Genomic Psychiatry (Genomic Press) 2025 issue-1-1

Page 1


2025 CONFERENCE

The Changing Brain

August 18 – 20, 2025 Irvine, California, USA

• The Evolving Brain

• The Learning Brain

• States of the Brain

• The Developing Brain

• The Dynamic Brain

• The Disordered Brain

Paola Arlotta, Harvard University

Xiangmin Xu, University of California, Irvine

Confirmed Speakers: Conference Organizers:

Ishmail Abdus-Saboor, Columbia University

Paola Arlotta, Harvard University

Carlos Brody, Princeton University

Beth Buffalo, University of Washington

Edward Chang, UCSF

Anne Churchland, UCLA

Yang Dan, University of California, Berkeley

Catherine Dulac, Harvard University

Guoping Feng, MIT

Zhigang He, Harvard University

Hailan Hu, Zheijang University, China

Josh Huang, Duke University

Sten Linnarsson, Karolinska Institutet, Sweden

Liqun Luo, Stanford University

Hongkui Zeng, Allen Institute for Brain Science

Guillermina López-Bendito, UMH-CSIC, Spain

Liqun Luo, Stanford University

Michelle Monje, Stanford University

John Ngai, National Institutes of Health

Tom Nowakowski, UCSF

Vanessa Ruta, Rockefeller University

Bernardo Sabatini, Harvard University

Nelson Spruston, Howard Hughes Medical Institute

Karel Svoboda, Allen Institute for Neural Dynamics

Li-Huei Tsai, MIT

Pierre Vanderhaeghen, Leuven Brain Institute of Technology

Hongkui Zeng, Allen Institute of Brain Science

Larry Zipursky, UCLA

Editor-in-Chief

JulioLicinio, StateUniversityofNewYork,UpstateMedicalUniversity,Syracuse,NewYork13210,USA

PublishingManager

Ma-LiWong, StateUniversityofNewYork,UpstateMedicalUniversity,Syracuse,NewYork13210,USA

EditorialBoard

HudaAkil, UniversityofMichigan,AnnArbor,Michigan48109,USA

MauricioArcos-Burgos, UniversidaddeAntioquia,Medellín,Colombia OleA.Andreassen, UniversityofOslo,0318Oslo,Norway

BernhardBaune, UniversityofMünster,48149Münster,Germany

StefanR.Bornstein, TUDDresdenUniversityofTechnology,01307Dresden,Germany

KristenBrennand, YaleUniversitySchoolofMedicine,NewHaven,Connecticut06511,USA

AvshalomCaspi, DukeUniversity,Durham,NorthCarolina27708,USA

MosesChao, NewYorkUniversityLangoneMedicalCenter,NewYork,NewYork10016,USA

SvenCichon, UniversityofBasel,4031Basel,Switzerland

IanDeary, UniversityofEdinburgh,Edinburgh,EH89JZ,Scotland,UK

YogeshDwivedi, UniversityofAlabamaatBirmingham,Birminagm,Alabama35294,USA

StephenFaraone, StateUniversityofNewYork,UpstateMedicalUniversity,Syracuse,NewYork13210,USA

JaniceFullerton, NeuroscienceResearchAustralia&UniversityofNewSouthWales,Randwick,NSW2031,Australia

FredH.Gage, SalkInstituteforBiologicalStudies,LaJolla,California92037,USA

SamuelE.Gandy, IcahnSchoolofMedicineatMountSinai,NewYork,NewYork10029-5674,USA

PatriciaGaspar, INSERMParisBrainInstitute,HôpitalSalpêtrière,75013Paris,France

AnthonyA.Grace, UniversityofPittsburgh,Pittsburgh,Pennsylvania15260,USA

ToddD.Gould, UniversityofMarylandSchoolofMedicine,Baltimore,Maryland21201,USA

RaquelE.Gur, UniversityofPennsylvania,Philadelphia,Pennsylvania19104,USA

Jan-ÅkeGustafsson, UniversityofHouston,Houston,Texas77204,USA

SirJohnHardy, UniversityCollegeLondonDementiaResearchInstitute,London,WC1E6B,UK

NoboruHiroi, UniversityofTexasHealthSanAntonio,SanAntonio,Texas78229,USA.

YasminHurd, IcahnSchoolofMedicineatMountSinai,NewYork,NewYork10029,USA.

SiegfriedKasper, CenterforBrainResearch,MedicalUniversityofVienna,1090Vienna,Austria

KennethS.Kendler, VirginiaCommonwealthUniversity,Richmond,Virginia23298,USA

LorenzoLeggio, NationalInstitutesofHealth,Baltimore,Maryland21224,USA

ChunyuLiu, StateUniversityofNewYork,UpstateMedicalUniversity,Syracuse,NewYork13210,USA

Xin-YunLu, MedicalCollegeofGeorgiaatAugustaUniversity,Augusta,Georgia30912,USA

RobertMalenka, StanfordUniversity,Stanford,California94305,USA

NickMartin, QIMRBerghoferMedicalResearchInstitute,Brisbane,Queensland4029,Australia

AndrewMcIntosh, UniversityofEdinburgh,Edinburgh,EH105HF,Scotland,UK

MariaOquendo, UniversityofPennsylvania,Philadelphia,Pennsylvania19104,USA

SirMichaelOwen, CardiffUniversity,Cardiff,CF244HQ,Wales,UK

AarnoPalotie, InstituteforMolecularMedicine,UniversityofHelsinki,00014Helsinki,Finland

CarlosN.Pato,RutgersUniversity,Piscataway,NewJersey08854,USA

MichelePato, RutgersUniversity,Piscataway,NewJersey08854,USA

MaryL.Phillips, UniversityofPittsburghSchoolofMedicine,Pittsburgh,Pennsylvania15213,USA

RobertPlomin, InstituteofPsychiatryPsychologyandNeuroscienceatKing’sCollege,London,SE58AF,UK

MaurizioPopoli, UniversitàdegliStudidiMilano,20133Milan,MI,Italy

JamesPotash, JohnsHopkinsUniversitySchoolofMedicine,Baltimore,Maryland21287,USA

JohnRubenstein, UniversityofCalifornia,SanFrancisco,California94158,USA

CarloSala, L’IstitutodiNeuroscienzedelCNR,UniversiyofMilan–Bicocca,20854VedanoalLambro,MB,Italy

AlanF.Schatzberg, StanfordUniversity,Stanford,California94305,USA

JairSoares, UniversityofTexasHealthScienceCenter,McGovernSchoolofMedicine,Houston,Texas77054,USA.

ThomasC.Südhof, StanfordUniversity,Stanford,California94305,USA

KristiinaTammimies, KarolinskaInstitutet,17177Stockholm,Sweden

GiuseppeTesta, UniversitàdegliStudidiMilano,HumanTechnopole,20157Milan,MI,Italy

GustavoTurecki, McGillUniversity,Montréal,QuébecH4H1R3,Canada

MonicaUddin, UniversityofSouthFlorida,Tampa,Florida33612,USA

MyrnaWeissman, ColumbiaUniversity,NewYorkStatePsychiatricInstitute,NewYork,NewYork10032,USA

XiangminXu, UniversityofCalifornia,Irvine,California92697,USA

TakeoYoshikawa, RIKENBrainScienceInstitute,Saitama,351-0198,Japan

MoneZaidi, IcahnSchoolofMedicineatMountSinai,NewYork,NewYork10029,USA

GenomicPsychiatry ispublishedbyGenomicPress.

SCOPE: GenomicPsychiatry hasabroadscope.Asourgoalistointerweavegeneticswithotheradvancesincontemporarypsychiatry, wewelcomeinnovativeresearchfromin-depthstudiesofpsychiatricgenomicstobroaderinvestigationsoftheunderpinnings,treatments,outcomes,andconsequencesofmentalhealth.Inadditiontothegeneticaspectsofmentalillness,ourscopeincludesadvances inneuroscienceofpotentialrelevancetomentalillness,imaging,psychology,pharmacology,therapeutics,microbiologyincludingthe microbiome,immunology,endocrinology,brainstimulation,functionalneurosurgery,“bigdata,”computationalapproachesincluding artificialintelligence(AI),epidemiology,andpublichealthinitiatives.

MANUSCRIPTSUBMISSION: Authorsarerequiredtosubmittheirmanuscriptelectronicallythroughoursubmissionportalat url.genomicpress.com/2r53yz73.DetailedAuthorInstructionsareavailableat url.genomicpress.com/zasktekn.

PUBLISHER: Allbusinesscorrespondence,inquiriesaboutsponsorshipopportunities,inquiriesaboutadvertising,andallcustomer serviceinquiries,includingthoserelatedtoOpenAccessandArticleProcessingChargesshouldbeaddressedtoGenomicPress,580 FifthAvenue,Suite820NewYork,NY10036,USA, +1-212-465-2548, support@genomicpress.com.PublishingManager:Ma-LiWong.

SOCIALNETWORKS: ReachusthroughXorInstagram(both:@genomicpress)orLinkedIn(company/genomic-press).

DIGITALACCESSPOINT: GenomicPsychiatry isavailableonlineat url.genomicpress.com/yc85n63n.Fortheactualversionofrecord pleasealwayschecktheonlineversionofthepublication.Visitthejournal’shomepagefordetailsonaims,scope,mission,values, Editor-in-Chief,EditorialBoard,authorinstructions,tolearnmoreaboutourperspectivesonscientificintegrityandpeerreview,and forupdates.

OPENACCESS(OA): ThejournalispublishedentirelywithOpenAccess.Therefore,therearenosubscriptions.AllGenomicPressOAarticlesarepublishedunderaCCBY-NC-ND4.0license(CreativeCommonsAttribution-NonCommercial-NoDerivatives4.0International License).Thislicenseallowsreaderstocopyandredistributethematerialinanymediumorformat,butthematerialcannotbeused forcommercialpurposesandmodifiedversionsoftheworkcannotbedistributed(https://creativecommons.org/licenses/by-nc-nd/ 4.0/deed.en).Incaseswhereauthorsarenotallowedtoretaincopyright(e.g.,aU.S.Governmentemployee),beforesubmittingtheir article,authorsshouldcontact support@genomicpress.com sothatwecanfindmutuallyacceptablewaystoaccommodatethem.

ARTICLEPROCESSINGCHARGES(APC): Writerscontributingto GenomicPsychiatry arerequiredtopayanarticleprocessingfee(APC), whichissetuponthemanuscript’sacceptance.Thischargeiswaiveduntil30April2025.From1May2025to31December2025,we willhaveapromotionalglobalAPCrateof €1000/500forsubmissionsfromwithintheEuropeanUnion,£860/430forthosefrom theUnitedKingdom,CHF1000/500forthosefromSwitzerland,JP¥170,000/85,000forJapaneseentries,andUSD$990/495forthe UnitedStatesandallotherinternationalsubmissions,withapplicablelocaltaxes.SpecificAPRratesarelistedintheAuthorInstructions.WeoffertwoAPCrates:thehigherrateisforregular-lengthpapersandthelowerrateisforshorter/briefsubmissions.TheAPC rateswillbere-assessedin2026.PapersoriginatingprimarilyfromcountriesclassifiedasbytheWorldBankaslowincomewillhave afullAPCwaiver;thosefromlowermiddle-incomecountriesthatalsohaveanannualgrossdomesticproduct(GDP)oflessthan200 billionUSdollarswillhavea50%APCdiscount.WewillentertainotherrequestsforAPCwaiversordiscountsonanindividualbasis.It isessentialtoapplyforanysuchconcessionsatthetimeofmanuscriptsubmission,aswecannotentertainsuchrequestsduringthe manuscriptreviewprocessoraftermanuscriptacceptance.

SUPPLEMENTS: Until31December2026,wewillnothaveanysupplements:allarticleswillbepublishedinourregularissues.

REPRINTSANDPERMISSIONS: Forinformationonreprintandpermissionrequests,includinginstructionsforobtainingtheseonline, pleasee-mailusdirectlyat: support@genomicpress.com

ARTWORK: Journalimageryincludes:(1)materialsprovidedbyauthorsorcreatedbyprofessionaldesigners(commissionedorcontributed),(2)stockphotosfromlicensedcommercialsourcesorcopyright-freerepositories,and(3)visualscreatedthroughvery extensivehuman-AIcollaboration(usingDALL-E,ClaudebyAnthropic,orGrokcreatedbyxAI).Alljournal-createdimagesarelicensed underCCBY-NC-ND4.0andmaybereproducedwithproperattributionfornon-commercial,unmodifieduse.

PUBLICATIONRIGHTS: Thepublicationrightsforallcontentinthisjournal,includingpapers,articles,andillustrations,arereserved globally.Copyrightlawprotectsallpublishedmaterial,grantingexclusivereproductionanddistributionrights.Withoutwrittenpermissionfromthepublishers,nocontentfromthisjournalmaybereproducedorstoredinanyformat,includingmicrofilm,electronic, optical,ormagneticforms.Reproduction,storage,ortransmissionofanycontentisprohibited,exceptforpersonalresearch,study, criticism,orreviewaspermittedundertheCopyright,Designs,andPatentActof1988orwithpriorwrittenconsentfromthepublishers.Forreprographicreproduction,permissionsaresubjecttoCopyrightLicensingAgencyagreements.

GenomicPsychiatry ispublishedbimonthly–sixtimesayearbyGenomicPress. ©2025GenomicSciencePressLLCDBAasGenomicPress.Allrightsreserved.

GenomicPsychiatry TableofContents

Volume1 Number1 January2025

InauguralEditorial–Introducing GenomicPsychiatry:Advancingsciencefromgenestosociety

Real-worldimplicationsoftheprospectsforpreventionofclinicalAlzheimer’sdementia

NataliaAcosta-Baena:Thegeneticgapbetweenneurodevelopmentandneurodegeneration

MariaA.Oquendo:Thetranslationalpathwayfromtheelucidationofthebiologicalcontributionstosuiciderisktothedevelopment ofinterventionsaimedatpreventingmorbidityandmortality

MariaA.Oquendo

GustavoTurecki:Threefundamentalquestions–Howdoesthebrainrespondtosocialandemotionalexperiences?Whydoes psychologicaltraumatriggerdepressivestates?Whatarethemechanismsofantidepressantresponses?

EdoRonalddeKloet:Howdoestheactionofglucocorticoidschangefromprotectivetoharmful?Whatisthecause?Andwhatarethe consequences?

MayanaZatz:Twocriticalquestionstakecenterstage–Whichvariantsmitigatetheimpactoflethalmutationsinsevereconditions withmildphenotype?Whatfactorscontributetothehealthandlongevityofcentenarians?

NoboruHiroi:Exploringthecellularanddevelopmentaloriginsofneuropsychiatricdisorderslinkedtohumancopy-numbervariation

Prepartumbumetanidetreatmentreversesalteredneonatalsocialcommunicationbutnonspecificallyreducespostpubertal socialbehaviorinamousemodeloffragileXsyndrome

Anovelneurodevelopmental-neurodegenerativesyndromethatcosegregateswithahomozygousSPAG9/JIP4stop-codondeletion NataliaAcosta-Baena,JohannaTejada-Moreno…CarlosAndrésVillegas-Lanau

TreatmentwithshRNAtoknockdownthe5-HT2Areceptorimprovesmemoryinvivoanddecreasesexcitabilityinprimarycorticalneurons TroyT.Rohn,DeanRadin…FabioMacciardi

Rethinkingtheconnectionbetweenbipolardisorderandepilepsyfromgeneticperspectives Jin-HuaHuoandMingLi

CoverArt

ThecoverhighlightskeyelementsofthefragileXsyndromeaticlebySakamotoetal.featuredinthisissue.DNAstrandsrepresenttheFMR1gene,which whensilencedleads tofragileXsyndrome,aconditionassociatedwithhighratesofautismspectrumdisorder.Laboratorymice,widelyusedasmodelsforstudyingthiscondition,areshown alongsidethecomputationalstructuresofneonatalsocialcommunication(visualizedascolorfuldotclusters)andthestructureofbumetanidecentraltounderstandingthe disorder.Thisbodyofworkdemonstratesthatprepartumbumetanidetreatmentcanreversealteredneonatalsocialcommunicationpatternsinamouse modeloffragile Xsyndrome.ThestudyprovidesimportantinsightsintohowFmr1deletionaffectsdistinctelementsofearlyvocalizationandlatersocialinteraction,suggestingpotential developmentalwindowsfortherapeuticintervention.ForfurtherinformationonthistopicpleaseseethepaperbySakamotoetalonpages61–72.

Coverdesigncreatedthroughextensiveanditerativehuman-AIcollaborationusingClaudeandGrokAIassistants.ThefinalcoverislicensedunderCreativeCommons Attribution-NonCommercial-NoDerivatives4.0InternationalLicense(CCBY-NC-ND4.0).Thiscovermaybereproducedwithoutpermissionunderthe termsofthislicense, providedappropriatecreditisgiventoGenomicPress,andthecontentisnotmodifiedorusedforcommercialpurposes.

Copyright©2025GenomicPress.Allrightsreserved.

Thisissueisnowavailableat https://genomicpress.kglmeridian.com/view/journals/genpsych/genpsych-overview.xml

EDITORIAL

InauguralEditorial–Introducing

GenomicPsychiatry:Advancingsciencefromgenes tosociety

©TheAuthor(s),2024.ThisarticleisunderexclusiveandpermanentlicensetoGenomicPress

GenomicPsychiatry January2025;1(1):1–2;doi: https://doi.org/10.61373/gp024d.0004

Wearedelightedtointroduce GenomicPsychiatry,anewandgroundbreakingmedicalresearchjournalthataimstorevolutionizethefieldof mentalhealth.Unliketraditionalgeneticsjournals, GenomicPsychiatry willbridgethegapbetweengenesandthevastarrayofinterconnected disciplinesthatcontributetoourunderstandingofmentalhealth,advancingsciencefromgenestosociety.

Inrecentyears,thefieldofgenomicshasmadesignificantstridesin unravelingthegeneticbasisofpsychiatricdisorders.Yet,oureditorial convictionisthatfarmoremonumentaladvanceswillemergefromanuancedexaminationoftheunbrokenspectrumextendingfromgeneticsto ‘omicssciences,neuroscience,cognitivebehaviors,medicalimaging,clinicalpsychiatry,pharmacotherapy,controlledclinicaltrials,andthefarreachingsocietalimplicationsofmentalwell-being(1)gene-enviorment interactions,socialandenvironmentalexposures.

Recognizingthemultifacetednatureofmentalhealth, GenomicPsychiatry willpublisharticlesthatnotonlydelveintogeneticsandgenomics butalsoembraceawiderangeofrelatedtopics.Weencouragesubmissionsthatexploretheinterplaybetweengeneticmarkers,environmental factors,socialdeterminants,andresultantmentalhealthprofiles(2, 3). Fromcutting-edgeresearchontheroleofepigeneticsinpsychiatricdisorderstostudiesinvestigatingthesocialdeterminantsofmentalhealth, wewelcomeadiversityofperspectivesandmethodologies.

Byembracingacomprehensiveapproach, GenomicPsychiatry willprovideaplatformforresearcherstoshowcasetheirworkattheintersection ofvariousdisciplines(4).Thisjournalwillfostercollaborationandinspire novelinsights,therebypropellingthefieldforward.Wefirmlybelievethat thefutureofmentalhealthresearchliesinembracingamultidimensional approachthatintegratesgenetics,genomics,andbeyond.

Toensureinclusivityandfosterinnovation, GenomicPsychiatry invitessubmissionsfromresearchersandcliniciansworkingacrosstheentirespectrumofmentalhealth.Weencourageauthorstoexplorethe applicationofgenomicsandgeneticsinclinicalpsychiatry,pharmacologicalinterventions,andtreatmenttrials(5).Wearealsointerestedin digitalmedicine,e-health,andtheuseofartificialintelligenceincomputationalpsychiatry(3).Additionally,wewelcomepapersthatinvestigatetheneurobiologicalunderpinningsofpsychiatricdisorders,advancementsinbrainimagingtechniques,andbehavioralstudiesthatshedlight onthecomplexitiesofmentalhealth.

Asthefieldofmentalhealthcontinuestoevolve,itisimperativethat wecreateaspacethatencouragestranslationalscience,interdisciplinary collaboration,andknowledgeexchange(6). GenomicPsychiatry endeavorstobethatspace,wherescientists,clinicians,andresearchersfrom variousbackgroundsjoinforcestoexploretheintricatenatureofmentalhealthdisorders.

Oureditorialboard,comprisingsofar50esteemedmembers,stands asacornerstoneof GenomicPsychiatry’s strength.Thesemembersare notjusteminentintheirfieldsbutalsogloballyrecognizedfortheircontributions.AmongthemisNobelLaureateThomasSüdhof,underscoring

Received:19January2024.Accepted:23January2024. Publishedonline:25January2024.

theboard’sprestige.Severalmembersdistinguishthemselveswithaffiliationstoesteemedinstitutions:intheUSNationalAcademyofSciences, wehavethelikesofHudaAkil,MosesChao,FredGage,Jan-AkeGustafsson,YasminHurd,RobertMalenka,JohnRubenstein,andagainThomas Südhof.WithintheUSNationalAcademyofMedicine,ourrosterincludes FredGage,RaquelGur,YasminHurd,KennethKendler,RobertMalenka, MariaOquendo,JohnRubenstein,AlanSchatzberg,ThomasSüdhof,GustavoTurecki,andMyrnaWeissman.TheRoyalSocietyhonorsJonathan FlintandJohnHardyasitsFellows.Additionally,theBritishmonarchyhas knightedtwoofourboardmembers,JohnHardyandMichaelOwen,in recognitionoftheirextraordinaryachievements.Thisdiverseandaccomplishedgroupmirrorstheunparalleledexpertiseandglobalrecognition oureditorialboardenjoys.

Wewouldliketohighlightour InnovatorsandIdeas sectionthatspotlightsindividualswhohavemadenoteworthycontributionstothefield. Fourofoureditorialboardmembershavealreadycontributedtothis excitingsectionasresearchleaders:MariaOquendo(neurobiologyand clinicalapproachestosuicidality)(7),GustavoTurecki(trauma,depression,neuropathology,andgenomics)(8),AnthonyGrace(braincircuits, schizophrenia,anddepression)(9),andNoboruHiroi(neurobiologyof humancopy-numbervariation)(10).

Weinviteyoutoembarkonthisexcitingjourneywithus.Together, letusunravelthemysteriesofthehumanmind,leveragingthepower ofgenomics,genetics,andthewealthofscientificdisciplinesthatconvergeupontherealmofmentalhealth.Joinusinredefiningthelandscape ofpsychiatricresearchandfosteringabetterunderstandingofmental healthforthebenefitofindividualsandsocietyasawhole.

Welcometo GenomicPsychiatry –wherethegenetic,thebehavioral, theenvironmental,andthesocietalmergetodevelopnewpathstowards optimalmentalhealth.

JulioLicinio1

1 Editor-in-Chief,GenomicPsychiatry,GenomicPress, NewYork,NewYork10036,USA e-mail: julio.licinio@genomicpress.com

References

1.MerikangasKR,MerikangasAK.HarnessingProgressinPsychiatricGeneticstoAdvancePopulationMentalHealth.AmJPublicHealth.2019;109(S3):S171-S175.DOI: 10.2105/AJPH.2019.304948 PMC6595514

2.ReubenA,ManczakEM,CabreraLY,AlegriaM,BucherML,FreemanEC,etal.TheInterplayofEnvironmentalExposuresandMentalHealth:SettinganAgenda.Environ HealthPerspect.2022;130(2):25001.DOI: 10.1289/EHP9889 PMC8848757

3.TopolEJ.High-performancemedicine:theconvergenceofhumanandartificialintelligence.Naturemedicine.2019;25(1):44-56.DOI: 10.1038/s41591-018-0300-7

4.InstituteofMedicine(U.S.).CommitteeonBuildingBridgesintheBrainBehavioraland ClinicalSciences.,PellmarTC,EisenbergL.Bridgingdisciplinesinthebrain,behavioral, andclinicalsciences.Washington,D.C.:NationalAcademyPress;2000.xiv,130p.p.

5.GartlehnerG,WagnerG,MatyasN,TitscherV,GreimelJ,LuxL,etal.Pharmacologicalandnon-pharmacologicaltreatmentsformajordepressivedisorder:reviewof

systematicreviews.BMJOpen.2017;7(6):e014912.DOI: 10.1136/bmjopen-2016014912 PMC5623437

6.BornsteinSR,LicinioJ.Improvingtheefficacyoftranslationalmedicinebyoptimally integratinghealthcare,academiaandindustry.Naturemedicine.2011;17(12):15671569.DOI: 10.1038/nm.2583

7.OquendoMA.Thetranslationalpathwayfromtheelucidationofthebiologicalcontributionstosuiciderisktothedevelopmentofinterventionsaimedatpreventingmorbidityandmortality.GenomicPsychiatry.2024.DOI: 10.61373/gp024k.0001

8.TureckiG.Threefundamentalquestions–Howdoesthebrainrespondtosocialand emotionalexperiences?Whydoespsychologicaltraumatriggerdepressivestates? Whatarethemechanismsofantidepressantresponses?GenomicPsychiatry.2024. DOI: 10.61373/gp024k.0007

9.GraceAA.Elucidatingthecircuitriesthatunderlieschizophreniaanddepressionmay revealtheimpactofstressduringdevelopmentandidentifynoveltreatmenttargets. GenomicPsychiatry.2024.DOI: 10.61373/gp024k.0010

10.HiroiN.Exploringthecellularanddevelopmentaloriginsofneuropsychiatricdisorders linkedtohumancopy-numbervariation.GenomicPsychiatry.2024.DOI: 10.61373/ gp024k.0013

Publisher’snote: GenomicPressmaintainsapositionofimpartialityandneutralityregardingterritorialassertionsrepresentedinpublishedmaterialsandaffilia-

tionsofinstitutionalnature.Assuch,wewillusetheaffiliationsprovidedbytheauthors,withouteditingthem.Suchusesimplyreflectswhattheauthorssubmitted tousanditdoesnotindicatethatGenomicPresssupportsanytypeofterritorial assertions.

OpenAccess. ThisarticleislicensedundertheCreativeCommons Attribution-NonCommercial-NoDerivatives4.0InternationalLicense (CCBY-NC-ND4.0).Thelicensemandates:(1)Attribution:Creditmustbegiventothe originalwork,withalinktothelicenseandnotificationofanychanges.Theacknowledgmentshouldnotimplylicensorendorsement.(2)NonCommercial:Thematerial cannotbeusedforcommercialpurposes.(3)NoDerivatives:Modifiedversionsofthe workcannotbedistributed.(4)Noadditionallegalortechnologicalrestrictionsmay beappliedbeyondthosestipulatedinthelicense.Publicdomainmaterialsorthose coveredbystatutoryexceptionsareexemptfromtheseterms.Thislicensedoesnot coverallpotentialrights,suchaspublicityorprivacyrights,whichmayrestrictmaterialuse.Third-partycontentinthisarticlefallsunderthearticle’sCreativeCommonslicenseunlessotherwisestated.Ifuseexceedsthelicensescopeorstatutory regulation,permissionmustbeobtainedfromthecopyrightholder.Forcomplete licensedetails,visit https://creativecommons.org/licenses/by-nc-nd/4.0/.The licenseisprovidedwithoutwarranties.

GUESTEDITORIAL

Real-worldimplicationsoftheprospectsforpreventionofclinical Alzheimer’sdementia

©TheAuthor(s),2024.ThisarticleisunderexclusiveandpermanentlicensetoGenomicPress

GenomicPsychiatry January2025;1(1):3–4;doi: https://doi.org/10.61373/gp024g.0034

OnValentine’sDay2024, TheLosAngelesTimes publishedastoryentitled,“InsidetheplantodiagnoseAlzheimer’sinpeoplewithnomemoryproblems—andwhostandstobenefit”(1).Thestoryfocuseson thefinancialimplicationsfordrugcompaniesandpatientadvocates. TheNationalInstituteonAging’sAHEAD3451 study(2)isalegitimate, federallyfunded,randomizedclinicaltrialthatisdesignedtothehighestclinicalresearchstandards.Thisisaprovenmethodfornewdrugs tobeputtothemostrigoroustestusingaplacebo-controlled,doubleblind,state-of-the-artdesign.TheAHEAD345trialwilltestthepossibilitythatclinicalAlzheimer’sdementiamaybepreventableifdiagnosisand interventionaretriggeredbyblood-basedbiomarkerchangesdetectedat midlifedespiteanabsenceofsymptoms.Thereisnowclearevidencethat Alzheimer’spathologydevelops20ormoreyearspriortotheappearance ofclinicalsymptoms.The Times pieceemphasizesthattheefforttoseize uponthispotentialwindowforinterventionisatleastpartiallymotivated bytheprospectthatdrugcompaniesanddementiaadvocacygroupswill befinanciallyenrichediftrialslikeAHEAD345succeed.The Times articleavoidswordslike“breakthrough”and“moonshot”thatarefrequently usedtodescribethemitigationoreliminationofmajorillnessessuchas cancer,diabetes,heartdisease,andAIDS.

Thecostofbringingeachnewprescriptiondrugtomarketisestimated at$350million(3).Usually,generatingprofitstounderwriteongoingresearchhasbeenacceptedasasoundbusinessmodelandviewedasevidenceoftheentrepreneurialspiritofscientistsandclinicians.Whywas thedevelopmentofblockbusterdrugsthatpreventclinicalmanifestationsofatherosclerosiswelcomed,whiletheprospectofpreventingdementiaisviewedinthefirstanalysisasprimarilyprofit-driven?Isthe sufferingofyoungerpersonswithatherosclerosisandcancermoreimportantthanthesufferingofelderpersonslivingwithdementiaandtheir families?Arescientificdiscoveryandfinancialprofitabilitymutuallyexclusive?Iwouldhavepredictedthatanytensionbetweenthesetwooutcomeswouldbeasmallpricetopayifweeliminateanillnessthatcosts 2trilliondollarsperyearintheUSalone(4).

Manybreakthroughsenrichinventors.TheNobelPrizehasamonetary valueof11millionSwedishkronor(5).Rigoroustrialsofdrugsareessential,regardlessofwhostandstobenefiteitherfinanciallyoremotionally.Whileitisentirelyreasonablethatskepticsholdinventors’feetto thefire,theinventorsshouldbeentirelyopentoscrutinytorealizethe commongoalofauthentic,valid,reproducibledata.Skepticismaboutthe outcomedoesnotmeanthataudaciousandpotentiallylucrativehypothesesshouldnotbetested.Theunpredictabilityofscienceistheessenceof whyexperimentsareconducted.

OnegoaloftheRANDCorporationistoelucidatehowsuccessfuldementiatreatmentandpreventionmightmodifytheclinicaland economiclandscapeinarangeofsituations(6).RANDrecognizesthe

1 AcronymforanNIHclinicaltrialofblood-basedbiomarkerguidedtreatmentwith anti-amyloidantibodyorplacebo.

Received:21April2024.Accepted:23April2024. Publishedonline:26April2024.

substantialvariationinthecapacitiesofvarioushealthcaresystems todetect,diagnose,andtreatorpreventearly-stageAlzheimer’swith disease-modifyingtreatments(DMTs).Theestimatedwaittimesandthe numberofpatientstreatedaresensitivetotheuptakeofbriefcognitive assessmentsbythepublicandbyprimarycareproviders.Theestimated averagewaittimesvarybystateandcanbethreetimeslongerinrural areasthaninurbanareas.Caremodelsthatenableprimarycarephysicianstodiagnoseandevaluatepatientsfortreatmenteligibilitywould significantlyreducewaittimesforspecialistsandincreasethenumberofpeopletreatedfrom2025through2044.Improvedtriageofpatientsusingblood-basedbiomarkertestscouldfurtherreducecaseloads forspecialists.WidespreaddeliveryofAlzheimer’sDMTswillrequirea combinationofstrategiesto(1)communicatethevalueofdetectionand treatmenttopatients,(2)integrateprimarycarephysiciansintothedetectionanddiagnosispathway,and(3)addresscapacitydisparitiesacross theUnitedStatesandaroundtheworld.ThesechallengesforimplementationcanonlybeaffordedifDMTsgenerateenoughresourcesto offsetthisincreaseindemand.Criticswithlegitimateconcernsshould allowforthepossibilitythatthepotentialprofitabilityofbreakthroughs doesnotmeanthatweshouldavoidaskingwhetherpreventionis possible.

Thornyquestionsremaintobeanswered.Trialshavenotbeenadequatelyinclusiveanddiverse(7).Standardsforminimumclinicallysignificantbenefitarestillunderdevelopment,bothforpersonslivingwith dementiaandfortheircaregivers(8).Nevertheless,thereisnoreasonnot tobeginsortingthroughtheseimplicationssothatweareappropriately preparedifAlzheimer’spreventionsucceeds.Currentevidencesuggests thatasmanyas76%ofpatientsreceivingsubcutaneouslecanemab(vs 55%ofpatientsreceivingplacebo)haveacompletearrestoftheircognitivedecline(9).Onwhatplanetisthisabadoutcome?

SamGandy,MD,PhD1 , 2

1 MountSinaiAlzheimer’sDiseaseResearchCenter,IcahnSchoolofMedicineat MountSinai,NewYork,NewYork10029,USA; 2 DepartmentofNeurology,JamesJ PetersVAMedicalCenter,BronxNewYork10468,USA e-mail: samuel.gandy@mssm.edu

CompetingInterests

Dr.Gandyisaco-founderofRecuerdoPharmaceuticals.Hehasservedas aconsultantinthepastforJ&J,Diagenic,andPfizer,andhecurrently consultsforCognitoTherapeutics,GLGGroup,SVBSecurities,Guidepoint,ThirdBridge,MEDACORP,Altpep,VigilNeurosciences,andEisai.He hasreceivedresearchsupportinthepastfromWarner-Lambert,Pfizer, Baxter,andAvid.HecurrentlyreceivesresearchsupportfromtheNIHand theCureAlzheimer’sFund.

FundingSources

Theauthorwassupportedasfollows:NIHgrantsU01AG046170, RF1AG058469,RF1AG059319,R01AG061894,P30AG066514toMary Sano,andCureAlzheimer’sFund.

RoleoftheFunders/Sponsors

Thefunders/sponsorshadnoroleinthepreparation,review,orapprovalofthemanuscript,orthedecisiontosubmitthemanuscriptfor publication.

References

1. https://www.latimes.com/science/story/2024-02-14/inside-controversial-plan-todiagnose-alzheimers-in-people-without-symptoms

2. https://www.aheadstudy.org/

3.SchlanderM,Hernandez-VillafuerteK,ChengCY,Mestre-FerrandizJ,BaumannM.How MuchDoesItCosttoResearchandDevelopaNewDrug?ASystematicReviewand Assessment.Pharmacoeconomics.2021;39(11):1243-69.DOI: 10.1007/s40273-02101065-y.PMID:34368939;PMCID: PMC8516790

4.TayLX,OngSC,TayLJ,NgT,ParumasivamT.EconomicBurdenofAlzheimer’sDisease: ASystematicReview.ValueHealthRegIssues.2024;40:1-12.DOI: 10.1016/j.vhri.2023. 09.008.PMID:37972428.

5. https://www.nobelprize.org/prizes/about/the-nobel-prize-amounts/

6. https://www.rand.org/

7.XueD,BlueEE,ConomosMP,FohnerAE.Thepowerofrepresentation:StatisticalanalysisofdiversityinUSAlzheimer’sdiseasegeneticsdata.AlzheimersDement(NY). 2024;10(1):e12462.DOI: 10.1002/trc2.12462

8.HortonMC,OyebodeJ,ClareL,MegsonM,ShearsmithL,BrayneC,etal.MeasuringQualityofLifeinCarersofPeopleWithDementia:DevelopmentandPsychometricEvaluationofScalesmeasuringtheImpactofDEmentiaonCARers(SIDECAR).Gerontologist. 2021;61(3):e1-11.DOI: 10.1093/geront/gnz136

9.vanDyckC,JohnsonK,SperlingR,IrizarryM.LecanemabforearlyAlzheimer’sdisease: Long-termoutcomes,predictivebiomarkers,andnovelsubcutaneousadministration. CTAD23,AbstractS4.JPreventAD2023;10:S1,59-60.

Publisher’snote: GenomicPressmaintainsapositionofimpartialityandneutralityregardingterritorialassertionsrepresentedinpublishedmaterialsandaffiliationsofinstitutionalnature.Assuch,wewillusetheaffiliationsprovidedbytheauthors,withouteditingthem.Suchusesimplyreflectswhattheauthorssubmitted tousanditdoesnotindicatethatGenomicPresssupportsanytypeofterritorial assertions.

OpenAccess. ThisarticleislicensedtoGenomicPressunderthe CreativeCommonsAttribution-NonCommercial-NoDerivatives4.0 InternationalLicense(CCBY-NC-ND4.0).Thelicensemandates:(1)Attribution: Creditmustbegiventotheoriginalwork,withalinktothelicenseandnotification ofanychanges.Theacknowledgmentshouldnotimplylicensorendorsement. (2)NonCommercial:Thematerialcannotbeusedforcommercialpurposes.(3) NoDerivatives:Modifiedversionsoftheworkcannotbedistributed.(4)Noadditionallegalortechnologicalrestrictionsmaybeappliedbeyondthosestipulated inthelicense.Publicdomainmaterialsorthosecoveredbystatutoryexceptions areexemptfromtheseterms.Thislicensedoesnotcoverallpotentialrights,such aspublicityorprivacyrights,whichmayrestrictmaterialuse.Third-partycontent inthisarticlefallsunderthearticle’sCreativeCommonslicenseunlessotherwisestated.Ifuseexceedsthelicensescopeorstatutoryregulation,permission mustbeobtainedfromthecopyrightholder.Forcompletelicensedetails,visit https://creativecommons.org/licenses/by-nc-nd/4.0/.Thelicenseisprovided withoutwarranties.

GenomicPsychiatry

INNOVATORS&IDEAS:RISINGSTAR

NataliaAcosta-Baena:Thegeneticgapbetweenneurodevelopmentand neurodegeneration

©GenomicPress,2024.The“GenomicPressInterview”frameworkisprotectedundercopyright.Individualresponsesarepublishedunderexclusive andpermanentlicensetoGenomicPress.

GenomicPsychiatry January2025;1(1):5–7;doi: https://doi.org/10.61373/gp024k.0082

Keywords: SPAG9,JIP4,retrogradeaxonaltransport,polygenic, pleiotropy,Intellectualdisability,dementia,genetics,epidemiologist, neurodevelopment

Dr.NataliaAcosta-Baenaembodiestherareconfluenceofclinicaland basicscienceexpertisethatmodernneurosciencedemands.Asa physician-scientistattheUniversityofAntioquia’sNeurosciences Group,shecombineshermedicaltrainingwithamaster’sinclinical epidemiologyanddoctoralstudiesinbasicbiomedicalsciences, specializinginGenetics.Hergroundbreakingworkbeganwith contributingtocharacterizetheworld’slargestpopulationaffected byautosomaldominantgeneticAlzheimer’sdisease(mutationE280A inPSEN1),establishingafoundationfornumerousstudieson biomarkers,clinicaltrialdesign,andgeneticmodifiersinthispivotal cohort.Inalandmarkdiscovery,Dr.Acosta-Baena’sresearchrevealed anovelsyndromelinkedtoaSPAG9variant,demonstratinghowa singlegeneinvolvedinneuronalretrogradetransportcandrive neurodevelopmentalproblemsandneurodegenerationinaffected patients.Thisfindingchallengesthetraditionalseparationbetween theseprocessesandsuggestssharedbiologicalpathways.Through hercontinuedworkwithfamiliesaffectedbyneurodevelopmental disorders,shehasuncoveredgeneticnetworksthatreshapeour understandingofrarebraindiseases.Hercurrenttranslational medicineandgeneticepidemiologyresearchfocusesonfurther exploringtheseunexpectedconnectionsbetweenneurodevelopment andneurodegeneration.InaGenomicPressInterview, Dr.Acosta-Baenasharedherlifebeyondthelaboratory–fromher earlyfascinationwiththehumanbraintofindingjoyinColombia’s mountainsunsetswithherhusbandandsonanddrawinginspiration fromLatinAmericanwriterslikeCortázarandGarcíaMárquez.Her dedicationtoscientificrigorandhumanconnectionisreflectedinher philosophythateachfailureteachessomethingessentialasshe workstowardtranslatinggeneticdiscoveriesintomeaningful healthcarepoliciesandpersonalizedmedicineapproaches.

Part1:NataliaAcosta-Baena–LifeandCareer

Couldyougiveusaglimpseintoyourpersonalhistory,emphasizing thepivotalmomentsthatfirstkindledyourpassionforscience? Itmaysoundstrange,buteversinceIcanremember,Ihavewantedto studymedicineandunderstandourbrain.Idonothaveparentswhowere doctorsoranyoneinmyfamilytoinfluenceme.Ithasmotivatedmylife sinceIwaslittle.IrememberthatIdidn’tlikegoingtoschool,butIunderstoodthatitwastheonlywaytogettoworkinwhatIwaspassionate about.

Wewouldliketoknowmoreaboutyourcareertrajectoryleadingupto yourcurrentrole.Whatdefiningmomentschanneledyoutowardthis opportunity?

Amotivation:neuroscienceresearch.Twoopportunities:IstartedbyattendingastudygroupinNeuroanatomywiththeNeuroscienceGroupof

Received:3November2024.Accepted:5November2024. Publishedonline:14November2024.

theUniversityofAntioquia,andIacceptedtheopportunitytodoamaster’sdegreeinepidemiologywiththesameresearchgroupwithProfessor FranciscoLoperaandthencompleteadoctorateingenetics.

Pleasesharewithuswhatinitiallypiquedyourinterestinyour favoriteresearchorprofessionalfocusarea.

Thecomplexityofhumanthoughtandactionandthesearchfortheevolutionaryquestionofwhatthebrainofhomosapienshadgeneticallyand physiologicallymadeusthespeciesthatmanagedtosurviveabovethe otherhominids.

Whatimpactdoyouhopetoachieveinyourfieldbyfocusingon specificresearchtopics?

ThegreatestimpactIhopetoachievewithmyresearchistofostera collaborativeeffortthatreachesindividualswhoaresickandtheircaregivers.Ienvisionafuturewhereourknowledgeempowerspeopleand

Figure1. NataliaAcosta-Baena,MD,MsC,PhD(c),UniversidaddeAntioquia, Colombia.

influenceshealthpoliciestowardstrueprevention.Ourstudies,currently intheformofarticles,holdthepotentialtobeappliedtothegeneralpopulation,shapingdecisionsandresponsesforpatients.

Pleasetellusmoreaboutyourcurrentscholarlyfocalpointswithin yourchosenfieldofscience?

Neurodevelopmentalgeneticsisafieldwhereweonlyseethetipofthe iceberg.Wedonotseewhatwedonotunderstand.Whenwemanageto understandtherelationshipbetweengeneticnetworks,wewillbeableto decipherneurodevelopmentandneurodegeneration.Myfocusisgenetics forpreventionandpersonalizedandcommunitymedicine.

Whathabitsandvaluesdidyoudevelopduringyouracademicstudies orsubsequentpostdoctoralexperiencesthatyouupholdwithinyour researchenvironment?

Continuewiththemedicalconsultation.Eachrareclinicalpresentationof adiseasethatsurprisesiswhatmotivatesnewquestions.

AtGenomicPress,weprioritizefosteringresearchendeavorsbased solelyontheirinherentmerit,uninfluencedbygeographyorthe researchers’personalordemographictraits.Arethereparticular culturalfacetswithinthescientificcommunitythatwarrant transformativescrutiny,oristhereacausewithinsciencethatdeeply stirsyourpassions?

Iampassionateaboutnewquestionsandnewchallenges.Iamboredby absolutecertaintyandthosewhobelievetheyhaveit.

Whatdoyoumostenjoyinyourcapacityasanacademicorresearch risingstar?

ThatIdonotfeellikeone.

Outsideprofessionalconfines,howdoyouprefertoallocateyour leisuremoments,orconversely,inwhatmannerwouldyouenvision spendingthesemomentsgivenachoice?

IalwaysenjoytheviewofthesunsetortheraininthemountainsofColombiawithmyhusbandandson.

Part2:NataliaAcosta-Baena–Selectedquestionsfromthe ProustQuestionnaire1

Whatisyourideaofperfecthappiness? Thereisnotone,bothwordsareapleonasm.

Whatisyourgreatestfear?

“Withoutmusic,lifewouldbeamistake”“OhneMusikwäredasLeben einIrrtum”(FriedrichNietzsche, DieGötzen-Dämmerung–Twilightofthe Idols,section:“SprücheundPfeile”(MaximsandArrows)aphorism#33, 1895).

1 Inthelatenineteenthcentury,variousquestionnaireswereapopulardiversion designedtodiscovernewthingsaboutoldfriends.Whatisnowknownasthe35questionProustQuestionnairebecamefamousafterMarcelProust’sanswersto thesequestionswerefoundandpublishedposthumously.Proustansweredthequestionstwice,atages14and20.In2003Proust’shandwrittenanswerswereauctioned offfor$130,000.Multipleotherhistoricalandcontemporaryfigureshaveanswered theProustQuestionnaire,includingamongothersKarlMarx,OscarWilde,ArthurConanDoyle,FernandoPessoa,StéphaneMallarmé,PaulCézanne,VladimirNabokov, KazuoIshiguro,CatherineDeneuve,SophiaLoren,GinaLollobrigida,GloriaSteinem, Pelé,Valentino,YokoOno,EltonJohn,MartinScorsese,PedroAlmodóvar,Richard Branson,JimmyCarter,DavidChang,SpikeLee,HughJackman,andZendaya.The ProustQuestionnaireisoftenusedtointerviewcelebrities:theideaisthatbyansweringthesequestions,anindividualwillrevealhisorhertruenature.WehavecondensedtheProustQuestionnairebyreducingthenumberofquestionsandslightly rewordingsome.Thesecuratedquestionsprovideinsightsintotheindividual’sinner world,rangingfromnotionsofhappinessandfeartoaspirationsandinspirations.

Figure2. NataliaAcosta-BaenaandhersonembracingthebeautyoftheAntioquiaMountainsduringColombia’sCOVID-19lockdown(25March2020). Againstabackdropoflushtropicalvegetationandbamboogrovescharacteristicoftheregion’smountainside,theystandonaclearedhillsideslope,arms outstretchedinamomentofjoyandfreedomdespitetheglobalpandemicrestrictions.Thecontrastbetweenthecultivatedslopeintheforegroundand thedenseforestcanopyabovecapturesthetypicallandscapemosaicofthe Andeancountryside.

Whichlivingpersondoyoumostadmire?

ToeverywomaninLatinAmericawhoprioritizeshertimefortheintegral educationofherchildrenaboveanyotherneed.

Whatisyourgreatestextravagance? Behappy.

Whatareyoumostproudof? Beingamother.

Whatisyourgreatestregret? Idonotregretanythingsofar.

Whatisthequalityyoumostadmireinpeople? Honestyandgoodhumor.

Whatisthetraityoumostdislikeinpeople? Arroganceandprepotency.

Whatdoyouconsiderthemostoverratedvirtue? None.Eachvirtueisrelevanttohumanity,andresearchonhumansand animalsisanexample.

Whatisyourfavoriteoccupation(oractivity)? Writing–andIcan–dancing.

Wherewouldyoumostliketolive?

InColombia,inmycurrenthouseinaruralareainthemountains.

Whatisyourmosttreasuredpossession? Mymemories.

Whenandwherewereyouhappiest?Andwhyweresohappythen? Whenmysonwasborn,10yearsago,andallthegoodtimessincethen.

Whatisyourcurrentstateofmind? IcurrentlyfeelcalmandgratefulforeverythingIhavereceivedinlife.

Whatisyourmostmarkedcharacteristic? Imagination.

Amongyourtalents,whichone(s)give(s)youacompetitiveedge? Iwasnotbornwithspecialtalents,butIwasbornwithagreatdealof curiosityandadesiretodevelopnewskillseveryday.

Whatdoyouconsideryourgreatestachievement?

Everygoalachievedisthebiggestatthetime.Everyarticleachievedand publishedisthesumoftheeffortsofmanypeople,soitisgreat.

Ifyoucouldchangeonethingaboutyourself,whatwoulditbe? Idonotwanttochangeanything.WhatIwasandwhatIamhaveleftme whereIamnow,andIfeelproudofwhereIam,howIam,andwhoIam with.

Whatdoyoumostvalueinyourfriends?

Appreciationandloyaltydespitethousandsofflawsandmistakes.

Whoareyourfavoritewriters?

JulioCortazar,HoracioQuiroga,JorgeLuisBorgesandGabrielGarcia Marquez.

Whoareyourheroesoffiction?

None.Myfavoriteisanantihero,theJoker,whoremindsusofourdark humanity.

Whoareyourheroesinreallife?

Anonymouspeoplehelpothers,buttheydonotappearinnewspapersor socialmedia.

Whataphorismormottobestencapsulatesyourlifephilosophy?

“Stairsareclimbedfromthefront,sinceclimbingthemfrombehindor thesidewillresultparticularlyuncomfortable.”—JulioCortázar,“InstructionsonHowtoClimbaStaircase”(fromCronopiosandFamas,1962). Trans.PaulBlackburn.

Intheoriginal:“Lasescalerassesubendefrente,pueshaciaatrás odecostadoresultanparticularmenteincómodas.”—JulioCortázar, “Instruccionesparasubirunaescalera”(deHistoriasdecronopiosyde famas,1962).

NataliaAcosta-Baena1

1 UniversidaddeAntioquia,FacultaddeMedicina,GrupodeNeurocienciasde Antioquia(GNA),Medellín,Antioquia050012,Colombia e-mail: natalia.acosta@gna.org.co

Publisher’snote: GenomicPressmaintainsapositionofimpartialityandneutrality regardingterritorialassertionsrepresentedinpublishedmaterialsandaffiliations ofinstitutionalnature.Assuch,wewillusetheaffiliationsprovidedbytheauthors, withouteditingthem.Suchusesimplyreflectswhattheauthorssubmittedtousand itdoesnotindicatethatGenomicPresssupportsanytypeofterritorialassertions.

OpenAccess. The“GenomicPressInterview”frameworkiscopyrightedtoGenomicPress.Theinterviewee’sresponsesarelicensedtoGenomicPressundertheCreativeCommonsAttribution-NonCommercialNoDerivatives4.0InternationalLicense(CCBY-NC-ND4.0).Thelicensemandates: (1)Attribution:Creditmustbegiventotheoriginalwork,withalinktothelicense andnotificationofanychanges.Theacknowledgmentshouldnotimplylicensorendorsement.(2)NonCommercial:Thematerialcannotbeusedforcommercialpurposes.(3)NoDerivatives:Modifiedversionsoftheworkcannotbedistributed.(4) Noadditionallegalortechnologicalrestrictionsmaybeappliedbeyondthosestipulatedinthelicense.Publicdomainmaterialsorthosecoveredbystatutoryexceptionsareexemptfromtheseterms.Thislicensedoesnotcoverallpotential rights,suchaspublicityorprivacyrights,whichmayrestrictmaterialuse.Thirdpartycontentinthisarticlefallsunderthearticle’sCreativeCommonslicenseunless otherwisestated.Ifuseexceedsthelicensescopeorstatutoryregulation,permissionmustbeobtainedfromthecopyrightholder.Forcompletelicensedetails,visit https://creativecommons.org/licenses/by-nc-nd/4.0/.Thelicenseisprovidedwithoutwarranties.

GenomicPsychiatry

INNOVATORS&IDEAS:RESEARCHLEADER

MariaA.Oquendo:Thetranslationalpathwayfromtheelucidationofthebiological contributionstosuiciderisktothedevelopmentofinterventionsaimedat preventingmorbidityandmortality

©GenomicPress,2024.The“GenomicPressInterview”frameworkisprotectedundercopyright.Individualresponsesarepublishedunderexclusive andpermanentlicensetoGenomicPress.

GenomicPsychiatry January2025;1(1):8–10;doi: https://doi.org/10.61373/gp024k.0001

Keywords: Suicide,suicidality,brain,populationhealth,womenin science

Dr.MariaOquendoisRuthMeltzerProfessorandChairmanof PsychiatryatUniversityofPennsylvaniaandPsychiatrist-in-Chiefat theHospitaloftheUniversityofPennsylvania.Asummacumlaude graduateofTuftsUniversity,sheattendedCollegeofPhysiciansand Surgeons,ColumbiaUniversityandcompletedresidencyatPayne WhitneyClinic,NewYorkHospital,Cornell.Sheisamemberofthe NationalAcademyofMedicine,oneofthehighesthonorsinmedicine. Dr.OquendohasusedPositronEmissionTomographyandMagnetic ResonanceImagingtomapbrainabnormalitiesinmooddisordersand suicidalbehavior.Herexpertiserangesfrompsychopharmacologyto GlobalMentalHealth.Shehasover500peer-reviewedpublications, anH-index116and49,472citations(GoogleScholar).Intermsof organizationalleadershippositions,Dr.OquendoisPastPresidentof theAmericanPsychiatricAssociation(APA),theInternational AcademyofSuicideResearch,theAmericanCollegeof Neuropsychopharmacology(ACNP),andtheAmericanFoundationfor SuicidePrevention’sBoardofDirectors.SheisVicePresidentofthe CollegeofInternationalNeuropsychopharmacologyandhasservedon theNationalInstituteofMentalHealth’sAdvisoryCouncil.Dr. OquendoservesonTuftsUniversity’sBoardofTrustees,servesonits ExecutiveCommitteeandchairsTufts’AcademicAffairsCommittee.A recipientofmultipleawardsintheUnitedStates,Europe,andSouth America,mostrecently,shewashonoredwiththeSymondsAward (APA2017),theAPA’sResearchAward(2018),theShockleyAward (ACNP2018),andtheGlassmanAward(ColumbiaUniversity2021). Dr.Oquendohassharedsomeofherthoughtsandperspectivesonher lifeandcareer.

TheGenomicPressInterviewPart1:MariaOquendo:Lifeandcareer Couldyougiveusaglimpseintoyourpersonalhistory,emphasizing thepivotalmomentsthatfirstkindledyourpassionforscience? Ihavelovedmathematicalconceptsandnumberssincemiddleschool,but Ialsocherishedlanguage,art,anddesign.IoriginallythoughtthatArchitecturewouldhelpmemeldtheseinterests,yettheliberalcollegeIattendeddidnotoffersuchstudies.Thus,Ifocusedontheoreticalmathand Romancelanguageliterature.Therestofthetrajectorytomedicineisa yarn,butsufficeittosaythatatnotimeduringmyteensortwentiesdid Iconsiderscientificinquirymycalling.Iviewedscienceaskeytrainingto supportpragmaticapplications:architecture,medicine.Andso,Ifinished residencyinPsychiatryandchoseapositionasateachingfacultymemberinabusyclinicalservice.ItwasnotuntilIhadbeeninthatpositionfor 8yearsthatIbegantothinkaboutotheropportunities.Fortuitously,one ofmyresidencysupervisorswasrecruitedtoColumbiaUniversity,whereI wasonthefaculty.Hewasoneofmyresearchmentorsduringresidency. AkeypointisthatheknewIwouldworkhardandofferedmeafull-time positiononhisteam.IwasnotsureIwouldlikethejob.Infact,Ithought

Received:11January2024.Accepted:12January2024. Publishedonline:25January2024.

therewasagoodchanceIwouldhateit.ButIwaswrong.Theexperience wastransformational.Ilovedthinkingabouthowtointerpretdata,Iloved statistics,Ilovedwritingpapers,carefullyandmethodicallydelineating theapproach,theanalysis,theresults,andtheconclusions.Ievenloved writinggrants.Iwasinheaven.EventhoughIhavehadseveraladministrativepositions,itisundeniablethatthecoreofmyprofessionalidentity isasascientist.

Wewouldliketoknowmoreaboutyourcareertrajectoryleadingup toyourmostrelevantleadershiprole.Whatdefiningmoments channeledyoutowardthatleadershipresponsibility?

ManyofmystudentsandmenteeshaveaskedmehowIforgedthepathto becomingChairmanofamajorDepartmentofPsychiatry.Theyaremostly takenabackwhenItellthemthatIdidnotplanitatallandthatIamas surprisedasthenextpersonthatithappened.Ialsotellthemthatmany leadersatmylevelhavesharedwithmethattheirexperiencewasnotso different.Itwasnotplanned.Itwastheresultofrespondingtoopportunitiesevenwhendoingsowasnotalignedwithapersonalvisionofthe trajectory.Forexample,whenIshiftedfromafacultypositionasaclinical educatortoaresearchpsychiatrist,Ididnothaveanyleadershipresponsibilities.However,withinafewyears,mymentorappointedmeDirectoroftheClinicalLabforwhatwasthentheDivisionofNeurosciencein

Figure1. MariaA.Oquendo,MD,UniversityofPennsylvania,USA.

PsychiatryatColumbia.ThiswasanopportunityIrelished,andIdidthe jobhappilyfor8yearsuntilIwastappedbytheExecutiveVice-Chairof theDepartmentofPsychiatrytobecometheDirectorofAmbulatoryResearchClinics,ofwhichtherewere28(!).Iwasfarfromsurethatthis administrativejobwasforme,butIappliedthesamemethodicalapproachIusedinresearchtounderstandwhateachclinicfocusedonand howitwasorganized.Iwantedtoknowwhethertherewasaneedfora moreuniformstructureorwhethertheclinicsusedrobuststrategiesin theirmanagementofclinicalresearchpatientsintermsofsafety,rigor, andproductivity.Iwantedtounderstandwhattheirscientificoutputwas andhoweachresearchclinicsupporteditsefforts.Weretheysupported solelybystateresources(afterall,thiswastheNewYorkStatePsychiatricInstitutewhichhousestheColumbiaUniversityDepartmentofPsychiatry)ordidtheyhavefoundationorfederalgrants?Didtheyrelyon philanthropyordidtheyuseincomefrompharmacologicaltrialsorconsultations?SufficeittosaythatIlearnedalot,butwithinoneyear,the ChairmanoftheDepartmenttappedmetobecomeVice-ChairmanforEducationandTrainingDirector.Heretoo,Iwasquiteambivalentaboutthe role.Iwasconcernedthatitwouldbeall-consumingandtakemeaway frommyscienceorworse,thatitwouldboreme.Nonetheless,Idecided togiveitawhirl.Thisendedupbeingakeystepinthejourneytowards Chairmanship.TheChairmanoftheDepartmentalsourgedmetorunfor PresidentoftheAmericanPsychiatricAssociation.Nothingcouldhave beenfurtherfrommymind.Tome,suchastepwasmisalignedwithmy goalsandwouldprobablydrivemeinsanebecauseofthepolitics,toboot. Soon,Ihadleadersfromaroundthecountrycallingandemailingasking metorun.MyChairmanwasinsistentandafterall,hewasmyboss.So,I wentahead.Iwasstunnedtoseehowfun,yetdifficultitwas.Itamused menoendthatatinternationalconferences,psychiatristswhomIhad nevermetcameuptometohavetheirpicturetakenwithme.Iwashonoredthatsomanypeopleseemedtotrustmetolead.Itturnedoutthis, too,wasanimportantimprimaturforbeingconsidered“Chairmanmaterial.”Itshouldnothavesurprisedmethathighvisibilitymarriedwith academicchopswasanexcellentcombinationtobeseenasaleader,but itdid.

