.  (2007);  Jensen  et  al.  (1998);  Gdala  et   al.  (1997).  


How can we feed the animals so that we stimulate a desirable microbiota? Ø  By the  use  of  prebio4cs   •  Def.  of  a  prebio4c:  Non-­‐diges4ble  food  ingredients  which   beneficially  affects  the  host  by  selec4vely  s4mula4ng  the   growth  and/or  ac4vity  of  one  or  a  limited  number  of  health-­‐ promo2ng  bacteria  in  the  intes4nal  tract  thus  improving  the   host’s  intes4nal  physiology  (FAO,  2007).    


Influence of dietary carbohydrate on phyla composition ›  Inulin with  variable  chain  length   influence  the  abundance  of   phytolytes  belonging  to   Lactobacillus  spp.  and   Bifidobacterium  spp.   ›  BD,  background  diet;  HP,  long   chained  inulin  (DP  10-­‐60);  P95,   short-­‐chained  (DP  2-­‐7);  Synergy  =   HP:P95  (1:1);    

Resistant  starch  type  3  influence   the  Firmicutes  to  Bacteroides   ra4o    

Paqerson et  al  (2010).  

Haenen et  al  (2013).  


How can we feed the animals so that we stimulate a desirable microbiota? Ø  By the  use  of  prebio4cs   •  Def.  of  a  prebio4c:  Non-­‐diges4ble  food  ingredients  which   beneficially  affects  the  host  by  selec4vely  s4mula4ng  the   growth  and/or  ac4vity  of  one  or  a  limited  number  of  health-­‐ promo2ng  bacteria  in  the  intes4nal  tract  thus  improving  the   host’s  intes4nal  physiology  (FAO,  2007).  

Ø  By in  situ  produc4on  of  prebio4cs  alone  or  in   combina4on  with  probio4cs    


Exogenous enzymes influence the composition of the substrate for the microbiota B

Viscosity

AXOS   High   molecular   weight  AX      

Rye

Wheat-­‐fine

Wheat-­‐coarse

Lærke et  al  (2015)  


Arabinoxylan is not prebiotic whereas arabinoxylan oligosaccharides and xylooligosaccharides are

Broekaert et  al.  (2012)  

Cour4n et  al.  (2008).  


How can we feed the animals so that we stimulate a desirable microbiota?

Ø  By the use of prebiotics •  Def. of  a  prebio4c:  Non-­‐diges4ble  food  ingredients  which   beneficially  affects  the  host  by  selec4vely  s4mula4ng  the   growth  and/or  ac4vity  of  one  or  a  limited  number  of  health-­‐ promo2ng  bacteria  in  the  intes4nal  tract  thus  improving  the   host’s  intes4nal  physiology  (FAO,  2007).   Ø  By in situ production of prebiotics alone or in combination with probiotics (synbiotics)

Prebio4cs will  provide   the  nutrients  

Probio4cs with   health  promo4ng     proper4es  


Synergistic effect of protease and direct-fed microbial (DFM) on digestible energy in grower pigs

PAYLING ET  AL  (2017)  


Zinc oxide in the immediate postweaning period Zinc oxide (ZnO) at high doses (2000-4000 mg/kg) has   been widely used in the feeds in the postweaning period because of its diarrhoea preventing effect and positive effect on performance   Recently, however, concern has been raised about such high doses due to the environmental impact and the risk of developing microbial resistance   These undesired effects of ZnO has stimulated to the development of new types of ZnO – porous and nano ZnO


Faecal zinc oxide concentrations and copy number of the Escherichia group in weaning pigs fed different amounts and preparations of ZnO

Vahjen et  al.  (2016)  


Effect of zinc oxide sources on faecal enterobacteria

300 mg/kg  HiZox®  was  as  efficient  as  3000  mg/kg  of  the  standard  ZnO   At  150  mg/kg,  HiZox®  induced  a  stronger  response  than  conven4onal  ZnO           Vahjen  et  al.  (2016)  


How can we feed the animals so that we stimulate a desirable microbiota?

Ø  By the  use  of  prebio4cs   •  Def.  of  a  prebio4c:  Non-­‐diges4ble  food   ingredients  which  beneficially  affects  the  host  by   selec4vely  s4mula4ng  the  growth  and/or  ac4vity   of  one  or  a  limited  number  of  health-­‐promo2ng   bacteria  in  the  intes4nal  tract  thus  improving  the   host’s  intes4nal  physiology  (FAO,  2007).   Ø  By  in  situ  produc4on  of  prebio4cs  alone  or  in   combina4on  with  probio4cs  (synbio4cs)   Ø  By  the  avoidance  of  microbial  disturbing  factors  


Antibiotic treatment has a profound influence on the microbiota and fecal composition

An4bio4c treatment   affected  87%  of  all   metabolites  detected   many  of  which  has  a   physiological  role  to   play.  

Antunes et  al.  (2011).  


Take home message   Efficient degradation and absorption of nutrients from the gut and the maintenance of a diverse and balanced microflora are key elements for high feed efficiency and animal health   The commensal microbiota is pivotal not only for degradation of indigestible complex carbohydrates but also for competitive exclusion of pathogens, production of antimicrobials, etc   The challenge for the 21st century is to use knowledge on dietary feed ingredients and additives to formulate diets that optimize growth, feed conversion and health without the use of agents that can lead to antibiotic resistant   Options available: By heat processing of the feed for improved starch (nutrient) digestibility By use of prebiotics By in situ production of oligosaccharides By in situ production of oligosaccharides in combination with probiotics (direct fed microbial) By new types of ZnO provided at physiological levels By improving of our knowledge on the impact of small organic molecules in nutrition and health By other means (organic and inorganic acids, yeast, etc…)


AARHUS UNIVERSITET  

Thank you  very  much  for  your   aOen2on!  

Nutriforum2018 erik knudsen animal, gut, microbiome nutrition in 21st century  
Nutriforum2018 erik knudsen animal, gut, microbiome nutrition in 21st century