Pleasesharewithuswhatinitiallypiquedyourinterestinyour favoriteareaofresearchorprofessionalfocus Thatthefocusofmyworkhasbeenonsuicidalbehaviorwashappenstance.Iwasnotlookingtodoresearchperse,butwhenmymentorapproachedmetoworkinaclinicalresearchlab,Isaidmyinterestwasin depressionandcross-culturalissuesrelatedtoit.Istartedoffwiththat, butsoongravitatedtowardsthemainstreamworkofthelabbecausethat iswheremostofthebiologicalfocuswas.Itwascleartomethatbiological workwasthemosthighlyvaluedinthatlab.Ilearnedaboutpositronemissiontomography,cerebrospinalfluidstudies,postmortembrainstudies enoughthatIcouldconductsomeofthestatisticsandinterpretthedata. Itturnedoutthatneurobiologywassomeofthemostinterestingpartof theworktome.

Whatkindofimpactdoyouhopetoachieveinyourfieldthroughyour focusonyourspecificresearchtopics?

Ihopetoraisescientificawarenessofthebiologicalcontributionstosuicideriskwhichcantranslatetointerventionstopreventmorbidityand mortality.Ialsohopetodecreaseclinician’sanxietyaboutmanagingsuicidalpatientsusingimplementationsciencestrategies.

Couldyoutellusmoreaboutyourcurrentscholarlyfocalpointswithin yourchosenfieldofscience?

Ihavebeenworkingondelineatingtheriskforsuicidalideationand behavioramongpersonswhodonotmeetthecriteriaforpsychiatric disorders.Asadepartingpoint,Ihavefocusedonraisingscientificawarenessaboutthefrequencywithwhichsuicidalbehavioroccursunaccompaniedbyotherpsychiatricmorbidities.WhenIfirststartedwritingup thedata,Iwasstunnedbyhowmarriedthefieldwas/istothenotion thatsuicidalbehavioronlyrarelyhappensabsentatleastonepsychiatric disorder.Datadocumentingthecontraryappearedinpublicationsbut wentunmentionedindiscussions,nevermindthetitlesofarticles.The

prevailingclinicalloreisthatifsuicidalbehavioroccurswithoutmental illness,itmustbebecausethedisorderis“masked.”Thedatathatcontradictsthatnotionaboundsandrequiresscientificattentionforwhatit does:defyourcurrentclinicalwisdom.

Whathabitsandvaluesdidyoudevelopduringyouracademicstudies orsubsequentpostdoctoralexperiences,thatyouupholdwithinyour ownresearchenvironment?

Attentiontodetail,internallogicinformulatingresearchstudiesand writingmanuscripts,andlucidityandlinearityinwriting.

AtGenomicPress,weprioritizefosteringresearchendeavorsbased solelyontheirinherentmerit,uninfluencedbygeographyorthe researchers’personalordemographictraits.Arethereparticular culturalfacetswithinthescientificcommunitythatyouthinkwarrant transformativescrutiny,oristhereacausewithinsciencethatdeeply stirsyourpassions?

Manypeopletalkaboutthis,buttome,themetricstomeasureproductivityandqualityinresearchareheavilybiasedtowardwesternscientists’ workandinmedicine,towardbasicscience.Wemustdobetter.

Whatdoyoumostenjoyinyourcapacityasanacademicand researchleader?

Ilovediscussingideasforexperimentsandstudiesaswellaswriting grantsandmanuscripts.AsaChair,Ienjoyencouragingfacultywhodon’t usuallyworktogethertocollaborateonanimportantresearchopportunityandseeingwhattheycomeupwith.

Outsideprofessionalconfines,howdoyouprefertoallocateyour leisuremoments,orconversely,inwhatmannerwouldyouenvision spendingthesemomentsgivenachoice?

IverymuchenjoytravelingandappreciatediversityinwhatIdo.Insome cases,thegoalistoenjoyculturalaspectsofthelocation(history,local culture,art,music,architecture),butatothertimesitismoreaboutthe gastronomyoftheplace,andnotnecessarilyinfancyestablishments.I alsothoroughlyenjoynatureandamanavidhikeralthoughnotamountaineer,byanystretch!Forme,itisaboutbeingoutside,exploringhabitatswiththeirfloraandfauna,andsoakinginvistaswithadaypackand myrecentlyacquired,andimmediatelybeloved,walkingsticksformore challengingtreks.

TheGenomicPressInterviewPart2:MariaOquendo:Selected questionsfromtheProustQuestionnaire1 Whatisyourideaofperfecthappiness?

Adayatthebeach,sittingintheshade,watchingthewavesrollin.

Whatisyourgreatestfear?

Losingmymemory.

Whichlivingpersondoyoumostadmire?

SoniaSotomayor.

1 Inthelate19thcenturyvariousquestionnaireswereapopulardiversiondesigned todiscovernewthingsaboutoldfriends.Whatisnowknownasthe35-question ProustQuestionnairebecamefamousafterMarcelProust’sanswerstothese questionswerefoundandpublishedposthumously.Proustansweredthequestions twice,atages14and20.MultipleotherhistoricalandcontemporaryfigureshaveansweredtheProustQuestionnaire,suchasOscarWilde,KarlMarx,ArthurConanDoyle, StéphaneMallarmé,PaulCézanne,MartinBoucher,HughJackman,DavidBowie,and Zendaya.TheProustQuestionnaireisoftenusedtointerviewcelebrities:theidea isthatbyansweringthesequestionsanindividualwillrevealhisorhertruenature.WehavecondensedtheProustQuestionnairebyreducingthenumberofquestionsandslightlyrewordingsome.Thesecuratedquestionsprovideinsightsintothe individual’sinnerworld,rangingfromnotionsofhappinessandfeartoaspirations andinspirations.

Whatisyourgreatestextravagance?

Ilovejewelry.Ibuyitsparinglyandcarefully.ItisaninterestthatIshared joyfullywithmylatemotherwhoboughtmejewelryasayoungster. Irelishedgoingtojewelryshopswithherassheagedandbuyingherlovely piecesthatcapturedherfancy.

Whatareyoumostproudof?

Mysonsarekind,compassionate,considerate,hardworking,wonderful people.

Whatisyourgreatestregret?

Attheriskofsoundingglib,notdoingajunioryearabroadincollege.

Whatisthequalityyoumostadmireinpeople?

InSpanish,onecandescribeapersonasnoble.Ithasnothingtodowith lineage.Itisaboutkindness,morality,andcompassion.

Whatdoyouconsiderthemostoverratedvirtue? Carefreeness.

Whatisyourfavoriteoccupation? Architecture.

Wherewouldyoumostliketolive?

IamhopingtospendayearlivinginSpain,mycountryoforigin,inthenext years.AlthoughitwouldideallybeinBarcelona,therearemanywonderful placesinSpainIwouldlovetocallhome.

Whatisyourmosttreasuredpossession? Byfar,mysenseofhumor.

Whenandwherewereyouhappiest?Andwhyweresohappythen? Iwouldsaythatwitheachpassingyear,Ifeelhappier.Ithinkthatthewisdomthataccruesbringspeaceandperspective.Eventhoughmanythings declinewithage,theaccrualofwisdomovershadowsthoselosses.

Whatisyourmostmarkedcharacteristic? Apropensityforraucouslaughter.

Amongyourtalents,whichonegivesyouacompetitiveedge? Anaturalinclinationtotellpeoplewhattheydowelloraboutpositive thingsIhaveheardaboutthem.

Whatdoyouconsideryourgreatestachievement? ElectiontotheNationalAcademyofMedicine.

Ifyoucouldchangeonethingaboutyourself,whatwoulditbe? Mytendencytoangstaboutthefuture.

Whatdoyoumostvalueinyourfriends? Integrity,trustworthiness,intelligence,humor,andwarmth.

Whoareyourfavoritewriters? FavoritecurrentwritersincludeJillLeporeandJohnMcPhee.Also,Gabriel GarciaMarquez,AlejoCarpentier,JulioCortazar,andJorgeAmado.

Whoisyourherooffiction? Idon’ttendtothinkthatway.Everyonehasfoibles.

Whoareyourheroesinreallife? Asabove.

Whataphorismormottobestencapsulatesyourlifephilosophy? Dotherightthing.TowhichIwouldadd,“timely.”

MariaA.Oquendo1 1 UniversityofPennsylvania,Philadelphia,Pennsylvania19104,USA e-mail: Maria.Oquendo@pennmedicine.upenn.edu Publisher’snote: GenomicPressmaintainsapositionofimpartialityandneutrality regardingterritorialassertionsrepresentedinpublishedmaterialsandaffiliations ofinstitutionalnature.Assuch,wewillusetheaffiliationsprovidedbytheauthors, withouteditingthem.Suchusesimplyreflectswhattheauthorssubmittedtousand itdoesnotindicatethatGenomicPresssupportsanytypeofterritorialassertions.

OpenAccess. The“GenomicPressInterview”frameworkiscopyrightedtoGenomicPress.Theinterviewee’sresponsesarelicensedtoGenomicPressundertheCreativeCommonsAttribution-NonCommercialNoDerivatives4.0InternationalLicense(CCBY-NC-ND4.0).Thelicensemandates: (1)Attribution:Creditmustbegiventotheoriginalwork,withalinktothelicense andnotificationofanychanges.Theacknowledgmentshouldnotimplylicensorendorsement.(2)NonCommercial:Thematerialcannotbeusedforcommercialpurposes.(3)NoDerivatives:Modifiedversionsoftheworkcannotbedistributed.(4) Noadditionallegalortechnologicalrestrictionsmaybeappliedbeyondthosestipulatedinthelicense.Publicdomainmaterialsorthosecoveredbystatutoryexceptionsareexemptfromtheseterms.Thislicensedoesnotcoverallpotential rights,suchaspublicityorprivacyrights,whichmayrestrictmaterialuse.Thirdpartycontentinthisarticlefallsunderthearticle’sCreativeCommonslicenseunless otherwisestated.Ifuseexceedsthelicensescopeorstatutoryregulation,permissionmustbeobtainedfromthecopyrightholder.Forcompletelicensedetails,visit https://creativecommons.org/licenses/by-nc-nd/4.0/.Thelicenseisprovidedwithoutwarranties.

GenomicPsychiatry

INNOVATORS&IDEAS:RESEARCHLEADER

GustavoTurecki:Threefundamentalquestions–Howdoesthebrainrespondtosocial andemotionalexperiences?Whydoespsychologicaltraumatriggerdepressive states?Whatarethemechanismsofantidepressantresponses?

©GenomicPress,2024.The“GenomicPressInterview”frameworkisprotectedundercopyright.Individualresponsesarepublishedunderexclusive andpermanentlicensetoGenomicPress.

GenomicPsychiatry January2025;1(1):11–13;doi: https://doi.org/10.61373/gp024k.0007

Keywords: Majordepressivedisorder,treatment-resistantdepression, suicide,trauma,antidepressantresponse

GustavoTureckiMDPhDFRSCisaclinicianscientistwhosework focusesonunderstandingbrainmolecularchangesthatoccurinmajor depressivedisorderandsuicide,aswellasmolecularprocessesthat explainantidepressanttreatmentresponse.Dr.TureckiisFull ProfessorandChairoftheDepartmentofPsychiatryatMcGill University,theScientificDirectorandPsychiatrist-in-Chiefofthe DouglasInstituteinMontreal,Canada,wherehealsoheadsthe DepressiveDisordersProgram.Hehasauthoredover600publications, includingresearcharticlesinleadingpeer-reviewedjournalssuchas NatureNeuroscience,NatureMedicine,and TheLancet andisamong theworld’smosthighlycitedscientistsaccordingtoClarivate,Webof Science.Hehasreceivedseveralnationalandinternationalawards andsitsonseveraladvisoryboards.Dr.Tureckigraciouslyoffersour audienceaglimpseintohispersonalandprofessionaljourney.

TheGenomicPressInterviewPart1:GustavoTurecki–Lifeandcareer Couldyougiveusaglimpseintoyourpersonalhistory,emphasizing thepivotalmomentsthatfirstkindledyourpassionforscience? Sincemychildhood,Ihavebeenfascinatedwithscienceandmedicine. WhenIgotintomedicalschool,Isoonbecameinterestedinphysiologyof exercise.Havingbeenacompetitiveswimmer,thisseemedlikeanatural extensionofmypreviousinterests.Iwasreadytoworkinsportsmedicine untilIdidmyrotationinpsychiatry.Unexpectedly,Ifoundmyselffullyfascinatedbythisfield;therefore,aftersomeinternaldebateandambivalence,Idecidedtopursuethisspecialty.Earlyinmypsychiatryresidency,I wasinvolvedinacaseofdizygotictwinsthatstronglyinfluencedmyprofessionaltrajectoryandresearchcareer.Iwasalsofortunatetocountwith excellentrolemodelsearlyon.Theywereinstrumentalinmyprofessional development,providingmewithexcellentadviceand,aboveall,theyinstilledinmecoreprofessional,scientificandpersonalvaluesthathave beenessential,asIpursuedacareerinacademicmedicine.

Wearekeentoexploreyourcareertrajectoryleadinguptoyourmost relevantleadershiprole.Whatdefiningmomentschanneledyou towardthatleadershipresponsibility?

AlthoughtodayIholdseveralleadershiproles,leadershipdidnotcome naturallytome.Iremainedinacademiabecauseoftheresearchwork andtheintellectualstimulationthatitprovides,nottobeamanager. Ifirsttookaleadershiproleoutofduty,butitwasdifficultasleadershipinvolvesskillsthatIhadtoacquirewitheffort.Inaddition,Iwas veryconcernedaboutthepotentialimpactthatthetimeIhadtodedicate wouldhaveonmylabandresearch.Aftermanyyearsindiverseleadership roles,Inowappreciatetheopportunitythatleadershipprovides,andparticularly,theopportunitytobuildcapacityandcontributetodevelopacademicpsychiatry,researchandclinicalservices.

Received:14January2024.Accepted:22January2024. Publishedonline:25January2024.

Pleasesharewithuswhatinitiallypiquedyourinterestinyour favoriteareaofresearchorprofessionalfocus.

Asaresident,Itreatedoneofadizygotictwinwhohadashareddelusion withherco-twin.Thecasewasfascinatingandledmetoexplore,conceptually,theroleofgeneticsintheetiologyofmentalillness.Ihavebeen workingingeneticsandgenomicseversince.

Whatkindofimpactdoyouhopetoachieveinyourfieldthroughyour focusonyourspecificresearchtopics?

Aboveall,Ihopemyworkwillcontributetoelucidateprocessesandmechanismsunderlyingpsychopathology,andparticularlymajordepressive disorderandsuiciderisk,whicharemyareasofmoredirectinterest.More specifically,Ihopemyworkwillhelpgainsomeinsightintohowthebrain respondstosocialandemotionalexperienceandhowtraumaticexperiencestriggerpathologicaldepressivestates.Ialsohopethatmyworkmay helpelucidatemechanismsofantidepressantresponse.

Ikeepaclinicalpractice,specializinginrefractoryortreatmentresistantmajordepressivedisorder.Itisextremelyrewardingtohelppeoplewhosufferandareunabletofunction.Whilethetreatmentsweuse

Figure1. GustavoTurecki,MD,PhD,McGillUniversity,Canada.

todayaregenerallyeffective,theydonotalwayswork,andsometimes,it takeswaytoolongtoidentifythepropertreatmentorforthetreatment toworkeffectively.IhopetheworkthatIdowilleventuallyhelpthelife ofpeoplelikethepatientsItreat.

Couldyouletusknowyourcurrentscholarlyfocalpointswithinyour chosenfieldofscience?

Currently,Iaminterestedintheunderstandingofmolecularchanges associatedwithdepressionatsingle-cellresolution.Wehaveadapted diversesingle-cellgenomicmethodstostudypostmortemhumanbrain tissueandareexploringdifferentaspectsofmajordepression.Weare alsoveryinterestedintheroleofextra-cellularvesiclesinsystemiccommunicationandhowtheircargomaybemanipulatedtoelicittherapeutic responses.

Whatdoyoumostenjoyinyourcapacityasanacademicand researchleader?

Theintellectualstimulationoftheworkandthepossibilityofcontributing toknowledge.

Whathabitsandvaluesdidyoudevelopduringyouracademicstudies orsubsequentpostdoctoralexperiences,thatyouupholdwithinyour ownresearchenvironment?

Researchisstressfulandcompetitive,butIbelievethatthelabenvironmentshouldbewelcomingandsupportive,andverycollegial.

AtGenomicPress,weprioritizefosteringresearchendeavorsbased solelyontheirinherentmerit,uninfluencedbygeographyorthe researchers’personalordemographictraits.Arethereparticular culturalfacetswithinthescientificcommunitythatyouthinkwarrant transformativescrutiny,oristhereacausewithinsciencethatdeeply stirsyourpassions?

IampassionateaboutscienceandtheworkthatIdo,andthisiswhat drivesmeandhasbeenaconstantmotivationthroughoutmyprofessional trajectory

Outsideprofessionalconfines,howdoyouprefertoallocateyour leisuremoments,orconversely,inwhatmannerwouldyouenvision spendingthesemomentsgivenachoice? Ihavemanypersonalinterests.Besidesmyfamilylife,Ikeepbusyand trytoliveabalancedlife.Iamphysicallyactive,exercisingalmostdaily.I enjoyskiing,biking,cookingandgoodwine.Igrowavegetablegardenin thesummer,andlovepolitics.Iamanavidreaderoftheeconomistand diversenewspapers,andaregularlisteneroftheGoodFightbyYascha Mounkandseveralotherpodcasts.

TheGenomicPressInterviewPart2:GustavoTurecki–Selected questionsfromtheProustQuestionnaire1 Whatisyourideaofperfecthappiness? Allmomentsofhappinessarejustperfect.

Whatisyourgreatestfear? Decline.

Whichlivingpersondoyoumostadmire? Toomanytolist.

1 Inthelatenineteenthcenturyvariousquestionnaireswereapopulardiversiondesignedtodiscovernewthingsaboutoldfriends.Whatisnowknownasthe35questionProustQuestionnairebecamefamousafterMarcelProust’sanswersto thesequestionswerefoundandpublishedposthumously.Proustansweredthequestionstwice,atages14and20.Multipleotherhistoricalandcontemporaryfigures haveansweredtheProustQuestionnaire,suchasOscarWilde,KarlMarx,ArthurConanDoyle,StéphaneMallarmé,PaulCézanne,MartinBoucher,HughJackman,David Bowie,andZendaya.TheProustQuestionnaireisoftenusedtointerviewcelebrities:theideaisthatbyansweringthesequestionsanindividualwillrevealhisorher truenature.WehavecondensedtheProustQuestionnairebyreducingthenumber ofquestionsandslightlyrewordingsome.Thesecuratedquestionsprovideinsights intotheindividual’sinnerworld,rangingfromnotionsofhappinessandfeartoaspirationsandinspirations.

Whatisyourgreatestextravagance? AbottleofGranEnemigoGualtallary.

Whatareyoumostproudof? Mythreekids.

Whatisyourgreatestregret? None.

Whatisthequalityyoumostadmireinpeople? Theirintellect.

Whatdoyouconsiderthemostoverratedvirtue? Virtuesarevirtues,can’tbeoverrated.

Whatisyourfavoriteactivity(physicalorintellectual)? Toomanytolist.

Wherewouldyoumostliketolive? RightwhereIlive,inMontréal.

Whatisyourmosttreasuredpossession? Possessionscomeandgo,soIdonottreasurethem.Theyareworthfor theirtransactionvalue.

Whenandwherewereyouhappiest?Andwhyweresohappythen? Rightnow,yesterdayandtomorrow.

Whatisyourmostmarkedcharacteristic? NotsureIcananswerthis,butprobablypersistence.

Amongyourtalents,whichonedoyouthinkgivesyouacompetitive edge?

PerhapsthefactthatIampatient,butverypersistent.

Whatisapersonality/characteristictraityouwishyouhad? Tobemoreextroverted.

Whatdoyouconsideryourgreatestachievement?

Scientifically,itwasthefirstdescriptionofhowearly-lifeadversityleads tomolecularchangesinthebrainthroughepigeneticchanges(McGowan etal,2009).

Whatdoyoumostvalueinyourfriends?

Theirsenseofhumor.

Whoareyourfavoritewriters?

Chabon,Singer,Borges,Amis,JoshuaCohen,Richler,Cortazar,PhilipRoth, BioyCasares,Beauvoir,Atwood,AmosOz,andseveralothers.

Whoareyourheroesoffiction?

Many,buttocitearecentone,GyuriKövesinFatelessnessbyImreKertész, whichIhavejustread.

Whoareyourheroesinreallife?

Mygrandparents,whoescapedNazioccupiedEastEuropeandestablishedinSouthAmericaafterlosingmanyoftheirfamilymembersand muchhardship.Theyhadnothing,workedveryhard,keptgoing,appreciatedeverythingtheyhadandwerealwaysinagoodmood.Theyhavea beenaconstantsourceofinspiration.

Whataphorismormottobestencapsulatesyourlifephilosophy? Youmakethebestofeverysituation.

GustavoTurecki1 1 McGillUniversity,Montréal,QuébecH4H1R3,Canada e-mail: gustavo.turecki@mcgill.ca

Publisher’snote: GenomicPressmaintainsapositionofimpartialityandneutralityregardingterritorialassertionsrepresentedinpublishedmaterialsandaffiliationsofinstitutionalnature.Assuch,wewillusetheaffiliationsprovidedbythe authors,withouteditingthem.SuchusesimplyreflectswhattheauthorssubmittedtousanditdoesnotindicatethatGenomicPresssupportsanytypeofterritorial assertions.

OpenAccess. The“GenomicPressInterview”frameworkiscopyrightedtoGenomicPress.Theinterviewee’sresponsesarelicensedtoGenomicPressundertheCreativeCommonsAttribution-NonCommercialNoDerivatives4.0InternationalLicense(CCBY-NC-ND4.0).Thelicensemandates: (1)Attribution:Creditmustbegiventotheoriginalwork,withalinktothelicense

andnotificationofanychanges.Theacknowledgmentshouldnotimplylicensorendorsement.(2)NonCommercial:Thematerialcannotbeusedforcommercialpurposes.(3)NoDerivatives:Modifiedversionsoftheworkcannotbedistributed.(4) Noadditionallegalortechnologicalrestrictionsmaybeappliedbeyondthosestipulatedinthelicense.Publicdomainmaterialsorthosecoveredbystatutoryexceptionsareexemptfromtheseterms.Thislicensedoesnotcoverallpotential rights,suchaspublicityorprivacyrights,whichmayrestrictmaterialuse.Thirdpartycontentinthisarticlefallsunderthearticle’sCreativeCommonslicenseunless otherwisestated.Ifuseexceedsthelicensescopeorstatutoryregulation,permissionmustbeobtainedfromthecopyrightholder.Forcompletelicensedetails,visit https://creativecommons.org/licenses/by-nc-nd/4.0/.Thelicenseisprovidedwithoutwarranties.

GenomicPsychiatry

INNOVATORS&IDEAS:RESEARCHLEADER

EdoRonalddeKloet:Howdoestheactionofglucocorticoidschangefromprotective toharmful?Whatisthecause?Andwhataretheconsequences?

©GenomicPress,2024.The“GenomicPressInterview”frameworkisprotectedundercopyright.Individualresponsesarepublishedunderexclusive andpermanentlicensetoGenomicPress.

GenomicPsychiatry January2025;1(1):14–17;doi: https://doi.org/10.61373/gp024k.0088

Keywords: Psychoneuroendocrinology,pharmacology,stress,brain, cortisol,stress-relateddisease

Forhalfacentury,EdoRonald(Ron)deKloethaspursueda fundamentalquestioninneuroscience:howdostresshormones switchfromprotectingourbraintopotentiallyharmingit?After receivinghisPhDin1972attheUniversityofUtrechtunderDavidde Wied’smentorship,hespenttwoformativeyearswithBruceMcEwen atRockefellerUniversitybeforereturningtotheRudolfMagnus Institute.In1990,hewasappointedProfessorofMedical PharmacologyatLeidenUniversity,wherehediscoveredhowasingle hormone–cortisol–couldprotectanddamagethebrainthroughtwo distinctreceptorsystems(MRandGR).Thisfindingopenednewpaths forunderstandingandtreatingstress-relatedmentaldisorders.His research,spanningover600publications,hastransformedourgrasp ofhowthebraincopeswithstressandearnedhimnumeroushonours, includingtheGeoffreyHarrisAward(2005),theECNPAward(2007), andtheGoldenEmilKraepelinMedal(2014)foradvancingour understandingofdepression.Thoughofficially“retired”since2009, heremainsactiveasanemeritusprofessoratLeidenUniversity MedicalCentreandacademyprofessorattheRoyalNetherlands AcademyofArtsandSciences.Recognizinghiscontributionsto scienceandsociety,hewasknightedintheOrderoftheDutchLionin 2010.Recently,alongsidehislong-timecollaboratorProfessorMarian Joëls,hereceivedthe2024GlobalStress&ResilienceNetwork PioneerAward.InthisGenomicPressInterview,Dr.deKloetreflects onhisremarkablejourneyandsharesfreshinsightsintothe fascinatingworldofstressneuroscience.

Part1:RondeKloet–LifeandCareer

Couldyougiveusaglimpseintoyourpersonalhistory,emphasizing thepivotalmomentsthatfirstkindledyourpassionforscience?

MytwoolderbrothersobtainedaPhDinbiochemistryandmolecularbiology.Duringtheirthesisresearch,Isometimesjoinedtheminthelab, whichinspiredmetoenterabiochemistryprogramattheUniversityof Utrechtin1961.AfteradullBachelor’s,Ibecameexcitedwhenstarting myMaster’shands-onresearchbyisolatingnovelbioactivepeptidesfrom thesheeppinealgland,evenmoresoduringmyEndocrinologytrainingat OrganonPharmaceuticals.IlearnedfromProfessorMariusTausk,thedirector,that“Endocrinologyisaconcept,anapproach,orevenamethod. Whateverthespecificendocrinesubdiscipline,topic,orsubject,thebindingelementistheobjective:understandinghowsignalscoordinatethe processesincells,tissues,andorgans.”ThissophisticatedviewofendocrinologyintriguedmeandastudentcolleagueatOrganonsomuch thatwebothwantedtoapplyforanavailableneuroendocrinologyPhD positionguidedbythefamousProfessorDaviddeWied.However,since wedidnotwanttocompete,wediditbyflippingacoin.Mycolleague wonandgottheposition,andIwasleftempty-handed!

Received:25November2024.Accepted:29November2024. Publishedonline:10December2024.

Netherlands.

Amonthlater,IarrangedanappointmentwithProfessordeWied.Irelatedthecoin-flippingstoryonThursday,28November1968,at9.00am. Then,aftersomediscussion,ProfessordeWiedsaid:“I’llcalltheDirector ofOrganon.”After5minutes,thecallended,andDeWiedsaid,“Youcan startthiscomingMonday,2December,atOrganonwithaPhDproject.”He alsodefinedthetopicofmythesis.BruceMcEwenhadjustpublishedhis hallmarkpaperontheretentionoftraceramountsof 3 H-corticosterone incellnucleiofthehippocampalpyramidalanddentategyrusneurons.De Wiedsaid,“Wecandothisbetter,Ron!Wewillexaminethecentralaction ofthemuchmorepotentglucocorticoiddexamethasone.”

Aftertwoyears,IwroteBrucealetterstatingthatIcouldnotreproducehisfindingofcorticosteronebindinginthehippocampuswith

Figure1. EdoRonalddeKloet,PhD,LeidenUniversityMedicalCentre,The

gp.genomicpress.com

dexamethasone,andheinvitedmeovertoNewYorktosolvetheissuein hislab.AsapostdocinBruce’slab,weconfirmedtheinabilityofdexamethasonetolabelthecorticosteronereceptorsinthehippocampus.Only 20yearslater,usingmousemutantsobtainedfromPietBorst,wefound outwhy:Dexamethasone,ratherthancorticosterone,isasubstratefor multidrugresistanceP-glycoprotein(mdr-Pgp)intheblood-brainbarrier,whichpumpsthesyntheticsteroidoutofthebrain!Instead,dexamethasoneactsintheanteriorpituitarycorticotrophstosuppressstressinducedACTHrelease,afundamentalfindingforunderstandingthe DexamethasoneSuppressionTest,alaboratorytestassistinginthediagnosisofdepression,furtherdevelopedintotheDex/CRHtestbymycolleagueFlorianHolsboerinMunich.

Ilearnedthat(i)luckrequiresapreparedmind,(ii)partialreinforcementextinctionworks,and(iii)oneneedspatience.

Wewouldliketoknowmoreaboutyourcareertrajectoryleading uptoyourmostrelevantleadershiprole.Whatdefiningmoments channelledyoutowardthatleadershipresponsibility? Thesecondphaseinmycareerstartedwithmytenuredappointmentin 1975asAssociateProfessorattheRudolfMagnusInstituteunderDe Wied’sguidanceuponreturningfromRockefellerUniversity.ThestaffpositionrequiredthedevelopmentofaneuropharmacologyteachingprograminbiomedicalsciencesandparticipationintheInstitute’sresearch onneuropeptides.Theterm’neuropeptides’wascoinedinthelatesixtiesbyDaviddeWiedtodefinethecentraleffectsoffragmentsofvasopressin,oxytocin,andACTHthatweredevoidoftheirclassicalendocrine activity.Forinstance,thefragmentvasopressin(4–9),the“memorypill”, reinforcedmemoryconsolidationoffear-motivatedbehaviour.

Thelate’70swereexcitingtimesforneuropeptides!WithEvaMezey andDanDorsa,weshowedthatpeptidescleavedfrompituitaryhormones couldreachthebrainviaretrogradetransportinthepituitarystalkand theperivascularspace.WithPeterBurbach,weidentifiedthebrainendopeptidasesthatgeneratedvasopressin,oxytocin,andACTH-derived neuropeptidesfromlargerprecursormolecules.MiklosPalkovitstaught meinthemid-70sneuro-anatomyandtheabilitytopunchmorethan100 differentnucleifromfrozenbrainsections(600punches/hour),serving manyotherresearchgroups.

In1984,withAnatBiegon,DoorVoorhuis,andJackElands,wediscoveredthedistributionofoxytocinandvasopressinreceptorsindiscrete ratbrainregionsusinginvitroautoradiography.Thatdiscoveryculminatedinanexcitingtwistinthesongbird:testosterone-inducedvasotocin receptorswereconcentratedaroundasongnucleusinthecanarybrain (n.robustusarchistriatalis).Stimulationofthesereceptorsmodulated thedevelopmentofthestereotypedcanarysong.

Ilearnedthattogrowtowardaleadershiproleinneuroscience,you needtocollaboratewithexpertsinresearchonvariouslayersofbiologicalorganization,frommoleculestocellsandcircuitstobehaviour.While theaboveexperienceswereexciting,therealbreakthroughtowardleadershipwasunderstandinghowglucocorticoidsact,asdetailedinthenext section.

Pleasesharewithuswhatinitiallypiquedyourinterestinyour favouriteresearchorprofessionalfocusarea.

In1985,wehada“Eureka”momentinrecognizingtheidentityoftherodenthippocampalcorticosteronereceptors.Atthattime,RousselUclaf hadsynthesizeda’pure’glucocorticoid,distinguishingbetweenmineralocorticoidreceptors(MR)thatbindcorticosteronewitha10-foldhigher affinitythantheclassicalglucocorticoidreceptors(GR).WithDickVeldhuisandHansReul,werealizedthatthetracerdosesof 3 H-corticosterone providedasufficientamounttooccupytheMRbutnottheGR.ForGRoccupancy,corticosteroneconcentrationsmustincreasetolevelscirculatingaroundthecircadianpeakorafterstress.WithHansReul,Ankevan Eekelen,andWinSutanto,wepublishedthedistributionofMRandGRin theratbrainusinginvitroautoradiography,immunocytochemistry,andin situhybridization.WithChrisEdwardsfromEdinburgh,wedemonstrated thattheenzymaticbreakdownofnaturallyoccurringglucocorticoidswas essentialfortheMRtobecomealdosterone-specificinepithelialcells suchasthekidney.

WithanunderstandingofthecomplementaryMR-andGR-mediated actionsofcorticosteroneandcortisol,weminedgold.Suddenly,weknew howtodesignexperimentsthatmadebiologicalsenseinstressresearchtheEurekamomenttriggeredanavalancheofstudies.Itprovidedtheinroadtothegroup’stransitiontoLeidenUniversityin1990,theDivisionof MedicalPharmacology,withmypromotiontofullProfessorattheLeiden/ AmsterdamCentreofDrugResearch(LeaderDouweBreimer).Inneurophysiology,wehadanintensecollaborationwithProfessorMarianJoëls attheUniversityofAmsterdam,whodiscoveredMRandGR’scomplementaryroleinregulatingtransmitterresponsesandionconductancesina U-shapedrelationship:MRactivationtransientlyincreasedhippocampal excitability,whichwassuppressed,subsequently,bystress-inducedGR activation.MarianJoëlsandHenkKarstdiscoveredin2005thatMRcan alsomediaterapidnon-genomicactionsinthehippocampus.

WithAnnaRatka,weshowedthephysiologicalrole:MRactivation isessentialforthetoneandactivationofthestressresponsesystem, whilesubsequentGRactivationfacilitatessuppressionbynegativefeedback.Inbehaviour,MellyOitzlfoundthatMRisnecessaryforretrievinginformationandselectingacopingstyle,whileGRactivationpromotesmemoryconsolidation.MennoKrukmadeacaseforMR-dependent anxiety/aggression-drivenphenotypes.NicoleDatsonpioneeredgeneexpressionprofilinginlaser-dissectedbrainregionsandidentifiednumerousnovelglucocorticoid-responsivepathwaysinthebrainunder stress,particularlyinepigeneticprocesses.ErnoVreugdenhildiscovereda glucocorticoid-responsiveneuroplasticitygenedoublecortin-likekinase, whichfunctionsinmicrotubulesduringdevelopmentandneurogenesis. WithSeymourLevine,wemadesignificantcontributionstotheroleofglucocorticoidsinprogrammingstress-copingandadaptationinneonates forlaterlife.

Thus,a1968PhDprojectdevelopedintoasuccessfulresearchprogram.Ilearnedthatfocus,collaboration,andmutualrespectaretheingredientsforanexcitingscientificjourney.Melly,Menno,Erno,Nicole, OnnoMeijer,andRoeldeRijkformed,asgroupleaders,adreamteam, guidingtogethermorethan200Master’sandPhDstudents,postdocs, guests,andtechnicalandadministrativestaff,eachdeliveringaunique contributionthatIcannothighlightduetospacelimitations.Seefora summaryofthefirst30yearsofmycareerinDaviddeWied’sFestschrift: deKloetER.Stressinthebrain.EurJPharmacol.2000;405:187–198.

Whatimpactdoyouhopetoachieveinyourfieldbyfocusingon specificresearchtopics

2009Ireachedemeritusstatus,butIhadenoughgrantmoneytocontinue forfiveyearsbeforetheDutchmandatoryretirementat70.

Collectively,wehavecontributedtotheknowledgeofhowcortisolcoordinatesbodyandbrainfunctiontosupportcopingandadaptationand howthehormoneprogramsthisadaptiveresponseforlife.Weformulated theMR:GR(im)balancehypothesis:“UponimbalanceoftheMRandGRmediatedactions,thestressresponse’sinitiationandmanagementbecomescompromised.Atacertainthreshold,thismayleadtoacondition ofneuroendocrinedysregulationandimpairedbehaviouraladaptation, whichpotentiallycanaggravatestress-relateddeteriorationandpromote vulnerability.”

Wecollecteddata(andarestilldoingso)totestthishypothesis.Two outofseveralhighlights.Firstly,RoeldeRijkandLianeKlokdiscoveredan MRhaplotypeassociatedwithoptimismthatprotectsagainstdepression. ThisdiscoveryearnedUSandEUpatentsassignsofasuccessfultranslationalopportunity.Secondly,OnnoMeijerbecamemysuccessorinLeiden andcontinuedtoworkonglucocorticoidsdeveloping,withthesupportof CorceptTherapeutics,novelSelectiveGlucocorticoid/Mineralocorticoid ReceptorModulators(SGRM/SMRM)targetingtissueselectivereceptor co-regulators.Withthisprospect,glucocorticoidtherapywillhavefewer sideeffects.

Pleasetellusmoreaboutyourcurrentscholarlyfocalpointswithin yourchosenfieldofscience.

IwasfortunatetoparticipateintheexcitingprojectsofAlexdeNicola’s group(BuenosAires),whichhasbeenpioneeringthestrikingabilityof SGRMandSMRMtoreverseneuropathologyinanimalmodelsofchronic

Figure2. RondeKloetsailingNordicFolkboatVoiVoi.

stress,hypertension,andneurodegenerativediseases.Someofthese Corceptcompoundsarenowinphases2and3.

IamhappytoparticipateinachallengingprogramledbyMegan Galbally(Melbourne,Australia),whoexploredtheprevalenceofchildhoodanxietydisorderintheoffspringofmothersfromtheMercyPregnancyEmotionalWellbeingStudy,alongitudinalcohortstudyofpregnant womenexploringtheimpactofperinataldepression(fromconceptionto birth)atdelivery,and6months,12months,and4yearspostpartum.The outcomeoftheseexcitingstudiesalignswithdevelopmentalanimalstudies:stressduringearlylifeprogramsviacortisolactionintheamygdala emotionalreactivityforlaterlife.

Ioccasionallywriteacommentaryorreviewonstress.Forinstance, withMarcMolendijk,wewroteaseriesofarticlesonanthropomorphism inneuropharmacology,usingtheforcedswimtestasanexample.

Whathabitsandvaluesdidyoudevelopduringyouracademicstudies orsubsequentpostdoctoralexperiencesthatyouupholdwithinyour researchenvironment?

Examiningafundamentalneuroscientificquestionrequiresamultidisciplinaryapproachinasocial,behavioural,biochemical/molecular,and physiologicalcontext.Keepingupteamspiritrequiresfrequentmeetings todiscussprogress.Teamspiritandsociallablifegotogether:jointcoffee breaks,lunches,sports,and’cabaret’areessentialforshapingcollegial trustandpassion.

AtGenomicPress,weprioritizefosteringresearchendeavoursbased solelyontheirinherentmerit,uninfluencedbygeographyorthe researchers’personalordemographictraits.Arethereparticular culturalfacetswithinthescientificcommunitythatwarrant transformativescrutiny,oristhereacausewithinsciencethatdeeply stirsyourpassions?

IsupporttheEuropean’AgreementonReformingResearchAssessment’. ThisagreementbetweentheEuropeanCommission,ScienceEurope,and

theEuropeanUniversityAssociation(EUA)endorsestheobjectivesof ourNationalRecognition&Rewardsprogram.Theagreementfocuseson recognizingandrewardingacademicsfortheirvarioustasks.Thisfocus impliesthatresearchassessmentprimarilyoccursthroughaqualitative evaluationratherthanbasedonthenumberofpublications,h-indices ofauthors,orjournalimpactfactors.See https://recognitionrewards.nl/ 2022/10/10/dutch-knowledge-institutions-sign-european-agreementon-reforming-research-assessment/.

Whatdoyoumostenjoyinyourcapacityasanacademicorresearch leader?

Toinspirestudentsaboutthebeautyofthebrain,fromgenestobehaviour,inallimaginablecontexts,discussin-depthnewfindings,and guideyoungscientistsinthefirstyearsoftheirscientificlife.

Outsideprofessionalconfines,howdoyouprefertoallocateyour leisuremoments,orconversely,inwhatmannerwouldyouenvision spendingthesemomentsgivenachoice?

Ihaveasemi-professionalonlineweatherstationcalled’TheHippocampus,’inapolder4mbelowsealevelclosetowhereIlive.Justafewhighlights:Icouldmeasuretheairpressurechangesandwindshiftsfollowing theJanuary2022PacificHungaTonga-HungaHa’apaisubmarinevolcano outburst.Ilikeiceskating,swimming,sailing,hiking,andgardening.

Part2:RondeKloet–SelectedquestionsfromtheProust Questionnaire1

Whatisyourideaofperfecthappiness?

Irealizethathappinessiscontext-dependent,andherearesomeingredients.Duringexercise,myendorphinswork;duringsociallife,oxytocin maypeak;ifIcompete,dopaminehelpstopursuesuccess;andserotonin givesasenseofcontrolduringstress.Itisallperfectifitworks.

Whatisyourgreatestfear?

ThefeelingthatIhavenocontrol.

Whichlivingpersondoyoumostadmire?

Iadmiremybrotherforsaying,“Doingnothingisnotanoption,”andhe succeededinextendingthehigh-qualitylifeofoneofhisbelovedsonsfor another8years.

Whatisyourgreatestextravagance?

Tokeepmy65-year-oldmahoganywoodenNordicFolkboatinexcellent shape.

Whatareyoumostproudof?

Inmyscientificlife,Iammostproudofmy57PhDstudents,whoall successfullydefendedtheirthesis.

Whatisyourgreatestregret?

Ishouldhavereservedmoretimeforsocialactivitiesandreading.

1 Inthelatenineteenthcentury,variousquestionnaireswereapopulardiversion designedtodiscovernewthingsaboutoldfriends.Whatisnowknownasthe35questionProustQuestionnairebecamefamousafterMarcelProust’sanswersto thesequestionswerefoundandpublishedposthumously.Proustansweredthequestionstwice,atages14and20.In2003Proust’shandwrittenanswerswereauctioned offfor$130,000.Multipleotherhistoricalandcontemporaryfigureshaveanswered theProustQuestionnaire,includingamongothersKarlMarx,OscarWilde,ArthurConanDoyle,FernandoPessoa,StéphaneMallarmé,PaulCézanne,VladimirNabokov, KazuoIshiguro,CatherineDeneuve,SophiaLoren,GinaLollobrigida,GloriaSteinem, Pelé,Valentino,YokoOno,EltonJohn,MartinScorsese,PedroAlmodóvar,Richard Branson,JimmyCarter,DavidChang,SpikeLee,HughJackman,andZendaya.The ProustQuestionnaireisoftenusedtointerviewcelebrities:theideaisthatbyansweringthesequestions,anindividualwillrevealhisorhertruenature.WehavecondensedtheProustQuestionnairebyreducingthenumberofquestionsandslightly rewordingsome.Thesecuratedquestionsprovideinsightsintotheindividual’sinner world,rangingfromnotionsofhappinessandfeartoaspirationsandinspirations.

Whatisthequalityyoumostadmireinpeople? Senseofhumour,reliability.

Whatisthetraityoumostdislikeinpeople? Narcissism

Whatdoyouconsiderthemostoverratedvirtue?

Inscience,whenanindividual’sh-indexisacriterionforjudgingscientific qualityandapredictoroffutureperformanceandsuccess.

Whatisyourfavouriteactivity?

Adailyhikeofanhourisinspiringandgivesagoodfeeling.

Wherewouldyoumostliketolive?

Ruralenvironment,atalakefront,withDutchweather.

Whatisyourmosttreasuredpossession?

Science-related:my1000+ hippocampusitems.

Whenandwherewereyouhappiest?Andwhyweresohappythen?

Again,context-dependent.Anexample:February1996,Wengen,Switzerland.Werentedacottageandwentskiingandhiking;theweatherwas fantastic,andtherewasasilentandimpressiveredeveningsunonthe 4000mhighmountains.Alternatively,sailingorwanderingwithMarian throughnature,orunderstandingexperimentaldata.

Whatisyourcurrentstateofmind?

Quiet,butwithasenseofurgencyforthingstodo

Whatisyourmostmarkedcharacteristic?

Interestintheotherperson,whattheydo,howtheythink.

Amongyourtalents,whichone(s)give(s)youacompetitiveedge?

Inscience,toidentifytalentthatcansynergizeinamultidisciplinaryfashiontoreachacommongoal.

Whatdoyouconsideryourgreatestachievement?

Withmyassociates’help,wehaveprovidedevidencetosubstantiatethat cortisolactioncontrolsaswitchbetweenresilienceandvulnerabilityin adaptationtochronicstress.

Ifyoucouldchangeonethingaboutyourself,whatwoulditbe?

Bemorecreativeinthinkingoutofthebox.

Whatdoyoumostvalueinyourfriends? Integrity.

Whoareyourfavouritewriters?

JohnGrisham’sdetectives,MartenToonder’s177Bommelstories,Val Howells’s‘SailingintoSolitude,’andMarianJoëls’latestbook,“Finished,” (ResearchgGate),anovelabouttheworldofscience,confrontingand writtenwithcompassionandwit.

Whoareyourheroesoffiction?

Kwetal,asubterraneandwellerandmastermind,ismyherointhe38th storyfromtheBommelsaga,writtenanddrawnbyMartenToonder. Kwetalcoinedtheterm“Denkraam”(noEnglishtranslation)todescribe thebrain.

Whoareyourheroesinreallife?

HermanvanPraag(1929–).Iattendedthepresentationofhislatestbook (November2024)afewdaysbeforethisinterview.Entitled:Gemoedsbewegingen(emotionalmovements).ProfessorHermanvanPraagfounded BiologicalPsychiatryintheNetherlands.Myotherheroespassedaway.

Whataphorismormottobestencapsulatesyourlifephilosophy?

“As‘tnetkinsa’tmoat,danmoat‘tmarsa’tkin”.ItisfromtheFrisian language,wheremyrootsare.InEnglish,itwouldbesomethinglike:“Ifit cannotbedoneasitshouldbe,thenitshouldbedoneasitcan.”

Leiden,TheNetherlands 25November2024

EdoRonalddeKloet,PhD1 1 DivisionofEndocrinology,DepartmentofMedicine,LeidenUniversityMedical Centre,2333ZALeiden,TheNetherlands e-mail: erdekloet@gmail.com

FundingSources

Thisarticlewasnotsupportedbyexternalfunds.

AuthorDisclosures

Theauthordeclaresthatnoconflictofinterestexists.

Publisher’snote: GenomicPressmaintainsapositionofimpartialityandneutrality regardingterritorialassertionsrepresentedinpublishedmaterialsandaffiliations ofinstitutionalnature.Assuch,wewillusetheaffiliationsprovidedbytheauthors, withouteditingthem.Suchusesimplyreflectswhattheauthorssubmittedtousand itdoesnotindicatethatGenomicPresssupportsanytypeofterritorialassertions.

OpenAccess. The“GenomicPressInterview”frameworkiscopyrightedtoGenomicPress.Theinterviewee’sresponsesarelicensedtoGenomicPressundertheCreativeCommonsAttribution-NonCommercialNoDerivatives4.0InternationalLicense(CCBY-NC-ND4.0).Thelicensemandates: (1)Attribution:Creditmustbegiventotheoriginalwork,withalinktothelicense andnotificationofanychanges.Theacknowledgmentshouldnotimplylicensorendorsement.(2)NonCommercial:Thematerialcannotbeusedforcommercialpurposes.(3)NoDerivatives:Modifiedversionsoftheworkcannotbedistributed.(4) Noadditionallegalortechnologicalrestrictionsmaybeappliedbeyondthosestipulatedinthelicense.Publicdomainmaterialsorthosecoveredbystatutoryexceptionsareexemptfromtheseterms.Thislicensedoesnotcoverallpotential rights,suchaspublicityorprivacyrights,whichmayrestrictmaterialuse.Thirdpartycontentinthisarticlefallsunderthearticle’sCreativeCommonslicenseunless otherwisestated.Ifuseexceedsthelicensescopeorstatutoryregulation,permissionmustbeobtainedfromthecopyrightholder.Forcompletelicensedetails,visit https://creativecommons.org/licenses/by-nc-nd/4.0/.Thelicenseisprovidedwithoutwarranties.

GenomicPsychiatry

INNOVATORS&IDEAS:RESEARCHLEADER

MayanaZatz:Twocriticalquestionstakecenterstage–Whichvariantsmitigatethe impactoflethalmutationsinsevereconditionswithmildphenotype?Whatfactors contributetothehealthandlongevityofcentenarians?

©GenomicPress,2024.The“GenomicPressInterview”frameworkisprotectedundercopyright.Individualresponsesarepublishedunderexclusive andpermanentlicensetoGenomicPress.

GenomicPsychiatry January2025;1(1):18–20;doi: https://doi.org/10.61373/gp024k.0016

Keywords: Neuromusculardisorders,protectivevariants,aging,genome studies,geneticcounseling,ethics

MayanaZatzhasbeenaProfessorofGeneticsattheInstituteof Biosciences,UniversityofSãoPaulo(USP),Brazil,since1982.She becameanassistantprofessorafterapostdocattheUniversityofSão PauloandasecondpostdocattheUniversityofCalifornia,Los Angeles.Hercurrentresearchisfocusedonneuromusculardisorders, aging,genomics,and,morerecently,xenotransplantationandtheuse oftheZikavirusasanoncolytictherapyagainstbraintumors. Functionalstudiesaredoneingeneticallyengineeredmouseandcell models.Sheisparticularlyinterestedininvestigatingprotective mechanismsinrarepatientswithDuchennedystrophyandamilder clinicalcourse,aswellasincentenarians’healthdeterminants.

MayanaZatzisalsoinvolvedinethicalaspectsofgenomicstudiesand governmentpoliticaldecisionsrelatedtoscience.ProfessorZatzis pleasedtoofferourreadersinsightsintoherpersonaland professionalexperiences.

Part1:MayanaZatz–LifeandCareer

Couldyougiveusaglimpseintoyourpersonalhistory,emphasizing thepivotalmomentsthatfirstkindledyourpassionforscience?

IhavebeenfascinatedwithscienceforaslongasIcanremember,andI lovedreadingthebiographiesoffamousscientistssuchasMadameCurie orPasteur.Inhighschool,Ifellinlovewithgenetics.Itwasinthepremolecularera,butIwasintriguedbyhowgenetictraitsweretransmitted acrossgenerations.Idecidedtopursuethesestudiesinmyadultlife.

Wewouldliketoknowmoreaboutyourcareertrajectoryleadingupto yourmostrelevantleadershiprole.Whatdefiningmoments channeledyoutowardthatleadershipresponsibility?

WhenIstartedtostudygenetics,IdidnotimagineIwouldbealeader.My ambitionwastopursueacareerasageneticistattheUniversityofSão Paulo,whichwasandstillisthebestBrazilianUniversity.Afterreturning frommypostdocattheUniversityofCalifornia,LosAngeles,Isubmitted asmallgranttoFAPESP(SãoPauloResearchFoundation,inPortuguese: FundaçãodeAmparoàPesquisadoEstadodeSãoPaulo),ourleading researchfundingagency,tocontinuemyresearchonmusculardystrophies.DNAtechnologywasunavailable;therefore,mystudiesusedserum enzymestoinvestigatedifferentformsofmusculardystrophy.Istarted formingagroupofyoungstudents,primarilyundergraduates,interested inthissubject.Oneday,IwasinvitedtoameetingatFAPESP,andIlearned thatonlyscientificleadershadbeeninvited.ThatwaswhenIrealizedthat IwasconsideredaleaderandthatIhadagreaterresponsibility.

Pleasesharewithuswhatinitiallypiquedyourinterestinyour favoriteresearchorprofessionalfocusarea. Myinitialinterestwasmusculardystrophies.Aturningpointinmycareer waswhenayoungwomanwhohadthreenephewsaffectedbyDuchenne

Received:18February2024.Accepted:19February2024. Publishedonline:21February2024.

dystrophycametomeforadvice.Shewasgettingmarriedandworried aboutthepossibilityofhavingaffectedsons.Atthattime,nobodywas workingwithmusculardystrophiesinBrazil,anditattractedmyinterest.Iwantedtounderstandtheclinicalvariabilityamongdifferentforms ofmusculardystrophiesandtheunderlyinggeneticmechanisms.Ialso aimedtoestimatethegeneticrisksforhealthyfemalerelativestohave affectedsons.Withmycolleagues,MariaRitaPassosBuenoandMariz Vainzof,weidentifiedseveralnovelgenesresponsibleforneuromuscular disorders.Later,wediscoveredthatpatientswiththesamepathogenic mutationcouldhaveahighlyvariablecourse,showingthatotherfactors couldmodulatethephenotype.Sincethen,myresearchhasfocusedon studyingprotectivegeneticvariantsinsporadicpatientswithDuchenne musculardystrophywhoarenotasweakasonewouldexpectfromexaminingtheirgenotype.Wearealsogeneratingmicemodelscarryingcondidatemodifiervariants.Understandingtheunderlying“protective”mechanismscouldopennewavenuesfortreatment.Morerecently,myresearch focushasbeenonhealthycentenarians.Wearedoingfunctionalstudies withIPS-derivedcelllinesfromthesecentenarians.Oneintriguingquestioniswhethertheyhavegeneticvariantssimilartotopathletes.

Figure1. MayanaZatz,PhD,UniversityofSãoPaulo,Brazil.

Whatimpactdoyouhopetoachieveinyourfieldbyfocusingon specificresearchtopics?

Ihopetofindnoveltherapiesformusculardystrophiesifwecanunderstandtheprotectivemechanismsagainsttheeffectsofpathogenicmutations.Inthecaseofcentenarians,wearealsotryingtounderstandthe roleofprotectiveagingvariantsandwhethertheirproductcouldhelp promotehealthyagingforpeoplewhowerenotbornwiththeseprotectivevariants.Idecidedtofocusoncentenariansbecauseitisknownthat geneticsplaysasignificantroleinolderpeople’sresilience,particularly aftertheageof90.

Pleasetellusmoreaboutyourcurrentscholarlyfocalpointswithin yourchosenfieldofscience.

IamcoordinatingseveralprojectsonthesubjectsIjustdescribed: Duchennemusculardystrophy,centenarians,genomics,andethics.Iam alsoinvolvedintwootherprojects:xenotransplantation(aimingtouse geneticallymodifiedpigsasorgandonors),andusingtheZikavirusasan oncolyticvectoragainstbraintumors.

Whathabitsandvaluesdidyoudevelopduringyouracademicstudies orsubsequentpostdoctoralexperiencesthatyouupholdwithinyour researchenvironment?

InmyresearchenvironmentinBrazil,onemustbepreparedtodealwith muchbureaucracy;therefore,youneedtomanagefrustrationandberesilient.However,inSãoPaulo,whereIlive,wehaveanexcellentresearch fundingagency,FAPESP.Therefore,weareinamuchbettersituationthan scientistsfromotherBrazilianstates.Ibelievethatcontactwithpatients ispreciousforenhancingresearchmotivation.Knowingthestorybehind thesampleyouareworkingwithandthehopepatientsputintoyourresearchgivesyouatremendoussenseofresponsibility.Youknowthatyou havetotryyourbest.

AtGenomicPress,weprioritizefosteringresearchendeavorsbased solelyontheirinherentmerit,uninfluencedbygeographyorthe researchers’personalordemographictraits.Arethereparticular culturalfacetswithinthescientificcommunitythatwarrant transformativescrutiny,oristhereacausewithinsciencethatdeeply stirsyourpassions?

InBrazil,themainchallengeistoincreasefundingforscience.Another significantchallengeistohaveadramaticcostreductioninnewlydevelopedtreatmentsforrarediseases,suchasspinalmuscularatrophy, hemophilia,orsicklecelldisease,inordertomakethemavailabletoall patients.

Whatdoyoumostenjoyinyourcapacityasanacademicand researchleader?

Beingascientistisfascinating.Whenyouunderstandaquestion,youopen manyothers,anditislikeplayinganendlesspuzzle.Younevergetbored becausewhatdrivesourmotivationarethequestions.Whatmovesusas scientistsisourtremendouscuriosity.Ilovetodiscussideaswithmystudentsortrytosolveproblemswhilejogginginthemorning.Also,Iloveit whenyoungstudentsapproachmeandsaythattheydecidedtobescientistsbecauseofmyinfluence.

Outsideprofessionalconfines,howdoyouprefertoallocateyour leisuremoments,orconversely,inwhatmannerwouldyouenvision spendingthesemomentsgivenachoice?

Iliketoreadprimarilybiographiesofinterestingpeople;Ilovetraveling andgoodmovies.Ilovetobewithmyfamilyandfriends.

Part2:MayanaZatz–Selectedquestionsfromthe ProustQuestionnaire1

Whatisyourideaofperfecthappiness?

Idonotbelieveinperfecthappiness.Wehavemomentswhenwearedelightedandotherswhenwemaybesad.

Whatisyourgreatestfear?

Tolosemyindependenceorcognitivecapacitywithaging.

MayanaZatzandLaura,a104-year-oldswimmingchampion.

Whichlivingpersondoyoumostadmire?

Iholdgreatadmirationforseveralpioneersingenetics,notablyShinya Yamanaka,EmmanuelleCharpentier,andJenniferDoudna.

Whatisyourgreatestextravagance? Spendingontraveling.

Whatareyoumostproudof? Mychildrenandgrandchildrenandalsosomeofmyformerstudentswho becamegreatscientists.

Whatisyourgreatestregret? Nothavingmorechildren.

Whatisthequalityyoumostadmireinpeople? Honestyandcourage.

Whatdoyouconsiderthemostoverratedvirtue? Modesty.

Whatisyourfavoriteoccupation(oractivity)? Scientificresearch.

1 Inthelatenineteenthcentury,variousquestionnaireswereapopulardiversion designedtodiscovernewthingsaboutoldfriends.Whatisnowknownasthe35questionProustQuestionnairebecamefamousafterMarcelProust’sanswersto thesequestionswerefoundandpublishedposthumously.Proustansweredthequestionstwice,atages14and20.Multipleotherhistoricalandcontemporaryfigures haveansweredtheProustQuestionnaire,suchasOscarWilde,KarlMarx,ArthurConanDoyle,StéphaneMallarmé,PaulCézanne,MartinBoucher,HughJackman,David Bowie,andZendaya.TheProustQuestionnaireisoftenusedtointerviewcelebrities: theideaisthatbyansweringthesequestions,anindividualwillrevealhisorher truenature.WehavecondensedtheProustQuestionnairebyreducingthenumber ofquestionsandslightlyrewordingsome.Thesecuratedquestionsprovideinsights intotheindividual’sinnerworld,rangingfromnotionsofhappinessandfeartoaspirationsandinspirations.

Figure2.

Wherewouldyoumostliketolive? IlovetheplacewhereIlivenow.

Whatisyourmosttreasuredpossession? Myhouse.

Whenandwherewereyouhappiest?Andwhywereyousohappythen? Whenmydaughterwasborn.IwantedtohaveagirlasIalreadyhadason. Andrightbeforeshewasborn,IfinishedwritingmyPhDthesisandmoved tothehousewhereInowlive.Irememberthatcomingfromthehospital withherintomynewhousewasthehappiestmomentinmylife.

Whatisyourmostmarkedcharacteristic? Iamincrediblydriven.

Amongyourtalents,whichone(s)givesyouacompetitiveedge? Creativity,notgivingupquickly,andnotbeingafraidtotestnewideas.

Whatdoyouconsideryourgreatestachievement? Myscientificcareer.

Ifyoucouldchangeonethingaboutyourself,whatwoulditbe? Myage.

Whatdoyoumostvalueinyourfriends? Sincerity.

Whoareyourfavoritewriters?

GeorgeOrwell(1984)andWalterIsaacson(biographies).

Whoareyourheroesoffiction? ForrestGump.

Whoareyourheroesinreallife?

MygreatestherowasNobellaureateRitaLevi-Montalcini,whodiedat age103whilestillactive.

Whataphorismormottobestencapsulatesyourlifephilosophy? Neverbelievethatyouhaveachievedthebest.Thereisalwaysroomfor improvement.

MayanaZatz1

1 UniversityofSãoPaulo,05508-090SãoPaulo,SãoPaulo,Brazil e-mail: mayazatz@usp.br

Publisher’snote: GenomicPressmaintainsapositionofimpartialityandneutrality regardingterritorialassertionsrepresentedinpublishedmaterialsandaffiliations ofinstitutionalnature.Assuch,wewillusetheaffiliationsprovidedbytheauthors, withouteditingthem.Suchusesimplyreflectswhattheauthorssubmittedtousand itdoesnotindicatethatGenomicPresssupportsanytypeofterritorialassertions.

OpenAccess. The“GenomicPressInterview”frameworkiscopyrightedtoGenomicPress.Theinterviewee’sresponsesarelicensedtoGenomicPressundertheCreativeCommonsAttribution-NonCommercialNoDerivatives4.0InternationalLicense(CCBY-NC-ND4.0).Thelicensemandates: (1)Attribution:Creditmustbegiventotheoriginalwork,withalinktothelicense andnotificationofanychanges.Theacknowledgmentshouldnotimplylicensorendorsement.(2)NonCommercial:Thematerialcannotbeusedforcommercialpurposes.(3)NoDerivatives:Modifiedversionsoftheworkcannotbedistributed.(4) Noadditionallegalortechnologicalrestrictionsmaybeappliedbeyondthosestipulatedinthelicense.Publicdomainmaterialsorthosecoveredbystatutoryexceptionsareexemptfromtheseterms.Thislicensedoesnotcoverallpotential rights,suchaspublicityorprivacyrights,whichmayrestrictmaterialuse.Thirdpartycontentinthisarticlefallsunderthearticle’sCreativeCommonslicenseunless otherwisestated.Ifuseexceedsthelicensescopeorstatutoryregulation,permissionmustbeobtainedfromthecopyrightholder.Forcompletelicensedetails,visit https://creativecommons.org/licenses/by-nc-nd/4.0/.Thelicenseisprovidedwithoutwarranties.

GenomicPsychiatry

INNOVATORS&IDEAS:RESEARCHLEADER

NoboruHiroi:Exploringthecellularanddevelopmentaloriginsofneuropsychiatric disorderslinkedtohumancopy-numbervariation

©GenomicPress,2024.The“GenomicPressInterview”frameworkisprotectedundercopyright.Individualresponsesarepublishedunderexclusive andpermanentlicensetoGenomicPress.

GenomicPsychiatry January2025;1(1):21–23;doi: https://doi.org/10.61373/gp024k.0013

Keywords: 22q11.2,autism,cellmodel,copynumbervariation, intellectualdisability,mousemodel,schizophrenia

ProfessorNoboruHiroiisafacultymemberintheDepartmentsof Pharmacology,CellularandIntegrativePhysiology,andCellSystems& AnatomyattheUniversityofTexasHealthScienceCenteratSan Antonio(UTHealthSanAntonio),USA.Hejoinedhiscurrent institutionin2019afterworkingatAlbertEinsteinCollegeof MedicineinNewYorkfor21years.Hiscurrentworkisfocusedonthe cellularanddevelopmentaloriginsofthedimensionsof neuropsychiatricdisordersingeneticallyengineeredmouseandcell models.ProfessorHiroiishappytoprovideourreaderswith reflectionsonhislifeandcareer.

Part1:NoboruHiroi–LifeandCareer

Couldyougiveusaglimpseintoyourpersonalhistory,emphasizing thepivotalmomentsthatfirstkindledyourpassionforscience?

IwasborninasmalltownneartheportcityofYokohama,Japan.Itissurroundedbymountainsandtheocean,andthereisrichanimallife.Iwas alwaysfascinatedbythenormalandabnormalwaysanimalsbehave.As anundergraduatestudentatWasedaUniversityinTokyo,alecturerwho spenthissabbaticalyearatMcGillUniversity(Montreal,Quebec,Canada) taughtmeaboutthediscoveriesbyJamesOldsandPeterMilnerofarewardcenterintherodentbrain,D.O.Hebb’sconceptualizationofsynaptic plasticity,andmultiplememorysystemsbyBrendaMilnerandNormanM. WhiteatMcGill.IwasfortunatetoreceiveafullscholarshipfromanewspapercompanyinJapanand,later,anotherscholarshipfromtheGovernmentofCanadatocompletemyPhDatMcGill.Thesefirstpivotalevents setthestageformycareerinscience.

Wewouldliketoknowmoreaboutyourcareertrajectoryleadingupto yourmostrelevantleadershiprole.Whatdefiningmoments channeledyoutowardthatleadershipresponsibility?

MyPhDthesisworkwasfocusedontheanatomicallocicriticalforamphetamine’saddictiveproperties.AftercompletingmyPhDthesisin 1991,Iwasofferedpostdoctoralpositionsinlabsthatwereworkingon anatomicalsubstratesofaddictivesubstancesattheUniversityofBritish Columbia(Vancouver,BritishColumbia,Canada),CambridgeUniversity (Cambridge,UnitedKingdom),andtheMassachusettsInstituteofTechnology(MIT,Cambridge,MA).IchosethelaboratoryofProfessorAnn M.GraybielatMITtoexpandmygraduatetraininginbehavioralneurosciencetothecompartmentalizationofthestriatum,afieldpioneeredby Dr.Graybielandothers.AtMIT,Iwasinvolvedinacollaborativeproject withDr.SusumuTonegawa,oneofthepioneerswhointroducedgeneticallyengineeredmiceinstudiesoftheroleofgenesinbehavior.IcompletedasecondpostdoctoralprograminthelaboratoryofDr.EricNestler atYaleUniversity(NewHaven,Connecticut,USA)tofurtherdevelopmy skillsinthemolecularanalysesofaddictivebehaviorsingeneticallyengineeredmousemodels.Myworkthereinvolveddeterminingtherolesof twogenes,FBJmurineosteosarcomaviraloncogenehomologB(FosB) anddopamine-andcyclicadenosinemonophosphate–regulatedphosphoprotein,Mr32kDa(DARPP-32),ingeneticknockoutmousemodels,in

Received:8February2024.Accepted:9February2024. Publishedonline:16February2024.

Antonio,USA.

collaborationwithDr.MichaelE.GreenbergatHarvardandDr.PaulGreengardatRockefellerUniversity.

IwasrecruitedtoAlbertEinsteinCollegeofMedicineinNewYork in1998asanindependentjuniorfacultymembertofurtherstrengthen itsaddictionresearchprogram.However,Iwassoonfascinatedbymy colleagues’workonpatientswhocarriedcopy-numbervariants(CNVs)at humanchromosome22q11.2.PatientswiththeseCNVsexhibit schizophrenia,intellectualdisability,andautismspectrumdisorder atratesfarabovewhatisexpectedinthegeneralpopulation.Itbecame apparentthatthesepatientsrepresentedgeneticallyidentifiablecases ofmentaldisorders,whichwastoointerestingatopictopasson,andI startedanewprojectexploringthisassociationin1999.Mypostdoctoral trainingintheintegrativeuseofgeneticallyengineeredmiceenabled metocontributetotheworkofEinstein’s22q11researchteam.Iwas fortunatetocollaboratewithmany22q11pioneers,includingDrs.Raju Kucherlapati,BerniceMorrow,andmanyothers.

Asmymouseworkdeveloped,Istartedexpandingthelevelofanalysis byformingateamofinvestigatorsspecializingintheimagingofmouse brains,computationalmodeling,andcellmodels.Thiscollaborativeteam grewtoinvolvemanyinvestigatorsoutsideEinstein,includinggroupsin IrelandandJapan.Icurrentlyorganizeaninternationalteamwiththose investigators.

Figure1. NoboruHiroi,PhD,UniversityofTexasHealthScienceCenteratSan

Whatkindofimpactdoyouhopetoachieveinyourfieldbyfocusing onyourspecificresearchtopics?

Ihopetoincreasetheknowledgeofcellularandmolecularsubstratesfor 22q11.2CNV-linkedpsychiatricdisorderssothattheimplementationof precisionmedicineinpsychiatrycanbecomeareality.

Couldyoutellusmoreaboutyourcurrentscholarlyfocalpointswithin yourchosenfieldofscience?

Mycurrentpointoffocusistoelucidateandfinelydefinethecellularand developmentaloriginsofcognitivedeficitscommonlyaffectedinCNVassociatedcasesofschizophrenia,autism,andintellectualdisabilities. Theultimatevalidationofourfindingsincellandmousemodelswould comewhentherapeuticoptionsdevelopedfromthemechanisticunderstandingderivedinthesemodelsystemsprovetobeeffectivefortreating highlyspecificdimensionsofmentaldisorders,whichwouldbemydream. Evenifpotentialtherapeuticoptionsturnouttobenoteffective,thenegativeoutcomeswouldfurthermotivatemetoexploreotherpotentialcellularanddevelopmentalmechanismsofmentalillnessinmodelsystems.

Whathabitsandvaluesdidyoudevelopduringyouracademicstudies orsubsequentpostdoctoralexperiencesthatyouupholdwithinyour ownresearchenvironment?

Frommythesismentor,NormanM.White,Ilearnedtosticktomyown ideas,evenwhentheyarenotwellaccepted.Ilearnedscientificrigorfrom AnnM.Graybielandtheimportanceofvisionsfrommycollaborationwith SusumuTonegawaatMIT.Ilearnedcutting-edgemolecularapproaches fromEricNestleratYale.Fromallofmymajorscientificmentors,Ilearned theimportanceofcontinuouslyincorporatingnewtechniquesandideas intomyproject.

AtGenomicPress,weprioritizefosteringresearchendeavorsbased solelyontheirinherentmerit,uninfluencedbygeographyorthe researchers’personalordemographictraits.Arethereparticular culturalfacetswithinthescientificcommunitythatwarrant transformativescrutiny,oristhereacausewithinsciencethatdeeply stirsyourpassions?

Thecurrenttrend,whichIdonotparticularlyappreciate,isthatarticlesconsistentwithprevailingdogmastendtopopulatemajorhighimpactjournalsandthoseinconsistentwiththeseprevailingdogmasare notpublishedinprominentjournals.Thistrendisexacerbatedbythe geographiclocationsoftheauthors.Authorswhodonotresideincountrieswheredogmasarepopularmightbepublishedlessfrequently,ifthe reviewersoftheirworkarefromcountrieswherethedogmasarewidely held.Iampassionateaboutpromotingworkthatdoesnotsupportthe prevailingconcepts.

Whatdoyoumostenjoyinyourcapacityasanacademicand researchleader?

ThemostenjoyablemomentsarethetimeswhenIdiscussnewideaswith mycolleagues.

Outsideprofessionalconfines,howdoyouprefertoallocateyour leisuremoments,orconversely,inwhatmannerwouldyouenvision spendingthesemomentsgivenachoice?

MymotherishousedinacarefacilityinJapanthatspecializesin Alzheimer’sdisease.WheneverIhaveachance,Itrytoflytoseeher.

Part2:NoboruHiroi–SelectedquestionsfromtheProust Questionnaire1

Whatisyourideaofperfecthappiness? Forme,perfecthappinessinvolvesseeingthatkindofhappinessinmy familyandtwodogs.

Whatisyourgreatestfear?

MymotheriscurrentlyafflictedwithAlzheimer’sdisease.Theprospect ofdevelopingthesameconditionatsomepointinmylifeiscurrentlymy greatestfear.

Whichlivingpersondoyoumostadmire? Therearetoomanytopickafew.

Whatisyourgreatestextravagance?

MygreatestextravaganceinvolvessharingsuperbJapanesefoodwithmy colleaguesandcollaborators.

Whatareyoumostproudof?

IamtryingtoachievethisstateofmindaboutmyworkbythetimeIdie orceasetofunctionintellectually.

Whatisyourgreatestregret? ItendtoforgetwhatIregret.

Whatisthequalityyoumostadmireinpeople?

Oneofthemostadmirablequalitiesinpeopleistheirabilitytoachieve goalsdespiteadversity.IgavemysonthemiddlenameMoses.Youget theideaofwhatqualitiesIadmireinpeople.

Whatdoyouconsiderthemostoverratedvirtue?

Iamnotsure.Itdependsoncertainperspectives,andtheydifferindividually.

Whatisyourfavoriteoccupation?

Mycurrentoccupationismyfavorite.ThisjobiswhatIdreamedofasa child.

Wherewouldyoumostliketolive?

IwouldliveanywhereIcancollaboratewithgoodpeopleuntilIdevelop dementiaorretire.Afterretirementordevelopingdementia,Iwould mostlikelyliveinJapantoenjoythegreatfoodandhotsprings.Moreover,Japanoffersgood,affordablemedicalcareandcarefacilities.Major surgeriesandgoodcarefacilitiesintheUnitedStateswouldcostmea fortune.

Whatisyourmosttreasuredpossession?

Idonottreasurephysicalpossessions.Seeingmyfather’sbelongingsafterherecentlypassedawaymademerealizethatphysicalpossessionsdo notmeanmuch.Icannot“possess”nonphysicalthings.Myfamilyisnot my“possession.”Therefore,Icannotthinkofanytreasuredpossessions.

Whenandwherewereyouhappiest?Andwhyweresohappythen? Iamhappiestnow.Ihaveneverbeenthishappy.Relativelyspeaking,my lifewasnotsogreatearlier.

Whatisyourmostmarkedcharacteristic?

Itendtospeakhonestlyandfrankly,eventotheextentthatmyspeech maybebluntandabrasiveattimes.

Amongyourtalents,whichonegivesyouacompetitiveedge?

ItendtosaywhatIthinkistrue,evenifitmakesothersuncomfortableor infuriated.ThatistheonlythingIcanthinkof,ifyoucountitasatalent.

1 Inthelatenineteenthcenturyvariousquestionnaireswereapopulardiversiondesignedtodiscovernewthingsaboutoldfriends.Whatisnowknownasthe35questionProustQuestionnairebecamefamousafterMarcelProust’sanswersto thesequestionswerefoundandpublishedposthumously.Proustansweredthequestionstwice,atages14and20.Multipleotherhistoricalandcontemporaryfigures haveansweredtheProustQuestionnaire,suchasOscarWilde,KarlMarx,ArthurConanDoyle,StéphaneMallarmé,PaulCézanne,MartinBoucher,HughJackman,David Bowie,andZendaya.TheProustQuestionnaireisoftenusedtointerviewcelebrities:theideaisthatbyansweringthesequestionsanindividualwillrevealhisorher truenature.WehavecondensedtheProustQuestionnairebyreducingthenumber ofquestionsandslightlyrewordingsome.Thesecuratedquestionsaimtoprovide insightsintotheindividual’sinnerworld,rangingfromnotionsofhappinessandfear toaspirationsandinspirations.

Whatisapersonality/characteristictraityouwishyouhad? IdonotwishtohavesomethingIdonothaveoramincapableofhaving.

Whatdoyouconsideryourgreatestachievement?

MygreatestachievementsofaristhatIhavesurvivedasaresearcher.

Whatdoyoumostvalueinyourfriends?

TheattributesImostvalueinmyfriendsarethattheyareforgivingand notjudgmental.

Whoareyourfavoritewriters?

Ienjoymanynonfictionwriters.

Whoareyourheroesoffiction?

Idon’tlikeheroesinfictionorfictionalworlds.IdonotlikeDisneyorany otherthemeparksthatincludeheroes.Ifanything,Iprefervillains.They aretough.

Whoareyourheroesinreallife?

Heroesinreallifearethosewhosacrificeeverythingforthebenefitand well-beingofothers.

Whataphorismormottobestencapsulatesyourlifephilosophy?

TheessenceoflifedescribedinEcclesiastesbestencapsulatesmylifephilosophy.Despiteitsseeminglypessimisticviewoflife,itsconclusionis

thatoneshouldneverthelesspursuewisdombecausethatiswhatprovidencedictates.

NoboruHiroi1

1 DepartmentsofPharmacology,CellularandIntegrativePhysiology,andCell Systems&Anatomy,UTHealthSanAntonio,SanAntonio,Texas78229,USA e-mail: hiroi@uthscsa.edu

Publisher’snote: GenomicPressmaintainsapositionofimpartialityandneutrality regardingterritorialassertionsrepresentedinpublishedmaterialsandaffiliations ofinstitutionalnature.Assuch,wewillusetheaffiliationsprovidedbytheauthors, withouteditingthem.Suchusesimplyreflectswhattheauthorssubmittedtousand itdoesnotindicatethatGenomicPresssupportsanytypeofterritorialassertions.

OpenAccess. The“GenomicPressInterview”frameworkiscopyrightedtoGenomicPress.Theinterviewee’sresponsesarelicensedtoGenomicPressundertheCreativeCommonsAttribution-NonCommercialNoDerivatives4.0InternationalLicense(CCBY-NC-ND4.0).Thelicensemandates: (1)Attribution:Creditmustbegiventotheoriginalwork,withalinktothelicense andnotificationofanychanges.Theacknowledgmentshouldnotimplylicensorendorsement.(2)NonCommercial:Thematerialcannotbeusedforcommercialpurposes.(3)NoDerivatives:Modifiedversionsoftheworkcannotbedistributed.(4) Noadditionallegalortechnologicalrestrictionsmaybeappliedbeyondthosestipulatedinthelicense.Publicdomainmaterialsorthosecoveredbystatutoryexceptionsareexemptfromtheseterms.Thislicensedoesnotcoverallpotential rights,suchaspublicityorprivacyrights,whichmayrestrictmaterialuse.Thirdpartycontentinthisarticlefallsunderthearticle’sCreativeCommonslicenseunless otherwisestated.Ifuseexceedsthelicensescopeorstatutoryregulation,permissionmustbeobtainedfromthecopyrightholder.Forcompletelicensedetails,visit https://creativecommons.org/licenses/by-nc-nd/4.0/.Thelicenseisprovidedwithoutwarranties.

VIEWPOINT

Whystatinghypothesesingrantwritingisusuallynecessary

©TheAuthor(s),2024.ThisarticleisunderexclusiveandpermanentlicensetoGenomicPress

GenomicPsychiatry January2025;1(1):24–25;doi: https://doi.org/10.61373/gp024v.0031

Keywords: Hypothesisevaluation,researchmethodology,philosophical perspectivesinscience,scientificdiscourse,knowledgeevolution

Inthisviewpoint,weexploretheprovocativeargumentbyHernánand Greenland,presentedinJAMA,regardingthetraditionalnecessityof statinghypothesesingrantapplications.Theyproposethatthis conventionmayhindertheexplorativenatureofresearch,callingfor areevaluationthatcouldimpactglobalresearchpracticesand methodologies.Hypothesesprovideastructuredframeworkcrucial forclarifyingresearchquestionsandfacilitatingsuccessfulfunding. However,HernánandGreenlandmergegrantwritingwithresearch execution,potentiallyundervaluingthestrategicroleofhypotheses. WediscusstheperspectivesofphilosophersKarlPopperandThomas Kuhn,emphasizingtheessentialroleofhypothesesinfostering scientificprogressthroughcriticalscrutinyandparadigmshifts. WhileacknowledgingthevalueinHernánandGreenland’sflexibility fordata-drivenresearch,weassertthathypothesesremain fundamentalinguidingscientificinquiry,balancinginnovationwith traditionalrigor.Ourdiscussionaimstocontributetotheevolutionof researchmethodologies,ensuringtheyarebothinnovativeand groundedinsystematic,hypothesis-drivenapproaches.

Intheirthought-provokingcommentarypublishedin JAMA (1),MiguelA. HernánandSanderGreenlandproposeareevaluationofthetraditional necessitytostatehypothesesingrantapplications,suggestingthatthis practicemightbeunnecessaryandevendetrimentaltotheessenceofresearchtoexploreeffectswithprecisionandopenness.Ourmotivationto engagewithHernánandGreenland’sdiscourse,particularlygivenitspublicationinaprestigiousplatformlike JAMA,stemsfromanunderstandingoftheprofoundimpactthisdebatecanhaveonclinicalpracticesand researchmethodologies.Theconversationextendsbeyondacademicdiscourse,affectinghowresearchisconceptualized,funded,andexecuted globally.Engaginginthisdialogueisessentialfordevelopingresearch methodologiesthatcombineinnovationwiththerigornecessaryforsignificantadvancementsinmedicalscienceandbeyond.

TheoriginalpurposeoftheHernánandGreenlandarticle,asinferred fromitstitle,appearstofocusontheroleofhypothesesingrantwriting.However,thecontentextendsbeyondthistoencompasstheimplementationofresearch,blurringthelinesbetweenthesedistinctphases. Ingrantwriting,hypothesesarecrucialastheyencapsulatetheresearch question,direction,andrationale,providingaclearandstructuredframeworkforthestudy(2–4).Theyserveasfoundationalelementsthatguide theresearch’sconceptualandanalyticaltrajectory,facilitatingsuccessful grantacquisition.

However,HernánandGreenland’sblendofthegrant-writingprocess withresearchexecutionoverlooksthefoundationalrolehypothesesplay intheformer.Whiletheircallforflexibilityanddata-drivenapproachesin researchexecutionisvalidandvaluable,itsomewhatdiminishestheimportanceofawell-articulatedhypothesisinsecuringgrantfunding.This overlookcanleadtounderestimationofthestrategicimportanceofhypothesesinguidingtheresearchjourney,accommodatingnewdata,and fosteringunanticipateddiscoveries.

Received:11March2024.Revised:20April2024.Accepted:21April2024. Publishedonline:2May2024.

ExpandinguponthephilosophicalperspectivesofKarlPopperand ThomasKuhnprovidesaricherunderstandingofthisdebate.KarlPopper andThomasKuhnaretwoofthe20thcentury’smostinfluentialphilosophersofscience.Eachoffersdistinctperspectivesontheroleofhypothesesinscientificprogressandthedynamicsofparadigmshifts.Popper, knownforhistheoryoffalsifiability(5),arguesthatscientifictheories shouldbeframedinsuchawaythattheycanberigorouslytestedandpotentiallydisproven.AccordingtoPopper,thegrowthofscientificknowledgeisanevolutionaryprocessdrivenbythecycleofconjecturesand refutations.Heproposesthatscientistsputforwardboldhypothesesand thenattempttofalsifythem.Inthisview,hypothesesarecrucialasthey offerclear,testablepropositionsthatchallengethestatusquo.Popper contendsthattheinabilitytofalsifyahypothesisdoesnotconfirmitasaccuratebutmerelyupholdsitasthebestapproximationoftruthcurrently available.Thus,forPopper,thehypothesis-drivenapproachiscentralto scientificdiscovery,asitencouragesrobusttestingandcriticalscrutiny, leadingtotheeliminationoferrorsandtheadvancementofknowledge.

Ontheotherhand,Kuhnintroducestheconceptofscientific paradigms(6, 7)whichhedefinesasuniversallyrecognizedscientific achievementsthat,foratime,providemodelproblemsandsolutionsto acommunityofpractitioners.AccordingtoKuhn,normalscienceoperateswithintheconfinesofthecurrentparadigm,focusingonsolving puzzlesthattheparadigmdelineates.However,whentheparadigmencountersanomalies,itcannotbeexplained,thismayleadtoascientificcrisisandtheeventualemergenceofanewparadigm—aparadigm shift.ForKuhn,hypothesesareembeddedwithintheprevailingscientific paradigms,guidingwhatquestionsscientistsaskandhowtheyinterpret data.Hesuggeststhatsignificantscientificprogress—paradigmshifts— occursnotjustbyaccumulatingfactsordisprovinghypotheseswithinthe currentparadigm,butbyfundamentallychangingtheconceptualframeworkthroughwhichscientistsviewtheworld.

Thus,frombothPopper’sandKuhn’sperspectives,hypothesis-driven approachesarefundamentaltothedynamicsofscientificprogress.They supportthesystematicandcriticalexaminationofourtheoriesandpractices,promotingcontinuousimprovementandadaptationinourquestto understandtheuniverse.Theseapproachesencouragenotonlytherefinementofexistingknowledgewithincurrentparadigmsbutalsothe revolutionaryshiftsthatredefinescientificunderstanding.Inessence,by fosteringarigorous,question-drivenapproachtoresearch,hypotheses playavitalroleinboththeevolutionaryandrevolutionaryaspectsofscientificadvancement.

Incontemporaryscientificresearch,acleardistinctionemergesbetweentraditionalhypothesis-drivenstudiesandhypothesis-freeinvestigationstypicalof‘bigdata’approaches,suchasgenome-wideassociationstudies(GWAS)(8).Traditionalmethods,deeplyrootedinspecific, testablehypotheses,remainessentialfortargetedscientificinquiries. Conversely,GWASandsimilarbigdatamethodologiesanalyzeextensivedatasetstoidentifypotentialcorrelationswithoutinitialhypotheses.Theseexplorations,whilenotimmediatelygroundedinhypothesis testing,oftengeneratefindingsthatnecessitatesubsequenthypothesisdrivenresearch.Suchsequentialapproachesensurethatstatisticallysignificantresultsfromlarge-scaledataanalysisarerigorouslytestedfor

theirbiologicalsignificance,therebybridgingthegapbetweenstatisticaldiscoveryandbiomedicalinsight.Thisiterativecycleofdiscoveryand validationembodiesthedynamismandadaptabilityofmodernscientific practice.

WhileHernánandGreenlandraisesignificantpointsthatwarrantseriousconsideration,itisessentialtoreflectonthebroaderimplications oftheirarguments,particularlyinthecontextoftheirpublicationina high-impactjournallike JAMA.Thediscoursesurroundingtheroleofhypothesesinscientificresearchisvital,asitshapesthefutureofhowwe approach,understand,andsolvethecomplexproblemsfacingthemedicalandscientificcommunities.Itisourhopethatbyaddingourvoiceto thisconversation,wecancontributetotheongoingevolutionofresearch methodologiesthatarebothinnovativeandgroundedintherobusttraditionsofscientificinquiry.

YunyuXiao,PhD1 ,andMyrnaM.Weissman,PhD2 , 3

1 DepartmentofPopulationHealthSciences,DepartmentofPsychiatry,Weill CornellMedicine,NewYork,NewYork,10065,USA; 2 DepartmentofPsychiatry, VagelosCollegeofPhysiciansandSurgeons,ColumbiaUniversity,NewYork, NewYork10032,USA; 3 NewYorkStatePsychiatricInstitute,NewYork, NewYork10032,USA

e-mail: yux4008@med.cornell.edu

tion,review,orapprovalofthemanuscript,orthedecisiontosubmitthe manuscriptforpublication.

References

1.HernánMA,GreenlandS.WhyStatingHypothesesinGrantApplicationsIsUnnecessary. JAMA.2024;331(4):285-6.DOI: 10.1001/jama.2023.27163

2.ArdehaliH.HowtoWriteaSuccessfulGrantApplicationandResearchPaper.CircRes. 2014;114(8):1231-4.DOI: 10.1161/CIRCRESAHA.114.303695

3.MonteAA,LibbyAM.IntroductiontotheSpecificAimsPageofaGrantProposal.Acad EmergMed.2018;25(9):1042-7.DOI: 10.1111/acem.13419

4.LockeLF,SpirdusoWW,SilvermanSJ.ProposalsThatWork:AGuideforPlanningDissertationsandGrantProposals.SagePublications;2013.

5.PopperK,HansenTE,PickelA,KinoryJ.TheTwoFundamentalProblemsoftheTheory ofKnowledge.Routledge;2014.

6.KuhnTS.TheStructureofScientificRevolutions.UniversityofChicagopress;2012.

7.KuhnTS.Secondthoughtsonparadigms.StructSciTheor.1974;2:459-82.

8.UffelmannE,HuangQQ,MunungNS,etal.Genome-wideassociationstudies.NatRev MethodsPrimer.2021;1(1):1-21.DOI: 10.1038/s43586-021-00056-9

Publisher’snote: GenomicPressmaintainsapositionofimpartialityandneutralityregardingterritorialassertionsrepresentedinpublishedmaterialsandaffiliationsofinstitutionalnature.Assuch,wewillusetheaffiliationsprovidedbytheauthors,withouteditingthem.Suchusesimplyreflectswhattheauthorssubmitted tousanditdoesnotindicatethatGenomicPresssupportsanytypeofterritorial assertions.

FundingSources

ThisworkwassupportedinpartbygrantsfromtheNationalInstitutesof Health(NIH)R01MH121921andRF1MH134649Y.X.andR01MH121922 M.M.W.

ConflictsofInterest

Dr.WeissmanreceivesbookroyaltiesfromPerseusPress,OxfordPress, andAPAPublishingPress.Noneofthempresentsaconflictofinterest.

RoleoftheFunder/Sponsor

Thesponsorhadnoroleinthedesignandconductofthestudy,thecollection,management,analysis,andinterpretationofthedata,theprepara-

OpenAccess. ThisarticleislicensedtoGenomicPressundertheCreativeCommonsAttribution-NonCommercial-NoDerivatives4.0InternationalLicense(CCBY-NC-ND4.0).Thelicensemandates:(1)Attribution:Credit mustbegiventotheoriginalwork,withalinktothelicenseandnotificationofany changes.Theacknowledgmentshouldnotimplylicensorendorsement.(2)NonCommercial:Thematerialcannotbeusedforcommercialpurposes.(3)NoDerivatives: Modifiedversionsoftheworkcannotbedistributed.(4)Noadditionallegalortechnologicalrestrictionsmaybeappliedbeyondthosestipulatedinthelicense.Public domainmaterialsorthosecoveredbystatutoryexceptionsareexemptfromthese terms.Thislicensedoesnotcoverallpotentialrights,suchaspublicityorprivacy rights,whichmayrestrictmaterialuse.Third-partycontentinthisarticlefallsunderthearticle’sCreativeCommonslicenseunlessotherwisestated.Ifuseexceeds thelicensescopeorstatutoryregulation,permissionmustbeobtainedfromthe copyrightholder.Forcompletelicensedetails,visit https://creativecommons.org/ licenses/by-nc-nd/4.0/.Thelicenseisprovidedwithoutwarranties.

BENCHTOBEDSIDE

Theimportanceofelderlygenomes

MayanaZatz1

Thedifficultyinclassifyingararegeneticvariantas“likelypathogenic,”“likelybenign,”orVUS(variantofunknownsignificance)representsa significantchallengeingeneticcounseling(GC)whentryingtoestablishadiagnosisorasaresultofincidentalfindings.Thisclassificationmay impactthecommunicationofprognosisinlate-onsetconditions,suchasneuromusculardisorders,andtheconsultants’reproductivedecisions regardingfutureoffspring.Here,wereporttwounrelatedfamilies,oneBrazilianandoneofEastAsianancestry,wherearareandpreviously unreporteddeletioninthedystrophingenewasidentified.Inthesetwofamilies,theanalysisofoldermalerelatives(from56to89yearsold) whowerefullyasymptomaticprovidedrelevantinformationtotheirfamiliesaboutthepotentialpathogenicityofthisdystrophinvariant. Thesecasessupportourprevioussuggestionhighlightingtherelevanceofgenomesequencingofolderhealthyindividualsorfamilymembers, abovetheageof50andgoingintothe80’sad90’s,andtheimportanceofsharingnewrelevantinformationfordecision-makingwithfamilies whopreviouslyunderwentgeneticcounseling.Inaddition,thesecasereportscontributetotheclassificationofVUS,enhancingourknowledge oftheimpactofspecificmutationsinfunctionalstudies.

GenomicPsychiatry January2025;1(1):26–27;doi: https://doi.org/10.61373/gp024b.0019

Keywords: Beckermusculardystrophy,Duchennemusculardystrophy,exomesequencing,geneticcounselling,genomics,wholegenomesequencing

Next-generationsequencing(NGS)hasallowedimmenseimprovement indiagnosinggeneticdisorders,facilitatingprecisionmedicine.Furthermore,thecurrentcostofwholeexomesequencing(WES)andwhole genomesequencing(WGS)makesthemincreasinglyaccessiblediagnostictools.However,wefrequentlyhavetodealwithvariantsofunknown significance(VUS),whichcouldcauseamajorillnessorjustbeararegeneticvariantnotyetdepositedintheinternationalgenomicdatabanks.

Anotherethicalchallengegeneticistsfacewhensequencingagenome isaccidentalfindingsthatcouldbeutterlyunrelatedtothediseaseof theproblem.Forexample,amutationinthe BRCA1 gene,responsiblefor breastcancer,inan8-year-oldboywithanundiagnosedmyopathy.Should theprobandorthefamilybeinformed?TheAmericanCollegeofMedical GeneticsandGenomics(ACMG)publishedalistofgenesandgeneticvariantsthatshouldbereportedasincidentalfindings(orsecondaryfindings) whentheyarediscoveredduringgenomictesting,eveniftheyareunrelatedtothesuspecteddiagnosis(1, 2).

OurstrategyhasbeentosequencethegenomeofhealthyelderlyindividualsinBrazil,asthosesequencescould(1)contributetodatabanks ofouradmixedBrazilianpopulation,(2)helptoclassifythepathogenicityofrareunknownvariants,and(3)provideessentialinsightsonconditionsthatareprevalentlaterinlife,suchashypertension,type2diabetes, Parkinson’s,andcancer,amongothers.Topursuethisstrategy,in2008, welaunchedthe80+ project,aimingtosequencethegenomesofolder Brazilians.Afirstdraft,with609exomes,waspublishedin2017(3),and asecondstudy,includingWGSof1171individuals,waspublishedin2022 (4),representingthemostextensivegenomicdatabankofolderindividualsinLatinAmerica.

Acommentin Cell publishedseveralyearsafterourfirststudywasinitiatedcalledattentiontotheimportanceofstudyingthegenomesofadmixedpopulations,asavailabledatabankshavebeenconstructedmainly withindividualsofEuropeanancestry(5).Indeed,inourrecentWGSstudy ofmorethan1000individuals,weidentified2milliongeneticvariantsnot reportedpreviously.Morerecently,theAllofUsResearchProgram(6),a longitudinalcohortstudyaimingtoenrolladiversegroupofatleastone millionindividualsacrosstheUnitedStates,involved77%ofparticipants fromcommunitiesthatarehistoricallyunder-representedinbiomedical researchand46%individualsfromunder-representedracialandethnic

minorities.TheAllofUsResearchProgramidentifiedmorethan1billion geneticvariants,includingmorethan275millionpreviouslyunreported ones.Thisreinforcesthevalueofstudyingthegenomesofadmixedpopulations.Inadditiontopopulationgeneticdatabanks,thegenomestudyof olderprobands’relativescanbeextremelyvaluableinreal-lifedecisionmaking,asillustratedbytwoexamplesbelow.

Case1

In2012,a44-year-oldmanwasreferredtoourcenterbecausehehada mutationinthedystrophingene,whichwasidentifiedinageneticcenter intheUnitedStates.Hewasperfectlyhealthyandrobust,buthewasinvestigatedasaresultofthataccidentalfindingbecausehis10-year-old daughterhadadiagnosisofcolobomaandsomehearingdifficulties(7). Thegenomestudyoftheyounggirldidnotuncoveranyvariantthatcould explainhercondition.However,itrevealedthatshecarriedanunrelated mutationinthedystrophingene,encompassingexons38–44,inherited fromher44-year-oldfather.Mostmutationsinthedystrophingeneare responsibleforDuchennemusculardystrophy(DMD),aseverelethalconditionthataffectsabout1in5000malenewborns(8).Thosearedisruptivemutationsthatresultintheabsenceofmuscledystrophin.Affected boysusuallyloseambulationbyage10–12andareentirelydependenton allactivitiesintheirseconddecade.However,somemutationscanresult inapartiallyfunctionaldystrophinandamilderbuthighlyvariablephenotype,asseeninBeckermusculardystrophy(BMD).Dependingonthe typeandsiteofthemutationalongthegene,BMDpatientscanbeconfinedtoawheelchairaroundage16orremainambulantintheirsixtiesor seventies.Forexample,itisknownthatsomemutationsintheroddomain (centralpartofthegene)thatmaintaintheRNAreadingframe(in-frame deletions)cancauseonlycardiopathylaterinlifebutnomuscularweakness.Therefore,mutationsinthedystrophingeneshouldbeclassifiedas dystrophinopathiesandnotDuchennemutations,astheyareresponsible forawiderangeofclinicalvariability.

Theprobleminthiscaseisthatthedystrophinmutationfoundinour probandhadneverbeenreportedbefore.Coulditberesponsiblefora late-onsetdisorder,orwasitjustalikelybenignrarevariant?Although hewashealthyandstrongatage44,hewantedtoknowwhetherhe mightdevelopmuscularweaknesslaterinlife.Ifhehadcarriedanovel

1 HumanGenomeandStem-cellResearchCenter,InstituteofBiosciences,UniversityofSãoPaulo,05508-090SãoPaulo,Brazil

CorrespondingAuthor: MayanaZatz,HumanGenomeandStem-cellResearchCenter,InstituteofBiosciences,UniversityofSãoPaulo,05508-090SãoPaulo,SP,Brazil. E-mail: mayazatz@usp.br

Received:10March2024.Revised:12March2024and14March2024.Accepted:14March2024. Publishedonline:15March2024.

mutation,itwouldnothavebeenpossibletoanticipatehisclinicalstatuslaterinlife.Theonlyalternativewastoinvestigatehisolderrelatives,hopingtheirgenomicdatamightbeinformative.Inotherwords,we neededtoinvestigatewhetherthoseelderlyrelativescarriedthesame dystrophinmutation.Thatwasthecase:westudiedseveralfamilymembersandfoundoutthattheproband’smotherandonematernaluncle, whowas56yearsoldatthattime,alsocarriedthesamemutation,and theywereasymptomatic.Itwasgoodnews.Wepublishedthiscasereport withatake-homemessage:ifyouwanttosequenceyourgenome,keep yourolderrelatives’DNA.Theycanbringimportantinformation(7).

Case2

Morerecently,IreceivedanemailfromayoungwomanofEastAsian ancestrywhowrotetomebecauseshediscoveredthatshecarriesa DMDmutationencompassingexons38–44,thesameraredeletionof theBrazilianfamilyincase1.Hermutationhadbeeninheritedfromher 60-year-oldmother.Becauseofthelackofinformationingenomedata banks,themutationwasclassifiedaslikelytobepathogenic,andsheunderwentanabortionat27weeksofpregnancy.Shewroteinheremail thatthis“ledhertobedevastated,butalsotoconducttonsofresearch.” Searchingreferences,shediscoveredthathermutationwasthesamein ourpreviouslyreportedfamily,andshewantedmoreinformationabout ourcase.Herquestionswere:(1)couldyoupleaseprovidemorecontext onwhat“asymptomatic”meansforthatfamily?(2)Dotheynotshowany signsofDMD/BMD,includingnosignsofCKincrease/cardiomyopathy?(3) Ifthisresearchshowsexondeletion38–44isasymptomaticforthisBrazilianfamily,canIsafelyassumeitwillalsobeasymptomaticformyfamily?

(4)Whatisthecurrentstatusofyourpatients12yearsafteryourreport?

(5)HowmuchshouldI(she)beworriedaboutthismutationinmy(her) futureoffspring?

Ourreportreinforcingtheimportanceoftestingolderrelatives promptedhertostudyhergrandparents.Hermaternalgrandmother wasalreadydeceased,andshehadthreebrotherswhorefusedtobe tested.However,hermaternalgrandfatherunderwentgenetictesting, whichrevealedthathecarriesthe38–44mutation.Itcouldnotbebetternewssinceheiscurrently89yearsold,fullyambulant,andhasno cardiomyopathy.

Asymptomaticgeneticvariantsinpatientsofdifferentethnic backgrounds:“VUSorlikelybenign?

Followingtheselastgeneticresults,IcontactedtheBrazilianfamilyto sharetheexcellentnewsaboutthehealthy89-year-oldmancarrying the38–44deletion,andtheyinformedmethattheyalsocontinuetobe healthyandstrong.Ourprobandandhismaternalunclecarryingthedystrophindeletionarecurrently56and68,respectively.Thenewobservationthatthissamevariantisnotassociatedwithanymuscularweakness intwofamilieswithdifferentethnicbackgroundssupportsthehypothesisthatitisa“likelybenign”variant.However,somegeneticistswould stillclassifyitasaVUS.Mostimportantly,itreinforcestherelevanceof genomicscreeningofolderpopulationsandprobands’familymembers.

ThepathogenicityofVUSscanalsobestudiedusingin silico strategiesthatincludecomputationalstructuralbiologyorin vivo experiments inwhichanewvariantiscreatedviaCRISPRandinsertedinalivingorganism.However,webelievethatsuchmodelswilllacktheinputfromother putativeprotectivevariants;moreover,theoutcomesofgene-geneinteractionsmaybemissed.Therefore,weadvocateforthestudyofelderly genomesasakeytooltodeterminetheclinicalsignificanceofVUSs.

Inarecentreviewoftheliteratureanddatabase,Fortunateetal.reported22casesofpatientswhocarried in-frame deletionsinthedystrophingeneandwerefullyasymptomatic(9).Theywereolderthan43, whilethethreeindividualsreportedwereolderthan55.Accordingto Fortunateetal.,somedeletionsshouldbecarefullyconsideredwhen identifiedasincidentalfindings,andgeneticcounselingmustalwaysbe offeredtohelpinterprettheseraredystrophingenotypes.Indeed,inthe currentcase,sharingnewdatawithourfamilywasveryhelpfulintheir decisionaboutfutureoffspring,whichalsoreinforcestheimportanceof re-visitingpreviouslycounseledfamilieswithnew,relevantinformation. FowlerandRehamrecentlyquestionedwhetherVUSwouldstillbe presentby2030(10).TheysuggestthatinvestingineliminatingVUSsis

worthwhilebecausetheirpredominanceremainsoneofthebiggestchallengestoprecisiongenomicmedicine.Sharingcasereportssuchasthose synthesizedherecannotonlybringrelieftofamilieswithsuchgenetic variantsbutcanalsocontributetoclassifyingthepathogenicityofVUS andrarevariants.

Acknowledgments

Iwouldliketothankourfundingagenciesforthefinancialsupport (FAPESP,grant2013/08028-1andCNPq,grant465355/2014-5),ourcolleagueswhoperformedgenomicanalysis,andthetwofamiliescitedhere fortheirpermissiontosharetheirhistories.

References

1.KaliaSS,AdelmanK,BaleSJ,ChungWK,EngC,EvansJP,etal.Recommendationsforreportingofsecondaryfindingsinclinicalexomeandgenomesequencing,2016update(ACMGSFv2.0):apolicystatementoftheAmerican CollegeofMedicalGeneticsandGenomics.GenetMed.2017;19(2):249–55. DOI: 10.1038/gim.2016.190

2.RiggsER,AndersenEF,CherryAM,KantarciS,KearneyH,PatelA,etal.Technicalstandardsfortheinterpretationandreportingofconstitutionalcopynumbervariants:ajointconsensusrecommendationoftheAmericanCollege ofMedicalGeneticsandGenomics(ACMG)andtheClinicalGenomeResource (ClinGen).GenetMed.2020;22(2):245–57.DOI: 10.1038/s41436-019-0686-8 PMC7313390

3.NaslavskyMS,YamamotoGL,deAlmeidaTF,EzquinaSAM,SunagaDY,PhoN,et al.ExomicvariantsofanelderlycohortofBraziliansintheABraOMdatabase. HumMutat.2017;38(7):751–63.DOI: 10.1002/humu.23220

4.NaslavskyMS,ScliarMO,YamamotoGL,WangJYT,ZverinovaS,KarpT, etal.Whole-genomesequencingof1,171elderlyadmixedindividualsfrom SaoPaulo,Brazil.NatCommun.2022;13(1):1004.DOI: 10.1038/s41467-02228648-3 PMC8897431

5.SirugoG,WilliamsSM,TishkoffSA.Themissingdiversityinhumangeneticstudies.Cell.2019;177(1):26–31.DOI: 10.1016/j.cell.2019.02.048 PMC7380073

6.AllofUsResearchProgramInvestigators,DennyJC,RutterJL,GoldsteinDB, PhilippakisA,SmollerJW,etal.The“AllofUs”ResearchProgram.NEnglJMed. 2019;381(7):668–76.DOI: 10.1056/NEJMsr1809937 PMC8291101

7.ZatzM,PavanelloRdeC,LourencoNC,CerqueiraA,LazarM,VainzofM.Assessing pathogenicityfornovelmutation/sequencevariants:thevalueofhealthyolder individuals.NeuromolecularMed.2012;14(4):281–4.DOI: 10.1007/s12017012-8186-x PMC3505535

8.CrisafulliS,SultanaJ,FontanaA,SalvoF,MessinaS,TrifiroG.GlobalepidemiologyofDuchennemusculardystrophy:anupdatedsystematicreviewand meta-analysis.OrphanetJRareDis.2020;15(1):141.DOI: 10.1186/s13023020-01430-8 PMC7275323

9.FortunatoF,TonelliL,FarneM,SelvaticiR,FerliniA.DMDdeletionsunderliningmilddystrophinopathies:literaturereviewhighlightsphenotyperelatedmutationclustersandprovidesinsightsaboutgeneticmechanismsand prognosis.FrontNeurol.2023;14:1288721.DOI: 10.3389/fneur.2023.1288721 PMC10823016

10.FowlerDM,RehmHL.Willvariantsofuncertainsignificancestillexistin 2030?AmJHumGenet.2024;111(1):5–10.DOI: 10.1016/j.ajhg.2023.11.005 PMC10806733

Publisher’snote: GenomicPressmaintainsapositionofimpartialityandneutrality regardingterritorialassertionsrepresentedinpublishedmaterialsandaffiliations ofinstitutionalnature.Assuch,wewillusetheaffiliationsprovidedbytheauthors, withouteditingthem.Suchusesimplyreflectswhattheauthorssubmittedtousand itdoesnotindicatethatGenomicPresssupportsanytypeofterritorialassertions.

OpenAccess. ThisarticleislicensedundertheCreativeCommons Attribution-NonCommercial-NoDerivatives4.0InternationalLicense (CCBY-NC-ND4.0).Thelicensemandates:(1)Attribution:Creditmustbegiventothe originalwork,withalinktothelicenseandnotificationofanychanges.Theacknowledgmentshouldnotimplylicensorendorsement.(2)NonCommercial:Thematerial cannotbeusedforcommercialpurposes.(3)NoDerivatives:Modifiedversionsofthe workcannotbedistributed.(4)Noadditionallegalortechnologicalrestrictionsmay beappliedbeyondthosestipulatedinthelicense.Publicdomainmaterialsorthose coveredbystatutoryexceptionsareexemptfromtheseterms.Thislicensedoesnot coverallpotentialrights,suchaspublicityorprivacyrights,whichmayrestrictmaterialuse.Third-partycontentinthisarticlefallsunderthearticle’sCreativeCommonslicenseunlessotherwisestated.Ifuseexceedsthelicensescopeorstatutory regulation,permissionmustbeobtainedfromthecopyrightholder.Forcomplete licensedetails,visit https://creativecommons.org/licenses/by-nc-nd/4.0/.The licenseisprovidedwithoutwarranties.

THOUGHTLEADERSINVITEDREVIEW

Thegeneticsofcognitioninschizophrenia

Thisconceptualreviewfocusesonrecentinsightsintothenatureoftherelationshipbetweengeneticpredispositionandcognitiveimpairment asriskfactorsforschizophrenia,andthefactorsthatinfluencethedegreeofcognitiveimpairmentinthosewiththedisorder.Thereisclear evidencethatpremorbidcognitiveimpairmentisfrequentlypresentinthosewhodevelopschizophrenia,and,acrosstherangeofabilities, poorerpremorbidcognitionisassociatedwithhigherliabilitytothedisorder.Evidencefromgeneticandpopulationstudiesstronglysupports thehypothesisthatpremorbidcognitiveimpairmentisamarkerforunderlyingneurodevelopmentalriskfactorsforthedisorder,ratherthana prodromalmanifestation.Thepremorbidcognitivedeficitseemstobelargelyexplainedbynon-familialfactorsratherthanbyfamilialfactors thatjointlyinfluenceliabilitytoschizophreniaandcognitiveability,andthesenon-familialriskfactorsappearacttosensitizeindividualsto familialrisk.Thereisalsoevidencethatneurodevelopmentalriskmaybebetterindexedbythedegreetowhichpremorbidcognitiveability deviatesfromfamilialexpectationsthanbycognitiveability perse.Premorbidcognitiveimpairmentthusdoesnotitselflieonthecausal pathwaytoschizophrenia,ratheritisamarkerofaneurodevelopmentalabnormalitythatissubstantiallynon-familial,andwhichincreases riskforschizophrenia.Geneticriskfactors,includingbothcommonandrarealleles,thatinfluenceIQinthegeneralpopulationalsocontribute bothtoliabilityforschizophreniaandtothedegreeofcognitiveimpairmentinthosewiththedisorder.Thereisalsoevidenceforfurther declineincognitivefunctionafterdiagnosisinsomeindividualsaswellasanincreasedriskofdementia.Thisdoesnotappeartoreflect substantialsharedheritabilitywithneurodegenerativedisorders,butthecausesofpostonsetcognitivedeclineanditsrelationshipto schizophreniapathophysiologyremainuncertain.

GenomicPsychiatry January2025;1(1):28–35;doi: https://doi.org/10.61373/gp024i.0040

Keywords: Cognition,genetics,genomics,neurodevelopment,schizophrenia

Introduction:CognitiveImpairmentinSchizophrenia

Schizophreniaisdiagnosedbasedonthepresenceofcorepositive(psychotic),negativeanddisorganizedsymptoms(1).Individualsmeetingdiagnosticcriteriashowconsiderableheterogeneityintheseandotherclinicalfeatures,aswellasincourseandoutcome(2).Comparisonsbetween peoplewithschizophreniaandcontrolsrevealgroupwiseimpairmentsin mostaspectsofcognitivefunction(3, 4)includingIQ,whichisonaverage reducedbyapproximately1SDincases(5).Again,thereisenormousvariationbetweenindividualsintheextentoftheimpairmentpresent,anda diagnosisofschizophreniadoesnotprecludeestimatesofcognitiveabilitythatareabove,andsometimesmarkedlyabove,average(6, 7).CognitiveimpairmentisnotacoresymptomofschizophreniainDSM5orICD11, butasitisstronglyassociatedwithpoorerfunctionaloutcomesinareas suchaswork,independentliving,andsocialintegration(3),itisofgreat importancetothosewiththedisorder,andtothosewhoareinvolvedin theircareandmanagement,Arecentreviewhasbroadlyconsideredevidenceconcerningtheetiology,pathogenesis,andtreatmentofcognitive impairmentinschizophrenia(4).Thecurrentconceptualreviewismore circumscribedandfocusesonadditionalimportantinsightsprovidedby recentstudiesintothenatureoftherelationshipbetweengeneticrisk andcognitiveimpairmentasriskfactorsforschizophrenia,andthefactorsthatinfluencethedegreeofcognitiveimpairmentinthosewiththe disorder.

Manyofthestudieswereviewhavebeenbaseduponderivedmeasures ofgeneralcognitivefunctionsuchasIQratherthanuponperformanceon specifictestsmeasuringspecificdomainsofcognitivefunction.Giventhat impairmentsinmostaspectsofcognitivefunctionareassociatedwith schizophrenia(3),webelievethatsuchglobalmeasuresareinformative forthespecificquestionsweaimtoaddress.Accordingly,weusetheterm cognitiveimpairmentinterchangeablywithlowIQratherthantoindicate impairmentinspecificcognitivedomains.

Peoplewhoreceiveadiagnosisofschizophreniafrequentlyexhibit “premorbid”cognitiveimpairmentsbeforepsychosisismanifest(8), includinganaverageIQthatisapproximately0.5SDbelowthatofcontrols(5).Thereisalsoevidencethattheseverityofpremorbidimpairmentisassociatedwithearlieronsetofschizophrenia(9).Impairments areevidentinchildhood(5, 10–12)andappeartorepresentafailureof typicaldevelopmentalacquisitionoffunctionratherthanadeterioration perse asmightbeexpectedofadegenerativeprocess(12).Whilethe evidencesuggeststhatthedevelopmentaltrajectoriesofthosewhodevelopschizophreniadivergefromcontrolsmanyyearsbeforepsychosis emerges,itremainsunclearwhetherthisisprecededbyaperiodofnormaldevelopmentand,ifso,exactlywhendivergencebegins(10, 12). Alongsideotherpremorbiddevelopmentalandenvironmentalriskfactors,thefindingspointtoschizophreniahavingoriginsindisturbances ofneurodevelopment,onemanifestationofwhichisimpairedcognition priortoonsetofpsychosis(13–15).

Whiletheweightofevidencesupportsaneurodevelopmentalexplanationforpremorbidcognitiveimpairmentinschizophrenia,thenatureof therelationshipbetweenthetwoisuncertain.Inprinciple,therearethree possibilities.First,premorbidcognitiveimpairmentcouldbeaprodromal manifestationofaninsidiousonsetofschizophrenia.Secondly,itcould beacausalriskfactormediatingtheeffectsofgeneticorenvironmental riskonthedevelopmentofschizophrenia,aso-calledintermediatephenotypeorendophenotype.Thirdly,itmightbeariskindicatorthatresults fromthepleiotropiceffectsofanunderlyingneurodevelopmentalabnormalitythatindependentlyincreasesriskofthesubsequentemergence ofschizophrenia.Inthislatterinstance,premorbidcognitiveimpairment wouldbeamarkerofthepresenceorextentofaneurodevelopmentalabnormalitybutnotitselflieonthecausalpathwaytoschizophrenia.

Somestudiescomparingcognitivefunctioninthesameindividuals beforeandafteronsetofschizophrenia(5, 16–18)suggestthat,aswell

1 TheCentreforNeuropsychiatricGeneticsandGenomics,DivisionofPsychologicalMedicineandClinicalNeurosciences,andNeuroscienceandMentalHealthInnovation Institute,HadynEllisBuilding,MaindyRoad,CardiffUniversity,CardiffCF144HQ,UK.

CorrespondingAuthor: MichaelJ.Owen,HadynEllisBuilding,MaindyRoad,CardiffUniversity,Cardiff,UK,CF144HQ.E-mail: owenmj@cardiff.ac.uk Received:26April2024.Revised:19June2024.Accepted:19June2024. Publishedonline:16July2024.

aspremorbiddeficits,thereisfurtherdeclineinfunctionafterdiagnosisinsomeindividuals.However,thisremainsacontroversialareaand twometa-analysesoflongitudinalstudiesfoundnoevidenceforpostonsetdeclineinthefirst5yearsafteronset(19, 20).Moreover,arecent umbrellareviewconcludedthatmostofthereviewsassessedpointto nodeclineofcognitivefunctionovershorttomediumtimeframes(21). Nevertheless,studiesoverlongerfollow-upperiodshavefoundevidence foracceleratedcognitivedecline(18)andsubstantiallyincreasedrisks ofdementiahavebeenreportedinthosewithschizophrenia(22, 23). Somehavearguedthatthislaterdeclinepointstotheoperationofaprimaryneurodegenerativeprocessinschizophrenia(24),whereasothers havearguedthatmanypeoplewithschizophreniadonotprogressively deteriorateandpointedtothepossibilitythat,wheredeclinedoesoccur,itreflectsnon-specificfactorssecondarytoschizophreniasuchasantipsychoticexposure,metabolicsyndrome,smokingandothersubstance abuseandvarioussocialconfounders(25, 26).

Finally,theconsiderablevariationincognitiveimpairmentseenin peoplewithschizophreniaraisesthequestionastowhatextentthismight beassociatedwiththesamegeneticfactorsthatinfluencevariationin cognitiveabilityinthegeneralpopulation,orwhetherfactorsthatare relativelyspecifictoschizophreniaoperate.

GeneticArchitecturesofSchizophreniaandIntelligence Schizophreniaishighlyheritableandpolygenic,withriskconferredbyallelesacrossthefrequencyspectrum(27).Genome-wideassociationstudieshavesofaridentified287locithatcontaincommonriskallelesof smalleffect(28),butmanymoreexist,likelythousands,thatarecollectivelyresponsibleforaroundathirdofgeneticliability(29, 30).In addition,atleasteightrarecopy-numbervariants(CNVs)havebeenidentifiedthatconfersubstantialindividualrisk(31, 32).Morerecently,exomesequencingstudieshaveshownrareproteintruncatingvariantsand damagingmissensemutations(33–39)canconferlargeeffectsonriskof schizophrenia.Thelargestexomewidesequencingstudyofthedisorder todatereportedbytheSchizophreniaExomeMeta-AnalysisConsortium (SCHEMA)(38)identified10geneswithanexome-widesignificantexcess burdenoftheseclassesofmutationincases.Anadditionaltwogenesmet thissignificancethresholdinafocusedsequencingstudytargetinggenes thathadshownsomeevidenceforassociationinapreliminaryanalysisof theSCHEMAexomewidestudy(40).

Genomicstudiesofcommonvariantshavefoundevidenceforgenetic correlationbetweenschizophreniaandotherpsychiatricconditionsand personalitytraits,withthestrongestrelationshipseenwithbipolardisorderwherethesharedheritabilityisapproximately0.7(41).Incontrast, forrarevariants,whilethereisevidenceforoverlapswithbipolardisorder (42),sofar,thegeneticoverlapsaremoreprominentbetweenschizophreniaandchildhoodonsetneurodevelopmentaldisorders(NDDs)which,like schizophrenia,arealsoassociatedwithcognitiveimpairment:allknown schizophreniaassociatedCNVshavebeenimplicatedinintellectualdisability,andsomehavealsobeenimplicatedinautism(43).Peoplewith schizophreniaarealsoenrichedforultra-raredamagingmutationsin NDD-associatedgenes(33, 36–39),includingspecificmutationsthatare pathogenicforNDDs(44).Finally,commonschizophreniariskallelesare enrichedingenesimplicatedbyrarevariantstudiesofNDDs(28).

Intelligenceismoderatelyheritableinthegeneralpopulation(45). Genomicstudieshaveshownthat,likeschizophreniaandaspredicted (45),itishighlypolygenic,andimpactedbyallelesacrossthefrequency spectrumincludingmanycommonvariantsofsmalleffect(46),aswellas rareallelesincludingchromosomalabnormalities,CNVs,andrarecoding variants,someofwhicharealsoassociatedwithschizophreniaandother NDDs(47–50).

TheRelationshipBetweenGeneticRiskandCognitiveImpairmentas RiskFactorsforSchizophrenia

FamilyandPopulationStudies

Thereisevidencefrommanyindividualstudies,supportedbymetaanalyses,thatunaffectedfirst-degreerelatives(FDRs)ofthosewith schizophreniashowgeneralizedimpairmentsofcognitivefunctionbutto alesserdegreethanthoseseeninprobands(51, 52).However,suchfindingsarenotuniversal.Onestudyofschizophreniacasesandtheirrela-

tivesfromrelativelyhighlyfunctioningfamiliesfoundthatthesiblingsof probandsdidnotdifferincognitiveperformancefromacommunitycontrolsample(53).Inaddition,averylargestudyoftheSwedishpopulation foundnoevidenceforadolescentcognitiveimpairmentinthesiblingsof peoplewithschizophrenia(54).Thesefindingsraisethepossibilitythat theroleoffamilialriskfactorsforlowIQinschizophreniamayhavebeen influencedbyascertainmentbiasinstudiesofprobandsandtheirrelatives.Anotherpossibleconfounderisthatfamiliesascertainedforhaving aschizophreniaprobandmayhavehigherratesofexposuretoenvironmentswithanimpactoncognitiveability,forexamplecannabisabuse (55).Finally,thereisevidenceforassortativematingsuchthatpeople withschizophreniawhohavechildrenonaveragehavepartnersoflower cognitiveabilitythancontrols(56).Asaresult,assortativematingcould contributeto,orevenaccountfor,deficitsinFDRsratherthanthesereflectingasubstantialoverlapbetweenthegeneticriskforschizophrenia andlowIQ.Thus,whilemanystudieshavefoundevidenceforimpaired cognitioninFDRs,questionsremainabouthowthesefindingsshouldbe interpreted.Genomicstudiesofparent-probandtriosmightthrowlight onthisissue.

Populationstudieshavefurtherilluminatedthecausalrelationship betweenpremorbidIQandgeneticrisk.InalargestudyoftheSwedish population(57),riskofschizophreniaincreasedby3.8%witheachonepointdecreaseinpremorbidIQ.Theeffectswerestrongerinthelower IQrange,butimportantly,theassociationwasmonotonic,meaningatno pointinthedistributionwashigherIQassociatedwithhigherrisk,althoughsuchaneffectinpeoplewithexceptionallyhighIQcouldnotbe excludedduetotherarityofthoseindividuals.Overall,thesefindings,and themagnitudeoftheeffect,werealmostidenticaltothoseobtainedina meta-analysisofearlierpopulationstudies(9).TheSwedishstudy(57) notedthattheassociationbetweenpremorbidIQandriskofschizophreniawasofsimilarmagnitudewhenonsetswithin5yearsoftestingwere excluded,suggestingthatitdoesnotreflectpotentialprodromaleffects ofdecliningIQassociatedwithinsidiousonset.Again,thesefindingsare inaccordwiththosefromearlierpopulationstudieswhichexcludedonsetsimmediatelypriortotesting(51).Finally,theSwedishstudyfound thatthatriskofschizophreniainpeoplewithhighfamilialliabilityto thedisorderwassubstantiallymodifiedbypremorbidIQ,familialsusceptibilityhavingamuchstrongerimpactonriskofillnessinthosewith lowIQ.

Sinceintelligenceandschizophreniaarebothfamilialandsubstantiallyheritable,theauthorsoftheSwedishstudy(57)testedthehypothesisthatthepremorbidIQ-schizophreniaassociationmightbetheresultof genetic(andfamilyenvironment)factorsthatpredisposetobothtraits. Theyundertookco-relativeanalyses,comparingthestrengthoftheassociationbetweenintelligenceandschizophreniawithinvariousclasses ofpairsofrelativeswhoseIQsweredifferent,thatisnotinthesame decile.Siblingssharemorefamilialfactors(geneticandenvironmental) thandomoredistalpairsofrelatives,andthereforemoreofthedifferenceinintelligencebetweenthemislikelytobeattributabletononfamilialfactorsthanisthecasefordifferenceinintelligencebetween moredistallyrelatedpairs.Accordingly,iftheassociationbetweenlowIQ andschizophreniaissubstantiallyduetogenesorfamilialenvironments thatinfluencebothtraits,thestrengthofthisassociationwithinsiblings willbelessthaninthemoredistantlyrelatedrelativepairs.However,the findingswereinconsistentwiththis;associationbetweenpremorbidIQ andschizophreniawasasstrongwithinsiblingsaswithinmoredistant relatives,andevenbetweenpeopleinthegeneralpopulationwhoare effectivelyunrelated,suggestingthelinkbetweenthetraitsisnottheresultofheritablegeneticorfamilialenvironmentalriskfactorsthatjointly influencebothtraits.Thesefindingshavebeensupportedbytworecent population-basedsiblingstudies(58, 59).

Evidencethatnon-familialfactorsmayhaveanimportantinfluence onpremorbidIQdeficitsinschizophreniaalsocomesfromstudiesshowingthatriskofschizophreniamaybebetterindexedbyameasureofthe extenttowhichanindividual’spremorbidcognitiveperformanceislower thanexpectedbasedonestimatesoffamilialcognitiveaptitudethanby theirabsolutepremorbidcognitiveperformance perse (54, 60, 61).Itis conceivablethatsuchdeviationsfromfamilialexpectationmightoccur

inindividualswho,byanunluckyrollofthegeneticdice,inheritanexcessofpoorercognitionallelesthathavepleiotropiceffectsonliability toschizophrenia.However,thisinterpretationwasnotsupportedbythe findingthat,whenschizophreniaandcontrolprobandswerematchedfor cognitiveperformance,thesiblingsoftheschizophreniaprobandshad scholasticaptitudesandIQsthatdidnotdifferfrompopulationmeans andwhichweresignificantlyhigherthanthoseofthesiblingsofcontrol probands(54).Instead,thisseriesofstudiesfromSweden(54, 57, 60) suggestthatanimportantcontributiontoriskforschizophreniacomes fromneurodevelopmentalperturbationsthatimpactcognitivedevelopmentinpeoplewhodevelopschizophreniathatarenotcausedbyfamilialfactorsthattypicallyinfluencecognitionwithinfamilies.Thisgeneral conclusionalsoisindirectlysupportedbyevidencethattheheritabilities ofarangeofcognitiveabilitiesinschizophreniaseemtobelowerthanin thegeneralpopulation(61).

OverlapinCommonRiskAllelesforSchizophreniaandIQ Thereisevidencethatsomeofthecommonallelesthatinfluencecognitiveabilityinthegeneraladultpopulationalsoinfluenceliabilityto schizophrenia,butthegeneticcorrelationof 0.21betweenthetwois modest(46).Asimilargeneticcorrelationof 0.22hasalsobeenreported betweenliabilitytoschizophreniaandintelligenceestimatedin16year olds,anagepriortothetypicalonsetofschizophrenia(62).Thesecorrelationssuggestthat,onaverage,commonvariantgeneticeffectsassociatedwithlowerintelligenceinthegeneralpopulationexplainaround 5%ofliabilitytoschizophrenia,anestimateconsistentwithalongitudinalpopulation-basedtwinstudywhichestimatedthisfigureat7%(63). Thesefindings,basedonverydifferentstudydesigns,convergeonthe conclusionthat,whilethereissomesharedgeneticliabilitybetweenIQ andriskofschizophrenia,theoverlapissmall,andinlinewiththeconclusionsfromtheSwedishfamilystudiesreviewedabove.Itshouldbe notedthatgeneticcorrelationsofthismagnitudecouldpotentiallybe theresultofthetypeofcross-traitassortativemating(64)discussed above(56),aswellasothersourcesofconfounding(65),possibilities thatwarrantfurtherstudy.Moreover,sharedliabilitydoesnotimplythat riskofschizophreniaismediatedbytheeffectsoncognitiveability,it mayinsteadindicatetheexistenceofpleiotropywherebycommonalleles independentlyinfluencecognitiveabilityandliabilitytoschizophrenia, perhapsbycontributingtothepleiotropicneurodevelopmentalperturbationsdiscussedintheprevioussection.

Astudy(66)basedonmodelingtherelationshipsbetweenschizophreniapolygenicliability[indexedbypolygenicriskscore(PRS)],schizophreniaandcognition(expressedaslatenttraits)withinfamiliesfoundthat thebestmodelsolutionssuggestedaroundathirdofgeneticriskof schizophreniacouldbeexplainedthroughcausaleffectsoncognition. However,themodelingdoesnotappeartohaveaccountedforthepossibilityofpleiotropy,and,astheauthorsnoted,thelimitationsandassumptionsmeanthattheirapproachcannotprovecausality,andlongitudinal designsand/orMendelianrandomizationapproachesareneeded.However,todate,therequiredlongitudinalstudieshavenotbeenconducted andMendelianrandomizationmethodshavenotbeenabletoclearlydistinguishbetweencausalandpleiotropichypotheses(67).Moreover,arecentreportthatalmostallvariantsitesthatinfluenceIQinthegeneral populationalsoinfluenceliabilitytoschizophrenia,butthatthespecific allelesthatincreaseschizophreniariskareamixoflowerandhigherIQ alleles,suggeststhatsharedliabilitycannotindicateasimplecausallink betweenlowerIQ perse,andschizophrenia(68).

GenomicStudiesofVariationinCognitiveFunctioninSchizophrenia CommonAlleles

Separatetothequestionabouttherelationshipbetweenallelesthatinfluencecognitioninthegeneralpopulationandthosethatinfluenceliabilitytoschizophreniaiswhatistherelationshipofthosesetsofalleles tocognitiveabilityinpeoplewiththedisorder?

ThereisstrongevidencethatallelesinfluencingIQinthegeneral populationalsohaveeffectsoncognitiveabilityinindividualswith schizophrenia(69–71).Incontrast,theevidenceforarelationshipbetweencognitivefunctioninschizophreniaandcommonvariantliability forthedisorderisinconsistent(69, 70, 72–75).Thisinconsistencymayre-

flecttherelativelymodestsamplesizesandpowerofsomeofthestudies aswellasdifferencesindurationofillnessatthetimeofcognitivetesting andthenatureofthecognitivetestsemployed.Nevertheless,theresults suggestthattheeffectsofcommonschizophreniariskalleles,asindexed byapolygenicriskscore(PRS),oncognitioninpeoplewithschizophrenia areatbestsmall,andwheredirectcomparisonshavebeenmade(69–71), considerablysmallerthantheeffectsofcommonallelesthatinfluence IQinthegeneralpopulation(asindexedbyanIQPRS).TheIQPRSexplainsaround9%ofvarianceinIQ(76)inpeoplewithschizophrenia.This issimilartoestimatesinthegeneralpopulation(62),althoughonestudy suggestedthevarianceexplainedincasesislessthaninUKBiobankcontrols,albeitusingdifferentcognitivemeasuresincasesandcontrols(70). Thesefindings,togetherwiththoseindicatingthatthegeneticcorrelationbetweenliabilitytoschizophreniaandIQismodest,andthefindingsfromthelargepopulationfamilystudiesreviewedabove,suggest thatvariationinpremorbidcognitivefunctioninpeoplewholaterdevelop schizophreniaisnotsubstantiallytheresultofcommongeneticriskfactorsforschizophrenia.Thereisalsoclearevidencefromgenomicstudiesthatcommonallelesthatinfluencevarianceincognitiveabilityinthe generalpopulationalsodosoinpeoplewiththedisorder.However,inthe absenceofdirectcomparisonsofcasesandcontrolsbasedonidentical cognitiveassessments,itisuncleartowhatextentthoseallelescanexplaintheaveragepremorbidcognitivedeficitseeninpeoplewhodevelop schizophrenia.

RareVariants

PeoplewithschizophreniawhocarryschizophreniaassociatedCNVstend tohaveworsecognitivefunctionthanthosedonot,theaveragedifferencebetweenthetwogroupsinmeasuresofcognitiveperformancebeingaround0.5–1.0SD(77).Thegreatestreductionsincognitiveability areseeninthosewithCNVsspanningloss-of-functionintolerant(LoFI) genes,thatisgenesinwhichloss-of-functionmutationsarehighlydisadvantageousforreproductivefitness.Thereisalsoevidencethatinpeople withschizophrenia,rarecodingriskvariants(RCVs),particularlyproteintruncatingvariantsinLoFIgenes,areassociatedwithreducedcognitivefunction(71, 76),poorereducationalattainment(33, 78)andanincreasedriskofcomorbidintellectualdisability(37, 78).Theeffectsofrare variantsoncognitionarelargelymanifestbeforeillnessonset(seebelow),suggestingthattheireffectsimpactneurodevelopmentalprocesses. FurthersupportforneurodevelopmentaleffectscomesfromtheobservationthattheeffectsofRCVsoncognitivefunctioninschizophreniaareon averagegreaterforthosewithingenesthathavebeenimplicatedinchildhoodNDDsthanforRCVsinothermutationintolerantgenes(37, 76, 78). Givenevidencereviewedabovethatnon-familialeffectsareimportant,it isalsonotablethattheeffectsizesofmutationsoccurring denovo (which bydefinitionarenon-familial)arelargerthanthoseoftransmittedmutations(38, 76, 78).

PremorbidversusPostonsetEffects

Fewgenomicstudieshaveincludedmeasuresofbothpremorbidandcurrentcognitioninpeoplewithschizophrenia,butasmallnumberofrecent studiesthathavedonesohavebeguntothrowsomelightonthelinksbetweengeneticriskfactorsandthetimingofcognitiveimpairment.Most oftheimpactsofCNVs,RCVs,andIQPRSoncognitionarepremorbid(69, 71, 76, 77).Incontrast,thereissomeevidencethattherelativelysmall effectsofcommonvariantschizophrenialiabilityoncognitionoccurafter onset(69)butdonotinfluencepremorbidcognitiveability(69, 71, 76). Thefindingsthatschizophreniacommonvariantliability,whilenotassociatedwithpremorbidimpairment,maybeassociatedwithlaterimpairmentrequiresreplication,butifconfirmed,mighteitherreflecteffectson cognitivedeclinearoundthetimeofonsetofpsychosisoratsomepoint thereafter.ThefindingsfromalongitudinalstudythatassociationbetweenschizophreniaPRSandpoorercognitionisstableacrossa20-year follow-upperiod(75)wouldtendtosuggestthattheeffectsoncognition aremostlikelytooccuraroundthetimeofonset.

Regardingthesubstantialincreasesinriskofdementiareportedin schizophreniamentionedabove,itisnotablethatthereisnoevidence thatschizophreniasharesheritabilitywithAlzheimer’sorParkinson’s

diseases,althoughthereisweakevidenceforsomesharingwithfrontotemporaldementia(79–81).

ConclusionsandImplications

Thefindingsfromgeneticstudiesthatwehavedescribedarerelevant tothreebroadsetsofissues.Thefirstconcernsthequestionofwhat accountsforthelowerpremorbidIQseeninschizophreniaandthenatureoftherelationshipbetweenthisimpairmentandotherriskfactors forschizophrenia.Thesecondrelatestowhatgeneticfactorsinfluence theextentofcognitiveimpairmentamongthosewithschizophrenia.The thirdconcernsthepossibleinfluenceofgeneticeffectsoncognitivedeclineinlaterlife.

PremorbidCognitiveImpairmentandRiskofSchizophrenia

EvidencereviewedabovesuggeststhatlowpremorbidIQisariskfactor forschizophreniaandthatthisisnotexplainedbyprodromaleffectsofan insidiousonsetofthedisorder.Moreover,ratherthanan“U”-shapedrelationshipbetweenIQandriskofthedisorder,highestriskoccursinpeople withlowestIQ,lowestriskinthosewiththehighestIQ,andonaverage, peoplewhosubsequentlydevelopschizophreniahavea0.5SDdeficitin premorbidIQcomparedwiththegeneralpopulationaverage.

Inprinciple,thestrongevidencethatschizophreniariskallelescan alsoinfluencecognitiveabilityinthegeneralpopulationprovidesaplausibleexplanationforlowpremorbidIQ.Intuitivelyattractivethoughthis hypothesismaybe,itisnotsupportedbytheevidencewehavediscussed. Commonvariantgeneticliabilitytoschizophrenia,whichcurrentlyexplainsbyfarmostoftheattributableheritabilityofthedisorder(82), doesnotappeartobeassociatedwithpremorbidIQ(69, 71),afinding broadlyconsistentwiththesmallgeneticcorrelationsobservedbetween liabilitytopsychosisandpremorbidIQintwinsandbetweenschizophreniaandIQinthegeneralpopulation.Thus,thegenomicevidencetodate isconsistentwiththatoutlinedabovefromgeneticepidemiologyinsuggestingthatthepremorbidcognitivedeficitinschizophreniaislargely explainedbynon-familialratherthanfamilialfactorsthatjointlyinfluenceliabilitytoschizophreniaandcognitiveability.Thereisstrongevidencethesenon-familialfactorsinclude denovo mutations(SNVsand CNVs),butthesehavebeenimplicatedinfewerthan5%ofcases(82)and thereforeothernon-familialriskfactorsmustcontribute,includingasyet unidentified denovo mutations,suchasrarestructuralvariantsandnoncodingvariants,non-familialenvironmentalfactors,forexample inutero orperinatalbirthtraumaandinfections,andstochasticevents(83)that contributetovariationinneurodevelopment.

Somecaveatsshouldbenoted.First,itisconceivablethatstudiesof theeffectsofschizophreniaPRSoncognitionincasesmayunderestimate effectsduetoBerkson’sparadox(84),alsosometimesknownascollider bias(84).AssumingPRSandlowIQtobeatleastpartlyindependent riskfactors,peoplewithexposuretohigherPRSwillrequirelessexposuretotheriskconferredbylowIQinordertomanifestthedisorder,and viceversa.Thiscanresultinaspuriousnegativecorrelationbetweenthe tworiskfactorsincaseonlystudies,or,whereatruepopulationassociationexists,areductionintheestimatedeffectsize.Secondly,onlya minorityofschizophreniaheritabilityiscurrentlyattributabletoknown typesofvariant(82)and,inprinciple,classesofvariantsresponsiblefor theunexplainedheritabilitycouldshowstrongerassociationswithcognition,althoughthefindingsfromstudiesofsiblingsandotherrelativesreviewedabove(57–59)suggestthatthisisunlikelytobethecase.Thirdly, thefindingsofthekeygeneticepidemiologicalstudiesrequirefurther replication.

HavingestablishedthatlowpremorbidIQisariskfactorfor schizophreniathenextquestioniswhetherlowIQis perse causaloris insteadariskindicatorofapleiotropicneurodevelopmentalabnormalitythatcan(largely)independentlymanifestaslowIQinchildhoodand theemergenceofschizophreniainlaterlife.Thelatterinterpretationis supportedbytheobservationthatriskofschizophreniaisbetterindexed bythedeviationofcognitiveperformancefromthatexpected,thanby absolutepremorbidcognitiveperformance,whichiscontrarytotheexpectationiflowIQ perse isdirectlycausal.Moleculargeneticstudiesof commonandrarevariationarealsoinconsistentwiththeideathatlowIQ perse isonthecausalpathwaytoschizophrenia.Thus,whileallknown

schizophrenia-associatedCNVs,andcertainschizophrenia—associated RCVsareassociatedwithlowIQ,theirimpactsonriskinschizophreniais notcontingentonthepresenceoflowIQ(41).Theobservationthatcommonschizophreniasusceptibilityallelesincludethoseassociatedwith higherIQaswellaslowerIQsimilarlysuggeststhatthereisnorobust causallinkbetweenlowerIQandschizophrenia.Thereis,however,evidencethatlowpremorbidIQmaysensitizeindividualstofamilialriskfactors(57)(Figure1A)andthereisaneedtosubstantiatethisfindingand, ifconfirmed,explorepossiblemechanisms.

Afurtherissuethatwarrantsdiscussioniswhetherthereisaneurodevelopmentalsubtypeofschizophreniacharacterizedbypremorbid cognitiveimpairment.Wehavediscussedthiselsewhere(44)andour viewisthattheevidencebettersupportsthehypothesisthatthereisa spectrumofneurodevelopmentalimpairmentinthosewithschizophrenia,ratherthanacleardistinctionbetweenaformofthedisorderwith cognitiveimpairmentandonewithout(15).Themonotonicchangeinrisk ofschizophreniaacrossthefullIQrange,ratherthantherebeinganIQ thresholdthatisassociatedwithastepchangeinliability,supportsthis (9, 57)asdoestheobservationthatpeoplewithlowercognitiveability inschizophreniadonotsubstantiallydifferfromthosewithhighercognitiveabilitywithrespecttocommonallelesthatconferrisktoschizophreniagenerally(70).Finally,inpeoplewithCNVsknowntoaffectneurodevelopment,schizophreniaistheresultofboththeCNVandthecommon variantliabilitythatissharedwithgeneralformsofthedisorder(85, 86). Whilewedonotbelievethatthedatasupporttheexistenceofadistinct neurodevelopmentalsubtypeofschizophrenia,theextentofpremorbid cognitiveimpairment,andmoreparticularlytheextentthatthisdeviates fromfamilialexpectations,seemstoindexthedegreeofunderlyingneurodevelopmentalimpairmentandmaybeanimportantclinicalandprognosticmarkerwithinthedisorder(Figure1B).

Weadditionallynotethatwhileourfocushereisschizophrenia,comparisonsofthedegreeofpremorbiddeviationfromfamilialcognitiveaptitude(60)indifferentpsychiatricdisorderssupporttheviewthatthe neurodevelopmentalcontinuumextendsacrossanumberofconditions, aspreviouslyproposed(15, 87).Thus,theeffectsizeofdeviationfrom familialcognitiveaptitudewasgreatestforASD,followedbyschizophreniaandothernon-affectivepsychoses,andleastinbipolardisorder(60) supportingthesuggestion(15, 87)thatthereisagradientofneurodevelopmentalpathologyacrossneurodevelopmentalandpsychiatricdisorders.Accordingtothisviewschizophreniaoccupiesanintermediate positionbetweenchildhoodneurodevelopmentalconditionsandbipolar disorder.Thishelpsexplainwhycognitiveimpairmentisassociatedwith schizophreniabuttoamuchlesserextentbipolardisorderdespitethe highcommonvariantgeneticcorrelationbetweenthetwoconditions.

Itisnowimportanttoidentifytheriskfactorsfor,andthenature of,theneurodevelopmentalabnormalityunderlyingpremorbidcognitive impairments.

Itwillalsobeimportanttodeterminehowandwhenneurodevelopmentalimpairmentmoderatestheimpactoffamilialgeneticriskfor schizophrenia.Onehypothesiswithpotentialimplicationsforinterventionsisthattheeffectsofdivergencefromfamilialcognitiveexpectationsonpsychopathologymightbemediatedbytheevocationofdisruptedfamilydynamicsand/orimpairmentofindividual’sself-esteem (88)(Figure1).

GeneticFactorsInfluencingtheDegreeofCognitiveImpairment inSchizophrenia

Aswehaveseen,recentgenomicstudiessuggestthatallclassesofallelethatinfluenceliabilitytoschizophreniaortovarianceinIQcontribute tovariationinpremorbidcognitionandtocross-sectionaldegreeofcognitiveimpairmentinpeoplewithestablishedschizophrenia.Thesetypes ofvariantcurrentlyexplainaround10%ofvarianceinpremorbidIQ,of which,asnotedabove,90%isexplainedbyIQPRSandtheremainderby rareCNVsandraredamagingcodingvariantsinconstrainedgenes.They explainlessvarianceincognition,around6%,inthosewithestablished schizophrenia(76),butafterallowingfortheeffectsofpremorbidcognition,thisdropstoaround1.6%,equallysplitbetweenIQandschizophreniaPRS.Thus,mostofthegeneticcontributiontovariationincognitionin

Figure1. (A)Amodeloftherelationshipbetweenpremorbidcognitiveimpairmentandriskofschizophrenia.ThedegreetowhichpremorbidIQdeviatesfrom familialexpectations,ratherthanIQ perse, isakeyriskindicatorforschizophrenia.Thisdeviationindexesanunderlyingneurodevelopmentalimpairment(NDI) thatincreasestheriskofschizophrenia,andwhichsensitizestheindividualtofamilialriskfactorsincludingcommonvariantliabilityindexedbyschizophrenia PRSaswellassomeotherformsoftransmittedgeneticvariant(1).TheNDIreflectspredominantlynon-familialfactorsincludingenvironmentalriskfactors, stochasticfactorsandraredamagingdenovomutations.However,familialriskofschizophrenialikelycontributestoNDI(2)givenevidencethatgenesimplicated bycommonriskvariantsoverlapthoseassociatedwithraredisruptivecodingvariantsinschizophrenia,areenrichedforgenesimplicatedbysuchvariantsin NDDs(28)andevidencethattheyareenrichedforgeneswithhighexpressionspecificityindevelopingfetalneuronalpopulationsindependentlyofthose expressedinadulthood(89).Anindividual’sdeviationfromfamilialcognitiveaptitudeexpectationmightimpactontheirpsychopathologyviainfluenceson theirself-esteemandfamilyrelationships(3).(B)Severityofpremorbidcognitiveimpairmentinschizophrenia.Theseverityofpremorbidcognitiveimpairment inindividualswithschizophreniareflectsboththecontributionofcommonallelesthatareassociatedwithIQinthegeneralpopulationindexedbyIQPRSand theseverityoftheunderlyingNDIwhichisindexedbytheextentofpremorbidcognitiveimpairmentrelativetofamilialexpectations.Thelatterislikelytobean importantmarkerofstratificationwithinthedisorderindicatingapropensitytopoorfunctionaloutcomes.ThedirectarrowfromNDItooutcomesacknowledges thatmoreresearchisneededtodeterminetheextenttowhichdifferentoutcomesaremediatedbycognitiveimpairment.

schizophreniaismediatedbyeffectsthatwehavearguedaboveareneurodevelopmental.Alsonotethat,whileraremutationscontributeonlya smallamounttovarianceinpremorbidcognition,theyareassociatedwith relativelylargeimpairmentsofcognitivefunction(76).

Acaveattoourconclusionthatmostofthegeneticinfluencesoncognitioninschizophreniaarepremorbidandlikelyneurodevelopmentalis that,givenourincompleteunderstandingofgeneticarchitecture,wecannotexcludetheexistenceofasyetunknowntypesofriskvariantthatshow adifferentbalanceofmorbidandpremorbideffectsoncognition.Theexistenceofsuchvariantsisplausiblegivenevidencewehavediscussedthat anyeffectsoncognitionofcommonriskallelesforschizophreniaseemto manifestpostmorbidlyratherthanpremorbidly(69).Anothercaveatis theremaybespecificgeneticcontributionstocognitioninschizophrenia thatareindependentofthosethatconferliabilitytothedisorder,orto intelligenceinthegeneralpopulation.

GeneticInfluencesonPostonsetCognitiveDecline

Aswehaveseen,uncertaintiesremainconcerningtheextenttowhich thereiscognitivedeclineafteronsetandifsowhatproportionofcases

areaffectedandwhenthedeclineoccurs.Thereisemergingevidence ofdeclineincognitivefunctionafterschizophreniaonsetrelativetoage matchedcontrols,whichappearstobeprogressiveovermanyyears(18) andforsubstantiallyincreasedrisksofdementia(22, 23).Thepresenceof latelifecognitivedeclineandincreasedriskofdementiainpeoplewith schizophreniaintheabsenceofincreasedgeneticliabilitytodementia suggeststhatschizophreniamayleadtohigherexposure,orgreatervulnerability,tothesameenvironmentalriskfactorsthatoperateinthegeneralpopulationtoincreaseriskofdementia,forexamplesmoking,poor cardiovascularhealth,andlowercognitivereserve,thelatterbeingaconsequenceoflowerpremorbidIQ,socialisolation,andlowratesofemployment.Asecondexplanationisthattheincreasedriskofdementia reflectsintrinsicpathogenicmechanismsrelatedtoschizophrenia,orenvironmentalexposures,thatarerelativelyspecifictothosewithsevere mentalillnessforexamplemedicationeffects.Thisisanareathatneeds furtherresearchthatincludesmeasuresofgeneticandpotentialenvironmentalriskfactorsandrobustmeasuresofcognitionideallyovermultiple timepoints(24, 26).

Limitations

Animportantlimitationofmanyofthecitedstudiesisthatdifferentmeasuresofcognitionhavebeenusedandanalyseshavetypicallybeenbased uponderivedmeasuresofgeneralcognitivefunctionsuchasIQrather thanuponperformanceonspecifictestsmeasuringspecificdomainsof cognitivefunction.Indefenseofthisapproach,theevidencesuggests thatreductionsinmostaspectsofcognitivefunctionareassociatedwith schizophrenia(3)inlinewithanunderlyingneurodevelopmentalimpairmentthatimpactsbroadlyoncognitiveperformance.However,itispossiblethattherearespecificcognitiveimpairmentsthatareimportantmediatorsofriskthatwillbeidentifiedbyfutureresearch.Additionally,the measuresofpremorbidcognitivefunctionusedinmanygenomicstudieshavebeenindirect.Concernismitigatedtosomeextentbystudies showingthatsuchmeasuresarestronglycorrelatedwithdirectmeasures ofpremorbidIQ(90).However,weacknowledgethatlargelongitudinal cohortswithdirectmeasuresofcognitivefunctionwouldofferabetter meansofinvestigatinghowgeneticandotherriskfactorsinfluencecognitivefunctionoverthelifespaninthosewithschizophrenia.Finally,as wehavenoted,onlyaround10%ofvarianceincognitioninschizophrenia iscurrentlyattributabletoallelesoftheclassessofarstudied,andeven then,thevastmajorityofthisisattributabletopolygenicscoresrather thanspecificcausalalleles.Ourinferencesarethereforebasedonanincompleteunderstandingofthegeneticarchitectureofcognitioninthe generalpopulationaswellasinschizophrenia.

Conclusions

Despitetheselimitationsandthecaveatsanduncertaintieswehave notedthroughout,theavailableevidencefromgeneticstudieshasallowedustoidentifysomeimportantconclusionsandtoproposeamodel oftherelationshipbetweenpremorbidcognitiveimpairmentandriskof schizophreniawhichbestfitsthecurrentdata(Figure1).Thismodelwill nodoubtneedtoberevisedasfurtherfindingsaccumulate.Inparticular, itwillbeimportanttofurtherreplicatethefindingthatdeviationfrom familialcognitiveaptitudeisabetterriskindicatorthanIQ perse andto understandthegeneticandenvironmentalfactorsthatunderliethisdeviationandhowitinteractswithgeneticriskforschizophrenia.However, asitstandsourmodelandthedatauponwhichitisbasedhaveimportantimplicationsforinterpretingbothendophenotypeandanimalmodel studiesaswellasforinterventionsaimedatimprovingcognitivefunction inschizophrenia.

Thefactorsunderlyingcognitivedeclineafteronsetremainunclear anditisnotapparenttowhatextenttheseareintrinsictothedisease processorsecondarytoschizophreniasuchasantipsychoticexposure, metabolicsyndrome,smokingandothersubstanceabuseandvarioussocialconfounders.Understandinghowandwhentheeffectsoncognition, premorbid,andpostonset,arisearekeyquestionsforresearchgiventhe potentialforpreventionandearlyintervention.

Acknowledgments

TheworkwassupportedbyaMedicalResearchCouncilCentregrant MR/L010305/1andprogrammegrantMR/P005748/1.Thecontentisthe responsibilityoftheauthorsanddoesnotnecessarilyrepresenttheofficialviewsofthefundingbodies.WearegratefultoVictoriaHirstforassistancewithmanuscriptpreparation,andCatrinHopkinsandEllieShort forhelpwiththefigures.

AuthorContributions

M.J.O.andM.C.O.reportedreceivinggrantsfromAkriviaHealthandthe TakedaPharmaceuticalCompanyLtdoutsidethesubmittedwork.Takeda andAkriviaplayednopartintheconception,design,implementation,or interpretationofthisstudy.

References

1.TandonR,GaebelW,BarchDM,BustilloJ,GurRE,HeckersS,etal.Definition anddescriptionofschizophreniaintheDSM-5.SchizophrRes.2013;150(1): 3–10.DOI: 10.1016/j.schres.2013.05.028.PMID:23800613

2.OwenMJ,SawaA,MortensenPB.Schizophrenia.Lancet.2016;388(10039): 86–97.DOI: 10.1016/S0140-6736(15)01121-6.PMID:26777917;PMCID: PMC4940219

3.GreenMF,HoranWP,LeeJ.Nonsocialandsocialcognitioninschizophrenia:currentevidenceandfuturedirections.WorldPsychiatry.2019;18(2):146–61.DOI: 10.1002/wps.20624.PMID:31059632;PMCID: PMC6502429

4.McCutcheonRA,KeefeRSE,McGuirePK.Correction:Cognitiveimpairment inschizophrenia:aetiology,pathophysiology,andtreatment.MolPsychiatry. 2023;28:1919.DOI: 10.1038/s41380-023-01984-6.PMID:36732589;PMCID: PMC10575768

5.WoodberryKA,GiulianoAJ,SeidmanLJ.PremorbidIQinschizophrenia:ametaanalyticreview.AmJPsychiatry.2008;165(5):579–87.DOI: 10.1176/appi.ajp. 2008.07081242.PMID:18413704

6.PalmerBW,HeatonRK,PaulsenJS,KuckJ,BraffD,HarrisMJ,etal. Isitpossibletobeschizophrenicyetneuropsychologicallynormal?Neuropsychology.1997;11(3):437–46.DOI: 10.1037/0894-4105.11.3.437.PMID: 9223148

7.CernisE,VassosE,BrebionG,McKennaPJ,MurrayRM,DavidAS,etal. Schizophreniapatientswithhighintelligence:aclinicallydistinctsub-typeof schizophrenia?EurPsychiatry.2015;30(5):628–32.DOI: 10.1016/j.eurpsy.2015. 02.007.PMID:25752725

8.LewandowskiKE,CohenBM,OngurD.Evolutionofneuropsychologicaldysfunctionduringthecourseofschizophreniaandbipolardisorder.PsycholMed. 2011;41(2):225–41.DOI: 10.1017/S0033291710001042.PMID:20836900

9.KhandakerGM,BarnettJH,WhiteIR,JonesPB.Aquantitativemeta-analysis ofpopulation-basedstudiesofpremorbidintelligenceandschizophrenia. SchizophrRes.2011;132(2-3):220–7.DOI: 10.1016/j.schres.2011.06.017.PMID: 21764562;PMCID: PMC3485562

10.ReichenbergA,CaspiA,HarringtonH,HoutsR,KeefeRS,MurrayRM,etal.Static anddynamiccognitivedeficitsinchildhoodprecedingadultschizophrenia:a30yearstudy.AmJPsychiatry.2010;167(2):160–9.DOI: 10.1176/appi.ajp.2009. 09040574.PMID:20048021;PMCID: PMC3552325

11.JonesP,RodgersB,MurrayR,MarmotM.ChilddevelopmentriskfactorsforadultschizophreniaintheBritish1946birthcohort.Lancet. 1994;344(8934):1398–402.DOI: 10.1016/s0140-6736(94)90569-x.PMID: 7968076

12.MollonJ,DavidAS,ZammitS,LewisG,ReichenbergA.Courseofcognitivedevelopmentfrominfancytoearlyadulthoodinthepsychosisspectrum.JAMA Psychiatry.2018;75(3):270–9.DOI: 10.1001/jamapsychiatry.2017.4327.PMID: 29387877;PMCID: PMC5885954

13.WeinbergerDR.Implicationsofnormalbraindevelopmentforthepathogenesisofschizophrenia.ArchGenPsychiatry.1987;44(7):660–9.DOI: 10.1001/ archpsyc.1987.01800190080012.PMID:3606332

14.MurrayRM,LewisSW.Isschizophreniaaneurodevelopmentaldisorder?BrMed J(ClinResEd).1987;295(6600):681–2.DOI: 10.1136/bmj.295.6600.681.PMID: 3117295;PMCID: PMC1247717

15.OwenMJ,O’DonovanMC.Schizophreniaandtheneurodevelopmentalcontinuum:evidencefromgenomics.WorldPsychiatry.2017;16(3):227–35.DOI: 10. 1002/wps.20440.PMID:28941101;PMCID: PMC5608820

16.TrottaA,MurrayRM,MacCabeJH.Dopremorbidandpost-onsetcognitive functioningdifferbetweenschizophreniaandbipolardisorder?Asystematic reviewandmeta-analysis.PsycholMed.2015;45(2):381–94.DOI: 10.1017/ S0033291714001512.PMID:25065268

17.MeierMH,CaspiA,ReichenbergA,KeefeRS,FisherHL,HarringtonH,etal.Neuropsychologicaldeclineinschizophreniafromthepremorbidtothepostonsetperiod:evidencefromapopulation-representativelongitudinalstudy.AmJ Psychiatry.2014;171(1):91–101.DOI: 10.1176/appi.ajp.2013.12111438.PMID: 24030246;PMCID: PMC3947263

18.JonasK,LianW,CallahanJ,RuggeroCJ,CloustonS,ReichenbergA,etal.The courseofgeneralcognitiveabilityinindividualswithpsychoticdisorders.JAMA Psychiatry.2022;79(7):659–66.DOI: 10.1001/jamapsychiatry.2022.1142.PMID: 35583896;PMCID: PMC9118026

19.BoraE,MurrayRM.Meta-analysisofcognitivedeficitsinultra-highrisktopsychosisandfirst-episodepsychosis:dothecognitivedeficitsprogressover,or after,theonsetofpsychosis?SchizophrBull.2014;40(4):744–55.DOI: 10.1093/ schbul/sbt085.PMID:23770934;PMCID: PMC4059428

20.WatsonAJ,HarrisonL,PretiA,WykesT,CellaM.Cognitivetrajectoriesfollowing onsetofpsychosis:ameta-analysis.BrJPsychiatry.2022;221(6):714–21.DOI: 10.1192/bjp.2022.131.PMID:36149012

21.GebreegziabhereY,HabatmuK,MihretuA,CellaM,AlemA.Cognitiveimpairmentinpeoplewithschizophrenia:anumbrellareview.EurArchPsychiatryClinNeurosci.2022;272(7):1139–55.DOI: 10.1007/s00406-022-01416-6 PMID:35633394;PMCID: PMC9508017

22.CaiL,HuangJ.Schizophreniaandriskofdementia:ameta-analysisstudy. NeuropsychiatrDisTreat.2018;14:2047–55.DOI: 10.2147/NDT.S172933.PMID: 30147318;PMCID: PMC6095111

23.StroupTS,OlfsonM,HuangC,WallMM,GoldbergT,DevanandDP,etal. Age-specificprevalenceandincidenceofdementiadiagnosesamongolderUS

adultswithschizophrenia.JAMAPsychiatry.2021;78(6):632–41.DOI: 10.1001/ jamapsychiatry.2021.0042.PMID:33688938;PMCID: PMC7948106

24.StoneWS,PhillipsMR,YangLH,KegelesLS,SusserES,LiebermanJA.Neurodegenerativemodelofschizophrenia:growingevidencetosupportarevisit. SchizophrRes.2022;243:154–62.DOI: 10.1016/j.schres.2022.03.004.PMID: 35344853;PMCID: PMC9189010

25.JonasK,Abi-DarghamA,KotovR.Twohypothesesonthehighincidenceof dementiainpsychoticdisorders.JAMAPsychiatry.2021;78(12):1305–6.DOI: 10.1001/jamapsychiatry.2021.2584.PMID:34524413;PMCID: PMC10805107

26.MurrayRM,BoraE,ModinosG,VernonA.Schizophrenia:adevelopmental disorderwithariskofnon-specificbutavoidabledecline.SchizophrRes. 2022;243:181–6.DOI: 10.1016/j.schres.2022.03.005.PMID:35390609

27.LeggeSE,SantoroML,PeriyasamyS,OkewoleA,ArsalanA,KowalecK.Genetic architectureofschizophrenia:areviewofmajoradvancements.PsycholMed. 2021;51(13):2168–77.DOI: 10.1017/S0033291720005334.PMID:33550997

28.TrubetskoyV,PardinasAF,QiT,PanagiotaropoulouG,AwasthiS,BigdeliTB,etal. Mappinggenomiclociimplicatesgenesandsynapticbiologyinschizophrenia. Nature.2022;604(7906):502–8.DOI: 10.1038/s41586-022-04434-5.PMID: 35396580;PMCID: PMC9392466

29.LeeSH,DeCandiaTR,RipkeS,YangJ;SchizophreniaPsychiatricGenome-Wide AssociationStudyConsortium(PGC-SCZ);InternationalSchizophreniaConsortium(ISC),etal.Estimatingtheproportionofvariationinsusceptibilityto schizophreniacapturedbycommonSNPs.NatGenet.2012;44(3):247–50.DOI: 10.1038/ng.1108.PMID:22344220;PMCID: PMC3327879

30.RipkeS,O’DushlaineC,ChambertK,MoranJL,KahlerAK,AkterinS,etal. Genome-wideassociationanalysisidentifies13newrisklociforschizophrenia.NatGenet.2013;45(10):1150–9.DOI: 10.1038/ng.2742.PMID:23974872; PMCID: PMC3827979

31.ReesE,WaltersJT,GeorgievaL,IslesAR,ChambertKD,RichardsAL,etal.Analysisofcopynumbervariationsat15schizophrenia-associatedloci.BrJPsychiatry.2014;204(2):108–14.DOI: 10.1192/bjp.bp.113.131052.PMID:24311552; PMCID: PMC3909838

32.MarshallCR,HowriganDP,MericoD,ThiruvahindrapuramB,WuW,GreerDS, etal.Contributionofcopynumbervariantstoschizophreniafromagenomewidestudyof41,321subjects.NatGenet.2017;49(1):27–35.DOI: 10.1038/ng. 3725.PMID:27869829;PMCID: PMC5737772

33.FromerM,PocklingtonAJ,KavanaghDH,WilliamsHJ,DwyerS,GormleyP, etal.Denovomutationsinschizophreniaimplicatesynapticnetworks.Nature. 2014;506(7487):179–84.DOI: 10.1038/nature12929.PMID:24463507;PMCID: PMC4237002

34.SinghT,KurkiMI,CurtisD,PurcellSM,CrooksL,McRaeJ,etal.Rareloss-offunctionvariantsinSETD1Aareassociatedwithschizophreniaanddevelopmentaldisorders.NatNeurosci.2016;19(4):571–7.DOI: 10.1038/nn.4267.PMID: 26974950;PMCID: PMC6689268

35.GenoveseG,FromerM,StahlEA,RuderferDM,ChambertK,LandenM,etal.Increasedburdenofultra-rareprotein-alteringvariantsamong4,877individuals withschizophrenia.NatNeurosci.2016;19(11):1433–41.DOI: 10.1038/nn.4402 PMID:27694994;PMCID: PMC5104192

36.HowriganDP,RoseSA,SamochaKE,FromerM,CerratoF,ChenWJ,etal.Exome sequencinginschizophrenia-affectedparent-offspringtriosrevealsriskconferredbyprotein-codingdenovomutations.NatNeurosci.2020;23(2):185–93. DOI: 10.1038/s41593-019-0564-3.PMID:31932770;PMCID: PMC7007385

37.SinghT,WaltersJTR,JohnstoneM,CurtisD,SuvisaariJ,TorniainenM,etal. Thecontributionofrarevariantstoriskofschizophreniainindividualswithand withoutintellectualdisability.NatGenet.2017;49(8):1167–73.DOI: 10.1038/ ng.3903.PMID:28650482;PMCID: PMC5533219

38.SinghT,PoterbaT,CurtisD,AkilH,AlEissaM,BarchasJD,etal.Rare codingvariantsintengenesconfersubstantialriskforschizophrenia. Nature.2022;604(7906):509–16.DOI: 10.1038/s41586-022-04556-w.PMID: 35396579;PMCID: PMC9805802

39.ReesE,HanJ,MorganJ,CarreraN,Escott-PriceV,PocklingtonAJ,etal.Denovo mutationsidentifiedbyexomesequencingimplicateraremissensevariants inSLC6A1inschizophrenia.NatNeurosci.2020;23(2):179–84.DOI: 10.1038/ s41593-019-0565-2.PMID:31932766;PMCID: PMC7007300

40.LiuD,MeyerD,FennessyB,FengC,ChengE,JohnsonJS,etal.Schizophrenia riskconferredbyrareprotein-truncatingvariantsisconservedacrossdiverse humanpopulations.NatGenet.2023;55(3):369–76.DOI: 10.1038/s41588-02301305-1.PMID:36914870;PMCID: PMC10011128

41.O’DonovanMC,OwenMJ.Theimplicationsofthesharedgeneticsofpsychiatricdisorders.NatMed.2016;22(11):1214–9.DOI: 10.1038/nm.4196.PMID: 27783064

42.PalmerDS,HowriganDP,ChapmanSB,AdolfssonR,BassN,BlackwoodD,etal. ExomesequencinginbipolardisorderidentifiesAKAP11asariskgeneshared withschizophrenia.NatGenet.2022;54(5):541–7.DOI: 10.1038/s41588-02201034-x.PMID:35410376;PMCID: PMC9117467

43.ReesE,KendallK,PardinasAF,LeggeSE,PocklingtonA,Escott-PriceV, etal.Analysisofintellectualdisabilitycopynumbervariantsforassociationwithschizophrenia.JAMAPsychiatry.2016;73(9):963–9.DOI: 10.1001/ jamapsychiatry.2016.1831.PMID:27602560;PMCID: PMC5014093

44.ReesE,CreethHDJ,HwuHG,ChenWJ,TsuangM,GlattSJ,etal.Schizophrenia, autismspectrumdisordersanddevelopmentaldisorderssharespecificdisruptivecodingmutations.NatCommun.2021;12(1):5353.DOI: 10.1038/s41467021-25532-4.PMID:34504065;PMCID: PMC8429694

45.BouchardTJJr.,McGueM.Familialstudiesofintelligence:areview.Science. 1981;212(4498):1055–9.DOI: 10.1126/science.7195071.PMID:7195071

46.SavageJE,JansenPR,StringerS,WatanabeK,BryoisJ,deLeeuwCA,etal. Genome-wideassociationmeta-analysisin269,867individualsidentifiesnew geneticandfunctionallinkstointelligence.NatGenet.2018;50(7):912–9.DOI: 10.1038/s41588-018-0152-6.PMID:29942086;PMCID: PMC6411041

47.StefanssonH,Meyer-LindenbergA,SteinbergS,MagnusdottirB,MorgenK, ArnarsdottirS,etal.CNVsconferringriskofautismorschizophreniaaffectcognitionincontrols.Nature.2014;505(7483):361–6.DOI: 10.1038/nature12818

PMID:24352232

48.KendallKM,ReesE,Escott-PriceV,EinonM,ThomasR,HewittJ,etal.Cognitiveperformanceamongcarriersofpathogeniccopynumbervariants:analysisof152,000UKbiobanksubjects.BiolPsychiatry.2017;82(2):103–10.DOI: 10.1016/j.biopsych.2016.08.014.PMID:27773354

49.GardnerEJ,NevilleMDC,SamochaKE,BarclayK,KolkM,NiemiMEK,etal.Reducedreproductivesuccessisassociatedwithselectiveconstraintonhuman genes.Nature.2022;603(7903):858–63.DOI: 10.1038/s41586-022-04549-9

PMID:35322230

50.ChenCY,TianR,GeT,LamM,Sanchez-AndradeG,SinghT,etal.Theimpactofrareproteincodinggeneticvariationonadultcognitivefunction. NatGenet.2023;55(6):927–38.DOI: 10.1038/s41588-023-01398-8.PMID: 37231097;PMCID: PMC10260403

51.SitskoornMM,AlemanA,EbischSJ,AppelsMC,KahnRS.Cognitivedeficits inrelativesofpatientswithschizophrenia:ameta-analysis.SchizophrRes. 2004;71(2-3):285–95.DOI: 10.1016/j.schres.2004.03.007.PMID:15474899

52.SnitzBE,MacdonaldAW3rd,CarterCS.Cognitivedeficitsinunaffectedfirstdegreerelativesofschizophreniapatients:ameta-analyticreviewofputativeendophenotypes.SchizophrBull.2006;32(1):179–94.DOI: 10.1093/schbul/ sbi048.PMID:16166612;PMCID: PMC2632195

53.CalkinsME,RayA,GurRC,FreedmanR,GreenMF,GreenwoodTA,etal.Sex differencesinfamilialityeffectsonneurocognitiveperformanceinschizophrenia.BiolPsychiatry.2013;73(10):976–84.DOI: 10.1016/j.biopsych.2012.12.021 PMID:23395246;PMCID: PMC3954126

54.KendlerKS,OhlssonH,MezukB,SundquistJO,SundquistK.Observedcognitiveperformanceanddeviationfromfamilialcognitiveaptitudeatage16years andages18to20yearsandriskforschizophreniaandbipolarillnessina swedishnationalsample.JAMAPsychiatry.2016;73(5):465–71.DOI: 10.1001/ jamapsychiatry.2016.0053.PMID:27028264

55.VelthorstE,MollonJ,MurrayRM,deHaanL,GermeysIM,GlahnDC,etal. Cognitivefunctioningthroughoutadulthoodandillnessstagesinindividualswithpsychoticdisordersandtheirunaffectedsiblings.MolPsychiatry. 2021;26(8):4529–43.DOI: 10.1038/s41380-020-00969-z.PMID:33414498

56.GreveAN,UherR,AlsTD,JepsenJRM,MortensenEL,GantriisDL,etal.Anationwidecohortstudyofnonrandommatinginschizophreniaandbipolardisorder.SchizophrBull.2021;47(5):1342–50.DOI: 10.1093/schbul/sbab021.PMID: 33772315;PMCID: PMC8379547

57.KendlerKS,OhlssonH,SundquistJ,SundquistK.IQandschizophreniaina Swedishnationalsample:theircausalrelationshipandtheinteractionofIQwith geneticrisk.AmJPsychiatry.2015;172(3):259–65.DOI: 10.1176/appi.ajp.2014. 14040516.PMID:25727538;PMCID: PMC4391822

58.WeckstromT,ElovainioM,Pulkki-RabackL,SuokasK,KomulainenK,Mullola S,etal.Schoolachievementinadolescenceandtheriskofmentaldisordersinearlyadulthood:aFinnishnationwideregisterstudy.MolPsychiatry. 2023;28(7):3104–10.DOI: 10.1038/s41380-023-02081-4.PMID:37131077; PMCID: PMC10615737

59.DemangePA,BoomsmaDI,vanBergenE,NivardMG.Evaluatingthecausalrelationshipbetweeneducationalattainmentandmentalhealth.medRxiv.2024. DOI: 10.1101/2023.01.26.23285029.PMID:36747639;PMCID: PMC9901051

60.KendlerKS,OhlssonH,KeefeRSE,SundquistK,SundquistJ.Thejointimpact ofcognitiveperformanceinadolescenceandfamilialcognitiveaptitudeonrisk formajorpsychiatricdisorders:adelineationoffourpotentialpathwaysto illness.MolPsychiatry.2018;23(4):1076–83.DOI: 10.1038/mp.2017.78.PMID: 28416810;PMCID: PMC5647225

61.HochbergerWC,CombsT,ReillyJL,BishopJR,KeefeRSE,ClementzBA,etal. Deviationfromexpectedcognitiveabilityacrosspsychoticdisorders.Schizophr Res.2018;192:300–7.DOI: 10.1016/j.schres.2017.05.019.PMID:28545944; PMCID: PMC5699979

62.MitchellBL,HansellNK,McAloneyK,MartinNG,WrightMJ,Renteria ME,etal.Polygenicinfluencesassociatedwithadolescentcognitiveskills. Intelligence.2022;94;101680.DOI: 10.1016/j.intell.2022.101680

63.FowlerT,ZammitS,OwenMJ,RasmussenF.Apopulation-basedstudyofshared geneticvariationbetweenpremorbidIQandpsychosisamongmaletwinpairs andsiblingpairsfromSweden.ArchGenPsychiatry.2012;69(5):460–6.DOI: 10. 1001/archgenpsychiatry.2011.1370.PMID:22566578

64.BorderR,AthanasiadisG,BuilA,SchorkAJ,CaiN,YoungAI,etal.Crosstraitassortativematingiswidespreadandinflatesgeneticcorrelationestimates.Science.2022;378(6621):754–61.DOI: 10.1126/science.abo2059.PMID: 36395242;PMCID: PMC9901291

65.VellerC,CoopGM.Interpretingpopulation-andfamily-basedgenomewideassociationstudiesinthepresenceofconfounding.PLoSBiol.2024; 22(4):e3002511.DOI: 10.1371/journal.pbio.3002511.PMID:38603516;PMCID: PMC11008796

66.ToulopoulouT,ZhangX,ChernyS,DickinsonD,BermanKF,StraubRE, etal.Polygenicriskscoreincreasesschizophrenialiabilitythroughcognitionrelevantpathways.Brain.2019;142(2):471–85.DOI: 10.1093/brain/awy279 PMID:30535067;PMCID: PMC6359897

67.BurtonSMI,SallisHM,HatoumAS,MunafoMR,ReedZE.Isthereacausal relationshipbetweenexecutivefunctionandliabilitytomentalhealth andsubstanceuse?AMendelianrandomizationapproach.RSocOpen Sci.2022;9(12):220631.DOI: 10.1098/rsos.220631.PMID:36533203;PMCID: PMC9748493

68.HindleyG,FreiO,ShadrinAA,ChengW,O’ConnellKS,IcickR,etal.Chartingthelandscapeofgeneticoverlapbetweenmentaldisordersandrelated traitsbeyondgeneticcorrelation.AmJPsychiatry.2022;179(11):833–43.DOI: 10.1176/appi.ajp.21101051.PMID:36069018;PMCID: PMC9633354

69.LeggeSE,CardnoAG,AllardyceJ,DennisonC,HubbardL,PardinasAF,etal.Associationsbetweenschizophreniapolygenicliability,symptomdimensions,and cognitiveabilityinschizophrenia.JAMAPsychiatry.2021;78(10):1143–51.DOI: 10.1001/jamapsychiatry.2021.1961.PMID:34347035;PMCID: PMC8340009

70.RichardsAL,PardinasAF,FrizzatiA,TanseyKE,LynhamAJ,HolmansP,etal. Therelationshipbetweenpolygenicriskscoresandcognitioninschizophrenia.SchizophrBull.2020;46(2):336–44.DOI: 10.1093/schbul/sbz061.PMID: 31206164;PMCID: PMC7442352

71.SongJ,YaoS,KowalecK,LuY,SariaslanA,SzatkiewiczJP,etal.Theimpactof educationalattainment,intelligenceandintellectualdisabilityonschizophrenia:aSwedishpopulation-basedregisterandgeneticstudy.MolPsychiatry. 2022;27(5):2439–47.DOI: 10.1038/s41380-022-01500-2.PMID:35379910; PMCID: PMC9135619

72.vanScheltingaAF,BakkerSC,vanHarenNE,DerksEM,Buizer-VoskampJE,Cahn W,etal.Schizophreniageneticvariantsarenotassociatedwithintelligence. PsycholMed.2013;43(12):2563–70.DOI: 10.1017/S0033291713000196.PMID: 23410598;PMCID: PMC4743754

73.DickinsonD,ZaidmanSR,GiangrandeEJ,EisenbergDP,GregoryMD,BermanKF. Distinctpolygenicscoreprofilesinschizophreniasubgroupswithdifferenttrajectoriesofcognitivedevelopment.AmJPsychiatry.2020;177(4):298–307.DOI: 10.1176/appi.ajp.2019.19050527.PMID:31838871;PMCID: PMC9627722

74.ShafeeR,NandaP,PadmanabhanJL,TandonN,Alliey-RodriguezN,KalapurakkelS,etal.Polygenicriskforschizophreniaandmeasureddomainsofcognitioninindividualswithpsychosisandcontrols.TranslPsychiatry.2018;8(1):78. DOI: 10.1038/s41398-018-0124-8.PMID:29643358;PMCID: PMC5895806

75.JonasKG,LenczT,LiK,MalhotraAK,PerlmanG,FochtmannLJ,etal.Schizophreniapolygenicriskscoreand20-yearcourseofillnessinpsychoticdisorders. TranslPsychiatry.2019;9(1):300.DOI: 10.1038/s41398-019-0612-5.PMID: 31727878;PMCID: PMC6856168

76.CreethHDJ,ReesE,LeggeSE,DennisonCA,HolmansP,WaltersJTR,etal. Ultrararecodingvariantsandcognitivefunctioninschizophrenia.JAMAPsychiatry.2022;79(10):963–70.DOI: 10.1001/jamapsychiatry.2022.2289.PMID: 35976659;PMCID: PMC9386603

77.HubbardL,ReesE,MorrisDW,LynhamAJ,RichardsAL,PardinasAF,etal.Rare copynumbervariantsareassociatedwithpoorercognitioninschizophrenia. BiolPsychiatry.2021;90(1):28–34.DOI: 10.1016/j.biopsych.2020.11.025.PMID: 33678419

78.RammosA,KirovG,HubbardL,WaltersJTR,HolmansP,OwenMJ,etal.Familybasedanalysisofthecontributionofrareandcommongeneticvariantstoschool performanceinschizophrenia.MolPsychiatry.2023;28:2081–7.DOI: 10.1038/ s41380-023-02013-2.PMID:36914811;PMCID: PMC10575776

79.LiC,YangT,OuR,ShangH.Overlappinggeneticarchitecturebetween schizophreniaandneurodegenerativedisorders.FrontCellDevBiol. 2021;9:797072.DOI: 10.3389/fcell.2021.797072.PMID:35004692;PMCID: PMC8740133

80.McLaughlinRL,SchijvenD,vanRheenenW,vanEijkKR,O’BrienM,KahnRS,etal. Geneticcorrelationbetweenamyotrophiclateralsclerosisandschizophrenia. NatCommun.2017;8:14774.DOI: 10.1038/ncomms14774.PMID:28322246; PMCID: PMC5364411

81.BrainstormC,AnttilaV,Bulik-SullivanB,FinucaneHK,WaltersRK,BrasJ, etal.Analysisofsharedheritabilityincommondisordersofthebrain.Science. 2018;360(6395):eaap8757.DOI: 10.1126/science.aap8757.PMID:29930110; PMCID: PMC6097237

82.OwenMJ,LeggeSE,ReesE,WaltersJTR,O’DonovanMC.Genomicfindingsin schizophreniaandtheirimplications.MolPsychiatry.2023;28(9):3638–47.DOI: 10.1038/s41380-023-02293-8.PMID:37853064;PMCID: PMC10730422

83.WhiteTJH.Braindevelopmentandstochasticprocessesduringprenataland earlylife:youcan’tloseitifyou’veneverhadit;butit’sbettertohaveitand loseit,thannevertohavehaditatall.JAmAcadChildAdolescPsychiatry. 2019;58(11):1042–50.DOI: 10.1016/j.jaac.2019.02.010.PMID:31327672

84.BerksonJ.Limitationsoftheapplicationoffourfoldtableanalysistohospital data.Biometrics.1946;2(3):47–53.PMID:21001024

85.TanseyKE,ReesE,LindenDE,RipkeS,ChambertKD,MoranJL,etal. CommonallelescontributetoschizophreniainCNVcarriers.MolPsychiatry.2016;21(8):1085–9.DOI: 10.1038/mp.2015.143.PMID:26390827;PMCID: PMC4960448

86.CleynenI,EngchuanW,HestandMS,HeungT,HollemanAM,JohnstonHR,etal. Geneticcontributorstoriskofschizophreniainthepresenceofa22q11.2deletion.MolPsychiatry.2021;26(8):4496–510.DOI: 10.1038/s41380-020-0654-3 PMID:32015465;PMCID: PMC7396297

87.CraddockN,OwenMJ.TheKraepeliniandichotomy–going,going…butstill notgone.BrJPsychiatry.2010;196(2):92–5.DOI: 10.1192/bjp.bp.109.073429. PMID:20118450;PMCID: PMC2815936

88.KeefeRS,ReichenbergA.Predictingschizophrenia.JAMAPsychiatry. 2016;73(5):441–2.DOI: 10.1001/jamapsychiatry.2016.0138.PMID:27028053

89.CameronD,MiD,VinhNN,WebberC,LiM,MarinO,etal.Single-nuclei RNAsequencingof5regionsofthehumanprenatalbrainimplicatesdevelopingneuronpopulationsingeneticriskforschizophrenia.BiolPsychiatry. 2023;93(2):157–66.DOI: 10.1016/j.biopsych.2022.06.033.PMID:36150908; PMCID: PMC10804933

90.CrawfordJR,DearyIJ,StarrJ,WhalleyLJ.TheNARTasanindexofpriorintellectualfunctioning:aretrospectivevaliditystudycoveringa66-yearinterval.PsycholMed.2001;31(3):451–8.DOI: 10.1017/s0033291701003634.PMID: 11305853

Publisher’snote: GenomicPressmaintainsapositionofimpartialityandneutralityregardingterritorialassertionsrepresentedinpublishedmaterialsandaffiliationsofinstitutionalnature.Assuch,wewillusetheaffiliationsprovidedbytheauthors,withouteditingthem.Suchusesimplyreflectswhattheauthorssubmitted tousanditdoesnotindicatethatGenomicPresssupportsanytypeofterritorial assertions.

OpenAccess. ThisarticleislicensedtoGenomicPressunderthe CreativeCommonsAttribution-NonCommercial-NoDerivatives4.0 InternationalLicense(CCBY-NC-ND4.0).Thelicensemandates:(1)Attribution:Creditmustbegiventotheoriginalwork,withalinktothelicenseand notificationofanychanges.Theacknowledgmentshouldnotimplylicensor endorsement.(2)NonCommercial:Thematerialcannotbeusedforcommercial purposes.(3)NoDerivatives:Modifiedversionsoftheworkcannotbedistributed. (4)Noadditionallegalortechnologicalrestrictionsmaybeappliedbeyondthose stipulatedinthelicense.Publicdomainmaterialsorthosecoveredbystatutory exceptionsareexemptfromtheseterms.Thislicensedoesnotcoverallpotentialrights,suchaspublicityorprivacyrights,whichmayrestrictmaterialuse. Third-partycontentinthisarticlefallsunderthearticle’sCreativeCommons licenseunlessotherwisestated.Ifuseexceedsthelicensescopeorstatutory regulation,permissionmustbeobtainedfromthecopyrightholder.Forcomplete licensedetails,visit https://creativecommons.org/licenses/by-nc-nd/4.0/.The licenseisprovidedwithoutwarranties.

THOUGHTLEADERSINVITEDREVIEW

LiverXandthyroidhormonereceptorsinneurodegeneration

Theroleofthyroidhormone(TH)inthedevelopmentandfunctionofthecentralnervoussystem(CNS)hasbeenknownformanyyears. However,theroleofliverXreceptors(LXRs)inTHfunctionandprotectionagainstneuronaldegenerationwasnotrecognizeduntilrecently.The relationshipbetweenthyroidhormonereceptors(TRs)andLXRsbecameapparentwiththecloningofsteroidhormonereceptors,leadingtothe discoveryofthenuclearreceptorsuperfamily.Thisfamilyincludesnotonlyreceptorsforclassicalsteroidhormonesbutalsomanynewly discoveredligand-activatednuclearreceptors.LXRsandTRsregulateoverlappingpathwaysinlipidandcarbohydratemetabolism,aswellasin overallCNSdevelopmentandfunction.TheseCNSpathwaysincludeneuronalmigrationduringcorticalandcerebellarlayering,myelination, oligodendrocytematuration,microglialactivation,andastrocytefunctions.Furthermore,LXRslikelyhaveuniquefunctions,asevidencedby theinabilityofTHtocompensateformicroglialactivation,oligodendrocytematuration,spinalmotorneurondeath,anddegenerationof retinalandcochlearneuronsinLXRβ knockoutmice.Thecommonanduniquefunctionsofthesetworeceptorsarethesubjectofthisreview.We analyzedsomeofthemostrelevantliteratureontheregulationandfunctionofLXRsandTRsandinvestigatedwhybothreceptorsarerequired inthehumanbody.WeconcludethatLXRsandTRsdonotrepresentparallelpathwaysbutratherconstituteasinglepathwaythroughwhichthe THendocrinesystemregulatescholesterolhomeostasis.Subsequently,LXRs,activatedbycholesterolmetabolites,functionasa paracrine/autocrinesystemthatmodulatesthetargetcellresponsetoTH.

GenomicPsychiatry January2025;1(1):36–46;doi: https://doi.org/10.61373/gp024i.0073

Keywords: LiverXreceptors,thyroidhormonereceptors,steroidhormonereceptors,cholesterolhomeostasis,neurodegenerativediseases,paracrine/autocrinesystem

HistoricalPerspective:LXRs

LiverXreceptors(LXRs,LXRα ,andLXRβ )belongtoasubfamilyofthe nuclearreceptorsuperfamilyofligand-activatedtranscriptionfactors, whichcomprises48membersinthehumangenome(1).Nuclearreceptors playcrucialrolesinregulatingmetabolism,endocrinesystems,andthe developmentandfunctionofthecentralnervoussystem(CNS).Although thefunctionsofthyroidhormone(TH)havebeenstudiedformanyyears, LXRswereonlydiscoveredinthe1990s.Thyroidhormonereceptors(TRs), TRα andTRβ ,aredifferentiallyexpressedinvarioustissuesandhavedistinctrolesinTHsignaling(2).LXRβ (genename NR1H2)wasindependentlydiscoveredbyseverallaboratories(3–6)in1996andwasinitially designatedasOR1,UR,NER,andRIP-15.ItwaslaterrenamedLXRβ due toitshomologywithLXRα (alsoknownas NR1H3),areceptordiscovered in1994(7, 8).

LXRα hastwomajorfunctionsinthebody:lipidmetabolisminorgans suchastheliver,intestine,andadiposetissue,andregulationoftheimmunesystem,notablyinmacrophages(9).LXRβ hasabroadertissuedistributionthanLXRα ;whileitsexpressionintheliverislow,LXRβ iswellexpressedinimmunesystemcells,glialcellsintheCNS,colon,gallbladder, pancreaticislets,retina,andinnerear(10–16).Althoughitisexpressedin veryfewneuronsintheadultmousebrain(17),LXRβ iswidelyexpressed inneuronsofthefetalbrain(18, 19).BothLXRα andLXRβ areexpressed intheovary,testis,prostateepithelium,andepididymis,wheretheyplay significantroles(20–23).

Whilethemostwell-studiedfunctionofLXRsistheirroleincholesterolhomeostasis(24),afunctionsharedwithTRs,cholesteroltransport isjustoneofmanytransportfunctionsofLXRs.LikeTRs,LXRsregulate thetransportofwaterbymodulatingaquaporins(25–29)andglucose throughGLUT4regulation(30–32).Inaddition,LXRsregulatethetransportofTHsandlactatethroughmonocarboxylatetransportersMCT8and MCT10(33).Transportoflactateintoneuronsisessentialforneuronal

nutrition,anditsregulationbyLXRβ (viaMCT1)mayexplainthelossof neuronsinLXRβ / mice.

Classicalhormonessuchasandrogens,estrogens,progesterone,glucocorticoids,andthyroidhormonefunctioninendocrinepathwayswhere glands(suchasthetestis,ovaries,adrenalglands,andthyroidgland)secretehormonesintothebloodstream,whichtargetorgansreceivevia thevascularsystem.WiththeexceptionofthevitaminDreceptor,more recentlydiscoveredmembersofthenuclearreceptorsuperfamilyare activatedbyligandsnotsecretedfromendocrineglandsbutrathersynthesizedinvariouscellsthroughoutthebody.Insomecases,ligandsare acquiredfromthedietorarepharmaceuticalagents.Thenaturalligands ofLXRsareoxygenatedmetabolitesofcholesterol(oxysterols).Some cellsthatsynthesizeoxysterolsalsoexpressLXRs,makingtheLXRsystem anautocrineandparacrinesystemratherthanapurelyendocrineone.

ThetwomajordifferencesbetweenTHandLXRsignalingare:1)TH governstheregulationandintegrationofmetabolichomeostasisatthe hypothalamic-pituitarylevel,butLXRdoesnot;and2)sinceoxysterolsare notcirculatinghormones,LXRactivationisnotnecessarilydeterminedby plasmalevelsofoxysterols(34).

Itisimportanttonotethatevenclassicalsteroidreceptorscanactina paracrinemanner.Forexample,dihydrotestosterone(DHT),aligandfor theandrogenreceptor,isnotacirculatinghormonebutissynthesized fromtestosteroneincellsexpressingtheenzymesteroid5α -reductases. Similarly,3β -Adiol(5α -androstane-3β ,17β -diol),aligandforestrogen receptorbeta(35),issynthesizedincellsexpressingsteroid5α -reductase and17β -hydroxysteroiddehydrogenasetype6(36).IfTHandLXRhavea relationshipsimilartothatoftestosteroneandDHT,theeffectsofTHin cellsmayvarydependingonLXRexpression.

AlthoughLXRsignalingisnotregulatedbythehypothalamic–pituitary–thyroidaxis,LXRdoesregulatethyrotropin-releasinghormone(TRH).BymediatingTH’sactiononTRHrelease,LXRinfluences

1 CenterforNuclearReceptorsandCellSignaling,DepartmentofBiologyandBiochemistry,UniversityofHouston,Houston,TX77204,USA; 2 DepartmentofBiosciences andNutrition,KarolinskaInstitutet,Huddinge14186,Sweden

CorrespondingAuthors: Jan-ÅkeGustafsson,CenterforNuclearReceptorsandCellSignaling,3517CullenBlvd,Bldg545,Houston,TX77204,USA.E-mail: gustafsson@uh.edu;MargaretWarner,e-mail: mwarner@central.uh.edu andXiaoyuSong,e-mail: xsong7@central.uh.edu

Received:6August2024.Revised:20September2024and9October2024.Accepted:13October2024. Publishedonline:24October2024.

thyroid-stimulatinghormone(TSH)levels.IntheabsenceofLXR,thereis excessiveTSHrelease,whichstimulatesthyroxine(T4)releasefromthe thyroidgland.Inaddition,becauseLXRrepressesdeiodinases,thelossof LXRcancreateahyperthyroidstate,whichmayhelpexplainwhyLXRβ / miceareresistanttoobesityinducedbyahigh-fatdiet(33).

LXRsandTRs

ThefunctionofTHsismainlymediatedthroughtheirbindingtoTRsat specificTREs(thyroidresponseelements)onDNA.BothTRsandLXRs bindtotheseresponseelements,whichconsistofdirectrepeatsofthe half-sitesequence5 -G/AGGTCA-3 ,separatedbyfournucleotides(DR4). Intheabsenceoftheirligands,bothTRsandLXRsbindtoDR4,recruiting corepressorsandinhibitingthetranscriptionofresponsivegenes.When ligandsbind,theyrelievethisrepressionbycausingthereleaseofcorepressorsandsubsequentbindingofcoactivators,leadingtotheactivation oftranscriptionofresponsivegenes(37).

TRscanbindtoDNAeitherashomodimersorasheterodimerswith retinoidXreceptors(RXRs),whileLXRsformobligatoryheterodimers withRXR(38–40).RXRsareasubgroupofthenuclearreceptorsuperfamily,comprisingisotypes α , β ,and γ ,whichcanformhomodimericandheterodimericcomplexeswithothernuclearreceptors(41).Theendogenous ligandforRXRis9-cisretinoicacid(42).Thus,vitaminAalsoplaysasignificantroleintheregulationoftheimmunesystembyTHandLXR(43).

T3,T4,andDeiodinases

T4isaprohormonethatisconvertedtotheactivehormonetriiodothyronine(T3)throughtheactionofdeiodinases.Thelocalactivationof T4toactiveT3bydeiodinasesisakeymechanismofTHregulationof metabolism.Therearetwoactivatingdeiodinases,DIO1andDIO2,and oneinactivatingdeiodinase,DIO3(44, 45).Inhumans,DIO1ishighlyexpressedintheliver,whileDIO2isexpressedinthehypothalamus,white fat,skeletalmuscle,andbrownadiposetissue,whereitisessentialfor adaptivethermogenesis(46).OnekeymechanismbywhichLXRregulates THfunctioninbothrodents(47)andhumans(48)isthroughthedownregulationofdeiodinases.

SomeComplexitiesofLXRsandTRsSignalingintheBrain

Sincecholesterolcannotcrosstheblood–brainbarrier(BBB),itmust besynthesizedwithinthebrain.Astrocytesareresponsibleforcholesterolsynthesis,whichisthentransportedtoothercellsviathetransportproteinapolipoproteinE(ApoE)(49, 50).Additionanally,thebrain synthesizestwooxysterols:25-hydroxycholesterol(25-HC),producedin microglia(51),and24-hydroxycholesterol(24-HC),whichiscatalyzedby theenzymeCYP46A1(cholesterol24-hydroxylase)andexpressedinneuronsofthehippocampus,cortex,Purkinjecellsofthecerebellum,and interneuronsinthehippocampusandcerebellum(52).24-HCisamajor metaboliteofcholesterolinthebrainandservesastherouteforexcreting excesscholesterol(53, 54).Furthermore,thebraincaninactivateoxysterolsthroughCYP7B1,whichcatalyzeshydroxylationofoxysterolsatthe 6and7positions(55).AlthoughthecellulardistributionofCYP7B1has notbeenwellinvestigated,itisoneofthemostactivecytochromeP450 enzymesinthebrain(56),makingitveryunlikelythatthecellsharboring thisenzymewillrespondtooxysterols.

T3doesnotcrosstheBBB,butT4does.Therefore,deiodinasesareextremelyimportantfortheTHfunctioninthebrain,anddefectivedeiodinasescanleadtobrainTHdeficiency.THentersthebraineitherdirectlyviatheBBBorindirectlyviatheblood–cerebrospinalfluid(CSF) barrier,withtheBBBservingastheprimaryentrypathforT4(57).TH entersthechoroidplexusthroughtransmembranetransportersMCT8 andorganicanion-transportingpolypeptide1C1(OATP1C1)andexitsthe choroidplexustoentertheCSFviaTHtransmembranetransportersor throughchoroidplexus-derivedtransthyretinsecretedintotheCSF(58). DIO2isexpressedinthechoroidplexus(59).LXRsregulateCSFdynamics atboththechoroidplexusandtheastrocyticendfeet,andinactivation ofLXRresultsindegenerationofthechoroidplexusandlackofCSFin thelateralventricles(28).Thisdegeneration,alongwiththelossofDIO2, leadstoreducedTHlevelsinthebrain.Consequently,somephenotypicaspectsofLXRknockoutmiceresembleTHdeficiency.OnceTHshavepassed BBB,theirlocalavailabilitydependsontheactivityoftheastrocyticDIO2

toconvertT4toT3.T3issubsequentlyinactivatedinneuronsbyDIO3, whichremovesthe3’iodine,producing3,5-diiodothyronine(T2).

Inadditiontoregulatingdeiodinases,LXRsalsoregulateT4transporters.Inhumans,asinotherprimates,theBBBcontainsMCT8butlacks OATP1C1(60, 61).MCT8isahighlyspecifictransmembraneTHtransporterresponsibleforthecellularinfluxandeffluxofT4andT3(62). ItisindespensiblefordrivingTH-dependentoligodendrocytedifferentiationand,consequently,myelination(63, 64).Inhumans,mutations in SLC16A2,thegeneencodingMCT8,leadtoanX-linkedsyndromecharacterizedbysevereneurologicalimpairmentandalteredT3concetrations duetoimpairedTHuptakeinthedevelopingbrain.Inmicelackingboth MCT8andOATP1C1,THconcentrationsinthebrainaresignificantlyaffected(65).

BothTRsandLXRsbindtoDR4onDNAintheabsenceoftheirrespectiveligands,repreesinggenesregulatedbyDR4responseelements.The knockoutofLXRrelievesrepressiononDR4-responsivegenes;however, whatcannotoccurinLXRknockoutmiceistheactivationofLXRbyligandsandtherecruitmentofcoactivatorstoenhancethetranscriptionof LXR-responsivegenes.TounderstandingthephenotypeofLXRknocknout mice,wemustconsiderboththederepressionofcertaingenesandthe absenceofactivationofothersbyLXRligands.

THregulatesmetabolicrate,bodytemperature,cholesterolhomeostasis,andadrenergicfunction.Ofthese,onlyadrenergicstimulation isnotsharedbyLXRs.THregulatescholesterolhomeostasisattwomajorpoints:itincreasesthelow-densitylipoprotein(LDL)receptortofacilitatecholesterolremovalfromcirculationandstimulatescholesterol 7alpha-hydroxylase(CYP7A)topromotecholesterolremovalfromthe bodyintheformofbileacids.LXRsactascholesterolsensors,activated bycholesterolmetabolites(1).Uponactivation,theyassistTHineliminatingcholesterolfromthebodybyinducingcholesteroltransporters ABCA1andABCG1,whichtransportcholesteroloutofcells.However,LXRs alsoactatmultiplelevelstoreduceTHfunction:1)LXRreducesdeiodinases,preventingtheconversionofT4toT3;2)LXRlowersTHlevelsby facilitatingnegativefeedbackatthehypothalamiclevel;and3)LXRinducestheexpressionoftheinducibledegraderoftheLDLreceptor(IDOL), whichdecreasesLDLreceptorexpressiononthecellsurfaceandlimits LDL/cholesteroluptake(66).

LXRsandTRsinNeurodegeneration

BothLXRandTHareessentialfornormalbraindevelopment,influencingneurogenesis,neuronalandglialcelldifferentiationandmigration, synaptogenesis,andmyelinationduringearlyfetallife(67, 68).DysregulationofcholesterolmetabolismintheCNShasbeenlinkedtoseveral neurologicaldisorders(49, 69–74).Preclinicalstudieshaveindicatedthat LXRsandTRscanbeusedastargetsforthetreatmentofneurodegenerativediseases(Figure1),suchasAlzheimer’sdisease(AD),Parkinson’s disease(75, 76),amyotrophiclateralsclerosis(ALS)(77),Huntington’s disease,andmultiplesclerosis(MS)(78).

Althoughthesecommonanddevastatingneurodegenerativediseases areassociatedwithaging,neurodegenerationlikelybeginsmuchearlier, asdiseasesymptomsemergeonlyafterasignificantnumberofneurons havealreadybeenlost.Ourstudieshaveshownmarkedexpressionof LXRβ incorticalneuronsinthefetalmousebrainduringlaterembryonicstages(19).LXRβ expressionfirstappearsinthecerebralcortexas earlyasE14.5andisstronglyexpressedinthecortexplatefromE16.5 untilE18.5.Afterbirth,LXRβ ismainlylocalizedincorticallayersII/III.In LXRβ / mice,thereisnodefectinneuronalproliferation;however,laterbornneuronsfailtomigratetocorticallayersII/IIIastheydoinwild-type (WT)littermates(19).Thismigrationdefectisthoughttoresultfromadefectinradialgliaandreducedexpressionofthereninreceptor,ApoER2 (79).ThedefectiscorrectedwhenTHlevelsincrease,andbypostnatal day14,thereisnodetectabledifferenceinthecortexbetweenWTand LXRβ / mice(79).Theseobservationssuggestthatintheabsenceof LXRβ ,thereisinsufficientTHinthefetalbrain,leadingtoaprolonged repressiveroleofTR-onTH-responsivegenes.

Despitethewell-knowneffectsofTHinthedevelopingbrainandthe clearroleoffetalhypothyroidisminmentalretardation,THisnotimplicatedinlate-onsetneurodegenerativediseases.However,thelossof

Figure1. LXRandrelatedCNSneurologicaldisorders.

LXRβ inmicedoesleadtoage-relatedneurodegeneration.InLXRβ / mice,thereisalossofdopaminergic(DA)neuronsinthesubstantianigra(80),largemotorneuronsintheventralhornofthespinalcord(81), epithelialcellsofthechoroidplexus(28),retinalganglioncells(15),and spiralganglionneurons(Figure2)(16).Alloftheseconditionsdevelop withageafterthemiceare6monthsofage.

Oneperplexingobservation,inviewofthelossofDAandmotorneurons,istheabsenceofLXRβ expressionintheseneuronsinadultmice. ThishasledtotheconclusionthatLXRβ incellsotherthanDAandmotor neuronsprotectstheseneuronsfromage-relatedloss.Thesespecificcell typesinvolvedremaintobeidentified.Todate,LXRβ hasbeenspecifically deletedfromastrocytes(82)andmicroglia,andtherewasnoobserved lossofDAormotorneuronsinthesemice.ItremainspossiblethatdegenerationofthechoroidplexusanddefectsinCSF,whichoccurintheabsenceofLXR,aremajorcontributorstotheneurodegenerationobserved inLXRβ / mice.

LXRsandTRsinALS

ALSisalate-onset,fatalneurodegenerativedisordercharacterizedbythe specificlossofbothupperandlowermotorneurons(83).Themajority ofcasesareclassifiedassporadic,withtheetiologyremainingunknown. Lessthan10%ofALScasesarefamilialandassociatedwithdefectsinthe SOD1, C9ORF72, FUS,and TARDBP genes.Althoughnoneofthesegenes areregulatedbyLXR,aproteomicanalysisofserumfromALSpatients revealedthattheLXR/RXRpathwayisoneofthemostsignificantlyregulatedpathways,withbothLXRα andLXRβ identifiedasgeneticmodulatorsoftheALSphenotype(84, 85).InmicelackingLXRβ ,thereisprogressiveimpairmentofmotorperformanceleadingtohindlimbparalysis,loss ofmotorneuronsintheventralhornofthespinalcord(Figure3),andloss ofneuromuscularjunctions(80, 81, 86).

AstudyonthepathogenesisofALSindicatedthat25-HC,anendogenousligandforLXR,mayactivelymediateneuronalapoptosis,particularly intheearlysymptomaticstageofthedisease(87).ThefailureoftheCNS toremoveexcesscholesterolcanleadtoneurodegeneration,astheaccumulationofcholesterolmaybetoxictoneuronalcells.However,choles-

terolaccumulationisnottheonlybraindefectcausedbydefectiveLXR; thereisalsoareductionin3β ,7α -dihydroxycholest-5-en-26-oicacid,a neuroprotectivecholesterolmetabolite(88, 89).

AnothercommondefectobservedinbothALSandLXRβ / miceisthe structuralandfunctionaldisruptionoftheblood–CSFbarrier.InALS,there isdisruptionofjunctionsbetweenchoroidplexusepithelialcells,activationofplatelets,immuneinfiltrationintothechoroidplexus,anddegenerationofmajorvasculatureassociatedwiththedisease(90).Thechoroid plexusofLXRknockoutmiceisseverelyaffected(28),withdegeneration andabsenceofCSFinthelateralventriclesbeingprominentcharacteristicsoftheLXR / mousebrain.

Todate,studieshavenotprovidedstrongevidencetosupportarole forTHinALS.InacohortofPortuguesepatientswithALS,thyroiddysfunctionwasnotassociatedwiththedisease(91),andinacohortfromSouthwestChina,thyroiddysfunctiondidnotassociatedwithsurvivalorserve asaprognosticfactorforALS(92).DespitethelackofeffectofTHonALS, asimilarmovementdisorderisobservedinbothTHandLXRdeficiencies: pronounced,spontaneous,asymmetricalcirclingbehavior.Thisbehavior wasfirstreportedbyKincaid(93)ingeneticallyhypothyroidmice,which doesnotdevelopathyroidglandduetoadefectiveTSHgene.Thecircling behaviorappearedinbothmaleandfemalemicearoundpostnatalday35 andpersistedthroughouttheirlifespan.Thecirclingwasunidirectional, eitherclockwiseorcounterclockwise.ThisbehaviorwasnotedinallfemalebutnotmaleLXRβ / mice.IntheKincaidstudy,thecyclingwas linkedtothelossofDAneuronsinthesubstantianigra,butitremainsunclearwhythebehavioronlyemergedinadultmice.IntheLXRβ / mice, asimilarcyclingbehaviorwasobserved,thoughitsetiologyhasnotbeen thoroughlyinvestigated.

LXRsandTRsinDopaminergicNeurons

InthedevelopingmousebrainatE11.5,theLXRagonist24(S),25epoxycholesterolincreasedmidbrainDAneurogenesisfromprecursor cellsbyabout40% invitro and invivo (94–96).TheLXR-regulatedtranscriptionfactorresponsibleforthisincreaseinthedifferentiationofradialgliaintoDAneuronswasidentifiedasthebasichelix-loop-helix

Figure2. ThenumberofspiralganglionneuronsinthecochleaofLXRβ / miceislessthanthatofWTmice.12monthsofage.Scalebars:AandC,100 μm; BandD,50 μm.

transcriptionfactorSREBP1(sterolregulatoryelementbindingprotein1; genename Srebf1)(97).DespitethisroleofLXRβ inthedifferentiationof DAneurons,thereisnoapparentreductioninthenumberofDAneurons inthesubstantianigrain5-month-oldLXRβ / mice,andtheirperformanceontherotarodtestwascomparabletothatofWTmice(80).Thus, thereisadisconnectbetweenLXR’sactionsinthefetaldevelopmentof DAneurons invitro anditsroleintheadultbrain.

KnockingoutLXRaffectsthesurvivalofDAneurons.Inthesubstantia nigraofLXRβ / mice,thelossofDAneuronsbeginstobenoticeableafterthemicereach6monthsofage,andby16months,thereisamarked reductioninthenumberofDAneurons.Thesemiceperformpoorlyon therotarod.LXRβ knockoutmicealsoshowincreasedsensitivitytochallengeswithMPTP(1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)(17) or β -sitosterol(80).AconfoundingfactorintheseeffectsisthatLXRβ is notexpressedinDAneurons.Thus,LXRappearstoinfluenceDAneurons attwolevels:survivalwithageandneurogenesisatE11.5.Inbothcases, itisnotLXRβ intheDAneuronsthemselves,butinothercellsthatinfluencethedifferentiationofDAneurons.Thecellsinvolvedduringembryonicdevelopmentarelikelyradialglia,butthespecificcellsresponsible forthelossofDAneuronsinadultmicewithageremaintobedetermined. ItmaybethatmultipleLXR-regulatedcellsandfactors,includingcholesterolaccumulation,microglialactivation,astrogliosis,oradysfunctionof thechoroidplexus,influencethesurvivalofDAneurons.

THisalsoessentialforthedifferentiationofDAneurons(98),butin thiscontext,itisevidentthatTRα 1inprecursorcells,ratherthaninDA neurons,isresponsible(99).Thetranscriptionfactorrequiredforembryonicventralmidbrainneuralstemcells(NSCs)todifferentiateinto DAneuronsisOtx2.TRα 1iscoexpressedwithOtx2inculturedventral midbrainNSCs.Otx2,inturn,inducesanumberofotherfactors,includingNeurogenin2(Ngn2)andNurr1(alsoknownasnuclearreceptor4A2, NR4A2).

Currently,thedistinctrolesofLXRandTHhavenotbeenfullydefined. PublisheddataindicatethatthefunctionsofTHandLXRhavebeeninvestigatedatdifferentstagesofdifferentiationbetweenE11.5andE13.5. ThisisacriticalperiodforthedifferentiationofDAneurons(100),and manystepsinDAneuronaldifferentiationoccurbeforeE13.5.Untilmore detailedtimedstudiesareconducted,itisnotpossibletoseparatethe rolesofTHandLXRinthedifferentiationofDAneurons.

Ofkeyinteresttohumandiseaseisthelate-onsetoflossofDAneurons inLXRβ / mice.SinceParkinson’sdiseaseisalate-onsetcondition,the LXRβ / micemayprovidevaluableinsightsintothisdisease.

TRsinCerebellum

Ishii etal.summarizedthatvariousmousemodelshavebeenusedto evaluatetheeffectsofTHoncerebellardevelopment,revelingextensiveabnormalitiesthatresultinanataxicphenotype(101).Thepostnatal

Figure3. ThenumberofmotorneuronsintheventralhornofthespinalcordofLXRβ / miceislessthanthatofWTmice.Neurofilamentstaining.11months ofage.Scalebars:AandC,50 μm;BandD,20 μm.

defectsobservedinthecerebellumofhypothyroidmicearerecapitulated inmiceheterozygousforadominant-negativemutationintheTRα 1receptor(102, 103).Thismutationprimarilyaffectsthedifferentiationof PurkinjecellsandBergmannglia.

LXRsandTRsinDevelopmentoftheDentategyrus

Thedentategyrus(DG)ofthehippocampusplaysaprominentrole inlearning,memory,andemotion.Thesubgranularzone(SGZ)ofthe hippocampalDGisoneofthestemcell–containingnichesintheadult mammalianbrain(104).ThepermissivemilieuoftheSGZallowsNSCs toproliferatewhilepromotingthespecificationanddifferentiation ofdentategranuleneurons.IntheDGofLXRβ / mice,thereishypoplasiaandabnormalitiesinprogenitorcellformationandgranule celldifferentiation,resultinginautistic-likebehavior(105).InGW3965treated3xTg-ADmice,thenumberofstemcellsandproliferatingcells increasedintheSGZ(106).Furthermore,LXRactivationameliorated learningandmemoryimpairmentsbypromotingneuronalsurvival,NSC proliferation,andneurogenesisintheDGindifferentanimalmodels (107, 108).

Hypothyroidismresultsinreducedhippocampalvolumeinadults (109).THsaffectneurogenesisintheDGofadultrats(110)andareessentialforpreservingnonproliferativecellsinvolvedinadultneurogenesis(111).In2024,Valcárcel-Hernández etal.providedanexcellent

summaryofTHsintheSVZ(subventricularzone)liningthelateralventricles,thehippocampalSGZ,andthehypothalamus,controllingthegenerationofnewneuronalandglialprogenitorsfromNSCs,aswellastheir finaldifferentiationandmaturationprograms(112).

LXRsandTRsinAlzheimer’sDisease

AD,themostcommoncauseofdementiaglobally,isaprogressiveneurodegenerativediseasecharacterizedbyinitialmemoryimpairmentand cognitivedecline,withthepresenceofamyloidplaquesandneurofibrillarytanglesbeingcrucialforapathologicaldiagnosis(113).BothTHand LXRsignalinghavebeenimplicatedinAD(Figure4).Asdiscussedabove, LXRsignalingisintricatelylinkedtoTHlevels.BecauseLXRinhibitsdeiodinases,areductioninLXRsignalingshouldbeassociatedwithhigherlevelsofTH.Therefore,thereducedsignalingofbothTHandLXRinADis puzzling.

Severalstudieshaveinvestigatedtheassociationbetweenthyroid dysfunctionanddementiarisk(114–116).Meta-analysesrevealeda higherprevalenceofhypothyroidisminAD,buttheauthorscautionedthat thefindingcouldnotdistinguishwhetherhypothyroidismisariskfactor fororaconsequenceofAD(117).Oneofthemostbeneficialeffectsof THinADisitseffectsinrepressionofmicroglialimmuneresponses(118). However,nodefinitivelinkbetweenthyroiddysfunctionandADhasbeen established(119–121).

Figure4. UnravelingthecomplexrolesofLXRsandTRsinneurodegenerativediseases.ThisdiagramdepictstheintricatebiologyofLXRsandTRsandtheir rolesinneurodegenerativediseases.Attheheartofourconceptualframeworkishowthesereceptorsinfluencekeyprocessesinthebrain—frommanaging cholesterollevelstoshapingbraindevelopment.Wecanseehowtheiractionsrippleouttoaffectvariousneurodegenerativeconditions,includingAlzheimer’s andParkinson’sdiseases,aswellasALSandmultiplesclerosis.AninterestingtwistrevealedbythediagramisthatLXRsactuallyhelpregulatethyroidhormone function,addinganotherlayerofcomplexity.WehaveuseddifferentcolorstohighlightwhichprocessesarespecifictoLXRs(inpink)orTRs(inlightblue),while sharedpathwaysareshowninorange.Lookingtothefuture,wehaveincludedpromisingtherapeuticapproachesandexcitingnewresearchdirectionsinlight green.Thisvisualframeworkcapturesourcurrentunderstandingandalsopointstowherethenextchaptersinthisemergingscientificnarrativemightleadus.

InthecontextofLXRandAD,activationofLXRhasbeenconsidereda therapeuticstrategy(11, 71, 73, 122–124)forseveralreasons:1)ApoE, anLXR-inducedgene,promotestheproteolyticdegradationofAβ invariousADanimalmodels(106, 125–128),therebyreducingbrainAβ burden;2)Inhibitionofneuroinflammation(129, 130),includingtheactivationofmicrogliaandastrocytes(131, 132);3)LXRligandsameliorate theimpairmentsinsynapticplasticity(133, 134);4)GeneticlossofLXRs inAPP/PS1transgenicmiceresultsinincreasedamyloidplaqueburden (135);5)T0901317hasbeneficialeffectsonmemorybyenhancingbrain cholesterolturnoverinAPPSLxPS1mutmice(136);6)InAPP/PS1mice, LXRagonistsexertbeneficialeffectsinamelioratingmemoryimpairment byelevatinglevelsofApoEandABCA1,reducingtheexpressionofproinflammatorygenes,anddecreasingAβ aggregation(137–139);7)ActivationofLXRwiththeagonistT0901317decreasedBACE1expression andactivitybyloweringmembranecholesterollevels(140);8)DMHCA, apartialLXRagonist,preventedmemorydeclineandsignificantly decreasedhippocampalAβ oligomerswithoutaffectingplasmalipid levels(141).

OnegenethatisupregulatedbybothLXRandTRβ istheseladin-1 (selectiveADindicator-1),encodedbythe3beta-hydroxysterol-Delta24 reductase(DHCR24).DHCR24isacrucialenzymeincholesterolsynthesis, catalyzingtheconversionofdesmosterolintocholesterolandlanosterol to24,25-dihydrolanosterol.BothLXRα andTRβ upregulatethetranscriptionofDHCR24(142–144),suggestingitmaybeacommongenelinking TRandLXRtoAD.

LXRsandTRsinDemyelinatingDiseases

Sincecholesterolisanessentialcomponentofallcellmembranesand isparticularlyenrichedinmyelinmembranes,itisnotsurprisingthat cholesterolmetabolismisinvolvedintheprocessesofdemyelinationand remyelination(145).Oligodendrocytesarethecellsinthebrainresponsibleformyelination(146).BothLXRsandTRsarecriticalforpromoting andmaintainingmyelination(147, 148).Evenbeforemyelinsynthesisoccurs,bothreceptorsareneededforthedifferentiationofoligodendrocytes.LXRβ regulatesthenumberofoligodendrocytebydrivingradial glialcellsinthedorsalcortextobecomeoligodendrocyteprogenitorcells (149).Meanwhile,THisrequiredfortheterminaldifferentiationofoligodendrocyteprecursorcellsintomyelinatingoligodendrocytesbyinducing rapidcell-cyclearrestandtranscriptionofprodifferentiationgenes(150, 151).

Therefore,itisnotsurprisingthattheknockoutofLXRsinmiceresults inabnormalmyelinationandareductioninthesizeofmyelinatedaxonin themousebrain(70, 152, 153).Asdescribedabove,LXRhaswidespread functionsinthebody,andinactivationofLXRleadstomultipleorgandysfunctioninmice.IfLXRshavesimilarrolesinhumansandmice,itisdiffi-

culttoimagineahumansurvivingwithadefectiveLXRgenewithoutseveredefectsinlipidhomeostasis,vasculardisease,andimmuneandneuronaldysfunction.AmutationinLXRα (p.Arg415Gln)hasbeenreported toberesponsibleforfamilialdevelopingprogressiveMS(154),butthe associationbetweentheLXRα mutationandMScouldnotbeconfirmed bytheInternationalMSGeneticsConsortium(IMSGC)patientcollection (155).Beforethisissuecanbefullyresolved,itisessentialtoexamine thefunctionoftheLXRα withthe(p.Arg415Gln)mutationtodetermine whetheritfunctionsasanormalLXRα andwhethertheLXRmutationsimplysegregateswithanothergeneresponsiblefortheMSphenotype.

Martin-Gutierrez etal.reportedthatLXR-mediatedlipidmetabolism pathwaysweredysregulatedinTcellsfrompatientswithrelapsingremittingMS(RRMS)pathology,potentiallycontributingtoRRMSpathogenesis(156).ThestudyshowsthatLXRregulatesTcellfunctionby regulatingglycosphingolipidandcholesterolmetabolism,althoughthe specificdefectinLXRinTcellsthatcouldcauseRRMSremainsundefined.

MSisanautoimmunedisease(78, 157, 158)thoughttobeduetoT-cell reactionstoantigensassociatedwithmyelin,suchasmyelinbasicproteinandmyelinoligodendrocyteglycoprotein.Inchronicdemyelinating inflammatorydiseasemodels,THrestoresnormallevelsofmyelinbasic proteinmRNAandprotein(159, 160)andpromotesthedifferentiationof oligodendrocyteprogenitorcells,improvingremyelinationthroughTRβmediatedT3effects(161).

T4activatesoligodendrocyteprecursorsandincreasesthecontent ofmyelin-formingproteinsandNGFinthespinalcordduringexperimentalallergicencephalomyelitis(162).StudiesusingtheTRβ -selective agonistSobetirome(GC-1)havefoundthatitpromotesremyelination, enhancesoligodendrocyteproliferation,andprotectsagainstoligodendrocytedeath(163–166).

Inadditiontoitseffectsonoligodendrocytes,anothermechanism throughwhichLXRsignalingrepairsdemyelinationdamageisbyactingonmicroglia/macrophages,inhibitingtheinflammatoryresponseand providingasupportiveenvironmentforoligodendrocytedifferentiation andmyelination(167),whilealsopromotingthephagocyticclearanceof myelindebrisandcholesterol(168).LXRagonistsmaybeusefulinhealing whitematterinjury,asLXRligandshavebeenshowntoinduceoligodendrogenesisinrodentinjurymodels(169, 170).However,thechallengeof limitingLXRactiontothetargetedareamustfirstbeaddressed.

ConcludingRemarks

TheaimofthisreviewwastoanalyzetherolesofLXRsandTRsinneurodegenerativediseases(Figure4).Areviewoftheliteratureclearly showsthatthesetworeceptorsworktogethertoregulatecholesterol homeostasis,anddysregulationofcholesterolhomeostasisisacommon factorinneurodegenerativediseases.Duetotheirwidespreadeffects

AuthorDisclosures

Theauthorsdeclarenoconflictsofinterest.

AuthorContributions

J-ÅG,MW,andXSconceivedthemanuscripttopic,editedandorganized thefinaldraft.XSwrotethefirstdraftofthemanuscriptandpreparedthe figures.Allauthorsrevisedthefinalmanuscriptandapprovedthefinal version.

Acknowledgments

J-ÅGacknowledgesRobertA.WelchFoundationgrantE-0004andthe SwedishResearchCouncil.

References

1.JakobssonT,TreuterE,GustafssonJA,SteffensenKR.LiverXreceptorbiologyandpharmacology:newpathways,challengesandopportunities.Trends PharmacolSci.2012;33(7):394–404.DOI: 10.1016/j.tips.2012.03.013.PMID: 22541735

2.MullurR,LiuYY,BrentGA.Thyroidhormoneregulationofmetabolism.Physiol Rev.2014;94(2):355–82.DOI: 10.1152/physrev.00030.2013.PMID:24692351; PMCID: PMC4044302

3.TeboulM,EnmarkE,LiQ,WikstromAC,Pelto-HuikkoM,GustafssonJA.OR-1, amemberofthenuclearreceptorsuperfamilythatinteractswiththe9-cisretinoicacidreceptor.ProcNatAcadSciUSA.1995;92(6):2096–100.DOI: 10. 1073/pnas.92.6.2096.PMID:7892230;PMCID: PMC42430

4.SongC,KokontisJM,HiipakkaRA,LiaoS.Ubiquitousreceptor:areceptorthat modulatesgeneactivationbyretinoicacidandthyroidhormonereceptors. ProcNatAcadSciUSA.1994;91(23):10809–13.DOI: 10.1073/pnas.91.23. 10809.PMID:7971966;PMCID: PMC45115

5.ShinarDM,EndoN,RutledgeSJ,VogelR,RodanGA,SchmidtA.NER,anew memberofthegenefamilyencodingthehumansteroidhormonenuclear receptor.Gene.1994;147(2):273–6.DOI: 10.1016/0378-1119(94)90080-9 PMID:7926814

6.SeolW,ChoiHS,MooreDD.Isolationofproteinsthatinteractspecifically withtheretinoidXreceptor:twonovelorphanreceptors.MolEndocrinol. 1995;9(1):72–85.DOI: 10.1210/mend.9.1.7760852.PMID:7760852

7.ApfelR,BenbrookD,LernhardtE,OrtizMA,SalbertG,PfahlM.Anovelorphan receptorspecificforasubsetofthyroidhormone-responsiveelementsand itsinteractionwiththeretinoid/thyroidhormonereceptorsubfamily.MolCell Biol.1994;14(10):7025–35.DOI: 10.1128/mcb.14.10.7025-7035.1994.PMID: 7935418;PMCID: PMC359232

8.WillyPJ,UmesonoK,OngES,EvansRM,HeymanRA,MangelsdorfDJ.LXR,a nuclearreceptorthatdefinesadistinctretinoidresponsepathway.GenesDev. 1995;9(9):1033–45.DOI: 10.1101/gad.9.9.1033.PMID:7744246

9.SchulmanIG.LiverXreceptorslinklipidmetabolismandinflammation. FEBSLett.2017;591(19):2978–91.DOI: 10.1002/1873-3468.12702.PMID: 28555747;PMCID: PMC5638683

10.Korach-AndreM,GustafssonJA.LiverXreceptorsasregulatorsofmetabolism. BiomolConcepts.2015;6(3):177–90.DOI: 10.1515/bmc-2015-0007.PMID: 25945723

11.SongX,WuW,WarnerM,GustafssonJA.LiverXreceptorregulationof glialcellfunctionsintheCNS.Biomedicines.2022;10(9):2165.DOI: 10.3390/ biomedicines10092165.PMID:36140266;PMCID: PMC9496004

12.SongX,WuW,DaiY,WarnerM,NalvarteI,AntonsonP,etal.LossofERbetainagingLXRalphabetaknockoutmiceleadstocolitis.IntJMolSci. 2023;24(15):12461.DOI: 10.3390/ijms241512461.PMID:37569842;PMCID: PMC10419301

14.HellemansKH,HannaertJC,DenysB,SteffensenKR,RaemdonckC,Martens GA,etal.SusceptibilityofpancreaticbetacellstofattyacidsisregulatedbyLXR/PPARalpha-dependentstearoyl-coenzymeAdesaturase.PLoS One.2009;4(9):e7266.DOI: 10.1371/journal.pone.0007266.PMID:19787047; PMCID: PMC2746288

15.SongXY,WuWF,GabbiC,DaiYB,SoM,ChaurasiyaSP,etal.RetinalandopticnervedegenerationinliverXreceptorbetaknockoutmice.ProcNatAcad SciUSA.2019;116(33):16507–12.DOI: 10.1073/pnas.1904719116.PMID: 31371497;PMCID: PMC6697819

gp.genomicpress.com throughoutthebody,itisunlikelythatgeneralizeddysfunctionofeither receptorwouldleadtoselectivedegenerationofcertainneuronswithout causingothersignificantdefectsinthebody.Onepossibilitythathasnot yetbeenaddressedistheexistenceofLXRsplicevariantsthatareselectivelyexpressedintheCNS,anditmaybedysregulationofthesesplice variantsthatcontributestoneurodegenerativediseases.Multiplesplice variantsofbothLXRα andLXRβ havebeenreported(171),buttheirroles indiseasehavenotyetbeeninvestigated.Additionally,thedifferences inthegenomicandphysiologicalfunctionsofnuclearreceptorsbetween humansandrodentscannotbeignored,highlightingtheneedformore researchonnuclearreceptorsignalinginhumansornonhumanprimate. Inconclusion,itwillbecrucialtostudynuclearreceptors,includingLXRs andTRs,byinvestigatingtheirsplicevariantsandexaminingneuraltissuesfrompatientswithneurodegenerativediseases.

16.SongXY,WuWF,DaiYB,XuHW,RomanA,WangL,etal.AblationofLiverX receptorbetainmiceleadstooveractivemacrophagesanddeathofspiral ganglionneurons.HearRes.2022;422:108534.DOI: 10.1016/j.heares.2022. 108534.PMID:35623301

17.DaiYB,TanXJ,WuWF,WarnerM,GustafssonJA.LiverXreceptorbetaprotectsdopaminergicneuronsinamousemodelofParkinsondisease.ProcNat AcadSciUSA.2012;109(32):13112–7.DOI: 10.1073/pnas.1210833109.PMID: 22826221;PMCID: PMC3420187

18.KainuT,KononenJ,EnmarkE,GustafssonJA,Pelto-HuikkoM.Localization andontogenyoftheorphanreceptorOR-1intheratbrain.JMolNeurosci. 1996;7(1):29–39.DOI: 10.1007/BF02736846.PMID:8835780

19.FanX,KimHJ,BoutonD,WarnerM,GustafssonJA.ExpressionofliverXreceptor betaisessentialforformationofsuperficialcorticallayersandmigrationof later-bornneurons.ProcNatAcadSciUSA.2008;105(36):13445–50.DOI: 10. 1073/pnas.0806974105.PMID:18768805;PMCID: PMC2533209

20.El-HajjajiFZ,OumeddourA,PommierAJ,OuvrierA,ViennoisE,DufourJ, etal.LiverXreceptors,lipidsandtheirreproductivesecretsinthemale. BiochimBiophysActa.2011;1812(8):974–81.DOI: 10.1016/j.bbadis.2011.02. 004.PMID:21334438

21.KimHJ,AnderssonLC,BoutonD,WarnerM,GustafssonJA.Stromalgrowth andepithelialcellproliferationinventralprostatesofliverXreceptorknockoutmice.ProcNatAcadSciUSA.2009;106(2):558–63.DOI: 10.1073/pnas. 0811295106.PMID:19122149;PMCID: PMC2626742

22.SteffensenKR,RobertsonK,GustafssonJA,AndersenCY.Reducedfertilityand inabilityofoocytestoresumemeiosisinmicedeficientoftheLxrgenes.Mol CellEndocrinol.2006;256(1-2):9–16.DOI: 10.1016/j.mce.2006.03.044.PMID: 16895745

23.WhitfieldM,OuvrierA,CadetR,Damon-SoubeyrandC,GuitonR,JannyL, etal.LiverXreceptors(LXRs)alphaandbetaplaydistinctrolesinthemouse epididymis.BiolReprod.2016;94(3):55.DOI: 10.1095/biolreprod.115.133538 PMID:26792941

24.KomatiR,SpadoniD,ZhengS,SridharJ,RileyKE,WangG.LigandsoftherapeuticutilityfortheliverXreceptors.Molecules.2017;22(1):88.DOI: 10.3390/ molecules22010088.PMID:28067791;PMCID: PMC5373669

25.CostaLES,Clementino-NetoJ,MendesCB,FranzonNH,CostaEO,MouraNetoV,etal.Evidenceofaquaporin4regulationbythyroidhormoneduringmousebraindevelopmentandinculturedhumanglioblastomamultiformecells.FrontNeurosci.2019;13:317.DOI: 10.3389/fnins.2019.00317 PMID:31019448;PMCID: PMC6458270

26.KubeI,KowalczykM,HofmannU,GhallabA,HengstlerJG,FuhrerD,etal.HepatobiliarythyroidhormonedeficiencyimpactsbileacidhydrophilicityandaquaporinsincholestaticC57BL/6Jmice.IntJMolSci.2022;23(20):12355.DOI: 10.3390/ijms232012355.PMID:36293210;PMCID: PMC9603918

27.GabbiC,KongX,SuzukiH,KimHJ,GaoM,JiaX,etal.Centraldiabetesinsipidus associatedwithimpairedrenalaquaporin-1expressioninmicelackingliver Xreceptorbeta.ProcNatAcadSciUSA.2012;109(8):3030–4.DOI: 10.1073/ pnas.1200588109.PMID:22323586;PMCID: PMC3286995

28.DaiYB,WuWF,HuangB,MiaoYF,NadarshinaS,WarnerM,etal.LiverXreceptorsregulatecerebrospinalfluidproduction.MolPsychiatry.2016;21(6):844–56.DOI: 10.1038/mp.2015.133.PMID:26324101

29.SuW,HuangSZ,GaoM,KongXM,GustafssonJA,XuSJ,etal.LiverXreceptor betaincreasesaquaporin2proteinlevelviaaposttranscriptionalmechanism inrenalcollectingducts.AmJPhysiolRenPhysiol.2017;312(4):F619–28.DOI: 10.1152/ajprenal.00564.2016.PMID:28052875

30.MatthaeiS,TrostB,HamannA,KauschC,BeneckeH,GretenH,etal.Effect ofinvivothyroidhormonestatusoninsulinsignallingandGLUT1andGLUT4 glucosetransportsystemsinratadipocytes.JEndocrinol.1995;144(2):347–57.DOI: 10.1677/joe.0.1440347.PMID:7706987

31.LaffitteBA,ChaoLC,LiJ,WalczakR,HummastiS,JosephSB,etal.ActivationofliverXreceptorimprovesglucosetolerancethroughcoordinateregulationofglucosemetabolisminliverandadiposetissue.ProcNatAcadSciU SA.2003;100(9):5419–24.DOI: 10.1073/pnas.0830671100.PMID:12697904; PMCID: PMC154360

13.SweedN,KimHJ,HultenbyK,BarrosR,PariniP,SancisiV,etal.LiverXreceptorbetaregulatesbilevolumeandtheexpressionofaquaporinsandcysticfibrosistransmembraneconductanceregulatorinthegallbladder.AmJPhysiol GastrointestLiverPhysiol.2021;321(4):G243–51.DOI: 10.1152/ajpgi.00024. 2021.PMID:34259574;PMCID: PMC8815792

32.GrieselBA,WeemsJ,RussellRA,AbelED,HumphriesK,OlsonAL.AcuteinhibitionoffattyacidimportinhibitsGLUT4transcriptioninadiposetissue,butnot skeletalorcardiacmuscletissue,partlythroughliverXreceptor(LXR)signaling.Diabetes.2010;59(4):800–7.DOI: 10.2337/db09-1542.PMID:20103707; PMCID: PMC2844827

33.MiaoY,WuW,DaiY,ManeixL,HuangB,WarnerM,etal.LiverXreceptorbeta controlsthyroidhormonefeedbackinthebrainandregulatesbrowningofsubcutaneouswhiteadiposetissue.ProcNatAcadSciUSA.2015;112(45):14006–11.DOI: 10.1073/pnas.1519358112.PMID:26504234;PMCID: PMC4653192

34.SaitoH,TachiuraW,NishimuraM,ShimizuM,SatoR,YamauchiY.Hydroxylationsite-specificandproduction-dependenteffectsofendogenousoxysterols oncholesterolhomeostasis:implicationsforSREBP-2andLXR.JBiolChem. 2023;299(1):102733.DOI: 10.1016/j.jbc.2022.102733.PMID:36423680; PMCID: PMC9792893

35.WarnerM,FanX,StromA,WuW,GustafssonJA.25yearsofERbeta:apersonaljourney.JMolEndocrinol.2021;68(1):R1–9.DOI: 10.1530/JME-21-0121 PMID:34546964

36.MuthusamyS,AnderssonS,KimHJ,ButlerR,WaageL,BergerheimU, etal.Estrogenreceptorbetaand17beta-hydroxysteroiddehydrogenasetype 6,agrowthregulatorypathwaythatislostinprostatecancer.ProcNat AcadSciUSA.2011;108(50):20090–4.DOI: 10.1073/pnas.1117772108.PMID: 22114194;PMCID: PMC3250130

37.GustafssonJA,LiXC,SuhJH,LouX.AstructuralperspectiveofliverXreceptors.VitamHorm.2023;123:231–47.DOI: 10.1016/bs.vh.2023.01.008.PMID: 37717986

38.BerkenstamA,FarnegardhM,GustafssonJA.ConvergenceoflipidhomeostasisthroughliverXandthyroidhormonereceptors.MechAgeingDev. 2004;125(10–11):707–17.DOI: 10.1016/j.mad.2004.05.005.PMID:15541766

39.HashimotoK,MoriM.CrosstalkofthyroidhormonereceptorandliverXreceptorinlipidmetabolismandbeyond[Review].EndocrJ.2011;58(11):921–30. DOI: 10.1507/endocrj.ej11-0114.PMID:21908933

40.GauthierK,BillonC,BisslerM,BeylotM,LobaccaroJM,VanackerJM,etal. Thyroidhormonereceptorbeta(TRbeta)andliverXreceptor(LXR)regulatecarbohydrate-responseelement-bindingprotein(ChREBP)expressionina tissue-selectivemanner.JBiolChem.2010;285(36):28156–63.DOI: 10.1074/ jbc.M110.146241.PMID:20615868;PMCID: PMC2934680

41.SharmaS,ShenT,ChitranshiN,GuptaV,BasavarajappaD,SarkarS,etal. RetinoidXreceptor:cellularandbiochemicalrolesofnuclearreceptorwitha focusonneuropathologicalinvolvement.MolNeurobiol.2022;59(4):2027–50. DOI: 10.1007/s12035-021-02709-y.PMID:35015251;PMCID: PMC9015987

42.HeymanRA,MangelsdorfDJ,DyckJA,SteinRB,EicheleG,EvansRM,etal. 9-cisretinoicacidisahighaffinityligandfortheretinoidXreceptor.Cell. 1992;68(2):397–406.DOI: 10.1016/0092-8674(92)90479-v.PMID:1310260

43.LarangeA,CheroutreH.Retinoicacidandretinoicacidreceptorsaspleiotropic modulatorsoftheimmunesystem.AnnuRevImmunol.2016;34:369–94.DOI: 10.1146/annurev-immunol-041015-055427.PMID:27168242

44.DarrasVM.Deiodinases:hownonmammalianresearchhelpedshapeour presentview.Endocrinology.2021;162(6):bqab039.DOI: 10.1210/endocr/ bqab039.PMID:33606002;PMCID: PMC8143656

45.SabatinoL,VassalleC,DelSeppiaC,IervasiG.Deiodinasesandthethree typesofthyroidhormonedeiodinationreactions.EndocrinolMetab(Seoul). 2021;36(5):952–64.DOI: 10.3803/EnM.2021.1198.PMID:34674502;PMCID: PMC8566136

46.ShuL,HooRL,WuX,PanY,LeeIP,CheongLY,etal.A-FABPmediatesadaptive thermogenesisbypromotingintracellularactivationofthyroidhormonesin brownadipocytes.NatCommun.2017;8:14147.DOI: 10.1038/ncomms14147 PMID:28128199;PMCID: PMC5290165

47.DaviesJS,KotokorpiP,LindahlU,OscarssonJ,WellsT,ModeA.Effectsofthe syntheticliverXreceptoragonistT0901317onthegrowthhormoneandthyroidhormoneaxesinmalerats.Endocrine.2008;33(2):196–204.DOI: 10.1007/ s12020-008-9067-9.PMID:18473193

48.ChristoffoleteMA,DoleschallM,EgriP,LipositsZ,ZavackiAM,BiancoAC,etal. RegulationofthyroidhormoneactivationviatheliverX-receptor/retinoidXreceptorpathway.JEndocrinol.2010;205(2):179–86.DOI: 10.1677/JOE-090448.PMID:20176747;PMCID: PMC3133926

49.CourtneyR,LandrethGE.LXRregulationofbraincholesterol:fromdevelopmenttodisease.TrendsEndocrinolMetab.2016;27(6):404–14.DOI: 10.1016/ j.tem.2016.03.018.PMID:27113081;PMCID: PMC4986614

50.WangB,TontonozP.LiverXreceptorsinlipidsignallingandmembranehomeostasis.NatRevEndocrinol.2018;14(8):452–63.DOI: 10.1038/s41574-0180037-x.PMID:29904174;PMCID: PMC6433546

51.WongMY,LewisM,DohertyJJ,ShiY,CashikarAG,AmelianchikA,etal. 25-HydroxycholesterolamplifiesmicroglialIL-1betaproductioninanapoE isoform-dependentmanner.JNeuroinflam.2020;17(1):192.DOI: 10.1186/ s12974-020-01869-3.PMID:32552741;PMCID: PMC7298825

52.RamirezDM,AnderssonS,RussellDW.Neuronalexpressionandsubcellular localizationofcholesterol24-hydroxylaseinthemousebrain.JCompNeurol.2008;507(5):1676–93.DOI: 10.1002/cne.21605.PMID:18241055;PMCID: PMC4015140

53.LutjohannD,BreuerO,AhlborgG,NennesmoI,SidenA,DiczfalusyU,etal. Cholesterolhomeostasisinhumanbrain:evidenceforanage-dependent fluxof24S-hydroxycholesterolfromthebrainintothecirculation.ProcNat AcadSciUSA.1996;93(18):9799–804.DOI: 10.1073/pnas.93.18.9799.PMID: 8790411;PMCID: PMC38509

54.BjorkhemI,LutjohannD,BreuerO,SakinisA,WennmalmA.Importanceofa noveloxidativemechanismforeliminationofbraincholesterol.Turnoverof cholesteroland24(S)-hydroxycholesterolinratbrainasmeasuredwith18O2 techniquesinvivoandinvitro.JBiolChem.1997;272(48):30178–84.DOI: 10. 1074/jbc.272.48.30178.PMID:9374499

55.StilesAR,McDonaldJG,BaumanDR,RussellDW.CYP7B1:onecytochrome P450,twohumangeneticdiseases,andmultiplephysiologicalfunctions. JBiolChem.2009;284(42):28485–9.DOI: 10.1074/jbc.R109.042168.PMID: 19687010;PMCID: PMC2781391

56.YantsevichAV,DichenkoYV,MackenzieF,MukhaDV,BaranovskyAV,Gilep AA,etal.Humansteroidandoxysterol7alpha-hydroxylaseCYP7B1:substrate specificity,azolebindingandmisfoldingofclinicallyrelevantmutants.FEBSJ. 2014;281(6):1700–13.DOI: 10.1111/febs.12733.PMID:24491228

57.WirthEK,SchweizerU,KohrleJ.Transportofthyroidhormoneinbrain.Front Endocrinol(Lausanne).2014;5:98.DOI: 10.3389/fendo.2014.00098.PMID: 25009532;PMCID: PMC4067591

58.RichardsonSJ,WijayagunaratneRC,D’SouzaDG,DarrasVM,VanHerckSL. Transportofthyroidhormonesviathechoroidplexusintothebrain:therolesof transthyretinandthyroidhormonetransmembranetransporters.FrontNeurosci.2015;9:66.DOI: 10.3389/fnins.2015.00066.PMID:25784853;PMCID: PMC4347424

59.WittmannG,HarneyJW,SingruPS,NourielSS,LarsenPR,LechanRM. Inflammation-inducibletype2deiodinaseexpressionintheleptomeninges, choroidplexus,andatbrainbloodvesselsinmalerodents.Endocrinology. 2014;155(5):2009–19.DOI: 10.1210/en.2013-2154.PMID:24601886;PMCID: PMC3990842

60.RobertsLM,WoodfordK,ZhouM,BlackDS,HaggertyJE,TateEH,etal.Expressionofthethyroidhormonetransportersmonocarboxylatetransporter8(SLC16A2)andorganiciontransporter-14(SLCO1C1)attheblood-brain barrier.Endocrinology.2008;149(12):6251–61.DOI: 10.1210/en.2008-0378 PMID:18687783

61.ItoK,UchidaY,OhtsukiS,AizawaS,KawakamiH,KatsukuraY,etal.Quantitativemembraneproteinexpressionattheblood-brainbarrierofadultand youngercynomolgusmonkeys.JPharmSci.2011;100(9):3939–50.DOI: 10. 1002/jps.22487.PMID:21254069

62.FriesemaEC,GangulyS,AbdallaA,FoxJEM,HalestrapAP,VisserTJ.Identificationofmonocarboxylatetransporter8asaspecificthyroidhormonetransporter.JBiolChem.2003;278(41):40128–35.DOI: 10.1074/jbc.M300909200 PMID:12871948

63.VancampP,DemeneixBA,RemaudS.Monocarboxylatetransporter8deficiency:delayedorpermanenthypomyelination?FrontEndocrinol(Lausanne).2020;11:283.DOI: 10.3389/fendo.2020.00283.PMID:32477268; PMCID: PMC7237703

64.EmamnejadR,DassM,MahlisM,BozkurtS,YeS,PagninM,etal.Thyroidhormone-dependentoligodendroglialcelllineagegenomicandnongenomicsignalingthroughintegrinreceptors.FrontPharmacol. 2022;13:934971.DOI: 10.3389/fphar.2022.934971.PMID:36133808;PMCID: PMC9483185

65.MayerlS,MullerJ,BauerR,RichertS,KassmannCM,DarrasVM,etal.TransportersMCT8andOATP1C1maintainmurinebrainthyroidhormonehomeostasis.JClinInvest.2014;124(5):1987–99.DOI: 10.1172/JCI70324.PMID: 24691440;PMCID: PMC4001533

66.ZhangL,ReueK,FongLG,YoungSG,TontonozP.Feedbackregulationof cholesteroluptakebytheLXR-IDOL-LDLRaxis.ArteriosclerThrombVascBiol. 2012;32(11):2541–6.DOI: 10.1161/ATVBAHA.112.250571.PMID:22936343; PMCID: PMC4280256

67.BernalJ.Thyroidhormonesinbraindevelopmentandfunction.In:Endotext. EditedbyFeingoldKR,AnawaltB,BlackmanMR,BoyceA,ChrousosG,Corpas E,etal.SouthDartmouth(MA):MDText.com;2000.

68.BernalJ.Thyroidhormoneregulatedgenesincerebralcortexdevelopment.JEndocrinol.2017;232(2):R83–97.DOI: 10.1530/JOE-16-0424.PMID: 27852726

69.Sawicka-GutajN,ZawalnaN,GutP,RuchalaM.Relationshipbetweenthyroid hormonesandcentralnervoussystemmetabolisminphysiologicalandpathologicalconditions.PharmacolRep.2022;74(5):847–58.DOI: 10.1007/s43440022-00377-w.PMID:35771431

70.WangL,SchusterGU,HultenbyK,ZhangQ,AnderssonS,GustafssonJA.Liver Xreceptorsinthecentralnervoussystem:fromlipidhomeostasistoneuronal degeneration.ProcNatAcadSciUSA.2002;99(21):13878–83.DOI: 10.1073/ pnas.172510899.PMID:12368482;PMCID: PMC129791

71.MouzatK,ChudinovaA,PolgeA,KantarJ,CamuW,RaoulC,etal.Regulation ofbraincholesterol:whatroledoliverXreceptorsplayinneurodegenerative diseases?IntJMolSci.2019;20(16):3858.DOI: 10.3390/ijms20163858.PMID: 31398791;PMCID: PMC6720493

72.CermenatiG,BrioschiE,AbbiatiF,MelcangiRC,CarusoD,MitroN.Liver Xreceptors,nervoussystem,andlipidmetabolism.JEndocrinolInvest. 2013;36(6):435–43.DOI: 10.3275/8941.PMID:23609963

73.XuP,LiD,TangX,BaoX,HuangJ,TangY,etal.LXRagonists:newpotentialtherapeuticdrugforneurodegenerativediseases.MolNeurobiol.2013;48(3):715–28.DOI: 10.1007/s12035-013-8461-3.PMID:23625315

74.SkerrettR,MalmT,LandrethG.Nuclearreceptorsinneurodegenerativediseases.NeurobiolDis.2014;72PtA:104–16.DOI: 10.1016/j.nbd.2014.05.019 PMID:24874548;PMCID: PMC4246019

75.WarnerM,GustafssonJA.EstrogenreceptorbetaandLiverXreceptor beta:biologyandtherapeuticpotentialinCNSdiseases.MolPsychiatry. 2015;20(1):18–22.DOI: 10.1038/mp.2014.23.PMID:24662928

76.AlnaaimSA,Al-KuraishyHM,AlexiouA,PapadakisM,SaadHM,BatihaGE.Role ofbrainliverXreceptorinParkinson’sdisease:hiddentreasureandemerging opportunities.MolNeurobiol.2024;61(1):341–57.DOI: 10.1007/s12035-02303561-y.PMID:37606719;PMCID: PMC10791998

77.MouzatK,RaoulC,PolgeA,KantarJ,CamuW,LumbrosoS.LiverX receptors:fromcholesterolregulationtoneuroprotection-anewbarrier againstneurodegenerationinamyotrophiclateralsclerosis?CellMolLifeSci. 2016;73(20):3801–8.DOI: 10.1007/s00018-016-2330-y.PMID:27510420; PMCID: PMC11108529

78.Pineda-TorraI,SiddiqueS,WaddingtonKE,FarrellR,JuryEC.Disrupted lipidmetabolisminmultiplesclerosis:aroleforliverXreceptors?Front Endocrinol(Lausanne).2021;12:639757.DOI: 10.3389/fendo.2021.639757 PMID:33927692;PMCID: PMC8076792

79.TanXJ,FanXT,KimHJ,ButlerR,WebbP,WarnerM,etal.LiverXreceptorbetaandthyroidhormonereceptoralphainbraincorticallayering.Proc NatAcadSciUSA.2010;107(27):12305–10.DOI: 10.1073/pnas.1006162107

PMID:20566868;PMCID: PMC2901453

80.KimHJ,FanX,GabbiC,YakimchukK,PariniP,WarnerM,etal.LiverXreceptorbeta(LXRbeta):alinkbetweenbeta-sitosterolandamyotrophiclateral sclerosis-Parkinson’sdementia.ProcNatAcadSciUSA.2008;105(6):2094–9. DOI: 10.1073/pnas.0711599105.PMID:18238900;PMCID: PMC2542868

81.AnderssonS,GustafssonN,WarnerM,GustafssonJA.InactivationofliverXreceptorbetaleadstoadult-onsetmotorneurondegenerationinmalemice.Proc NatAcadSciUSA.2005;102(10):3857–62.DOI: 10.1073/pnas.0500634102 PMID:15738425;PMCID: PMC553330

82.LiX,ZhongH,WangZ,XiaoR,AntonsonP,LiuT,etal.Lossofliver Xreceptorbetainastrocytesleadstoanxiety-likebehaviorsviaregulatingsynaptictransmissioninthemedialprefrontalcortexinmice.Mol Psychiatry.2021;26(11):6380–93.DOI: 10.1038/s41380-021-01139-5.PMID: 33963286

83.YoungerDS,BrownRHJr.Amyotrophiclateralsclerosis.HandbClinNeurol.2023;196:203–29.DOI: 10.1016/B978-0-323-98817-9.00031-4.PMID: 37620070

84.MouzatK,MolinariN,KantarJ,PolgeA,CorciaP,CouratierP,etal. LiverXreceptorgenesvariantsmodulateALSphenotype.MolNeurobiol. 2018;55(3):1959–65.DOI: 10.1007/s12035-017-0453-2.PMID:28244008

85.XuZ,LeeA,NouwensA,HendersonRD,McCombePA.Massspectrometry analysisofplasmafromamyotrophiclateralsclerosisandcontrolsubjects. AmyotrophLateralSclerFrontotemporalDegener.2018;19(5–6):362–76. DOI: 10.1080/21678421.2018.1433689.PMID:29384411

86.BiginiP,SteffensenKR,FerrarioA,DiomedeL,FerraraG,BarberaS,etal.NeuropathologicandbiochemicalchangesduringdiseaseprogressioninliverX receptorbeta-/-mice,amodelofadultneurondisease.JNeuropatholExp Neurol.2010;69(6):593–605.DOI: 10.1097/NEN.0b013e3181df20e1.PMID: 20467332

87.KimSM,NohMY,KimH,CheonSY,LeeKM,LeeJ,etal.25-Hydroxycholesterol isinvolvedinthepathogenesisofamyotrophiclateralsclerosis.Oncotarget.2017;8(7):11855–67.DOI: 10.18632/oncotarget.14416.PMID:28060747; PMCID: PMC5355309

88.Abdel-KhalikJ,YutucE,CrickPJ,GustafssonJA,WarnerM,RomanG,etal. Defectivecholesterolmetabolisminamyotrophiclateralsclerosis.JLipid Res.2017;58(1):267–78.DOI: 10.1194/jlr.P071639.PMID:27811233;PMCID: PMC5234729

89.TheofilopoulosS,GriffithsWJ,CrickPJ,YangS,MeljonA,OgundareM,etal. CholestenoicacidsregulatemotorneuronsurvivalvialiverXreceptors.J

ClinInvest.2014;124(11):4829–42.DOI: 10.1172/JCI68506.PMID:25271621; PMCID: PMC4347238

90.SaulJ,HutchinsE,ReimanR,SaulM,OstrowLW,HarrisBT,etal.Globalalterationstothechoroidplexusblood-CSFbarrierinamyotrophiclateralsclerosis. ActaNeuropatholCommun.2020;8(1):92.DOI: 10.1186/s40478-020-009689.PMID:32586411;PMCID: PMC7318439

91.SantosSilvaC,GromichoM,OliveiraSantosM,PintoS,SwashM,deCarvalhoM.ThyroiddysfunctioninPortugueseamyotrophiclateralsclerosispatients.NeurolSci.2022;43(9):5625–7.DOI: 10.1007/s10072-022-06135-3 PMID:35622209

92.ZhengZ,GuoX,HuangR,ChenX,ShangH.Anexploratorystudyoftheassociationbetweenthyroidhormoneandsurvivalofamyotrophiclateralsclerosis.NeurolSci.2014;35(7):1103–8.DOI: 10.1007/s10072-014-1658-z.PMID: 24504619

93.KincaidAE.Spontaneouscirclingbehavioranddopamineneuronlossinageneticallyhypothyroidmouse.Neuroscience.2001;105(4):891–8.DOI: 10.1016/ s0306-4522(01)00229-9.PMID:11530227

94.SacchettiP,SousaKM,HallAC,ListeI,SteffensenKR,TheofilopoulosS,etal. LiverXreceptorsandoxysterolspromoteventralmidbrainneurogenesisinvivo andinhumanembryonicstemcells.CellStemCell.2009;5(4):409–19.DOI: 10. 1016/j.stem.2009.08.019.PMID:19796621

95.TheofilopoulosS,deOliveiraWAA,YangS,YutucE,SaeedA,Abdel-KhalikJ, etal.24(S),25-Epoxycholesterolandcholesterol24S-hydroxylase(CYP46A1) overexpressionpromotemidbraindopaminergicneurogenesisinvivo.J BiolChem.2019;294(11):4169–76.DOI: 10.1074/jbc.RA118.005639.PMID: 30655290;PMCID: PMC6422085

96.TheofilopoulosS,WangY,KitambiSS,SacchettiP,SousaKM,BodinK,etal. BrainendogenousliverXreceptorligandsselectivelypromotemidbrainneurogenesis.NatChemBiol.2013;9(2):126–33.DOI: 10.1038/nchembio.1156 PMID:23292650

97.ToledoEM,YangS,GyllborgD,vanWijkKE,SinhaI,Varas-GodoyM,etal.Srebf1 controlsmidbraindopaminergicneurogenesis.CellRep.2020;31(5):107601. DOI: 10.1016/j.celrep.2020.107601.PMID:32375051

98.LeeEH,KimSM,KimCH,PagireSH,PagireHS,ChungHY,etal.Dopamine neuroninductionandtheneuroprotectiveeffectsofthyroidhormonederivatives.SciRep.2019;9(1):13659.DOI: 10.1038/s41598-019-49876-6.PMID: 31541140;PMCID: PMC6754465

99.ChenC,MaQ,ChenX,ZhongM,DengP,ZhuG,etal.ThyroidHormone-Otx2 signalingisrequiredforembryonicventralmidbrainneuralstemcellsdifferentiatedintodopamineneurons.StemCellsDev.2015;24(15):1751–65.DOI: 10.1089/scd.2014.0489.PMID:25867707;PMCID: PMC4507356

100.MaDK,MingGL,SongH.Oxysterolsdrivedopaminergicneurogenesisfrom stemcells.CellStemCell.2009;5(4):343–4.DOI: 10.1016/j.stem.2009.09.001 PMID:19796609;PMCID: PMC6188706

101.IshiiS,AmanoI,KoibuchiN.Theroleofthyroidhormoneintheregulationof cerebellardevelopment.EndocrinolMetab(Seoul).2021;36(4):703–16.DOI: 10.3803/EnM.2021.1150.PMID:34365775;PMCID: PMC8419606

102.FauquierT,RomeroE,PicouF,ChatonnetF,NguyenXN,QuignodonL,etal. Severeimpairmentofcerebellumdevelopmentinmiceexpressingadominantnegativemutationinactivatingthyroidhormonereceptoralpha1isoform. DevBiol.2011;356(2):350–8.DOI: 10.1016/j.ydbio.2011.05.657.PMID: 21621530

103.FauquierT,ChatonnetF,PicouF,RichardS,FossatN,AguileraN,etal.PurkinjecellsandBergmanngliaareprimarytargetsoftheTRalpha1thyroidhormonereceptorduringmousecerebellumpostnataldevelopment.Development.2014;141(1):166–75.DOI: 10.1242/dev.103226.PMID:24346699

104.GoncalvesJT,SchaferST,GageFH.Adultneurogenesisinthehippocampus: fromstemcellstobehavior.Cell.2016;167(4):897–914.DOI: 10.1016/j.cell. 2016.10.021.PMID:27814520

105.CaiY,TangX,ChenX,LiX,WangY,BaoX,etal.LiverXreceptorbetaregulatesthedevelopmentofthedentategyrusandautistic-likebehaviorinthe mouse.ProcNatAcadSciUSA.2018;115(12):E2725–33.DOI: 10.1073/pnas. 1800184115.PMID:29507213;PMCID: PMC5866608

106.Sandoval-HernandezAG,BuitragoL,MorenoH,Cardona-GomezGP,ArboledaG.RoleofliverXreceptorinADpathophysiology.PLoSOne.2015; 10(12):e0145467.DOI: 10.1371/journal.pone.0145467.PMID:26720273; PMCID: PMC4697813

107.SunT,LiYJ,TianQQ,WuQ,FengD,XueZ,etal.ActivationofliverXreceptorbeta-enhancingneurogenesisamelioratescognitiveimpairmentinduced bychroniccerebralhypoperfusion.ExpNeurol.2018;304:21–9.DOI: 10.1016/ j.expneurol.2018.02.006.PMID:29447944

108.ChenL,SongD,ChenB,YangX,ChengO.ActivationofliverXreceptorpromoteshippocampalneurogenesisandimproveslong-termcognitivefunctionrecoveryinacutecerebralischemia-reperfusionmice.JNeurochem. 2020;154(2):205–17.DOI: 10.1111/jnc.14890.PMID:31602646

109.CookeGE,MullallyS,CorreiaN,O’MaraSM,GibneyJ.Hippocampalvolumeis decreasedinadultswithhypothyroidism.Thyroid.2014;24(3):433–40.DOI: 10. 1089/thy.2013.0058.PMID:24205791

110.AmbroginiP,CuppiniR,FerriP,ManciniC,CiaroniS,VociA,etal.Thyroidhormonesaffectneurogenesisinthedentategyrusofadultrat.Neuroendocrinology.2005;81(4):244–53.DOI: 10.1159/000087648.PMID:16113586

111.Sanchez-HuertaK,Garcia-MartinezY,VergaraP,SegoviaJ,Pacheco-Rosado J.Thyroidhormonesareessentialtopreservenon-proliferativecellsofadult neurogenesisofthedentategyrus.MolCellNeurosci.2016;76:1–10.DOI: 10. 1016/j.mcn.2016.08.001.PMID:27501773

112.Valcarcel-HernandezV,MayerlS,Guadano-FerrazA,RemaudS.Thyroidhormoneactioninadultneurogliogenicniches:theknownandunknown.FrontEndocrinol(Lausanne).2024;15:1347802.DOI: 10.3389/fendo.2024.1347802 PMID:38516412;PMCID: PMC10954857

113.DeTureMA,DicksonDW.TheneuropathologicaldiagnosisofAlzheimer’sdisease.MolNeurodegener.2019;14(1):32.DOI: 10.1186/s13024-019-0333-5 PMID:31375134;PMCID: PMC6679484

114.Eslami-AmirabadiM,SajjadiSA.Therelationbetweenthyroiddysregulationandimpairedcognition/behaviour:anintegrativereview.JNeuroendocrinol.2021;33(3):e12948.DOI: 10.1111/jne.12948.PMID:33655583; PMCID: PMC8087167

115.HanS,JeongS,ChoiS,ParkSJ,KimKH,LeeG,etal.Associationofthyroidhormonemedicationadherencewithriskofdementia.JClinEndocrinolMetab. 2023;109(1):e225–33.DOI: 10.1210/clinem/dgad447.PMID:37515589

116.DolatshahiM,SalehipourA,SaghazadehA,MoghaddamHS,AghamollaiiV, FotouhiA,etal.ThyroidhormonelevelsinAlzheimerdisease:asystematicreviewandmeta-analysis.Endocrine.2023;79(2):252–72.DOI: 10.1007/ s12020-022-03190-w.PMID:36166162

117.SalehipourA,DolatshahiM,HaghshomarM,AminJ.Theroleofthyroiddysfunctioninalzheimer’sdisease:asystematicreviewandmeta-analysis.J PrevAlzheimer’sDis.2023;10(2):276–86.DOI: 10.14283/jpad.2023.20.PMID: 36946455

118.KimDK,ChoiH,LeeW,ChoiH,HongSB,JeongJH,etal.BrainhypothyroidismsilencestheimmuneresponseofmicrogliainAlzheimer’sdisease animalmodel.SciAdv.2024;10(11):eadi1863.DOI: 10.1126/sciadv.adi1863 PMID:38489366;PMCID: PMC10942107

119.DapicB,SchernhammerE,HaslacherH,StogmannE,LehrnerJ.Noeffectofthyroidhormoneson5-yearmortalityinpatientswithsubjective cognitivedecline,mildcognitivedisorder,andAlzheimer’sdisease.JNeuroendocrinol.2022;34(4):e13107.DOI: 10.1111/jne.13107.PMID:35213057; PMCID: PMC9286816

120.LiZ,LiuJ.ThyroiddysfunctionandAlzheimer’sdisease,aviciouscircle. FrontEndocrinol(Lausanne).2024;15:1354372.DOI: 10.3389/fendo.2024. 1354372.PMID:38419953;PMCID: PMC10899337

121.AlAnaziFH,Al-KuraishyHM,AlexiouA,PapadakisM,AshourMHM,AlnaaimSA, etal.PrimaryhypothyroidismandAlzheimer’sdisease:ataleoftwo.CellMol Neurobiol.2023;43(7):3405–16.DOI: 10.1007/s10571-023-01392-y.PMID: 37540395;PMCID: PMC10477255

122.JonathanMC,AdrianSH,GonzaloA.TypeIInuclearreceptorswithpotential roleinAlzheimerdisease.MolAspectsMed.2021;78:100940.DOI: 10.1016/j. mam.2020.100940.PMID:33397589

123.MoutinhoM,LandrethGE.Therapeuticpotentialofnuclearreceptoragonists inAlzheimer’sdisease.JLipidRes.2017;58(10):1937–49.DOI: 10.1194/jlr. R075556.PMID:28264880;PMCID: PMC5625128

124.SodhiRK,SinghN.LiverXreceptors:emergingtherapeutictargetsfor Alzheimer’sdisease.PharmacolRes.2013;72:45–51.DOI: 10.1016/j.phrs. 2013.03.008.PMID:23542729

125.JiangQ,LeeCY,MandrekarS,WilkinsonB,CramerP,ZelcerN,etal.ApoEpromotestheproteolyticdegradationofAbeta.Neuron.2008;58(5):681–93.DOI: 10.1016/j.neuron.2008.04.010.PMID:18549781;PMCID: PMC2493297

126.RiddellDR,ZhouH,ComeryTA,KouranovaE,LoCF,WarwickHK,etal.The LXRagonistTO901317selectivelylowershippocampalAbeta42andimproves memoryintheTg2576mousemodelofAlzheimer’sdisease.MolCellNeurosci. 2007;34(4):621–8.DOI: 10.1016/j.mcn.2007.01.011.PMID:17336088

127.FitzNF,CronicanA,PhamT,FoggA,FauqAH,ChapmanR,etal.LiverXreceptoragonisttreatmentamelioratesamyloidpathologyandmemorydeficits causedbyhigh-fatdietinAPP23mice.JNeurosci.2010;30(20):6862–72.DOI: 10.1523/JNEUROSCI.1051-10.2010.PMID:20484628;PMCID: PMC2883862

128.MaH,YangF,DingXQ.Inhibitionofthyroidhormonesignalingprotectsretinalpigmentepitheliumandphotoreceptorsfromcelldeathinamousemodel ofage-relatedmaculardegeneration.CellDeathDis.2020;11(1):24.DOI: 10. 1038/s41419-019-2216-7.PMID:31932580PMCID: PMC6957507

129.LefterovI,BookoutA,WangZ,StaufenbielM,MangelsdorfD,KoldamovaR. ExpressionprofilinginAPP23mousebrain:inhibitionofAbetaamyloidosisandinflammationinresponsetoLXRagonisttreatment.MolNeurode-

gener.2007;2:20.DOI: 10.1186/1750-1326-2-20.PMID:17953774PMCID: PMC2214725

130.TerwelD,SteffensenKR,VerghesePB,KummerMP,GustafssonJA,HoltzmanDM,etal.CriticalroleofastroglialapolipoproteinEandliverX receptor-alphaexpressionformicroglialAbetaphagocytosis.JNeurosci.2011; 31(19):7049–59.DOI: 10.1523/JNEUROSCI.6546-10.2011.PMID:21562267; PMCID: PMC6703224

131.CuiW,SunY,WangZ,XuC,PengY,LiR.LiverXreceptoractivationattenuates inflammatoryresponseandprotectscholinergicneuronsinAPP/PS1transgenicmice.Neuroscience.2012;210:200–10.DOI: 10.1016/j.neuroscience. 2012.02.047.PMID:22425753

132.Sandoval-HernandezAG,RestrepoA,Cardona-GomezGP,ArboledaG.LXRactivationprotectshippocampalmicrovasculatureinveryoldtripletransgenic mousemodelofAlzheimer’sdisease.NeurosciLett.2016;621:15–21.DOI: 10. 1016/j.neulet.2016.04.007.PMID:27057732

133.Sandoval-HernandezAG,HernandezHG,RestrepoA,MunozJI,BayonGF,FernandezAF,etal.LiverXreceptoragonistmodifiestheDNAmethylationprofileofsynapseandneurogenesis-relatedgenesinthetripletransgenicmouse modelofAlzheimer’sdisease.JMolNeurosci.2016;58(2):243–53.DOI: 10. 1007/s12031-015-0665-8.PMID:26553261

134.Baez-BecerraC,FilipelloF,Sandoval-HernandezA,ArboledaH,ArboledaG. LiverXreceptoragonistGW3965regulatessynapticfunctionuponamyloid betaexposureinhippocampalneurons.NeurotoxRes.2018;33(3):569–79.DOI: 10.1007/s12640-017-9845-3.PMID:29297151

135.ZelcerN,KhanlouN,ClareR,JiangQ,Reed-GeaghanEG,LandrethGE,etal. AttenuationofneuroinflammationandAlzheimer’sdiseasepathologybyliver xreceptors.ProcNatlAcadSciUSA.2007;104(25):10601–6.DOI: 10.1073/ pnas.0701096104.PMID:17563384;PMCID: PMC1890560

136.VanmierloT,RuttenK,DederenJ,BloksVW,vanVark-vanderZeeLC,Kuipers F,etal.LiverXreceptoractivationrestoresmemoryinagedADmicewithoutreducingamyloid.NeurobiolAging.2011;32(7):1262–72.DOI: 10.1016/j. neurobiolaging.2009.07.005.PMID:19674815

137.ChiangMC,NicolCJB,ChenSJ,HuangRN.TO901317activationofLXRdependentpathwaysmitigateamyloid-betapeptide-inducedneurotoxicityin3DhumanneuralstemcellculturescaffoldsandADmice.Brain ResBull.2022;178:57–68.DOI: 10.1016/j.brainresbull.2021.11.004.PMID: 34801648

138.SkerrettR,PellegrinoMP,CasaliBT,TaraboantaL,LandrethGE.Combined liverXreceptor/peroxisomeproliferator-activatedreceptorgammaagonist treatmentreducesamyloidbetalevelsandimprovesbehaviorinamyloidprecursorprotein/presenilin1mice.JBiolChem.2015;290(35):21591–602.DOI: 10.1074/jbc.M115.652008.PMID:26163517;PMCID: PMC4571883

139.DonkinJJ,StukasS,Hirsch-ReinshagenV,NamjoshiD,WilkinsonA,MayS, etal.ATP-bindingcassettetransporterA1mediatesthebeneficialeffects oftheliverXreceptoragonistGW3965onobjectrecognitionmemoryand amyloidburdeninamyloidprecursorprotein/presenilin1mice.JBiolChem. 2010;285(44):34144–54.DOI: 10.1074/jbc.M110.108100.PMID:20739291; PMCID: PMC2962513

140.CuiW,SunY,WangZ,XuC,XuL,WangF,etal.ActivationofliverXreceptordecreasesBACE1expressionandactivitybyreducingmembranecholesterollevels.NeurochemRes.2011;36(10):1910–21.DOI: 10.1007/s11064-011-05133.PMID:21630010

141.GuimaraesMEN,Lopez-BlancoR,CorreaJ,Fernandez-VillamarinM,BistueMB, Martino-AdamiP,etal.LiverXreceptoractivationwithanintranasalpolymertherapeuticpreventscognitivedeclinewithoutalteringlipidlevels.ACS Nano.2021;15(3):4678–87.DOI: 10.1021/acsnano.0c09159.PMID:33666411; PMCID: PMC8488954

142.WangY,RogersPM,StayrookKR,SuC,VargaG,ShenQ,etal.Theselective Alzheimer’sdiseaseindicator-1gene(Seladin-1/DHCR24)isaliverXreceptortargetgene.MolPharmacol.2008;74(6):1716–21.DOI: 10.1124/mol.108. 048538.PMID:18815215

143.IshidaE,HashimotoK,OkadaS,SatohT,YamadaM,MoriM.ThyroidhormonereceptorandliverXreceptorcompetitivelyup-regulatehumanselective Alzheimer’sdiseaseindicator-1geneexpressionatthetranscriptionallevels. BiochemBiophysResCommun.2013;432(3):513–8.DOI: 10.1016/j.bbrc.2013. 02.023.PMID:23416078

144.IshidaE,HashimotoK,OkadaS,SatohT,YamadaM,MoriM.Crosstalkbetween thyroidhormonereceptorandliverXreceptorintheregulationofselective Alzheimer’sdiseaseindicator-1geneexpression.PLoSOne.2013;8(1):e54901. DOI: 10.1371/journal.pone.0054901.PMID:23359226;PMCID: PMC3554671

145.BerghoffSA,SpiethL,SaherG.Localcholesterolmetabolismorchestratesremyelination.TrendsNeurosci.2022;45(4):272–83.DOI: 10.1016/j.tins.2022. 01.001.PMID:35153084

146.Sandoval-HernandezA,ContrerasMJ,JaramilloJ,ArboledaG.Regulationof oligodendrocytedifferentiationandmyelinationbynuclearreceptors:rolein

neurodegenerativedisorders.AdvExpMedBiol.2016;949:287–310.DOI: 10. 1007/978-3-319-40764-7_14.PMID:27714695

147.VelozRIZ,McKenzieT,PalaciosBE,HuJ.Nuclearhormonereceptorsindemyelinatingdiseases.JNeuroendocrinol.2022;34(7):e13171.DOI: 10.1111/ jne.13171.PMID:35734821;PMCID: PMC9339486

148.NelissenK,MulderM,SmetsI,TimmermansS,SmeetsK,AmelootM,etal.Liver Xreceptorsregulatecholesterolhomeostasisinoligodendrocytes.JNeurosci Res.2012;90(1):60–71.DOI: 10.1002/jnr.22743.PMID:21972082

149.XuP,XuH,TangX,XuL,WangY,GuoL,etal.LiverXreceptorbetaisessentialforthedifferentiationofradialglialcellstooligodendrocytesinthedorsal cortex.MolPsychiatry.2014;19(8):947–57.DOI: 10.1038/mp.2014.60.PMID: 24934178

150.LeeJY,PetratosS.Thyroidhormonesignalinginoligodendrocytes:fromextracellulartransporttointracellularsignal.MolNeurobiol.2016;53(9):6568–83. DOI: 10.1007/s12035-016-0013-1.PMID:27427390

151.PagninM,Kondos-DevcicD,ChincariniG,CumberlandA,RichardsonSJ,Tolcos M.Roleofthyroidhormonesinnormalandabnormalcentralnervoussystem myelinationinhumansandrodents.FrontNeuroendocrinol.2021;61:100901. DOI: 10.1016/j.yfrne.2021.100901.PMID:33493504

152.MeffreD,ShacklefordG,HichorM,GorgievskiV,TzavaraET,TroussonA,etal. LiverXreceptorsalphaandbetapromotemyelinationandremyelinationin thecerebellum.ProcNatAcadSciUSA.2015;112(24):7587–92.DOI: 10.1073/ pnas.1424951112.PMID:26023184;PMCID: PMC4475952

153.ShacklefordGG,GrenierJ,HabibWA,MassaadC,MeffreD.LiverXreceptors differentiallymodulatecentralmyelingenemRNAlevelsinaregion-,age-and isoform-specificmanner.JSteroidBiochemMolBiol.2017;169:61–8.DOI: 10. 1016/j.jsbmb.2016.02.032.PMID:26940358

154.WangZ,SadovnickAD,TraboulseeAL,RossJP,BernalesCQ,Encarnacion M,etal.NuclearreceptorNR1H3infamilialmultiplesclerosis.Neuron. 2016;90(5):948–54.DOI: 10.1016/j.neuron.2016.04.039.PMID:27253448; PMCID: PMC5092154

155.InternationalMultipleSclerosisGeneticsConsortium.NR1H3p.Arg415Glnis notassociatedtomultiplesclerosisrisk.Neuron.2016;92(2):333–5.DOI: 10. 1016/j.neuron.2016.09.052.PMID:27764667;PMCID: PMC5641967

156.Martin-GutierrezL,WaddingtonKE,MaggioA,CoelewijL,OppongA,Yang N,etal.DysregulatedlipidmetabolismnetworksmodulateT-cellfunction inpeoplewithrelapsingremittingmultiplesclerosis.ClinExpImmunol. 2024;217(2):204–18.DOI: 10.1093/cei/uxae032.PMID:38625017;PMCID: PMC11239565

157.BogieJFJ,VanmierloT,VanmolJ,TimmermansS,MailleuxJ,NelissenK,etal. LiverXreceptorbetadeficiencyattenuatesautoimmune-associatedneuroinflammationinaTcell-dependentmanner.JAutoimmun.2021;124:102723. DOI: 10.1016/j.jaut.2021.102723.PMID:34481107

158.DucD,VigneS,PotC.Oxysterolsinautoimmunity.IntJMolSci. 2019;20(18):4522.DOI: 10.3390/ijms20184522.PMID:31547302;PMCID: PMC6770630

159.FernandezM,GiulianiA,PirondiS,D’IntinoG,GiardinoL,AloeL,etal.Thyroidhormoneadministrationenhancesremyelinationinchronicdemyelinatinginflammatorydisease.ProcNatAcadSciUSA.2004;101(46):16363–8.DOI: 10.1073/pnas.0407262101.PMID:15534218;PMCID: PMC526198

160.Castelo-BrancoG,StridhP,Guerreiro-CacaisAO,AdzemovicMZ,FalcaoAM, MartaM,etal.Acutetreatmentwithvalproicacidandl-thyroxineamelioratesclinicalsignsofexperimentalautoimmuneencephalomyelitisandpreventsbrainpathologyinDArats.NeurobiolDis.2014;71:220–33.DOI: 10.1016/ j.nbd.2014.08.019.PMID:25149263

161.FrancoPG,SilvestroffL,SotoEF,PasquiniJM.Thyroidhormonespromotedifferentiationofoligodendrocyteprogenitorcellsandimproveremyelinationaftercuprizone-induceddemyelination.ExpNeurol.2008;212(2):458–67.DOI: 10.1016/j.expneurol.2008.04.039.PMID:18572165

162.CalzaL,FernandezM,GiulianiA,AloeL,GiardinoL.Thyroidhormoneactivates oligodendrocyteprecursorsandincreasesamyelin-formingproteinandNGF contentinthespinalcordduringexperimentalallergicencephalomyelitis.Proc NatAcadSciUSA.2002;99(5):3258–63.DOI: 10.1073/pnas.052704499.PMID: 11867745;PMCID: PMC122506

163.BaxiEG,SchottJT,FairchildAN,KirbyLA,KaraniR,UapinyoyingP,etal.Aselectivethyroidhormonebetareceptoragonistenhanceshumanandrodent oligodendrocytedifferentiation.Glia.2014;62(9):1513–29.DOI: 10.1002/glia. 22697.PMID:24863526;PMCID: PMC4107024

164.HartleyMD,BanerjiT,TaggeIJ,KirkemoLL,ChaudharyP,CalkinsE,etal. MyelinrepairstimulatedbyCNS-selectivethyroidhormoneaction.JCIInsight.2019;4(8):e126329.DOI: 10.1172/jci.insight.126329.PMID:30996143; PMCID: PMC6538346

165.ChaudharyP,MarracciGH,CalkinsE,PociusE,BensenAL,ScanlanTS,etal. Thyroidhormoneandthyromimeticsinhibitmyelinandaxonaldegeneration andoligodendrocytelossinEAE.JNeuroimmunol.2021;352:577468.DOI: 10. 1016/j.jneuroim.2020.577468.PMID:33422763;PMCID: PMC8748188

166.SaponaroF,SestitoS,RunfolaM,RapposelliS,ChielliniG.Selectivethyroidhormonereceptor-beta(TRbeta)agonists:newperspectivesforthe treatmentofmetabolicandneurodegenerativedisorders.FrontMed(Lausanne).2020;7:331.DOI: 10.3389/fmed.2020.00331.PMID:32733906;PMCID: PMC7363807

167.BerghoffSA,SpiethL,SunT,HosangL,SchlaphoffL,DeppC,etal.Microglia facilitaterepairofdemyelinatedlesionsviapost-squalenesterolsynthesis. NatNeurosci.2021;24(1):47–60.DOI: 10.1038/s41593-020-00757-6.PMID: 33349711;PMCID: PMC7116742

168.Bosch-QueraltM,Cantuti-CastelvetriL,DamkouA,SchiffererM,SchlepckowK, AlexopoulosI,etal.Diet-dependentregulationofTGFbetaimpairsreparative innateimmuneresponsesafterdemyelination.NatMetab.2021;3(2):211–27. DOI: 10.1038/s42255-021-00341-7.PMID:33619376;PMCID: PMC7610359

169.ZhangR,DongY,LiuY,MoezziD,GhorbaniS,MirzaeiR,etal.Enhanced liverXreceptorsignallingreducesbraininjuryandpromotestissueregenerationfollowingexperimentalintracerebralhaemorrhage:rolesofmicroglia/ macrophages.StrokeVascNeurol.2023;8(6):486–502.DOI: 10.1136/svn2023-002331.PMID:37137522;PMCID: PMC10800269

170.GaoT,QianT,WangT,SuY,QiuH,TangW,etal.T0901317,aliverXreceptor agonist,amelioratesperinatalwhitematterinjuryinducedbyischemiaandhypoxiainneonatalrats.NeurosciLett.2023;793:136994.DOI: 10.1016/j.neulet. 2022.136994.PMID:36460235

171.LiantoP,HutchinsonSA,MooreJB,HughesTA,ThorneJL.Characterization andprognosticvalueofLXRsplicevariantsintriple-negativebreastcancer.iScience.2021;24(10):103212.DOI: 10.1016/j.isci.2021.103212.PMID: 34755086;PMCID: PMC8560626

Publisher’snote: GenomicPressmaintainsapositionofimpartialityandneutralityregardingterritorialassertionsrepresentedinpublishedmaterialsandaffiliationsofinstitutionalnature.Assuch,wewillusetheaffiliationsprovidedbytheauthors,withouteditingthem.Suchusesimplyreflectswhattheauthorssubmitted tousanditdoesnotindicatethatGenomicPresssupportsanytypeofterritorial assertions.

OpenAccess. ThisarticleislicensedtoGenomicPressundertheCreativeCommonsAttribution-NonCommercial-NoDerivatives4.0InternationalLicense(CCBY-NC-ND4.0).Thelicensemandates:(1)Attribution:Credit mustbegiventotheoriginalwork,withalinktothelicenseandnotificationofany changes.Theacknowledgmentshouldnotimplylicensorendorsement.(2)NonCommercial:Thematerialcannotbeusedforcommercialpurposes.(3)NoDerivatives: Modifiedversionsoftheworkcannotbedistributed.(4)Noadditionallegalortechnologicalrestrictionsmaybeappliedbeyondthosestipulatedinthelicense.Public domainmaterialsorthosecoveredbystatutoryexceptionsareexemptfromthese terms.Thislicensedoesnotcoverallpotentialrights,suchaspublicityorprivacy rights,whichmayrestrictmaterialuse.Third-partycontentinthisarticlefallsunderthearticle’sCreativeCommonslicenseunlessotherwisestated.Ifuseexceeds thelicensescopeorstatutoryregulation,permissionmustbeobtainedfromthe copyrightholder.Forcompletelicensedetails,visit https://creativecommons.org/ licenses/by-nc-nd/4.0/.Thelicenseisprovidedwithoutwarranties.

GenomicPsychiatry

THOUGHTLEADERSINVITEDREVIEW

LessonswelearnedfromtheLothianBirthCohortsof1921and1936

Theauthorsare,respectively,thefoundingandcurrentDirectorsoftheLothianBirthCohortsof1921and1936.Inthisinvitedand,admittedly, self-regardingandnecessarilyself-citingpiece,weenumerateandexplicatesomethingswelearnedfromworkingwiththecohortsandtheir data.Someofthelessonsarescientificresults,somearetodowithscientificpractice,andsomearemoregeneralreflections.Wehopethe paperprovidesausefulsummaryofsomeofthemainfindingsfromthesetoo-many-papers-to-readcohortsandanenjoyableaccountofour buildingaresearchteamandanetworkofcollaborators.Theoriginalaimofassemblingthecohortswastofashionatooltodiscoverwhysome people’sthinkingskillsagedbetterthanothers’.Thattool,wediscovered,hadmanyadditionaluses.

GenomicPsychiatry January2025;1(1):47–60;doi: https://doi.org/10.61373/gp024i.0076

Keywords: Cognitiveageing,cognitiveepidemiology,longitudinalstudies,LothianBirthCohorts,ScottishMentalSurveys,intelligence.

Introduction

Itisnice(weareBritish,afterall)tohavebeenaskedbytheeditortoreflectonwhatwehavelearnedfromtheLothianBirthCohorts(LBCs).We arehappytodoso.Oneofthebenefitsthisreflectionaffordsisthatit cancollectafractionofthelargenumberoftheLBCs’widely-dispersed scientificarticlesinoneplaceandprovideashopwindowforthem(see PublicationsfromtheLothianBirthCohorts);itcanpointthewaytomany more.Therearesomedrawbacks,too,ofthisexercise.WeshallnecessarilyfocusontheLBCs’contributionstoscientificquestionswhereaswe knowthatothercohortsandsamplesoftenhavemademoreandbettercontributions.Weshallhavetoengageinthefrowned-uponactivityofself-citation.Wetrytoavoidduplicatingothersynopticpieceson theLBCs.Thesecoyworriesnotwithstanding,herearesomelessonsfrom 25yearsofworkontheLBCs.

NoteveryoneknowswhattheLBCsare,sothisenumeratedparagraph isacribsheet.Herearesomekeyfactsthatshouldmaketherestofthe articlemorecomprehensible.

1.OnMondayJune1,1932,theScottishCouncilforResearchinEducationtestedalmosteverychildbornin1921andattendingschoolsin ScotlandontheMorayHouseTestNo.12(atestofintelligencethat correlatedabout0.8withtheStanfordBinettestin1000ofthepupils inavalidationexercise).The N was87,498andthisrepresentedabout 94%ofthewholeScottishpopulationofthatyearofbirth.Thiswas theScottishMentalSurvey1932(SMS1932)(1, 2).

2.OnWednesdayJune4,1947,theScottishCouncilforResearchinEducationtestedalmosteverychildbornin1936andattendingschools inScotlandontheMorayHouseTestNo.12.The N was70,805and thisrepresentedabout94%ofthewholepopulationofthatyearof birth.ThiswastheScottishMentalSurvey1947(SMS1947)(2, 3).

3.Beginningin1999,atameanageof79years,werecruited550 largely-healthycommunity-dwellingScottishpeoplebornin1921to formtheLothianBirthCohort1921(4).Mosthadtakenpartinthe SMS1932;therefore,formostofthem,MorayHouseTestscoreswere availablefromage11.Theyprovideddemographicandhealthinformation;theyweretestedoncognitivefunctions,sensoryfunctions, psychosocialfactors,andfitness;theyprovidedbloodsamplesfora widerangeofbiomarkers,genetics,andother‘omicstests;theywere linkedtodeathrecords;aminorityhadsomestructuralmagneticresonanceimaging(MRI)ofthebrain.Theyweretestedatages79,82, 87,90,and92years(5, 6).

4.Beginningin2004,werecruited1091largely-healthycommunitydwellingScottishpeoplebornin1936toformtheLBC1936(7).Most hadtakenpartintheSMS1947;therefore,formostofthem,Moray HouseTestscoreswereavailablefromage11.Theyprovidedallthe informationthathasbeencollectedintheLBC1921,butinmoredetailandwithmanyextras.Forexample,theircognitivetestbattery wasmuchlonger,theyunderwentlongitudinalstructuralmagnetic resonancebrainimaging,theywerelinkedtomedicalrecordsaswell asdeathrecords,theyprovidedwhitebloodcellsforstemcellcreation,andtheyconsentedtoprovidebraintissueafterdeath.They weretestedatages70,73,76,79,82,86and,aswewrite,theyare beingtestedforwhatwillcompriseWave7atmeanage88(5, 6). Figure1 illustratesthetimelineoftheLBC1936studyandsomeof themajortypesofdatathathavebeencollected.

5.WehavewrittentheprotocolsoftheLBC1921andLBC1936baseline Waves(4, 7),andwehavewrittencohortprofiles(5)andcohortprofileupdates(6)thatgivedetailsofthevariablescollectedinthese twostudies.Werecommendthesearticlestothosewhowouldliketo requestdatatotesttheirhypothesesontheLBCs.

6.WewroteasummaryofwhatwehadfoundoutabouthealthycognitiveageingintheLBC1921andLBC1936upto2018(8).

7.ForthoseinterestedinthebackgroundtotheLBCs,theScottishMentalSurveys,andthesmallerbutslightlyearlier-conductedAberdeen BirthCohortsof1921(ABC1921)and1936(ABC1936)thereisthe book, ALifetimeofIntelligence (2).

8.AkeyvariablethatisavailableintheLBC1921andtheLBC1936was theretestinginoldageoftheMorayHouseTestNo.12.Thisisthe intelligencetestthattheyhadtakenatmeanage11years,whichwas theageoftransitionfromprimarytosecondaryschool(atthetime, compulsoryeducationcontinueduntiltheageof14).

9.IanDearyfoundedanddirectedtheLBCsfromJanuary1999to November2020whenheretired(justbriefly,toberehired,afew monthslater,part-timetocontinueworkingontheLBCs).SimonCox hasDirectedtheLBCssinceDecember2020,havingworkedwiththe LBCssince2009(forhisPhDwhereIanDearywasoneofhissupervisors,thenasStudyCo-ordinator,thenpostdoctoralfellow,andthen LBCCo-Investigatorandleadinghisownfundedworkontheneuroimagingaspectsofthestudy).

10.ItwasafumblingsetofeventsthatledLawrenceWhalley(whodied in2024)andIanDearytodiscoverthattheSMSshadbeenconductedandthattheirdatastillexisted(describedinref. 2).Professor

1 LothianBirthCohorts,DepartmentofPsychology,UniversityofEdinburgh,Edinburgh,UK

CorrespondingAuthor: IanDeary,DepartmentofPsychology,UniversityofEdinburgh,7GeorgeSquare,EdinburghEH89JZ,UK.E-mail: i.deary@ed.ac.uk

Received:19September2024.Revised:23October2024and24October2024.Accepted:25October2024. Publishedonline:7November2024.

Figure1. DatacollectedintheLothianBirthCohort1936.Thecentralrowofwhiteboxesdenoteseachinstanceofmeasurement,startingwithallage11Scottish childrenwhosattheMorayHouseTestNumber12,andproceedingtothe“baseline”(Wave1)andsubsequentassessmentvisitsoftheLBC1936participants. Solidarrowsindicatedata(topandbottomrows)collectedatagivenwave;dottedlinesandboxesdenoteongoing(Wave7)andplanned(Wave8)datacollection.

Whalley(apsychiatrist)ledtheABC1921andABC1936,collaboratingwithIanDearyandgeriatricphysicianProfessorJohnStarr(9). JohnStarrwasthemedicalleadontheLBCsfrom1999untilhis deathin2018,afterwhichDrTomRusstookuptherole.Professor JoannaWardlaw(aneuroradiologist)isthebrainimagingleadonthe LBC1936(10).

ScientificDiscoveryLessons

WhenpeopleaskabouttheaimsoftheLBCs,wesaysomethinglike,“we aretryingtodiscoverwhysomepeople’sthinkingskillsandbrainsage betterthanothers”.However,theLBCshaveprovedtobevaluablefar beyondthatremit.Theyoftenthenask,“whathaveyoudiscovered?”. Afterweprovideananswer,sometimesitismetwithundertakingsto makelifestylechanges(e.g.,stopsmoking),butitisalsonotunusualto hearthefollow-onquestion,“isn’tthatobvious?”.Seewhatyouthink… SomeoftheBigFindingsAppearedEarlyon

Thisisnotascientificdiscoveryperse;rather,itisametacomment.Toarticulatethis,althoughithasaPareto-likequality(andsomeregressionto-the-meanquality),weshallusethecomparisonofpop/rockbands. Mostbandshavemanysongs,onlyafewofwhicharelargehitsandoftenthosehitsappearearlyintheircareers(havealookatnumbersof playsonSpotify).WiththeAberdeenBirthCohorts(ABCs)andLBCssome oftherelativelybiggerdiscoverieshappenedearlyonaswepickedsome low-hangingfruits.Perhaps,withmostcohortstudiesmoregenerally,investigatorswillhave,probably,onlyafewbighitsandmanyworthyalbum tracks(havealookatnumbersofcitationsonGoogleScholar).Slightlyto argueagainstthat,isthatlongitudinalcohortsgainvaluefromhaving morewavesand,therefore,somelargerfindingscanonlyappearafter severalwavesoftesting,notearlyon.Inwhatfollowsweshallprovide anas-pithy-as-we-can-managestatementofsomeofwhatwefound,followedbyabitofexplanationandcontext,andrelevantreferences.There aremanyhundredsofpeer-reviewedarticlesthatanalyzeLBCs’dataand weshallcite,intotal,asmallminorityofthem.

HigherIntelligenceTestScoresatAge11areRelatedtoaBetterChance ofSurvivaltoOlderAge,andtoLowerRiskofDeathFromManyMajor CausesofMortality

These—theassociationsbetweenhigherchildhood(sometimesyoung adulthood)intelligencetestscoresandlongerlifeandbetterhealth— havebeenwidelyreplicated,includinginverylargestudies(somehaving sixorsevenfiguresamplesizes).ThediscoveryfromtheSMSs,thathigher intelligenceinchildhoodisassociatedwithlivinglonger(11, 12),properly beganthefieldofcognitiveepidemiologywhichaimstoreplicate,extend, andexplainthissetoffindings(13). Figure2 showstheresultsoflinking

theMorayHouseTestscoresatage11fromtheScottishMentalSurvey 1947tomajorcausesofdeathseveraldecadeslater.Thisnewfieldtook wepsychometrically-orientedpsychologistsintothestatisticalanalysis worldandtoolsofepidemiologists.Theassociationbetweenchildhood cognitivetestscoresandsurvivalwasanalyzedmostlyusingCoxproportionalhazardregressionandtheresultsexpressedashazardratios.To giveaguidetothesizeofthetypicaleffects,aone-standarddeviation advantageinMorayHouseTestscoreatage11wasassociatedonaverage withabout20%to25%lowerchanceofdyingfrommostmajorcausesof deathuptothelate70s(12).Partofthisworkhasbeenthepicking-apart ofthecontributions(confounders?,mediators?)ofeducationandsocial class(whicharecorrelatedwithintelligencetestscoresandarethemselvesrelatedtohealthandmortalityinequalities),andtheemployingof moleculargenetictechniques.Wehavereviewedthisfieldand,briefly,it appearsthatchildhood(parental)socialclassdoesnotcontributemuchif atalltotheintelligence-longevity/healthassociation,butthattheassociationmightbemediatedsomewhatbyaperson’sownadultsocialclass (14).Withregardtoeducation(or,e.g.,healthliteracy)thisishardtocall, notleastbecauseintelligenceandeducationandhealthliteracyarequite stronglycorrelated(15).

AboutHalftheVarianceinIntelligenceTestScoresinOlderAgeis theSameasThatFoundatAge11 NotlongafterwediscoveredthattheSMSs’datawereextant,weknew thatitwouldbevaluableandunusualtobeabletofindouthowstrongly childhoodintelligencetestscorescorrelatedwiththesametesttaken inolderage.Thisprovidestwousefulpiecesofinformation:theobverse isthestabilityofintelligencedifferencesacrossmostofthehumanlife course(testedusingthePearson[usually]correlationbetweenthetest scoreatage11versusthescoreonthesametestinolderage);andthe reverseofthatcoinisthatitcantellusaboutthechangeswithrespectto individualdifferencesoverthatsameperiod.Fortheformer,we’vepublishedseveralpapersthatdescribethecorrelationbetweentheMoray HouseTestNo.12atage11andolder-ageagesinthe60s,70s,80s,and 90s(4, 16–18).Thebroadresultisthateventherawcorrelationfromage 11tothe70sisnotfarfrom0.7which,whensquared,tellsusthatjust underhalfofthevarianceinintelligenceinolderagewasthereatage11. Thisisalower-boundestimateofthelong-termstabilityofintelligence differences.Itisnotcorrectedformeasurementerrororfortherestriction ofrangeinthesesamplescomparedwiththeirbackgroundpopulations (whichareknownbecauseofthecomprehensivenessoftheScottishMentalSurveys)(18).Forthelatter(i.e.,theremaining ∼50%notexplainedby earlylifedifferences,someofwhichwillbemeasurementerror,ofcourse), understandingwhatsortsoffactors(betheygenetic,health,behavioral,

Figure2. AssociationbetweenMorayHouseTestNo.12scoreatage11andmajorcausesofdeathuptoage79intheScottishMentalSurvey1947.Forvisualization,theMorayHouseTestscoresweredividedintodecilesorquarters.Thepointsinthefiguresareage-andsex-adjustedhazardratiosand95%confidence intervals;thelowestscoringgroupissetto1.0.Theanalyticsample N was67,765ofwhom25,979haddied.Meantimetofollowupwas57(SD = 18)years.This isFigure2fromCalvinetal.(2017)intheBritishMedicalJournal,357,j2708;thisarticleisanopenaccessarticledistributedunderthetermsoftheCreative CommonsCCBY4.0licenseandthefigureisreproducedhere,withthanks,underthatlicense.

social,etc.,thoughsomewillbestochastic/randomerror)perturbpeoplefromtheirchildhoodrankinghasbeenthebasisofmanyoftheearlier LBCdiscoveries.Anditturnsoutthatthosewhoareperturbedlessfrom their11–70scorerankingarealsothosethattend—abit—toalsoageless steeplyintomucholderage(19).In Figure3,weshowthescattergramsof theMorayHouseTestNo.12scoresfortheLothianBirthCohortsatage11 andage79.Wehavepreviouslypublishedaversionofthisscattergramfor theLBC1921butnotLBC1936andwehavenotpublishedthemtogether before.Wenotethat,whereasage79wasthesecondtestingoccasionfor theLBC1921,itwasthefourthtestingoccasionfortheLBC1936whoalso tookthetestatages70and76.

TheGeneticInfluencesonIntelligenceDifferencesarenotAlltheSame inChildhoodandOlderAge

Mostoftheindividualgeneticcontributionstointelligencedifferences aretiny(reallytiny,liketootinytoworkon).Don’tdocandidategenestud-

ies(apartfrom APOE).So,threelessonsthere.Thefirstlessonwasbased onanearlyfindingwiththeLBC1921inwhichwefoundthatpossession ofthe APOE e4allele(assessedbytestingforthetwosingle-nucleotide polymorphisms[SNP]thatdetermine APOE e4status)wasnotassociated withMorayHouseTestNo.12scoreatage11,butwasassociatedsignificantlywiththesametesttakenbythesamepeopleatage79(onaverage,thosewiththee4allelescoredlower)(20).Thesecondlessonbecame obviousasweconductedgenome-wideassociationstudies(GWAS)which grewinsamplesizesfromfourtofivetosixfigures.InGWAS,oneexaminestheassociationbetweentheoutcome(inthiscasethecognitivetest scores)andhundredsofthousandsofSNPsthatcapturegeneticvariationinhumans(seeRef. 21)foradescriptionofthisandothergenetic methods).TheLBCsandABCsformedthemajorityoftheparticipants originally(22)andstillcontributedtothelargerconsortiastudies(23, 24).Onethingthatdidnotchangehugelyasthestudiesgrewinsizewas theestimatedheritabilityofintelligencedifferencesbasedonSNPs—it

Figure3. Stabilityofindividualdifferencesinintelligencefromchildhoodtooldage.AssociationsbetweenMorayHouseTestNumber12scorestakenatage 11andage79intheLothianBirthCohortof1921(left; N = 483)andLothianBirthCohort1936(right; N = 468).Pearson’s r aredisplayedinthetopleftof bothpanels(p < 2.2 × 10 16 ).Scoreshavebeencorrectedforageindaysattesting.Outliers ±3.5SDswereremovedfromthepairwisecorrelationsbasedon fullavailablesamples(N = 3forLBC1921, N = 7forLBC1936)forvisualizationpurposes.Correlationswithoutliersincludedare: r = 0.66(LBC1921, N = 486; p < 2.2 × 10 16 )and r = 0.61(LBC1936 N = 475; p < 2.2 × 10 16 ).

remainedatabouthalf,orabitless,ofthatestimatedfromtwinstudies. Thatheritability,todate,ismadeupofatleasthundredsoftinyindividual associationsbetweenSNPsandintelligencetestscores.Wesummarized thisfield,withconsiderationofwhatthismeansforunderstandingthe biologicalmechanismsthatfoundpartofintelligencedifferences(21). ThethirdlessonwaslearnedfromourearlyexperiencewiththeLBCsand ABCsandtheworkofotherswhichconcludedthat,apartfromvariationin APOE (25, 26),associationsbetweenvariationincandidategenesandintelligencetestscoresinmodestly-sizedstudieshavenotreplicated.With largeerrorsaroundthepointestimates,weestimatedthatgeneticfactorsaccountedforabouttwo-thirdsofthestabilityinintelligencefrom childhoodtoolderagebutaboutonlyaquarterofthechangesinintelligencerankingsacrossthesameperiodofthelifecourse(27).

SomeoftheExpected“Exposures”(IndependentVariables)toLater-life CognitiveAbilityTurnOuttobe“Outcomes”(DependentVariables)of Early-lifeCognitiveAbility(ReverseCausationorConfounding) WhenwesetuptheLBCswewantedtoincludeaswidearangeofpotentialcontributorstopeople’sdifferencesincognitiveageingaswasfeasible/tolerable.Intestingthecognitiveoutcomes,weselectedabroadbatteryofcognitiveteststocoverthemaindomainsofcognitivefunction;in assessingtheexposures,wetriedtobeinclusiveaswaspracticableand includedgenetic,health,fitness,sensory,biomarker,brainimaging,psychological,demographic,andsocialvariables(6).Webegantofindthat someoftheselatter,supposedlyexposure/independent-variablefactors, althoughtheydidassociatewithcognitivefunctioninolderage,alsocorrelatedwithintelligencetestedatage11,manydecadespreviously.Thus dissolvedthesometimes-falseseparationwehadmadebetweenourcognitiveageingandcognitiveepidemiologyinvestigations.Amongtheputativevariablesthatwereinvolvedinourrealizingthiswere,forexample, C-reactiveprotein(28),physicalfitness,TypicalIntellectualEngagement, socialandotheractivities(29),alcoholintake,tendencytotype2diabetes (30)andallostaticload;therewereothers;someofthesearelistedand discussedbyref.

8.Tospellthisout,wefoundthatchildrenwithahigher intelligencetestscoreatage11tendedtobefitter,healthierandmore sociallyandintellectuallyengagedinolderage,andtodrinkaweebit(not alot—nottoexcess)ofalcohol;thatis,sometimes,butnotalways,the associationbetweenthegivenfactorandage-11intelligencetestcould

reducetheassociationbetweenthefactorandolder-ageintelligenceto nonsignificance.Thuswediscovered“reversecausation”/confoundingby early-lifeintelligencetestscore.Thisdoesnotnecessarilyruleoutthe causalnatureofagivenfactorwhoseassociationwithlaterlifefunctioningisattenuated,sinceitcouldalsobethatpeople’sdifferentialexposurestocognitive-ageing-inducingfactorscanbepredicted,atleastin part,byearlierlifefactors.Whatitdoesdo,though,iscastthosefactors whicharenotattenuatedbyage-11intelligenceintomuchsharperfocus asfactorsofinterest.Thelife-coursetimingoffactorsthatmightormight notinfluencepeople’sdifferencesincognitiveaging—includingcontributionsmadebytheLBCs—isdiscussedbyothersalso(31).

PeopleHaveVeryDifferentExperiencesofBrainandCognitiveAgeing Whenanalyzingthethingsthatmightexplaindifferencesinbrainand cognitiveageing,oneneedstohavevariabilityinthoseoutcomes-ofinterest.However,quitehowmuchofadifferencethereisbetweenpeoplehasbeenoneofthestrikingfindingsofthework.TheLBCscanoffera valuablewindowintothisbecauseallparticipantsarethesameage.The brainscansthatweretakenduringthesecondwaveofLBC1936testing areastarkillustrationofjusthowvariablesame-agepeople’sbrainsare intermsofkeyfeaturesofbiologicalageing. Figure4 showsaselection of73-year-oldLBC1936brainMRIs(over700werebrain-scannedatthis age),showingatrophy(wherethebrainshrinksawayfromtheintracranialvaultandalsothecerebrospinalfluid-filledventriclesatthecenterof thebrainenlargetoreplacespacevacatedbythediminishingcerebraltissue;PanelA)andwhitematterhyperintensities(ageing-relateddamage tothebrain’sconnectingfibers;PanelB).Theyarebothorderedfromtopleft(leastaffected)tobottomright(mostaffected).Weandothershave indicatedthattheseandotherimportantaspectsofbrainstructureare importantforcognitiveageingdifferences(seebelow).Wehaveofcourse alsoshownthiswidevariabilityintheageingexperienceelsewhere,with statisticalfiguresandanalysesforbothbrainandcognitiveageing,and fortheirsubsequentchangesintoolderage(whichalsoshowwidevariability)(32, 33).Nevertheless,thisfigureremainsoneofthemostengagingwaystocommunicatetootherssomeofourcentralresearchaims;how canonearriveatolderagewithabrainthatlookslikethoseinthetopleft, andwhatcanonedotoavoidhavingonethatlookslikethosetowardthe bottomright?Andhowcanwemaintainthatforaslongaspossibleaswe

Figure4. Brainstructural(MRI)scansfromaselectionofindividualsfromtheLothianBirthCohort1936takenduringWave2(whenallparticipantswereabout 73yearsold). PanelA showsglobalatrophy(brainvolumetricshrinkage)orderedfromleast(topleft)tomost(bottomright). PanelB showstotalwhitematter hyperintensityvolume(increasingfromtoplefttobottomright).PanelsAandBarereproducedfromCoxandDeary(2022)inBrainAging,2,100032(74);this articleisanopenaccessarticledistributedunderthetermsoftheCreativeCommonsCCBY4.0licenseandthefigureisreproducedhere,withthanks,underthat license. PanelC showswhitematterpathwaysofamiddle-agedmaleadult,identifiedusingdiffusionMRI.Viewsfromlefttoright:superior,lateral,anterior, inferior.

continuetoage?Italsooffersarayofhopetothoseofusonthejourney toour70s(whereIJDhasjustarrived)thatadversebrainandcognitive ageingoutcomesarenotaninevitability.

BrainSizeReallyis(Modestly)RelatedtoIntelligence.WhetherMore IntelligentPeopleTendtoHaveaLargerBrainwasaDebatedIssue OverManyYears ThenadirofrespectabilityforthisquestionmighthavebeenwithStephen J.Gould’sbook TheMismeasureofMan.ThearrivalofMRItoassessbrain sizesettledtheissue.Earlymeta-analyses,anLBC1936studythatwas thelargeststudyatthetimeitwaspublished(34),anddatafromtheUK Biobankstudy(35)agreethattheassociation(correlation)betweengeneralcognitiveabilityandtotalbrainvolumeasassessedinMRIisabout 0.27.Wecautionthat,inolder-agesamplessuchastheLBC1936andUK Biobank,theremightbesourcesofvariationintotalbrainvolumethatare associatedwithintelligencetestscoresthatarenotpresentorasmarked inyounger-agesamples.Therefore,itisimportanttostudytheassociationatdifferentages.Whydoesonedothiswork?:becauseit’sthebrain thatthinksandwewanttoknowhowvariationsinitsbiologicalparametersassociatewiththinkingskillsthroughthelifecourse.Werecognize (seefollowingsections)theimportanceinunderstandingwhatitisabout alargerbrainthatmakes,onaverage,formoreefficientthinking.But,of course,thereismuchmoretothinkingskillsthanjusthavingalargebrain, includingotherbrainvariables(34, 35),andwecoversomeofthatinthe followingsection.

BrainWhiteMatterMattersforIntelligence

Aswejustsaid,thereismuchmoretothinkingskillsthanjusthavinga largebrain.AroundthetimethattheLBC1936began,therewasincreasingrealizationof,andinterestin,measurementsofthebrain’swhitematterandtheirimportanceforstudyingageing.Ourteam’sdecisiontomeasureparticipants’whitemattermicrostructureusingnewdiffusionMRI (see Figure4,PanelC)wasinresponsetothis,andourintentiontoaddressthiswaswritlargeinourapplicationtothecharityAgeUKforfundingas“TheDisconnectedMindproject”(10).WiththeLBCs’brainimagingdata,wediscoveredthatthehealthofthebrain’sconnections—the whitematter—inthemainbraintractswereallpositivelycorrelated,that is,healthybrainwhitematterinonetractwasstronglyrelatedtohaving healthywhitematterelsewhereinthebrain(36).Wesubsequentlyalso replicatedthisimportantfindinginotherhealthyadultsampleswitha wideragerangesuchasUKBiobank(37),andalsofounditinneonatesand amongpsychiatricpatientswithschizophrenia(38, 39).Moreover,having computedageneralcomponentofthiswhitematterhealth(usingprincipalcomponentsanalysis),wefoundthatpeople’sdifferencesinbrain whitematterhealthweremodestlyassociatedwithcognitivefunctioning(40).Thereafter,wefoundthatthesetwovariableschangetogether inasynchronizedfashionovertime:onaverage,thosewithsteeperageingoftheirbrainwhitematterpathwaysarethosewhosegeneralcognitivefunctioningdeclinesmoresteeply(41).Thisisanotherresultthathas beenreplicatedelsewhere.Moreover,theso-calledwhitematterlesions

thataccumulateinsomepeoplemorethanothersastheyagearealso relatedtointelligencedifferencesand…

BrainGreyMatterMattersforIntelligence,Too(andCarefullyPutting ManyBrainImagingMeasuresTogetherisAdvantageous)

Thereareotherbrainvariables—includinggreymatterparametersfor thecortexandsubcortex,andaspectsofbrainvascularhealth—toconsiderwithrespecttointelligence/cognitiveageingassociations(34).MRIderivedvariablesdon’tstandstill;wehaveexpandedthesetoincludedetailedpropertiesofthecortex,brainconnectomics,“brainage,”andother aspectsofthehealthofthebrain’swhitematter(33, 42–44).Onelesson fromthisaccumulationofbrainimaging–derivedvariablesisthatsome arestronglycorrelatedwithothersuchvariablesandthatoneneedsto ascertaintheindependenceofbrainimagingvariablesfromeachother whenfiringthematintelligencedifferences.Thisavoidsold-wine-innew-bottlesscenarios,buthasalsoallowedusto:i)identifymorepreciselyhowfareveryoneexperiencesthesameaspectsofbrainageing;and ii)maptheextenttowhichinformationgleanedfromthesemanyaspects ofbraingreyandwhitematterarealluniquelyrelevantfordifferencesin cognitiveageing.Wehavelearnedthattheyoftenaccountforsomesmall uniqueproportionofcognitivedifferencesinolderage.Thatis,whereas someclassesofbrainfeaturesarepartlyoverlapping,havinglotsofinformationaboutdifferentfacets,regions,andtissueshelpsustoimprove ourunderstandingofdifferencesincognitiveageing(44, 45).

ThegenerosityoftheLBC1936participantsinprovidingtheirbrain tissueaftertheydie(moreaboutthisimportantandstrikinglegacyin thesectionsbelow)hasalsoenabledustolookdeeperstillintothehallmarksofbetterandpoorercognitiveandbrainageing,identifyingfeatureslikesynapticresilienceandneurograninasimportantaspects(46, 47).WearealsousingnewmethodstoputLBCdatatogetherwithlargescalepostmortemdatafrommanyothersourcestolearnmoreabout theregionsofthebrainthataremostimportantforcognitiveandcognitiveageingdifferences,suchasgeneexpressionpatternsacrossthe cerebralcortex(45).Weareoptimisticabouttheopportunitiesthatthese approachespromise,andwegratefullyrecognizethattheycan’thappen withoutthesadaggregationofmunificentbraindonationsbymembers oftheLBC1936.

IntelligenceisFarFromAllThatMatters(atAnyandEvery AgeasaHuman)

Itmightbepossible—giventhestatementofLBCs’aimsgivenabove—to imaginetheLBCsashaving,asoutcome(dependentvariable),abullseye labelledcognitivefunctioningand,asexposures(independentvariables), hundredsofarrows(genetic,health,lifestyle,biomarker,psychosocial, etc.)firedtowardsit.Thatwouldbewrong.Fromthebeginningofthe LBCs,thenoncognitivevariablesweincludedsometimesbecameoutcomesadditionaltothecognitiveones.Webecameinterestedinhealth, fitness,personality,mood,lifesatisfaction,socialposition,socialengagementetc.aspartofhealthyageingandstudiedtheassociationsofthese outcomestoo(48–50).

TheAgeofPeople’sDNA(byComparisonwithTheirChronologicalAge) Predicts(toaWeeExtent)HowLongPeopleWillLive ThisprovidesausefullessonregardingtheLBCs’expansionwithrespect tobothexposuresandoutcomes.Bythisstage,wehadalreadygenomewidescannedtheLBCs’DNAsamplesforSNPs.Butone’sDNAnucleotide sequenceisnotthewholestorywithrespecttohowtheDNAworks(i.e., eventuallyleadstoproteinproduction).AlongDNAstrandsthereare, attached,methyl(CH3)groupswhichhaveeffectsongeneexpression; theseareoneformofepigenetic(inthiscaseDNAmethylation:DNAm) marks.Peopleshowdifferencesinthesemarkswhichare,inpart,due togeneticdifferences((51))and,inpart,toenvironmentalcauses(e.g., smoking(52)).Weundertookmethylome-widescanningintheLBCs.We thoughtthatindividualdifferencesinDNAmethylationmightbeinformativeaboutcognitivedifferencesandage-relatedcognitivechanges,which theyweretoanextent(53).MethylationmarksonDNAchangewithage, andwewereawareoftheconceptofepigeneticage,thatis,thatsome people’sDNAhadmethylationpatternsthatlookedolderoryoungerthan istypicalfortheirchronologicalage.Wefoundthatyoungermethylation

ageatbaseline(age70fortheLBC1936andage79fortheLBC1921)was associatedwithhowlongpeoplelived.Thisreplicatedinothersamples. Thiswasoutsideofourfieldbutisoneofourcitationhits(51).Pursuant tosomeoftheScientificStrategypointslistedbelow,DNAmresearch hasbeenasuccessfulandinterestingcollaboration.Itemergedthathow methylatedyourgenesarecorrelatedquitestrongly(accordingtoFunder andOzer(54)ratherthanCohen[seethesubsectiondirectlybelow])with smoking,BMI,andinflammation,tonameafew,andthattheseinturnare alsorelatedtobrainandcognitivedifferences(53, 55–57).

GetReadytoEnjoySmallEffectSizes,MovingFromthePsychologists’ Crud(Meehl,1990(58))ValueofAbout0.3DowntotheEpidemiologists’ 0.1andBelow

WeandotherssawanddiscoveredintheLBCsforourselvesearlyonthat effectsizesincognitiveageingaretypicallysmall;afitnessvariable,or possessionofthe APOE e4allele,orsmokingorjustpickyourfavoritecandidatevariablethatcontributestoindividualdifferencesincognitiveageingandaboutthebestyoucanexpectfromanyoftheseisthat,netofcognitivecapabilityinyouth,theywill,ifyouarelucky,contributeabout1%of thevariancetocognitivecapabilityinolderage.Wesummarizedthisrealityinourpaperentitled Marginalgainsnotmagicbullet (8).Mindyou, andthisseemstooobvioustohavetowrite(butweseepapersandstatementsthatrefutethat),itisimportanttokeepinmindthat,incognitive ageing,whatoneisseekingisfactorsthatareassociatedwith change in cognitivecapability,whetherthatchangeisfromyouthtomiddletoolder age,orjustchangewithinolderageitselfwhenmoredeclinetakesplace. Tounderlineevenmore,anassociationbetweenaputative“cognitiveageing”factorandacognitivetestscoreassessedononeoccasion—whether itiscross-sectionalorwhethertheputativepredictorwasassessedsome timepreviously—isnotinformativeaboutcognitiveageing.Thereisless varianceincognitivechangethanthereisincognitivestatus,andcognitivechangeisnoisier,andsuchchangesareaccordinglyhardertoaccount forwithpredictors.Here’sanexample.Ina12-cohortsconsortiumthat includedLBC1936,therewasasignificantcross-sectionalassociationbetweentelomerelengthandvariouscognitivetestscores(59).However, inastudythatincludedonlytheLBC1936,therewasnoassociationbetweenchangeintelomerelengthandchangeincognitivetestscores(or withchangeinphysicalabilities)acrossthreewavesoftestingatages70, 73,and76(60).Itisalsoworthnotingthatmeasuredchangeisalsorarer (sinceitisharderandmorecostlytomeasure/fund),whichalsodetracts fromtherelativepoweroflongitudinalstudiesonwithin-persondifferencesascomparedtocross-sectionalstudiesofbetween-persondifferences(asillustratedbythe12:1ratiointhetelomereexampleabove).

Beyondgenetics—thegiven—whatcananindividualdoiftheywantto agewell,includingcognitively?:playthenumbers;maybebygettingoneselfontherightsideofthemany(manyofwhicharenotconfirmed)possiblecognitiveageingvariablesonemightbeleaningintherightdirection towardhealthierageing.Somehaveexplainedthatsmallassociations, thoughtheycanmeanalotforlargepopulations(e.g.,bloodpressure controlfortheavoidanceofstroke)arenotpracticallyinformative—when consideredinisolation—forindividuals(61);however,wewouldargue againthatstayingonthecorrect/sunnysideofthemanysmallputative effectsisthebestchoiceforimprovingone’shealthycognitiveandbrain ageing(andgeneralhealth)odds.Withregardtothepointswemadein thissection,andelsewhere,Walhovdetal.(31)—sometimescitingLBCs’ results—madeastrongcasefor,“sobrietyregardingthetimingandquantity”ofinfluencesonbrainandcognitiveageing;weagree—wehavetried tostaysobertoo,andweencourageotherstodoso.

MultivariateAnalysesofCognitiveAgeingareMoreBracingThan UnivariateAnalyses

Yes,itgetsworse.Justaswediscussedforthevarietyofbrainimaging variables(youhavetoaskwhateachbrainmeasureistellingyouabout cognitivedifferencesthatisunique),onehastoaskthesameaboutthe otherlifestyle,health,genetic,andothercandidatepredictorsofcognitiveageing;thatis,dotheysurvivewhenenteredtogether?Therearefew reliableassociationswithcognitivechanges(usuallydeclines,onaverage)inolderage.Andtheireffectsizesaresmall.Itisnotunusualforresearchreportstoinclude(inadditiontosomesensible,basiccovariates)

asinglepredictorofcognitiveageing.Indeed,wehavehadexperiencesof findingsuchreportseasiertopublishthanwhenwehaveincludedmultiplepredictors/exposures.Butlifeisnotlikethat;wedon’texperienceinfluencesonourageinginisolationfromeachother.Wehaveconducted, withtheLBC1936’slongitudinaldata,twostudiesinwhichwethrewin acoupleofhandfulsofpopular(fromthescientificliterature)determinantsofcognitiveageing(32, 62).First,welookedatthemaspredictors ofcognitivechangeoneatatime.Then,wepoppedthemtogetherina multivariateanalysis.Whathappened?:positivefindingsfelllikesnowoff adyke(aswesayinScotlandaboutsuchephemera)asmostofthesignificantunivariatefindingsleftpossessionof APOE e4andtheoccasional othervariablelookingratherlonelyintheircontinuedsignificance.Thatis nottosaythattheuniquecontributionsofthosemanyfactorsmightn’tbe additivelyimportant(weexaminethisinthispaper—(62)),butthattheir uniqueeffectsarelikelyevensmaller;accuratelyquantifyinghowmuch smallerwillrequireevenbiggersamplesandconsortiaeffort(towhich wearecontributing)withcomparablydeepphenotyping.

YouWillBetonSomeDuds,ButNull(-ish)ResultsareValuableToo WiththeLBCswehavetriedtoscanthehorizonforpossiblecontributors tocognitiveageingdifferencesfrommanyfieldsofstudy.Amongthese, wehavekeptaneyeonbiomarkersofageingbecausethatseemedlikea likelysourceoftractablecontributors.Lookingback,onecouldsaythat earlierworkwasconductedinthetimeofcandidatebiomarkersandthat wearenowinatimewhenmulti‘omicsplatformsprovidethecapability toexaminehundredsandeventhousandsofproteins/peptides,lipids,glycans,othermetabolitesetc.Andthesewillbeusedinhypothesis-free(ish) studiesandwillprobablydeliversomereplicableandprobablysmalleffects.Butthepointhereisthatwesoughtexpertcollaboratorsinlikely biologicalvariablesrelatedtocognitiveageing,foundtheresourcesto assessthemandthensometimesfoundnotverymuchwhenitcameto lookingattheresults.Thisappliesto,forexample,retinalvesseltopography(63),andseetelomerelength,above.Itshouldquicklybesaid,by wayofbeingpositive,thatthesevariablesprovedusefulinotherstudies withothervariablesandthatnullresults—knowingwhatisprobablynot associatedwithdifferencesincognitiveageing—provideknowledgetoo. Oneshouldnothaveanemotionalreactiontoascientificresult,butwe confesstomildpleasureatfindinganullassociationbetweenchildhood intelligenceandlifesatisfactioninoldage(64).

ItHelpstoHavea“theory”butTheoryDoesnotAlwaysHelpScientific ProgressinThisField

Wehaveputtheory,there,insneerquotesforthereasonsthatoneofus hasalreadywrittenatlengthregardingtheassessmentofthequalityof theoriesinthepsychologyofcognitivecapabilityandmostofthatcritique applieshere(65).Thislessonwaslearnedfromsomerefereesandeditors whohavefromtimetotimeenjoyedourmanuscriptsbuthavewanted forsome“moretheory.”Andsometimesanonharmfulsprinklingofthat condimentwillsuffice;wedonotwishtoappearcynical,butithelpsto haveatheorytobepublished,althoughtheoriesinourfieldareoften skyhooksratherthancranes(66).Someoftheso-calledtheoriesthatcirculateinthefieldofcognitiveageingincludebrain/cognitivereserve(67, 68),brainmaintenance(whereothershavesimilarreservationstoours aboutwhetherthesetwoaforementioned“theories”constituteexplanationsornot(69)),commoncause(70),andprocessingspeed(71).The lattertwoarecircumscriptionsofinterestingempiricalregularitiesand thefirsttwovarybetweenausefultrellisonwhichtohangcognitiveageingstudiestoadiversionarysoupstone(72).Theonesuggestionfromour teamthatothershavetakentobeatheoreticalarticulationwasthenotionof“systemintegrity”whichwaspositedinourfirstcognitiveepidemiologystudyusingdatafromtheSMS1932(11).Wetooktheopportunity thereaftertoclarifywhatitmightmeanandmightnot,andwhatitsweaknessesandpredictionswere.Ifitdeservesanameitisprobablyhypothesisratherthantheory(73);isitatrellisorasoupstone?—neitherperhaps, beingmorelikeastickynotetoremindustoexplorethispossibility(both theoreticallyandempirically)abitmore.Inthefieldofcognitiveandbrain ageingwewouldpreferavery-large-Ndatasetwithwell-measured,relevantvariablesratherthananapparently“well-aimed”so-called“theory” (cf.GWASversuscandidategenestudies).Wetrustthatthisshortmen-

tionoftheoryisnottooglib,andwerefertheinterestedreadertoour longerdiscussionsoftheory(8, 65, 74, 75)andtoahandbookthathasa sectionon“modelsofcognitiveaging”(76).

IrrespectiveoftheLargeAmountofDatayoudoHave,PeopleWill (Rightly)AskAbouttheDatayoudon’tHave

Runningalongitudinalstudyofolderadultsinevitablyresultsinthesad truthofdropoutandmissingdata.SincethebaselineofbothLBCstudies, attritionistypicallyabout20%perevery3-yearcyclebetweenwavesof assessment.Abouthalfoftheattritionisduetomortality,withtheremainderbeing—anecdotally—amixtureofpeoplenotwishingtocome backbecausetheyhave“doneenough,”becauseofthedevelopmentof illnesses,orbeingunavailableduetocaringdutiesforgrandchildrenor— increasingly—foraspouse/significantother.Understandinghowandwhy participants“dropout”ofthestudyisimportant.Ithasimportantstatisticalimplicationsforourcoreaimofcharacterizingcognitiveandbrain ageing,andaskingwhatcorrelateswithdifferencesinthosetrajectories. Weknowthat,onaverage,peoplewhodropoutarelikelydoinglesswell intermsoftheirbrainandcognitiveageing,andgeneralhealth,than thosewhokeepcomingback(“completers”;e.g.,ref. 62).Wealso,therefore,knowthat,whenweplottheaveragechangesinjustcompleters, wemostlyunderestimatetheamountofcognitivedeclineinoursample(e.g.,ref. 77).Toensurethatwedon’tbiasourestimatesagainstthe leasthealthyparticipants(whoarejustasimportantandinformative), wewilloftenusefullinformationmaximumlikelihood(FIML)toinclude allavailabledatatoestimatethosedeclines.However,reviewersoften askwhetherwearedoingthecorrectthinghere,sinceFIMLassumesthat thepatternsofmissingnessareeitherrandomormostlyaccountedforby variablesincludedinourmodels.Whereasweareunabletoaccountcompletelyforthepatternsofdropoutweobserve(e.g.,refs. 32, 78),wehave previouslyindicatedthatthefurtherreductioninvariance/greaterrange restrictioninanalreadyself-selectingsamplewouldlikelyyieldaslight underestimationofeffectsizes(e.g.,ref. 79)aswellassubstantiallylower statisticalpower.

ScientificStrategyLessons

SomeofthelessonsthatwelearnedfromtheLBCspertainmoretohow togoabouttheprocessofscientificenquiryratherthanresultsfromanalyzingthedata.

“MaximumStrategicIntransigence,MaximalTacticalFlexibility”(with ThankstoS.Reicher)

Ouroriginalstatedaimwastoinvestigatenonpathologicalcognitiveageing.We’vestucktothat.Notwithstandingthatcontinuedfocus,itsoonbecameclearthatwehadusefuldatawithregardtootheraspectsofhealthy ageingandweinvestigatedthose—thoughneverasamainstreamofthe work.Also,astheparticipantsgrewolder,someofthemdevelopeddementia,andwebegantoascertainthatandtousetheinformationsometimesasanexclusioncriterionandsometimesasanoutcome(80).

SometimesOneFindsSomethingThatisTooGoodnottoDevelop Indeed,that’swhathappenedwhenwediscoveredthattheSMSs’data wereextant.BothLawrenceWhalleyandIanDearywerebusydoingresearchbuttheopportunitiesseemedtooimportantnottodevelop,that is,thepossibilitytostudylifetimecognitiveageingwithachildhoodbaselinecognitivetest,andthechancetoconductlinkagestudiesandfind outwhetherchildhoodcognitiveabilitywasrelatedtosurvival(and,ifso, why).Changeofstrategy?AndthegoodluckoffindingtheSMSs’datawas followedbythediscoveryofotherdataandthedecisionsaboutwhether timespentinpursuingthosewasworthwhile.Forexample,wediscoveredbirthrecords(includingbirthweight)ofsomeofthepeopleborn inEdinburghin1921(81).AndwefoundoutthatsomeoftheSMS1947 participantshadhadmoreinformationcollectedfromthematage11 andsomeintotheir20s.Wefollowedupbothofthesewithadd-onstudiesof,forexample,cognitiveageing,cognitiveepidemiology,personality, andlife-longwellbeing(82–85).AndwealsofoundoutthattheScottish “Midspan”studieshadhadmanypeoplebornin1921andweobtained permissiontolinkthemtotheScottishMentalSurvey1932.Thisresulted inseveralcontributionstoourcognitiveepidemiologywork(86–90)and toourworkonsocialmobility(91).

OnlySetUpaCohortifithasSomethingThatitCandoThat OthersCannot

Leadingacohorttakesoverone’slife.TheLBCsneverhadguaranteed fundingbeyonda3-or5-yeargrant-fundingperiod.Yet,theyhavebeen fundedcontinuouslysinceJanuary1999.ThismeansthattheDirectorand co-investigatorsgohomeeacheveningwiththeresponsibilitytoretain thecohortandtheresearchteam.Therefore,especiallywiththeeaseof accessingandanalyzingsecondarydatafromexistingcohorts(withUK Biobankprovidingacurrentapogeeforsomeinvestigations),onemust askwhyoneistakingthetroubletosetupacohort,whichwillthenput otherpeopletothetroubleoftakingpart.Thewhyisthatthecohort shouldbeabletoaddressanimportantsetofscientificquestionsina waythatisvaluable,thatis,bybeingtheonlysamplethatcanaddress thequestionsoratleastbyaddingusefullytowhatcanalreadybedone inothersamples.WhenwebegantheABCsandLBCs,weknewofnoother cohortsthatcouldadjustforsuchawell-validatedcognitivetestinyouth. Aboutthebestwewereawareofwasthecognitivesurrogatesemployed intheNunStudy,whichwefoundimpressive.

MaketheCohortaHubThatConcentratestheTeam’sScientificExpertise andThenAttachHigh-qualitySpokestoEnhancetheCohort’sScope TheLBCsbeganwithfourpeopleinvolvedinthehubthatdesigned,ran, andanalyzedtheLBC1921study:IanDeary(trainedinmedicineandpsychiatryandaPhDindifferentialpsychology),JohnStarr(geriatricphysician),MarthaWhiteman(PhDinpsychology),andAlisonPattie(nurse andresearchassistant).Thus,thehubhadexpertiseincognitivetesting, multivariatestatistics(includingstructuralequationmodelling),other aspectsofpsychologicaldifferences,gerontology,andgeriatrics.With time,thehub/coreteamenlarged—especiallywiththebeginningofthe LBC1936,atwhichtimeweaddedfull-timeindividualstolookafterthe growingdatabases.Evenearlyonthough,werealizedthatweneeded additionalexpertise,someofwhomcamefromourDepartmentofPsychology,someofwhomwerealsofromourUniversityofEdinburgh,and someofwhomwerefromotherUKandoverseasuniversities.Let’scall theseexpertsandtheirteamsspokestoourhubs.(Weshallseebelow thatsomespokesbecomepartofthehub[yes,there,themetaphorbreaks downabit]).Whatspokeexpertisedidweadd?:webroughtinexperts inmoleculargenetics,statisticalgenetics,brainimaging,ophthalmology, biomarkers,medicaldatabaselinkage,telomerebiology,neuropsychology,epidemiology,education,environmentalgeography,music,qualitativemethods,physicalactivity,stemcellbiology,postmortempathology, molecularneuroscience,psychiatry,hematology,epigenetics,immunology,transcriptomics,lipidomics,proteomics…Thereareprobablymore andmorewillcome,andweapologizetoanywhomwehaveforgotten tolist.Oh,andwe’vetendedtoworkwithverygoodexperts.Itwouldbe invidioustopickoutafew,sothereadercanspotthemasco-authorson ourarticles.Finally,workingwithsuperbexpertsalsomeansthatsome ofthatknow-howinanewfieldrubsoffonyou—notahugeamount andwewouldneverclaimtobeexpertsinournon-nativefields—but enoughthatyouareinabetterpositiontospotnewopportunitiestooccasionallycontributetonewdiscoveriesorperspectivesinunexpected fields.

ConsiderWhethertoAddanExpertisetotheCoreTeamortoOutsource ittoaSpoke LookingattheLBCs’hub/coreteamasitisnow,thatis,thoselocated inthesameplaceinPsychologyin7GeorgeSquareattheUniversityof Edinburgh,therearein-housegeneticistsandbrain-imagingexperts,for example,whowouldpreviouslyhavebeeninspokes.Earlieron,asolegeneticistorbrainimagerwouldnothavehadanenvironmentthatwould havenourishedtheirexpertise.Therefore,itwasaswewereabletoattractmoreofsuchexpertsthatwehadacommunitythatcouldhelpeach other.Now,with >1numbersofpsychologists,brainimagers,geneticists (allofwhomarealsoexpertinmultivariateanalyses)inoneplacetheycan notonlyhelptheircolleaguesinthesamefield,theycanconductcrossdisciplinarystudieseasilybecausetheyarecolocated.

ForEachProposedAdditionalVariable,AskWhetheritisofUse inThisCohort

Generally,whenwehavedecidedtoconductananalysisormeasureavariableintheLBCswehaveaskedourselvestheserelatedquestions:does theLBCmakeavaluablecontributiontothisliterature?;andcouldthisbe doneinanycohortorsample?Insummary,wehavetriedtoplaytothe strengthsoftheLBCs’informationwhichmeans,alotofthetime,having childhoodintelligencetestscoresinolderpeople.However,astheLBCs’ databasesgrow,othervaluableopportunitiesemerge.Forexample,havinglongitudinaldataonclonalhematopoiesisofindeterminatepotential(92, 93)andDNAmethylation,theirlinkagewithexistingLBCdata washighlyvaluableandhardtoreplicateelsewhere.So,themoredata thathavebeencollected,themoreopportunitiesthereareforpossiblyunique/at-least-valuablecollectionofstillmore(tosomeextent,and withinwhatispracticalandissometimesdrivenbyopportunityand/or serendipity)becausetherearesomanydataalreadycollectedtowhich theymightbetestedforassociation.Alsoworthsayingisthatthevalue incollectingnewdataduringthelaterwavesassamplesizessadlydwindlealsomeansthatpowerisaffectedandthereislessreasontoaddnew data;tocounterbalancethat,therearelotsofinnovativewaysinwhich onecancontinuetocollectnewdataonthefullsamplebycapitalizingon emergingmethodsandpossibilities—forexample,retrospectivegeocodingbasedonlinkedlifetimeaddressesinthefullsample(e.g.,ref. 94), medicalrecorddatalinkage,analyzingbloodsamplesstoredfromprior waves,andsoforth.Thus,peoplebecomemoreratherthanlessinterestingastheygrowolder.

CovertheBasesWhenTestingtheCohort

Fromourinterestincontributorstononpathologicalcognitiveageing,we knewthosevariablescouldcomefromawiderangeofdomains.Therefore,wehadtogatherawiderangeofdata.Ofcourse,welookedaround atothercohortsforguidance.Weneededdatafromcognitivefunctioning,otheraspectsofpsychology,socialanddemographicfactors,lifestyle andhealthbehaviors,demographics,biologicalandgeneticfactors,and medicalinformationandfitness.ThesecanbeseeninourLBCs’study protocolsandprofilearticles(4–7).Oneisinhibitedfromcollectingwhat seemsliketoomuch,wishingnottofatiguetheparticipantsordiscouragingthemfromreturning.Ourlessonwasthanolderpeoplecanandwilldo morethanyouthink.Initially,wewerecautiouswithLBC1921andmore detailedandwide-rangingwiththeLBC1936(whostartedwithuswhen theywereyounger).

EvenifTheyarenotPerfect,RetaintheSameVariablesinthe NextWaveofTesting

Inpsychologyandinmedicineandbeyond,thewaysofmeasuringthings donotstaystill.Onechooses,say,cognitiveandpersonalityandmood andfitnesstests(topluckoutafewfrommanytypesofdata)forthebaselinestudy.Sometimes,anewerandseeminglybettertestwillappearafter onehascollectedthedata.Whatshouldonedo?Holdyournerve:unless thereisabigproblemwiththeoriginaltest,collectthesamethingagain. Thereisvalueinlongitudinaldatawiththesamemeasures.Ofcourse, ifwehavehadtime,wehaveincludedthebettermeasureandtheolder measureatthenextwave,butwehavetendednottodropvariablesand wehavebeengladofthatwhenitcomestolongitudinalanalyses.

IfYouHaveOnly2MintoTestaPersoninaCognitiveAgeingStudy,do theWechslerDigitSymbolTest(Other,EquivalentTestsareAvailable) Scoresonthistestagebadly,thatis,itdeclinesmoresteeplythanother cognitivetestsanddomains,andsoitprovideswhatoneislookingforin acognitiveageingstudy.Individualdifferencesintheageingofitscognitivedomain—processingspeed—correlatestronglywiththeindividual differencesintheageingofothercognitivedomainssuchasreasoning andmemory.

AddtheNationalAdultReadingTestifyouhaveanothertwominutes (other,equivalenttestsareavailable).Thistestwillgiveyouadecentestimateofthepersons’peakpriorcognitiveability,evenwhentheyhave mildcognitiveimpairmentorearlydementia(82, 95).Toanextent,itwill

makeupfornothavingtheearlylifecognitivetestscoresthattheABCs andLBCshave,thoughittookthesestudiestoestablishthat.

Addgripstrengthifyouhaveanother2min.Itisahandy(punintended)indexoffitnessand,inlargesamples,ispredictiveormortality (tightergripperslivelonger)(96, 97).

DoWhatYouCanwithSufficientPoweronYourOwnandJoinaBigger GangWhenYouCan’t

Wehavedoneunder-poweredstudies.Manypeoplehave.Wetrynotto. WesetuptheLBC1936,especially,with N > 1000,tobepowerfulinphenotypicstudieslookingatdeterminantsofcognitiveageing.Withover 700oftheLBC1936havingbrainimagingdata,itwasoneofthelarger single-cohortstudiesofcognitiveageingwithsuchdataatthetime.For APOE geneticstudies,itwasadequateinpower.However,assoonas webegandoingGWAS,withoneexception(seebelow)weknewwehad toolittlepowertodoanythingthatwouldberobustandsowecollaborated.First,wehadaUK-basedgangthatincludedus,theABCsandthe Manchester-Newcastlestudies(22).Itsoonbecameclearthatthatwas toosmallandwejoinedtheCHARGENeurologyconsortium,whichhad acognitivegroup.ThattooktheNstofiveandthensixfiguresandonly thendiditseemthatreplicableresultswereappearing(24).Anotherexampleisthedebateaboutreplicablebrain-behaviorassociationsrequiringthousandsofsamples(98).WealsojoinedENIGMAandotherconsortiabecausewerecognizeasimilarsituationinthebrainimagingdomain, thoughofcoursethereremainthingsthatcanbedoneinLBCthataren’t easytofindappropriatedatasetsforreplication.Byadoptingmulticohort approachesinthebrain-imaginganalyses,weleadwehaveshownthat, actually,theLBC1936soloresultsdon’tstackuptoobadly(45).

HavingaCohortThatisSuccessfulatSomeThingsMakesOneallthe MoreAppreciativeofOtherCohortsThatCandoSomeThingsBetter Therearelotsofstudiesouttherewiththeirdifferentstrengths.Inthe fieldofcognitiveageing,wherewecouldpickoutmanygoodstudies,we haveastrong“we’renotworthy”responsetotheROSMAPstudieswhich haveanastonishingrangeofvariedandgoodvariables,awonderfulretentionrate,andaterrificsign-uprateforpostmortemdonation.Wehave asimilarresponsetoUKBiobank,whichiswhywehavespentsomuchtime analyzingtheirdataontopicsrelevanttotheLBCs.Thevisiontocollect suchalarge N (500,000)—withaveryboldaimtocollectwithbrainimagingdatafrom100,000ofthem—meansthattheUKBiobankdataisused world-wide.

FeelFreetoMoonlightwithOtherCohortstoTestHypothesesThatYou CareAbout Bearinginmindthatweareinterestedinvariationinbrainandcognitive variablesandtheirageing,wehavefelttheneedtobeunfaithfultothe LBCswhenwecananswerquestionsmorepowerfullyelsewhere.Thelist istoolongtonamethemall,butwehaveanalyzeddataandpublishedresultsfromUKBiobank,GenerationScotland,NLSY1979,ThethreeBritish birthcohorts(1946,1958,1970),theWestofScotlandTwenty-07Study, andothers.

YourSampleCanbeaControlSamplefortheIllnessesTheyDon’tHave MembersoftheLothianBirthCohorthavebeenproudtoappearas healthycontrolsinvariousmedicalstudies.Topickoutjusttwoexamples, theyhavebeencontrolsingeneticstudiesofcolorectalcancer(99)and motorneurondisease(100).

YouWillRegrettheThingsYouDidNotTest Onecan’tgobackandtestatbaselineagain.Onehastolivewiththe decisionsthatweremade.TheLBC1936willneverhavebaselinebrain imagingdataatage70,thoughtheydohavethosedataateverywave afterthat.So,thinkcarefullyaboutthatinitialtestingwave.Relatedto that,youwillbemoan,often,whatthecohortdoesnothaveandperhapsenvyothercohortsforhavingthosedata.Forexample,thereareno contemporaneously-collecteddataintheLBCsbetweenage11andolder age(thoughwemanagedtofind—vialinkagetotheScottishMidspan study—datafrommiddleageinsomeparticipantsoftheScottishMental Survey1922inourcognitiveepidemiologywork(86–90, 101)).Itwould

havebeenhelpfultohavemoreearly-andmid-adultvariablescollected intheLBCs.Wehavedoneourbesttofillthesegapsbyretrospective self-reportsandothertechniquessuchasgeo-linkagesforpasthomeaddresses.OnepracticalexamplefromLBC1936isthatwedidnotaskfor linkagetoparticipant’smedicalrecordsatthefirstwaveoftheirtesting atage70;wecorrectedthat,butwekickedourselvesforhavingomitted torequestthatfromparticipantsfromthebeginning.

ConsiderWhatSizeofCohortandTeamisOptimalforPurposes(toRetain Focus)andQualityofLife(ThoughtheCohortwillTakeOverYourLife) WehavekepttheLBCteamtoamoderatesize.IfonecountsthePIs,the teamthatrunsthestudy,theemployedandad-hominem/feminampostdoctoralfellowsandresearchassistants—thatis,mostlykeepingittothe hub—thenumbersvaryaroundascore.Allmembersoftheteamareencouragedtocontributetoanalysisandwrite-ups.Wehavenopurelyclericalstaff—allaretrainedinscience,usuallypsychologyand/orgenetics and/orbrainimaging.Mostarelocatedinthesamecorridorornearby.

IfSomethingisExciting,doit,EvenifitisnotinYourField WegavetheexampleaboveoffindingthatDNA-methylationagewas relatedtolongevity.Itwastooexcitingnottodo.Evenlessrelatedto ourcoremissionthanthatwasatthetimewhenwehadrecentlyobtainedthegenome-widescanningofSNPsintheLBCs.Asanexercise forournewishly-appointedstatisticalmoleculargeneticist,weransome biomarkervariablesthroughaGWASprocedure.WefoundthreeSNPsthat accountedfor18%ofthevarianceinactivatedpartialthromboplastin time,andimportantmeasureinhematology(102).Therewasthenthe searchforwhohadreportedthisalready.Noonehad.Weranwithit,with addedhematologicalexpertise.Itwasaninterestingresultanditwasa goodexerciseintheanalyzingandwriting-upofGWAS.Perhapsevenfurtherfromthiswasourinvolvementwithclonalhematopoiesis(92, 93) which,again,seemedbothtooexcitingandimportantnottobecomeinvolvedwith.

WeLearnedThatThereAreMultiple,PartlyOverlapping-Campsof CognitiveAgeingResearch

Let’scalltheseindividual-differencespsychology,experimentalpsychology,andmedically-oriented.Theindividualdifferencesapproachmight beexemplifiedby,sayTimothySalthouseorWarnerSchaie,usinglarge community-dwellingcohortstoexaminepatternsofcognitiveageingin differentcognitivedomainsandwhattheyshare.Thesampleisallone group.Sometimesthesestudiesarecross-sectionalandsometimeslongitudinalandsometimescross-sequential.Theexperimentalpsychology approachmightbeexemplifiedby,sayMichaelRugg,andismorelikely tousesmaller,separatesamplesofolderandyoungerindividualsand comparethemoncognitivetestscores.Therearethenmoremedicallyorientedstudiesthatfocusonmildcognitiveimpairmentanddementia. Sometimesthesearecase-controlstudiesandsometimescohortsthat arefollowedintoandthroughcognitiveimpairments.

MuchofourworkwiththeLBCshasbeendonewithintheindividual differencesframework.Inpart,thiscaninvolvedatareductionstatisticaltechniques(principalcomponentsanalysis,factoranalysis,sometimes inastructuralequationmodellingframework)—thebreadandbutterof differentialpsychologymethods.However,thenecessityofdoingmultivariatelongitudinalmodellingtaughtusthat,withtheLBCs,wewerein oneofthemoretechnicalanalyticalfieldsofpsychologyandalsothatthe measurementofanddeterminationofdifferencesincognitive(andother) changewas,tosaytheleast,much-discussedandsometimesfraught.Our teambecamefamiliarwith,forexample,growthcurvemodeling(32, 41, 62, 103).Ifonewantstostudycognitivechangeanditsdeterminants,one hastobepreparedtolearntodrivesomeheavyandcomplicatedstatisticalmachinery.

TakeBiologicalSamples,EvenifTheydonotHaveanImmediateUse FromearlyoninourworkwiththeLBCswestoredblood,plasma,and serum.Weknewweneededtheseforbasichealthbiomarkers(e.g.,blood chemistry,hematology,glycatedhemoglobin,etc.)andforgenetics.We knewthatmorebiomarkerswouldappearandthatsomewouldneedto

bemeasuredlongitudinally.Itishardtoexaggeratenowhowusefulthese sampleshavebeen.Anindicationoftheirusescanbeseeninourcohort profilearticles.

Future-prooftheCohortinTheirAfterlife

ThedatafromtheLBCswillbeanalyzedaftertheyarenolongerwithus and,wehope,afterwearelong-gone,too.However,thereisamorebiologicalmeaningtothislesson.Havingdrawncellswhichcanbetransformedtostemcellsthatcanthenbedifferentiatedtomanycelltypes meansthattheLBC1936participantshaveprovidedmaterialthatcan beused,invitro,totesthypothesesaboutneuralandothercellageing (104).Relatedtothat,thepostmortembraintissuedonatedbysomeof theLBC1936participantswhohavediedhasalreadybeenusedtoinvestigatethebiologyofcognitiveageing,thoughthenumberstodate arestillverysmall(cf.theROSMAPstudies)(47, 105).Suchdiscussion ofattemptedfuture-proofingoftheLBCsremindsustomentionthat this—and,indeed,thepanoplyoftheLBCs—takesplacewithinthestricturesofconsentandethicsandthatthese,duringourwork,havebeen movingtargets.Theconsentrequiredfordifferentaspectsofthestudieshasbecomemoredetailedaswaveshavepassed,andpostmortem braintissuecollectionandstorageandstem-cellcreationandstorage haveeachneededtheirowndetailedconsentproceduresandethicalapprovals.Otheraspectsofthestudy,suchaslinkagetomedicalrecordsrequiredadditional(additional,i.e.,totheethical/consentworkforthecollectionofthedatawithineachwave)ethical/consentapplications.From thebeginningoftheLBCsuntilthepresentwehaveproceededviathe ethicalcommitteesofthenationalHealthServiceinScotland;thatis,we havetakenamedicalratherthanapsychologicalroutetoethicalapproval andconsent,whichreflectsthebroadandhealth-relatedcontentofthe studies.

RealizetheResponsibilityofAssemblingaLongitudinalCohortand InvolveThem

Oneliveswithacohort.Theyarenotlikeaconveniencesamplethat onewillthankandneverseethereafter.Onemustformrelationships withthecohort.Onemustlistentothemandmakechannelsforthatto happen.WiththeLBCs,wehave:newsletters(readsomeofthemhere: https://edin.ac/4dN8unc)attheendsofwavesandatChristmasandat someothernotabletimes;reunionsattheendsofwavesandatnotable anniversaries(therearetalksonthenewresultsandquestionandanswersessionsandinformationaboutthefutureplans;seeour20-year anniversarybooklethere: https://edin.ac/3VnQiLi);andtheLBCs’participantshavemademanynationaltelevision,radioandnewspaperappearances.Therehavebeenhistoricalandartexhibitions(portraitssomeof theLBCs’participantsandtheresearchteam)abouttheLBCs.Therewas aplayabouttheLBCsperformedattheEdinburghInternationalFringe Festival.AfilmwasmadeabouttheLBCs.Abookwaswrittenrecountingthepersonalhistoriesofsomeoftheparticipantsandsomeofthe team.TheLBCs’participantshavefeaturedinumpteensciencefestivals, andknowledgeexchangeeventsforschoolchildrenandmembersofthe public.There’sasummaryhere: https://edin.ac/4dTXQee.LBCs’participantsandteammembershavetwicebeentotheUKHouseofLordstodescribewhattheirfindingsweretoexpertgroups.Whenwewrote,above, thatonemustlistentothecohorts’members,thatwasnotemptyvirtue signaling.Here’sanexample.AtoneofthereunionsoftheLBC1936,a participantaskedwhy,giventhatwehadcollectedsomuchinformation onthem,wehadnotaskedfortheirbrainafterdeath.Thatbeganalong processofobtainingpermissionforandsettinguptheLBC1936BrainTissueBank(whichhasmultiplesmallsamplesfrombrains,andnotwhole brains).

BeinginanObservationalStudyCanbeanUnintendedTreatment

Thisprobablyhasnothappenedoftenortoanylargeextent.However, beingaparticipantintheLBCs,itwouldbeimpossiblenottobealerted toaspectsofcognitiveandbrainandmoregeneralageing.Togivejust oneexample,oneLBC1936participantenrolledforandsuccessfullycompletedadegreeinphilosophywiththeUK’sOpenUniversitybecauseshe thoughtsheshoulduseherbrainmore.

RefereesandJournalEditorsWantLongitudinalDatainCognitiveand BrainAgeing,butFundersDon’tWanttoFundThem(UnlessYouHave NewHypothesesatEachWave)

Aswesaidabove,theLBCshaveneverhadguaranteedfunding.However, wehavehad,forexample,consecutivegrantsfromAgeUKthatspanned theyearsbetween2004and2020fortheLBC1936.WehavealsohadmultiplegrantsfromtheUKResearchandInnovationbodies,especiallyBBSRCandMRC.Here,wearereferringmostlytograntsforcoreaspectsof thestudy;therearemanyothergrantsforspecificprojectsandforfellowships.But,aswenoteinparenthesesabove,ithasneverbeensufficient tostate,whenapplyingforfunding,thatwewerecollectinganothervaluablewaveofdatafromtheLBCs.Almostalways,wehavehadtodevelop freshhypothesesforeachwave.Althoughwehavebeenablesuccessfully todothis,andkeeptheshowontheroad(anddeliverthespecifiedwork), theprocessoffocusingonsomespecifichypotheses—fromcohortsthat haveasolidtrackrecordofbeingarichsubstrateonwhichtotestsomany hypotheses—wasnoteasy.

HaveaGoodSuccession,EvenifitHappensDuringaPandemic Ourcohortshavelastedalongtime,beyondthefull-timecareerofIan Deary,forexample.WewereabletokeeptheLBC1936cohortandresearchteamgoingthroughtheCovid-19pandemic(106–108)andthey arenow(thesecondhalfof2024)passingthroughWave7atageabout88. TheDeary-to-Coxsuccessionisbuiltnotjustonthatonepositiveworking relationship,butalsoupongreatloyaltyandcontinuityofteammembers andparticipantsandcollaborators.Westillhave,workingintheteam,AlisonPattie,whowasfirstemployedatthestartoftheLBC1921in1999, andJanieCorley,whowasfirstemployedatthestartoftheLBC1936in 2004.Directingacohortstudyisanintricatebusiness,andwebothcount ourselvesluckytohavebenefittedfromasuperbanddedicatedteam, withoutwhosecontinuitythewholeoperationwouldhavebeenimpossibletokeepontheroad.

AppreciateOne’sHistory

ThehistoryoftheSMSsandtheresearchenvironmentinScotlandand nationallyandinternationallythatbroughtthemabouthasbeenasource ofinterestingstudyinitself.Centraltothatwastheinterestingfigure ofProfessorSirGodfreyThomson,agiantineducation,intelligence,and statisticsandwhoisunfairlyrelativelyunknown(109–113).Hisportrait hangsinthecurrentdirector’soffice(alongwithanappreciationof in umerisgigantumstamus)asitdidinthefoundingdirector’s.Hereisalink toavideocoveringtheexhibitiondevotedtoThomsonthatweproduced in2016: https://www.youtube.com/watch?v=ZObidTDX4lI

And,nowthattheLBCsare25yearsold,theyfoldintoandbecome partofthathistory.Thenextfewyearswillseetheage-90/Wave8testing oftheLBC1936.Alliedwiththatwillbeanefforttotakeourverylarge, securely-storedpaperrecordsanddigitizethem,sothateverymarkmade foreverytestforeveryparticipantateverywavecanbemadeavailable tofutureresearchers.Also,thepresentauthorshave(it’samug’sgame, though)triedtopredictwhatmighthappen,scientifically,inthebrainand cognitiveageingfieldoverthenextwhile(74).

EnjoyWhatYoudo

TheLBCcohorts,theLBCresearchteam,ourcollaborators,ourfunders (here,wemakeaspecialmentionofAgeUK,withwhomwehadalong andrewardingrelationship),andtheUniversityofEdinburgh(withaspecialmentionfortheSchoolofPhilosophy,PsychologyandLanguageSciencesanditsvariousHeadsfortheirsupport)areandhavebeenenjoyable toworkwith.Wevalueandhumblyappreciatepersonal,social,andscientificpremiumsthatreturnfromthatpositiveenvironment.TheLBCshave openeddoorsthatothertypesofresearchinvolvementwouldn’thave:we andtheymetseveralmembersoftheBritishRoyalFamily(includingthe lateQueenElizabethII),LordsandMPs,andstarsofstageandscreen.FuelledbytheLBCs,wehaveseenjuniorresearchersrisetoprofessorships andtoothervaluedvocationaldestinations;theLBCshaveseededcognitiveandbrainageingresearchersinotherplaces.

ConcludingThoughts

TheresearchwiththeLothianBirthCohortswasoftensummarizedas somethinglike,“todiscoversecretsofhealthycognitiveageing.”In

variouswaysthathandy-but-crudestatementdissolved:first,wewere sometimesconfirming/incrementingothers’findingsratherthandiscovering(i.e.,forthefirsttime);second,weacceptedthatweshouldhaveto studypathologicalaswellashealthycognitiveageing,astheparticipants experienceddementiainlargernumbers;andweexpandedouroutcomes remitbeyondcognitivefunctioning.Thosebelt-looseningchangestoour originalmethodologicalpuritynotwithstanding,wehopethatdiscoveriesfromtheLBCs,asenumeratedinthe“ScientificDiscoveryLessons” willbeusefultoscientistsincognatefields.Wealsohopethatourdiscoveriesandincrementalcontributionstothefieldsinwhichwework willhelppeopletomakebetterchoicesregardinghealthylifestylesand provideunderstandingregardingcontributionstoindividualdifferences incognitiveandbrainageingandageingmorebroadly(alongsideother teams’findings);wehopethatscientistsandlaypeoplewillappreciate thatwhattheythinkareoutcomescanbeexposuresandviceversa(reversecausation/confounding);thiswasallsummarizedinour“marginal gains”approach(8).Wealsoreferthereadertoourvariouspolicyinfluencingattemptsandcontributions(here https://edin.ac/4dTXQee andhere https://edin.ac/48te7G9)andalsomentionthatwehaveundertakenhundredsofmediaandin-personappearances/activitiestospread thewordaboutgoodscienceandhealthyageing.Theseactivitiescoverall agesfromprimaryschoolstoolder-people’sgroupsanduseeducational programs,games,andart.Finally,wehopetohaveencouragedreaders tofindandreadmoreofourpublicationsandtokeepupwiththosethat appearinthecomingyears;theyarelistedhere: https://edin.ac/3UixD26.

DataAvailabilityStatement

Nooriginaldataweregeneratedinthisworkthatrequirespublicdissemination.InformationaboutdataaccessandcollaborationfortheLothian BirthCohortsof1921and1936,theLBCs’datadictionaries,theLBCs’ datasummarytables,theLBCs’cohortprofilearticles,theLBCs’datarequestform,anddatarequestcontactinformationareallavailablehere: https://edin.ac/3YkR3Ev

Acknowledgments

WegratefullyacknowledgethecontributionsoftheLBC1921and LBC1936participants,thepresentandpastmembersofourresearch teamwhocollect(ed),manage(d),andanalyze(d)theLothianBirthCohorts’dataandwrotemanyofthepaperswecitehere,andourvalued collaboratorswithwhomwepartneredbecausetheyknewthingsthat wedidn’tandcoulddothingsthatwecouldn’t.WethankDrSarahMcGroryforassistancewith Figure3.Thepresentpaperisdedicatedtoour lateandmuch-missedcolleaguesProfessorsJohnM.StarrandLawrence J.Whalley.

AuthorContributions

Bothauthorscontributedequallytoallaspectsofthiswork.

FundingSources

IJDissupportedbyaNationalInstitutesofHealth(NIH)researchgrant (R01AG054628)andbyBBSRCandESRC(BB/W008793/1).SRCissupportedbyaSirHenryWellcomeFellowshipjointlyfundedbyWellcomeand theRoyalSociety(221890/Z/20/Z),andreceivesfundingfromtheBBSRC andESRC(BB/W008793/1),NIH(R01AG054628),MRC(MR/X003434/1), MiltonDamerelTrust,andtheUniversityofEdinburgh.

AuthorDisclosures

Theauthorshaveconfirmedthatnoconflictofinterestexists.

References

1.ScottishCouncilforResearchinEducation.TheIntelligenceofScottishChildren.London,UK:UniversityofLondonPress;1933.

2.DearyIJ,WhalleyLJ,StarrJM.ALifetimeofIntelligence.Washington,DC: AmericanPsychologicalAssociation;2009.

3.ScottishCouncilforResearchinEducation.ThetrendofScottishintelligence: acomparisonofthe1947and1932surveysoftheintelligenceofeleven-yearoldpupils.London,UK:UniversityofLondonPress;1949.

4.DearyIJ,WhitemanMC,StarrJM,WhalleyLJ,FoxHC.Theimpactofchildhood intelligenceonlaterlife:followinguptheScottishmentalsurveysof1932and 1947.JPersSocPsychol.2004;86(1):130–47.DOI: 10.1037/0022-3514.86.1. 130.PMID:14717632

5.DearyIJ,GowAJ,PattieA,StarrJM.Cohortprofile:theLothianBirthCohorts of1921and1936.IntJEpidemiol.2012;41(6):1576–84.DOI: 10.1093/ije/ dyr197.PMID:22253310

6.TaylorAM,PattieA,DearyIJ.Cohortprofileupdate:theLothianBirthCohorts of1921and1936.IntJEpidemiol.2018;47(4):1042–1042r.DOI: 10.1093/ije/ dyy022.PMID:29546429;PMCID: PMC6124629

7.DearyIJ,GowAJ,TaylorMD,CorleyJ,BrettC,WilsonV,etal.TheLothianBirth Cohort1936:astudytoexamineinfluencesoncognitiveageingfromage11to age70andbeyond.BMCGeriatr.2007;7:28.DOI: 10.1186/1471-2318-7-28 PMID:18053258;PMCID: PMC2222601.

8.CorleyJ,CoxSR,DearyIJ.HealthycognitiveageingintheLothianBirthCohort studies:marginalgainsnotmagicbullet.PsycholMed.2018;48(2):187–207. DOI: 10.1017/S0033291717001489.PMID:28595670

9.WhalleyLJ,MurrayAD,StaffRT,StarrJM,DearyIJ,FoxHC,etal.Howthe 1932and1947mentalsurveysofAberdeenschoolchildrenprovideaframeworktoexplorethechildhoodoriginsoflateonsetdiseaseanddisability. Maturitas.2011;69(4):365–72.DOI: 10.1016/j.maturitas.2011.05.010.PMID: 21700406

10.WardlawJM,BastinME,HernándezMCV,ManiegaSM,RoyleNA,MorrisZ,etal. Brainaging,cognitioninyouthandoldageandvasculardiseaseintheLothian BirthCohort1936:rationale,designandmethodologyoftheimagingprotocol.IntJStroke.2011;6(6):547–59.DOI: 10.1111/j.1747-4949.2011.00683.x PMID:22111801

11.WhalleyLJ,DearyIJ.LongitudinalcohortstudyofchildhoodIQandsurvivalup toage76.BritMedJ.2001;322(7290):819–22.DOI: 10.1136/bmj.322.7290. 819.PMID:11290633;PMCID: PMC30556

12.CalvinCM,BattyGD,DerG,BrettCE,TaylorA,PattieA,etal.Childhoodintelligenceinrelationtomajorcausesofdeathin68yearfollow-up:prospectivepopulationstudy.BMJ.2017;357:j2708.DOI: 10.1136/bmj.j2708.PMID: 28659274;PMCID: PMC5485432

13.DearyIJ.Cognitiveepidemiology:itsrise,itscurrentissues,anditschallenges. PersIndivDiffer.2010;49(4):337–43.DOI: 10.1016/j.paid.2009.11.012

14.DearyIJ,HillWD,GaleCR.Intelligence,healthanddeath.NatHumBehav. 2021;5(4):416–30.DOI: 10.1038/s41562-021-01078-9.PMID:33795857

15.MottusR,JohnsonW,MurrayC,WolfMS,StarrJM,DearyIJ.Towardsunderstandingthelinksbetweenhealthliteracyandphysicalhealth.HealthPsychol. 2014;33(2):164–73.DOI: 10.1037/a0031439.PMID:23437854

16.DearyIJ,WhalleyLJ,LemmonH,CrawfordJR,StarrJM.Thestabilityofindividualdifferencesinmentalabilityfromchildhoodtooldage:follow-upofthe 1932Scottishmentalsurvey.Intelligence.2000;28(1):49–55.DOI: 10.1016/ S0160-2896(99)00031-8

17.DearyIJ,PattieA,StarrJM.Thestabilityofintelligencefromage11toage90 years:theLothianbirthcohortof1921.PsycholSci.2013;24(12):2361–8.DOI: 10.1177/0956797613486487.PMID:24084038

18.DearyIJ.Thestabilityofintelligencefromchildhoodtooldage.CurrDirPsychol Sci.2014;23(4):239–45.DOI: 10.1177/0963721414536905

19.ConteFP,OkelyJA,HamiltonOK,CorleyJ,PageD,RedmondP,etal.Cognitivechangebeforeoldage(11to70)predictscognitivechangeduringoldage(70to82).PsycholSci.2022;33(11):1803–17.DOI: 10.1177/ 09567976221100264.PMID:36113037;PMCID: PMC9660354

20.DearyIJ,WhitemanMC,PattieA,StarrJM,HaywardC,WrightAF,etal.CognitivechangeandtheAPOEepsilon4allele.Nature.2002;418(6901):932.DOI: 10.1038/418932a.PMID:12198535

21.DearyIJ,CoxSR,HillWD.Geneticvariation,brain,andintelligencedifferences.MolPsychiatry.2022;27(1):335–53.DOI: 10.1038/s41380-021-01027y.PMID:33531661;PMCID: PMC8960418

22.DaviesG,TenesaA,PaytonA,YangJ,HarrisSE,LiewaldD,etal.Genome-wide associationstudiesestablishthathumanintelligenceishighlyheritableand polygenic.MolPsychiatry.2011;16(10):996–1005.DOI: 10.1038/mp.2011.85 PMID:21826061;PMCID: PMC3182557

23.DaviesG,ArmstrongN,BisJC,BresslerJ,ChourakiV,GiddaluruS,etal.Genetic contributionstovariationingeneralcognitivefunction:ameta-analysisof genome-wideassociationstudiesintheCHARGEconsortium(N=53949).Mol Psychiatry.2015;20(2):183–92.DOI: 10.1038/mp.2014.188.PMID:25644384; PMCID: PMC4356746

24.DaviesG,LamM,HarrisSE,TrampushJW,LucianoM,HillWD,etal.Studyof 300,486individualsidentifies148independentgeneticlociinfluencinggeneralcognitivefunction.NatCommun.2018;9(1):2098.DOI: 10.1038/s41467018-04362-x.PMID:298444566;PMCID: PMC5974083

25.DaviesG,HarrisSE,ReynoldsCA,PaytonA,KnightHM,LiewaldDC,etal.A genome-wideassociationstudyimplicatestheAPOElocusinnonpathological cognitiveageing.MolPsychiatry.2014;19(1):76–87.DOI: 10.1038/mp.2012. 159.PMID:23207651;PMCID: PMC7321835

26.SchiepersOJ,HarrisSE,GowAJ,PattieA,BrettCE,StarrJM,DearyIJ.APOEE4 statuspredictsage-relatedcognitivedeclineintheninthdecade:longitudinal

follow-upoftheLothianBirthCohort1921.MolPsychiatry.2012;17(3):315–24.DOI: 10.1038/mp.2010.137.PMID:21263443

27.DearyIJ,YangJ,DaviesG,HarrisSE,TenesaA,LiewaldD,etal.Geneticcontributionstostabilityandchangeinintelligencefromchildhoodtooldage. Nature.2012;482(7384):212–5.DOI: 10.1038/nature10781.PMID:22258510

28.LucianoM,MarioniRE,GowAJ,StarrJM,DearyIJ.ReversecausationintheassociationbetweenC-reactiveproteinandfibrinogenlevelsandcognitiveabilitiesinanagingsample.PsychosomMed.2009;71(4):404–9.DOI: 10.1097/PSY. 0b013e3181a24fb9.PMID:19398500

29.GowAJ,CorleyJ,StarrJM,DearyIJ.Reversecausationinactivity-cognitive abilityassociations:theLothianBirthCohort1936.PsycholAging.2012; 27(1):250–5.DOI: 10.1037/a0024144.PMID:21644808

30.MottusR,LucianoM,StarrJM,DearyIJ.Diabetesandlife-longcognitiveability. JPsychosomRes.2013;75(3):275–8.DOI: 10.1016/j.jpsychores.2013.06.032 PMID:23972418

31.WalhovdKB,LövdenM,FjellAM.Timingoflifespaninfluencesonbrainand cognition.TrendsCognSci.2023;27(10):901–15.DOI: 10.1016/j.tics.2023.07. 001.PMID:34563042

32.RitchieSJ,Tucker-DrobEM,CoxSR,CorleyJ,DykiertD,RedmondP,etal.Predictorsofageing-relateddeclineacrossmultiplecognitivefunctions.Intelligence.2016;59:115–26.DOI: 10.1016/j.intell.2016.08.007.PMID:27932854; PMCID: PMC5127886

33.CoxSR,HarrisMA,RitchieSJ,BuchananCR,HernandezMCV,CorleyJ, etal.Threemajordimensionsofhumanbraincorticalageinginrelationtocognitivedeclineacrosstheeighthdecadeoflife.MolPsychiatry. 2021;26(6):2651–62.DOI: 10.1038/s41380-020-00975-1.PMID:33398085; PMCID: PMC8254824

34.RitchieSJ,BoothT,HernandezMDV,CorleyJ,ManiegaSM,GowAJ,etal. Beyondabiggerbrain:multivariablestructuralbrainimagingandintelligence.Intelligence.2015;51:47–56.DOI: 10.1016/j.intell.2015.05.001.PMID: 26240470;PMCID: PMC4518535

35.CoxSR,RitchieSJ,Fawns-RitchieC,Tucker-DrobEM,DearyIJ.Structural brainimagingcorrelatesofgeneralintelligenceinUKBiobank.Intelligence. 2019;76:101376.DOI: 10.1016/j.intell.2019.101376.PMID:31787788;PMCID: PMC6876667

36.PenkeL,MunozManiegaS,MurrayC,GowAJ,HernandezMC,ClaydenJD, etal.Ageneralfactorofbrainwhitematterintegritypredictsinformation processingspeedinhealthyolderpeople.JNeurosci.2010;30(22):7569–74.DOI: 10.1523/JNEUROSCI.1553-10.2010.PMID:20519531;PMCID: PMC6632368

37.CoxSR,RitchieSJ,Tucker-DrobEM,LiewaldDC,HagenaarsSP,DaviesG,etal. Ageingandbrainwhitematterstructurein3,513UKBiobankparticipants. NatCommun.2016;7:13629.DOI: 10.1038/ncomms13629.PMID:27976682; PMCID: PMC5172385

38.AllozaC,CoxSR,DuffB,SempleSI,BastinME,WhalleyHC,LawrieSM. Informationprocessingspeedmediatestherelationshipbetweenwhite matterandgeneralintelligenceinschizophrenia.PsychiatryResNeuroimaging.2016;254:26–33.DOI: 10.1016/j.pscychresns.2016.05.008.PMID: 27308721

39.TelfordEJ,CoxSR,Fletcher-WatsonS,AnblaganD,SparrowS,PatakyR,etal.A latentmeasureexplainssubstantialvarianceinwhitemattermicrostructure acrossthenewbornhumanbrain.BrainStructFunct.2017;222(9):4023–33. DOI: 10.1007/s00429-017-1455-6.PMID:28589258;PMCID: PMC5686254

40.PenkeL,ManiegaSM,BastinME,HernandezMC,MurrayC,RoyleNA,etal. Brain-widewhitemattertractintegrityisassociatedwithinformationprocessingspeedandgeneralintelligence.MolPsychiatry.2012;17(10):955.DOI: 10.1038/mp.2012.127.PMID:22996402

41.RitchieSJ,BastinME,Tucker-DrobEM,ManiegaSM,EngelhardtLE,CoxSR, etal.Coupledchangesinbrainwhitemattermicrostructureandfluidintelligenceinlaterlife.JNeurosci.2015;35(22):8672–82.DOI: 10.1523/JNEUROSCI. 0862-15.2015.PMID:26041932;PMCID: PMC4452562

42.MadoleJW,RitchieSJ,CoxSR,BuchananCR,HernandezMV,ManiegaSM,etal. Aging-sensitivenetworkswithinthehumanstructuralconnectomeareimplicatedinlate-lifecognitivedeclines.BiolPsychiatry.2021;89(8):795–806.DOI: 10.1016/j.biopsych.2020.06.010.PMID:32828527;PMCID: PMC7736316

43.DearyIJ,RitchieSJ,ManiegaSM,CoxSR,HernandezMCV,LucianoM,etal.Brain peakwidthofskeletonizedmeandiffusivity(PSMD)andcognitivefunction inlaterlife.FrontPsychiatry.2019;10:524.DOI: 10.3389/fpsyt.2019.00524 PMID:31402877;PMCID: PMC6676305

44.PageD,BuchananCR,MoodieJE,HarrisMA,TaylorA,HernandezMV,etal. Examiningtheneurostructuralarchitectureofintelligence:TheLothianBirth Cohort1936study.Cortex.2024;178:269–86.DOI: 10.1016/j.cortex.2024.06. 007.PMID:39067180

45.MoodieJE,HarrisSE,HarrisMA,BuchananCR,DaviesG,TaylorA,etal.Generalandspecificpatternsofcorticalgeneexpressionasspatialcorrelates

ofcomplexcognitivefunctioning.HumBrainMapp.2024;45(4):e26641.DOI: 10.1002/hbm.26641.PMID:38488470;PMCID: PMC10941541

46.KingD,HoltK,ToombsJ,HeX,DandoO,OkelyJA,etal.Synapticresilienceisassociatedwithmaintainedcognitionduringageing.AlzheimersDement.2023;19(6):2560–74.DOI: 10.1002/alz.12894.PMID:36547260;PMCID: PMC11497288

47.SaundersT,GunnC,BlennowK,KvartsbergH,ZetterbergH,ShenkinSD, etal.NeurogranininAlzheimer’sdiseaseandageing:ahumanpost-mortem study.NeurobiolDis.2023;177:105991.DOI: 10.1016/j.nbd.2023.105991 PMID:36623608

48.ZammitAR,StarrJM,JohnsonW,DearyIJ.Profilesofphysical,emotional andpsychosocialwellbeingintheLothianBirthCohort1936.BMCGeriatr.2012;12:64.DOI: 10.1186/1471-2318-12-64.PMID:23088370;PMCID: PMC3549742

49.ZammitAR,StarrJM,JohnsonW,DearyIJ.Patternsandassociatesofcognitive function,psychosocialwellbeingandhealthintheLothianBirthCohort1936. BMCGeriatr.2014;14:53.DOI: 10.1186/1471-2318-14-53.PMID:24754844; PMCID: PMC3999738

50.IvesonMH,CoxSR,DearyIJ.Intergenerationalsocialmobilityandhealthin laterlife:diagonalreferencemodelsappliedtotheLothianBirthCohort1936. JGerontolBPsycholSciSocSci.2022;77(12):2257–64.DOI: 10.1093/geronb/ gbac107.PMID:35952386;PMCID: PMC9799199

51.MarioniRE,ShahS,McRaeAF,ChenBH,ColicinoE,HarrisSE,etal.DNAmethylationageofbloodpredictsall-causemortalityinlaterlife.GenomeBiol. 2015;16(1):25.DOI: 10.1186/s13059-015-0584-6.PMID:25633388;PMCID: PMC4350614

52.McCartneyDL,StevensonAJ,HillaryRF,WalkerRM,BerminghamML,MorrisSW,etal.Epigeneticsignaturesofstartingandstoppingsmoking. EBioMedicine.2018;37:214–20.DOI: 10.1016/j.ebiom.2018.10.051.PMID: 30389506;PMCID: PMC6286188

53.McCartneyDL,HillaryRF,ConoleELS,BanosDT,GaddDA,WalkerRM,etal. Blood-basedepigenome-wideanalysesofcognitiveabilities.GenomeBiol. 2022;23(1):26.DOI: 10.1186/s13059-021-02596-5.PMID:35039062;PMCID: PMC8762878

54.FunderDC,OzerDJ.Evaluatingeffectsizeinpsychologicalresearch: senseandnonsense.AdvMethPractPsych.2020;3(4):509.DOI: 10.1177/ 2515245920979282

55.CorleyJ,CoxSR,HarrisSE,HernandezMV,ManiegaSM,BastinME,etal.Epigeneticsignaturesofsmokingassociatewithcognitivefunction,brainstructure, andmentalandphysicalhealthoutcomesintheLothianBirthCohort1936. TranslPsychiatry.2019;9(1):248.DOI: 10.1038/s41398-019-0576-5.PMID: 31591380;PMCID: PMC6779733

56.HamiltonOKL,ZhangQ,McRaeAF,WalkerRM,MorrisSW,RedmondP,etal. AnepigeneticscoreforBMIbasedonDNAmethylationcorrelateswithpoor physicalhealthandmajordiseaseintheLothianBirthCohort.IntJObes(Lond). 2019;43(9):1795–802.DOI: 10.1038/s41366-018-0262-3.PMID:30842548; PMCID: PMC6760607

57.ConoleELS,StevensonAJ,ManiegaSM,HarrisSE,GreenC,HernandezMDCV, etal.DNAmethylationandproteinmarkersofchronicinflammationandtheir associationswithbrainandcognitiveaging.Neurology.2021;97(23):e2340–52.DOI: 10.1212/WNL.0000000000012997.PMID:34789543;PMCID: PMC8665430

58.MeehlPE.Appraisingandamendingtheories:ThestrategyofLakatosiandefenceandtwoprinciplesthatwarrantit.PsychologicalInquiry.1990;1:108–41. DOI: 10.1207/s15327965pli0102_1

59.HaggS,ZhanY,KarlssonR,GerritsenL,PlonerA,vanderLeeSJ,etal.Short telomerelengthisassociatedwithimpairedcognitiveperformanceinEuropeanancestrycohorts.TranslPsychiatry.2017;7(4):e1100.DOI: 10.1038/tp. 2017.73.PMID:28418400;PMCID: PMC5416710

60.HarrisSE,MarioniRE,Martin-RuizC,PattieA,GowAJ,CoxSR,etal.Longitudinaltelomerelengthshorteningandcognitiveandphysicaldeclineinlaterlife: TheLothianBirthCohorts1936and1921.MechAgeingDev.2016;154:43–8. DOI: 10.1016/j.mad.2016.02.004.PMID:26876762;PMCID: PMC4798845

61.MottusR.Whatcorrelationsmeanforindividualpeople:atutorialforresearchers,studentsandthepublic.PsyArXiv.2021.DOI: 10.31234/osf.io/ bpm9y

62.CorleyJ,ConteF,HarrisSE,TaylorAM,RedmondP,RussTC,etal.Predictors oflongitudinalcognitiveageingfromage70to82includingAPOEe4status, early-lifeandlifestylefactors:theLothianBirthCohort1936.MolPsychiatry. 2023;28(3):1256–71.DOI: 10.1038/s41380-022-01900-4.PMID:36481934; PMCID: PMC10005946

63.McGroryS,BalleriniL,OkelyJA,RitchieSJ,DoubalFN,DoneyASF,etal.RetinalmicrovascularfeaturesandcognitivechangeintheLothian-BirthCohort 1936.AlzheimersDement(Amst).2019;11:500–9.DOI: 10.1016/j.dadm.2019. 04.012.PMID:31338413;PMCID: PMC6625967

64.GowAJ,WhitemanMC,PattieA,WhalleyL,StarrJ,DearyIJ.Lifetimeintellectualfunctionandsatisfactionwithlifeinoldage:longitudinalcohort study.BMJ.2005;331(7509):141–2.DOI: 10.1136/bmj.38531.675660.F7 PMID:16000314;PMCID: PMC558700

65.DearyIJ,SternbergRJ.IanDearyandRobertSternberganswerfiveselfinflictedquestionsabouthumanintelligence.Intelligence.2021;86.DOI: 10. 1016/j.intell.2021.101539

66.DennettD.TheBaldwinEffect:ACrane,NotaSkyhook.LifeMind-PhilosIss. 2003:69–79.

67.RichardsM,DearyIJ.Alifecourseapproachtocognitivereserve:amodelfor cognitiveaginganddevelopment?AnnNeurol.2005;58(4):617–22.DOI: 10. 1002/ana.20637.PMID:16178025

68.SternY.CognitivereserveinageingandAlzheimer’sdisease.LancetNeurol.2012;11(11):1006–12.DOI: 10.1016/S1474-4422(12)70191-6.PMID: 23079557;PMCID: PMC3507991

69.NilssonJ,LovdenM.Namingisnotexplaining:futuredirectionsforthe “cognitivereserve”and“brainmaintenance”theories.AlzheimersResTher. 2018;10(1):34.DOI: 10.1186/s13195-018-0365-z.PMID:29609632;PMCID: PMC5879611

70.KileyM,AnsteyK.Commoncausetheoryinaging.In:PachanaNA,editor.EncyclopediaofGeropsychology.Singapore:SpringerScience;2015.p.559–69.

71.SalthouseTA.Theprocessing-speedtheoryofadultagedifferencesincognition.PsycholRev.1996;103(3):403–28.DOI: 10.1037/0033-295x.103.3.403 PMID:8759042

72.NavonD.Resources–atheoreticalsoupstone.PsycholRev.1984;91(2):216–34.DOI: 10.1037/0033-295x.91.2.216

73.DearyIJ.Lookingfor’SystemIntegrity’incognitiveepidemiology.Gerontology. 2012;58(6):545–53.DOI: 10.1159/000341157.PMID:22907506

74.CoxSR,DearyIJ.Brainandcognitiveageing:thepresent,andsomepredictions (...aboutthefuture).AgingBrain.2022;2:100032.DOI: 10.1016/j.nbas.2022. 100032.PMID:36908875;PMCID: PMC9997131

75.DearyIJ.LookingDownonHumanIntelligence:FromPsychometricstothe Brain.Oxford,NewYork:OxfordUniversityPress;2000.p.379.

76.ThomasAK,GutchessA.TheCambridgeHandbookofCognitiveAging:ALife CoursePerspective.NewYork:CambridgeUniversityPress;2020.

77.RitchieSJ,HillWD,MarioniRE,DaviesG,HagenaarsSP,HarrisSE,etal.Polygenicpredictorsofage-relateddeclineincognitiveability.MolPsychiatry. 2020;25(10):2584–98.DOI: 10.1038/s41380-019-0372-x.PMID:30760887; PMCID: PMC7515838

78.OkelyJA,DearyIJ.LongitudinalassociationsbetweenlonelinessandcognitiveabilityintheLothianBirthCohort1936.JGerontolBPsycholSciSocSci. 2019;74(8):1376–86.DOI: 10.1093/geronb/gby086.PMID:30053217;PMCID: PMC6777773

79.JohnsonW,CorleyJ,StarrJM,DearyIJ.Psychologicalandphysicalhealthat age70intheLothianBirthCohort1936:linkswithearlylifeIQ,SES,and currentcognitivefunctionandneighborhoodenvironment.HealthPsychol. 2011;30(1):1–11.DOI: 10.1037/a0021834.PMID:21299289

80.MullinDS,StirlandLE,BuchananE,ConveryCA,CoxSR,DearyIJ,etal.Identifyingdementiausingmedicaldatalinkageinalongitudinalcohortstudy:LothianBirthCohort1936.BMCPsychiatry.2023;23(1):303.DOI: 10.1186/s12888023-04797-7.PMID:37127606;PMCID: PMC10152609

81.ShenkinSD,StarrJM,PattieA,RushMA,WhalleyLJ,DearyIJ.Birthweight andcognitivefunctionatage11years:theScottishMentalSurvey1932.Arch DisChild.2001;85(3):189–96.DOI: 10.1136/adc.85.3.189.PMID:11517097; PMCID: PMC1718898

82.DearyIJ,BrettCE.Predictingandretrodictingintelligencebetweenchildhoodandoldageinthe6-daysampleoftheScottishMentalSurvey1947.Intelligence.2015;50:1–9.DOI: 10.1016/j.intell.2015.02.002.PMID:26207078; PMCID: PMC4503817

83.IvesonMH,CukicI,DerG,BattyGD,DearyIJ.Intelligenceandall-causemortalityinthe6-daysampleoftheScottishMentalSurvey1947andtheirsiblings: testingthecontributionoffamilybackground.IntJEpidemiol.2018;47(1):89–96.DOI: 10.1093/ije/dyx168.PMID:29025063;PMCID: PMC5837228

84.HarrisMA,BrettCE,JohnsonW,DearyIJ.Personalitystabilityfromage14to age77years.PsycholAging.2016;31(8):862–74.DOI: 10.1037/pag0000133 PMID:27929341;PMCID: PMC5144810

85.DearyIJ,BattyGD,PattieA,GaleCR.MoreIntelligent,moredependablechildrenlivelongera55-yearlongitudinalstudyofarepresentativesampleofthe ScottishNation.PsycholSci.2008;19(9):874–80.DOI: 10.1111/j.1467-9280. 2008.02171.x.PMID:18947352

86.HartCL,DearyIJ,TaylorMD,MacKinnonPL,SmithGD,WhalleyLJ, etal.TheScottishmentalsurvey1932linkedtotheMidspanstudies:a prospectiveinvestigationofchildhoodintelligenceandfuturehealth.Public Health.2003;117(3):187–95.DOI: 10.1016/s0033-3506(02)00028-8.PMID: 12825469

87.HartCL,TaylorMD,SmithGD,WhalleyLJ,StarrJM,HoleDJ,etal.ChildhoodIQ, socialclass,deprivation,andtheirrelationshipswithmortalityandmorbidity riskinlaterlife:prospectiveobservationalstudylinkingtheScottishMental Survey1932andtheMidspanstudies.PsychosomMed.2003;65(5):877–83. DOI: 10.1097/01.psy.0000088584.82822.86.PMID:14508035

88.HartCL,TaylorMD,SmithGD,WhalleyLJ,StarrJM,HoleDJ,etal.ChildhoodIQandcardiovasculardiseaseinadulthood:prospectiveobservational studylinkingtheScottishMentalSurvey1932andtheMidspanstudies.Soc SciMed.2004;59(10):2131–8.DOI: 10.1016/j.socscimed.2004.03.016.PMID: 15351478

89.HartCL,TaylorMD,SmithGD,WhalleyLJ,StarrJM,HoleDJ,etal.ChildhoodIQandall-causemortalitybeforeandafterage65:prospectiveobservationalstudylinkingtheScottishMentalSurvey1932andtheMidspanstudies. BrJHealthPsychol.2005;10(Pt2):153–65.DOI: 10.1348/135910704X14591 PMID:15969847

90.TaylorMD,HartCL,SmithGD,StarrJM,HoleDJ,WhalleyLJ,etal.Childhood mentalabilityandsmokingcessationinadulthood:prospectiveobservational studylinkingtheScottishMentalSurvey1932andtheMidspanstudies.J EpidemiolCommunityHealth.2003;57(6):464–5.DOI: 10.1136/jech.57.6.464

PMID:12775797;PMCID: PMC1732467

91.DearyIJ,TaylorMD,HartCL,WilsonV,SmithGD,BlaneD,StarrJM.Intergenerationalsocialmobilityandmid-lifestatusattainment:Influencesof childhoodintelligence,childhoodsocialfactors,andeducation.Intelligence. 2005;33(5):455–72.DOI: 10.1016/j.intell.2005.06.003

92.RobertsonNA,HillaryRF,McCartneyDL,Terradas-TerradasM,HighamJ,Sproul D,etal.Age-relatedclonalhaemopoiesisisassociatedwithincreasedepigeneticage.CurrBiol.2019;29(16):R786–7.DOI: 10.1016/j.cub.2019.07.011

PMID:31430471

93.RobertsonNA,Latorre-CrespoE,Terradas-TerradasM,Lemos-PortelaJ,PurcellAC,LiveseyBJ,etal.Longitudinaldynamicsofclonalhematopoiesisidentifiesgene-specificfitnesseffects.NatMed.2022;28(7):1439–46.DOI: 10.1038/ s41591-022-01883-3.PMID:35788175;PMCID: PMC9307482

94.CherrieMPC,ShorttNK,MitchellRJ,TaylorAM,RedmondP,ThompsonCW, etal.Greenspaceandcognitiveageing:aretrospectivelifecourseanalysisin theLothianBirthCohort1936.SocSciMed.2018;196:56–65.DOI: 10.1016/j. socscimed.2017.10.038.PMID:29128786

95.McGurnB,StarrJM,TopferJA,PattieA,WhitemanMC,LemmonHA,etal. Pronunciationofirregularwordsispreservedindementia,validatingpremorbidIQestimation.Neurology.2004;62(7):1184–6.DOI: 10.1212/01.wnl. 0000103169.80910.8b.PMID:15079021

96.DoddsRM,SyddallHE,CooperR,BenzevalM,DearyIJ,DennisonEM,etal.Grip strengthacrossthelifecourse:normativedatafromtwelveBritishstudies. PLoSOne.2014;9(12):e113637.DOI: 10.1371/journal.pone.0113637.PMID: 25474696;PMCID: PMC4256164

97.DearyIJ,JohnsonW,GowAJ,PattieA,BrettCE,BatesTC,StarrJM.Losingone’s grip:abivariategrowthcurvemodelofgripstrengthandnonverbalreasoningfromage79to87yearsintheLothianBirthCohort1921.JGerontolB PsycholSciSocSci.2011;66(6):699–707.DOI: 10.1093/geronb/gbr059.PMID: 21743039

98.MarekS,Tervo-ClemmensB,CalabroFJ,MontezDF,KayBP,HatoumAS,etal. Reproduciblebrain-wideassociationstudiesrequirethousandsofindividuals. Nature.2022;603(7902):654–60.DOI: 10.1038/s41586-022-04492-9.PMID: 35296861;PMCID: PMC8991999

99.ChenZ,GuoX,TaoR,HuygheJR,LawPJ,Fernandez-RozadillaC,etal.Finemappinganalysisincludingover254,000EastAsianandEuropeandescendantsidentifies136putativecolorectalcancersusceptibilitygenes.NatCommun.2024;15(1):3557.DOI: 10.1038/s41467-024-47399-x.PMID:38670944; PMCID: PMC11053150

100.LeightonDJ,AnsariM,NewtonJ,ClearyE,StephensonL,BeswickE,etal.Genotypesandphenotypesofmotorneurondisease:anupdateofthegeneticlandscapeinScotland.JNeurol.2024;271(8):5256–66.DOI: 10.1007/s00415-02412450-w.PMID:38852112;PMCID: PMC11319561

101.HartCL,DearyIJ,SmithGD,UptonMN,WhalleyLJ,StarrJM,etal.Childhood IQofparentsrelatedtocharacteristicsoftheiroffspring:linkingtheScottish MentalSurvey1932totheMidspanFamilyStudy.JBiosocSci.2005;37(5):623–39.DOI: 10.1017/S0021932004006923.PMID:16174350

102.HoulihanLM,DaviesG,TenesaA,HarrisSE,LucianoM,GowAJ,etal.CommonvariantsoflargeeffectinF12,KNG1,andHRGareassociatedwithactivatedpartialthromboplastintime.AmJHumGenet.2010;86(4):626–31.DOI: 10.1016/j.ajhg.2010.02.016.PMID:20303064;PMCID: PMC2850435

103.OkelyJA,CoxSR,DearyIJ,LucianoM,OveryK.Cognitiveagingandexperience ofplayingamusicalinstrument.PsycholAging.2023;38(7):696–711.DOI: 10. 1037/pag0000768.PMID:37603025

104.ToombsJ,PantherL,OrnelasL,LiuC,GomezE,Martin-IbanezR,etal.Generationoftwentyfourinducedpluripotentstemcelllinesfromtwentyfour

membersoftheLothianBirthCohort1936.StemCellRes.2020;46:101851. DOI: 10.1016/j.scr.2020.101851.PMID:32450543;PMCID: PMC7347008

105.HenstridgeCM,JacksonRJ,KimJM,HerrmannAG,WrightAK,HarrisSE,etal. Post-mortembrainanalysesoftheLothianBirthCohort1936:extending lifetimecognitiveandbrainphenotypingtothelevelofthesynapse.Acta NeuropatholCommun.2015;3:53.DOI: 10.1186/s40478-015-0232-0.PMID: 26335101;PMCID: PMC4559320

106.CorleyJ,OkelyJA,TaylorAM,PageD,WelsteadM,SkarabelaB,etal.Home gardenuseduringCOVID-19:Associationswithphysicalandmentalwellbeing inolderadults.JEnvironPsychol.2021;73:101545.DOI: 10.1016/j.jenvp.2020. 101545.PMID:36540294;PMCID: PMC9756817

107.OkelyJA,CorleyJ,WelsteadM,TaylorAM,PageD,SkarabelaB,etal.Change inphysicalactivity,sleepquality,andpsychosocialvariablesduringCOVID-19 lockdown:evidencefromtheLothianBirthCohort1936.IntJEnvironResPublicHealth.2020;18(1):210.DOI: 10.3390/ijerph18010210.PMID:33396611; PMCID: PMC7795040

108.TaylorAM,PageD,OkelyJA,CorleyJ,WelsteadM,SkarabelaB,etal.ImpactofCOVID-19lockdownonpsychosocialfactors,health,andlifestyle inScottishoctogenarians:TheLothianBirthCohort1936study.PLoSOne. 2021;16(6):e0253153.DOI: 10.1371/journal.pone.0253153.PMID:34138930; PMCID: PMC8211159

109.BartholomewDJ,DearyIJ,LawnM.AnewleaseoflifeforThomson’s bondsmodelofintelligence.PsycholRev.2009;116(3):567–79.DOI: 10.1037/ a0016262.PMID:19618987

110.BartholomewDJ,DearyIJ,LawnM.Theoriginoffactorscores:Spearman, ThomsonandBartlett.BrJMathStatPsychol.2009;62(Pt3):569–82.DOI: 10.1348/000711008X365676.PMID:19321036

111.BartholomewDJ,DearyIJ,LawnM.SirGodfreyThomson:astatisticalpioneer.J RStatSocaStat.2009;172:467–82.DOI: 10.1111/j.1467-985X.2008.00567.x

112.DearyIJ,LawnM,BrettCE,PattieA,BartholomewDJ.Archivalsourcesfor SirGodfreyHiltonThomson.HistPsychol.2010;13(1):95–103.DOI: 10.1037/ a0018529

113.DearyIJ.AnintelligentScotland:ProfessorSirGodfreyThomsonandtheScottishMentalSurveysof1932and1947.JBritishAcad.2013;1:95–131.DOI: 10.5871/jba/001.095

Publisher’snote: GenomicPressmaintainsapositionofimpartialityandneutrality regardingterritorialassertionsrepresentedinpublishedmaterialsandaffiliations ofinstitutionalnature.Assuch,wewillusetheaffiliationsprovidedbytheauthors, withouteditingthem.Suchusesimplyreflectswhattheauthorssubmittedtousand itdoesnotindicatethatGenomicPresssupportsanytypeofterritorialassertions.

OpenAccess. ThisarticleislicensedtoGenomicPressundertheCreativeCommonsAttribution-NonCommercial-NoDerivatives4.0InternationalLicense(CCBY-NC-ND4.0).Thelicensemandates:(1)Attribution:Credit mustbegiventotheoriginalwork,withalinktothelicenseandnotificationofany changes.Theacknowledgmentshouldnotimplylicensorendorsement.(2)NonCommercial:Thematerialcannotbeusedforcommercialpurposes.(3)NoDerivatives: Modifiedversionsoftheworkcannotbedistributed.(4)Noadditionallegalortechnologicalrestrictionsmaybeappliedbeyondthosestipulatedinthelicense.Public domainmaterialsorthosecoveredbystatutoryexceptionsareexemptfromthese terms.Thislicensedoesnotcoverallpotentialrights,suchaspublicityorprivacy rights,whichmayrestrictmaterialuse.Third-partycontentinthisarticlefallsunderthearticle’sCreativeCommonslicenseunlessotherwisestated.Ifuseexceeds thelicensescopeorstatutoryregulation,permissionmustbeobtainedfromthe copyrightholder.Forcompletelicensedetails,visit https://creativecommons.org/ licenses/by-nc-nd/4.0/.Thelicenseisprovidedwithoutwarranties.

HIGHPRIORITYRESEARCHCOMMUNICATION

Prepartumbumetanidetreatmentreversesalteredneonatalsocialcommunication butnonspecificallyreducespostpubertalsocialbehaviorinamousemodelof fragileXsyndrome

YuiSakamoto1 , # ,TakeshiTakano2 , 3 , # ,ShujiShimoyama4 , # ,TakeshiHiramoto2 ,NoboruHiroi2 , 5 , 6 ,andKazuhikoNakamura1

FragileXsyndromeiscausedbymonogenicsilencingofthe FMR1 geneandischaracterizedbyhighratesofautismspectrumdisorder.A previousstudydemonstratedthatprepartumadministrationofbumetanide,achloridetransporterblocker,normalizedneonatalvocalization innon-congenic Fmr1 knockout(KO)pups.However,thegenuinecontributionof Fmr1 deletiontothisphenotypeinacongenic Fmr1 KOmouse modelandthelong-lastingeffectofprepartumbumetanideadministrationonpostpubertalsocialinteractionremainsunclear.Thecurrent studyaimedtodeterminetheimpactofprepartumbumetanideadministrationonvocalizationatpostnatalday7andsocialinteractionat 6and8weeksofageinacongenic Fmr1 KOmousemodelinwhichthegeneticbackgroundswerehomogeneousbetweenKOandwild-type(WT) littermates.Moreover,weappliedacomputationalanalyticalalgorithmanddeterminedpredictivevariablesofneonatalvocalizationfor postpubertalsocialinteraction.Ourdatashowedthat(1)KOmiceexhibitedalterednumbersandsequencesofdistinctcalltypesduring neonatalvocalizationandreducedsocialinteractionat6weeks,(2)selectsetsofneonatalvocalizationvariablespredictedpostpubertalsocial interactionlevels,and(3)bumetaniderestoredneonatalvocalizationinKOpupsbutnonspecificallyreducedsocialinteractioninWTandKO miceat6weeks.Thesedataindicatethat Fmr1 deletionselectivelyimpactsdistinctelementsofneonatalvocalizationandpostpubertalsocial interaction.Additionally,bumetanideselectivelyrestoresneonatalvocalizationbuthasatransientnonspecificnegativeimpactonsubsequent postpubertalsocialinteraction.

GenomicPsychiatry January2025;1(1):61–72;doi: https://doi.org/10.61373/gp024h.0094

Keywords: FragileX,Fmr1,FMRP,criticalperiod,GABA,socialcommunication,socialinteraction,machinelearning,predictors

Introduction

Precisionmedicinehasnotbeenutilizedinpsychiatrybecausetheprecisemechanistictargetsofpsychiatricdisordersarenotwellestablished. Geneandgenomicvariantsprovideareliableentrypointforamechanistic understandingofpsychiatricdisordersandmechanism-basedtherapeuticoptions(1).

FragileXsyndromeisaneurodevelopmentaldisordercausedbymonogenicmutationandtranscriptionalsilencingofthefragileXmessenger ribonucleoprotein1(FMR1)gene,resultinginlossofitsproteinproduct, fragileXmessengerribonucleoprotein(FMRP).Thesyndromeincludes theclinicaldiagnosesofautismspectrumdisorder(ASD)andintellectualdisability.Although FMR1 silencingbeginsintheembryonicperiod inhumans(2),thephenotypesarenotreliablyidentifieduntillaterinthe postnatalperiod,partlybecauseclinicaldiagnosesarenotfeasibleuntilformaltestscanbereliablyapplied.However,manysocial,cognitive, affective,motor,andsensoryphenotypesappearduringearlypostnatal periods(3).

Inthemousebrain,FMRPexpressionishighonembryonicday11.5 (E11.5),E18.5,andduringthefirstpostnatalweekbutsteadilydeclinesthereafter(4, 5).The Fmr1 peaksduringtheperinatalperiodmirrorthoseinhumanbrains(5).Thedevelopmentalphasefromtheembryonicperiodtothefirstneonatalweek,exceptforthetimeofbirth (i.e.,postnatalday0,P0),isauniqueperiodinwhichtheinhibitory neurotransmittergamma-aminobutyricacid(GABA)exertsanexcitatory actiononneuronsbecauseoftheirhighintracellularchlorideconcentration(6, 7).Remarkably,aseminalstudybyBen-Ariandcolleagues

reportedthatthistransientinhibitoryroleofGABAatandnearP0isattenuatedinamousemodeloffragileXsyndrome;whenpregnantmothers weretreatedwithbumetanide,anNKCC1chloridetransporterinhibitor, onedaybeforedelivery,theincreasedprobabilitiesoftwoneonatalcall types(i.e.,chevronanddownward)werenormalizedinnon-congenic Fmr1 knockout(KO)pupsatP8(8).Humanstudieshavenotaddressed thecriticalperiodforbumetanidetreatmentduetotechnicalandethicalissues.ThetherapeuticeffectsofbumetanideonpatientswithidiopathicASDarelargelynegativewhentreatmentstartsat2yearsofage orlater(9).

Theimpetusofthepresentstudywas3-fold.First,anon-congenic mousemodelposesaninterpretativeissue.Althoughnon-congenic mousemodelshaverandomlyshuffledallelicdistributionsthroughout thegenomesofKOandwild-type(WT)littermates,theyhaveasystematic,consistentbiasnearthetargetedgene.Becauseofthelowrecombinationratesbetweenthetargetedgeneandgeneslocatednearby,the allelesofnearbygenesofthetargetedgenetendtobeinheritedtogether.Becausegenetargetingisinducedinembryonicstem(ES)cells ofthe129/Svsubstrainsandmicearebredwithanotherstrain(e.g.,FVB orC57BL/6J),KOoffspringaccumulateallelesofneighboringgenesderivedfromEScells,andWToffspringaccumulateallelesofbreeders.Becausethesestrainsdifferintheirmolecular,cellular,electrophysiological,anatomical,andbehavioralphenotypes,anyphenotypicdifferences betweennon-congenicKOandWTlittermatescannotbeunequivocallyattributedtothetargetedgene(10).Weaddressedthisissueusingacongenic Fmr1 KOmousemodel.

1 DepartmentofNeuropsychiatry,HirosakiUniversityGraduateSchoolofMedicine,Hirosaki,Aomori,Japan036-8562; 2 DepartmentofPharmacology,UniversityofTexas HealthScienceCenteratSanAntonio,SanAntonio,TX,USA78229; 3 TokyoDenkiUniversity,Ishizuka,Hatoyama-machi,Hiki-gun,Saitama350-0394,Japan; 4 Department ofNeurophysiology,HirosakiUniversityGraduateSchoolofMedicine,Hirosaki,Aomori,Japan036-8562; 5 DepartmentofCellularandIntegrativePhysiology,Universityof TexasHealthScienceCenteratSanAntonio,SanAntonio,TX,USA78229; 6 DepartmentofCellSystemsAnatomy,UniversityofTexasHealthScienceCenteratSanAntonio, SanAntonio,TX,USA78229

# Theseauthorscontributedequallytothiswork.

CorrespondingAuthors: KazuhikoNakamura,HirosakiUniversityGraduateSchoolofMedicine,5Zaifu-cho,Hirosaki,Aomori,036-8562,Japan.Phone:81-172-395066;E-mail: nakakazu@hirosaki-u.ac.jp;andNoboruHiroi,UniversityofTexasHealthScienceCenteratSanAntonio,7703FloydCurlDr,SanAntonio,TX78229,USA. Phone:210-567-4169;E-mail: hiroi@uthscsa.edu

Received:23October2024.Revised:16November2024and4December2024.Accepted:9December2024. Publishedonline:24December2024.

Figure1. Numberofneonatalvocalizationcalltypes.Theaveragenumber(±SEM)ofeachcalltypeemittedbymaleWTandKOmiceisshown.Asterisks (∗ , ∗∗ ,and ∗∗∗ )indicatestatisticallysignificantdifferences(1%,0.5%,and0.1%,respectively)betweenWTandKOpups.Inset:WTandKOmicediffered (F(1,41) = 18.839, p < 0.0001)andbumetanideincreasedcallsinKOmice(Treatment,F(1,41) = 23.080, p < 0.0001;Interaction,F(1,41) = 6.7576, p = 0.0129). Student t-testsshowedthatWTandKOmicedifferedinthetotalnumberofallcallswithoutbumetanidetreatment(p = 0.0013),butnotwithbumetanide(p = 0.0850).Mainfigure:WTandKOmicediffereddependingoncalltypesandtreatment(GenotypexCalltypesxTreatment,F(11,451) = 8.8573, p < 0.0001). Vehicle-treatedWTandKOpupsdifferedinthenumbersofharmonic(p = 0.0007)andflat(p = 0.0072).Thesesignificantdifferencesof t-testssurvived Benjamini–Hochberg’scorrectionsformultiplecomparisonsat5%FDR.Bumetanide-treatedWTpupsdidnotdifferinanycalltypefrombumetanide-treated KOpups(p > 0.05).Vehicle:WT, n = 9;KO, n = 12.Bumetanide:WT, n = 12;KO, n = 12.Ha,harmonic;Ch,chevron;Co,complex;Df,down-frequencymodulation; Fl,flat;Ms,multi-step;Rc,reversechevron;Sh,short;Sd,step-down;Su,step-up;Ts,two-step;Uf,up-frequencymodulation.

Second,phenotypicvariabilityisanorm,andthuscomparisonsbased ongroupaveragesdonotfullycapturethenuancednatureoftheimpactsofgenomicvariations. Fmr1 mutationdoesnotcausecompletepenetrance,andapproximately60%ofmalecarriersarediagnosedwithASD. ElementsofASDalsoshowphenotypicvariability;socialcommunicationis weakamong Fmr1 mutationcarrierswithanASDdiagnosis(3).Morethan 10distinctcalltypesandtheirspecifictemporalsequencesareuniquely impactedbydosealterationsofgenesimplicatedinneurodevelopmental andpsychiatricdisordersinmousemodels(11–13).Therefore,tocapture thevariablenatureofthissyndromeanditsdimensionalelements,we appliedcomputationalapproaches(11, 12, 14, 15).

Third,specificrolesofGABAduringtheperinatalperiodinthedevelopmentofpostpubertalsocialinteractionhavenotbeenexplored.This issueispertinenttothetheoreticalquestionofwhethernormalneonatalsocialcommunicationisaprerequisitefornormalsocialinteraction atlatertimesorwhetherthesetwoprocessesindependentlydevelop. Weaddressedthisquestionbycomputationallyevaluatingthepredictivepowerofvariablesofneonatalvocalizationforpostpubertalsocial interactionwithoutandwithbumetanide.Differentialalterationofphenotypesofthetwodevelopmentalstagesbythistreatmentwouldsupportmechanisticallyindependentprocesses;incontrast,thepresenceof predictiveneonatalvariablesforpostpubertalsocialinteractionandimprovementofbothbehaviorsbybumetanideatthetwodevelopmental stageswouldbeconsistentwiththehypothesisthatthetwodevelopmentalstagesshareacommonmechanisticbasis.

TotestthehypothesisthataGABAergictoneduringtheperinatalperiodisadeterminantforneonatalsocialcommunicationandpostpubertal socialinteraction,weadministeredbumetanideprepartumandevaluated itsimpactsonneonatalvocalizationatP7andonpostpubertalsocialinteractionat6and8weeksofage.AsfragileXsyndromeisassociatedwith variableexpressivityanddevelopmentaltrajectoriesamongcarriers,we appliedacomputationalanalyticalalgorithm(12)topredictthevariabilityofpostpubertalsocialinteractionscoresfromthevariationinneonatal vocalizations.

Results

Fmr1 DeletionAlterstheNumberofCallswithSpecificGeometricShapes Evidenceindicatesthattheperinatal/neonatalperiodiscriticalforthe developmentofsocialbehavior(16),andneonatalvocalizationistheearliestexpressionofsocialcommunicationinrodentsandhumans(11, 12, 17, 18).Itwasreportedthattheprobabilitiesofcallswithtwospecific geometricshapes,termedchevronanddownward,wereincreasedand theseincreaseswerenormalizedbybumetanideinanon-congenicmouse modeloffragileXsyndrome(8).However,mousepupsgenerallyexhibit morethan10distinctcalltypes,andtheyaredistinctlyimpactedbygenes linkedtoneurodevelopmentaldisorders(11–13, 19, 20).Inparticular,the calltypesthatarealteredinvariousmousemodelsoffragileXsyndrome varydependingongeneticbackgrounds,sex,age,callclassifications,and otherfactors.Whenneonatalcalltypeswereanalyzedinmousemodels offragileXsyndromeinwhichthegeneticbackgroundsweremadehomogenousbetweenWTandKOpups,variouscalltypeswerefoundtobe altered,resultingingreaternumbersof“frequencyjump”calls,whichincludedtwo-syllableandfrequencystepcalls,atP7(13),increasedpercentagesofchevronandfrequencystepcalltypesanddecreasedpercentagesofcomplex,composite,downward,harmonic,two-syllable,andshort calltypesatP8(21).

Wecomprehensivelycharacterizedcalltypesthatwerealteredby Fmr1 deletionandbumetanidetreatmentincongenic Fmr1 KOpupsand theirWTlittermates.KOpupsemittedfewertotalcallsthanWTpups, andthiseffectwasamelioratedbybumetanideatP7(Figure1 inset).The numbersofthe12calltypeswereseparatelycomparedbetweenWTand KOmice(Figure1;SupplementalTableS2).ComparedwithWTpups,KO pupsemittedfewerharmonicandflatcalltypes.Bumetanideincreased thenumberofcallsinKOpupstotheextentthatKOandWTpupsdidnot differforanycalltypes.

Weadditionallyexaminedtheproportionofeachcalltypewithinthe totalnumberforeachpup.Inthismeasure,WTandKOmicedidnotdifferforcalltypesandbumetanidehadnosignificanteffect(Supplemental FigureS1;SupplementalTableS2).

Figure2. Three-dimensionalUMAPofVocalMatparameters.UMAPwasusedtoconvertthequantitativeacousticparametersintolowerdimensionswhilemaintainingtheircharacter.TheVocalMatparametersincluded“duration,”“min_freq_main,”“max_freq_main,”“mean_freq_main,”“bandwidth,”“min_freq_total,” “max_freq_total,””mean_freq_total,”“min_intens_total,”“max_intens_total,”and“mean_intens_total”.Callswereseparatedintothreeclusters.Calltypesare indicatedbydistinctcolorsinthethreeclusters.

Thelengthofallcalls(SupplementalFigureS2inset)oreachcalltype (SupplementalFigureS2)didnotdifferbetweenWTandKOpups.While thelengthsofallcallswereprolongedbybumetanide(Figure2 inset), theydidnotreachsignificancewheneachcallwasseparatelyanalyzed (SupplementalFigureS2).

Fmr1 DeletiondoesnotAltertheQuantitativeAcousticParametersof CallTypes

Theseanalyseswerebasedonthecategoricalclassificationofgeometric callshapes.However,eachcalltypealsohasquantitativeacousticparameters.Wethusadditionallyanalyzedthe(1)bandwidthinHz,(2)maximum,mean,andminimumfrequenciesinHzofacalloritsmaincomponents,and(3)maximum,mean,andminimumintensitiesofeachcall. Vehicle-treatedWTandKOpupsdidnotdifferinanyoftheseacousticparametersforallcalltypes(SupplementalTableS3A–S3J).Thus,theacousticparametersdidnotdiscriminategenotype.

Fmr1 DeletionImpactstheQuantitativeParametersofCallsina DimensionalSpace

Havingestablishedthatthesimpleacousticparametersdidnotdifferentiategenotypeordrugtreatment,wenextaimedtoevaluatecallsinan independentdimension.Wevisualizedandevaluatedthecomplexnature

ofVocalMat’squantitativeacousticparametersinthreeandtwodimensionsusingUniformManifoldApproximationandProjection(UMAP).

WefirstusedthreecommonlyusedUMAPmetrics:Manhattan,Euclidean,andChebyshev(SupplementalFigureS3).ToevaluatetherelationshipbetweentheseUMAPclustersandcalltypes,wecolor-coded eachdatapointbasedonthecallclassificationofourmodifiedVocalMat. BecausetheEuclideanmetricsprovidedbetterclusterseparationthan theManhattanorChebyshevmetrics,weusedtheEuclideanmetricfor allthesubsequentanalyses.

Thisanalysisreducedallcallsintothreemainspatialclustersina three-dimensionalUMAPspace(Figure2;SupplementalFiguresS4and S5).Thedecreasednumbersofcallsareapparentinallthreeclusters inKOpups;allthesespatialclusterswererestoredbybumetanide.HarmoniccallswerepredominantlyrepresentedinspatialCluster1andCluster3(SupplementalFiguresS5andS6);chevronwasthemostpredominantcalltypeinCluster2(SupplementalFiguresS5andS6).Thisanalysis showedquantitativedifferencesandsimilaritiesamongVocalMat-based calltypes.Callsclassifiedas“harmonic”havethemostvariablequantitativeprofilethanothercalltypes.

Thecombinedanalyticalapproachesforcategoricalcalltypes andquantitativeacousticparametersshowedthat Fmr1 deletionand

Figure3. Probabilitiesofintercallintervals.Theobservedandexpectedprobabilitiesofintercallintervalsofvehicle-treatedWT(A),vehicle-treatedKO(B), bumetanide-treatedWT(C),andbumetanide-treatedKOmice(D).Vehicle-treatedKOpupshadlongerintercallintervals,comparedwithvehicle-treatedWT pups(p < 0.0001).BumetanidereducedintercallintervalsinKOpups(p < 0.0001)butbumetanide-treatedKOpupsstillmaintainedlongerintercallintervals thanbumetanide-treatedWTpups(p < 0.0001).Theactualintercallintervals(ms)atcross-pointsoftheobservedandexpectedprobabilitiesareshown.Intercall intervalsshorterthanthehighercross-pointsbetweentheobservedandexpecteddistributionshadprobabilitieshigherthantheexpecteddistributionsandthus areconsideredintervalsbetweencallswithinsequences(Vehicle-WT,306.62ms;Vehicle-KO,473.18ms;Bumetanide-WT,306.12ms;Bumetanide-KO, 334.63 ms);intercallintervalslongerthanthecross-pointswereconsideredintervalsfromtheendofasequencetothebeginningofthenextsequence.

bumetanideimpactcallswithdistinctcategoricalandquantitative parameters.

Fmr1 KOAlterstheTemporalDistributionofCallSequences Callswereemittedwithvariousintercallintervals.Toobjectivelyidentify atemporalclusterofcalls,wefirstdeterminedthePoissondistribution, atheoreticallyexpecteddistributionofintercallintervalswithagiven numberofcallswithina300-stesttime(Figure3,redlines).BecauseKO pupsemittedfewercallsthanWTpups,thetheoreticallyexpectedintercallintervalsofKOpupswereshiftedtotheright(Figure3B,redlines) comparedwiththoseofWTpups(Figure3A,redlines).Thesedataindicatethat Fmr1 deletionalterstheintercallintervalswithoutchangingthe lengthofeachcall(seeSupplementalFigureS2).

Thelargestpeaksofobservedintercallintervals,representingthe mostfrequentintercallintervals,werefoundaround200ms(Figure3, blacklines).Therewerealsomuchsmallerpeaksthatoccurredmore frequentlythanexpectedfromthePoissondistributionsbelowapproximately30ms(Figure3,blacklines).However,theseshortintercallintervalsoccurredinlessthan5%ofallcallsofallpups.

Wedefinedacallsequenceasaseriesofcallsthatwereemittedwith intercallintervalsshorterthanthelargervalueofthetwocrossesbetweenthehighestprobabilitypeakoftheobservedcurveandtheexpectedprobabilitycurve(see Figure3A,WT,Vehicle,306.62ms;B,KO, Vehicle,473.18ms;C,WT,Bumetanide,306.12ms;D,KO,Bumetanide, 334.63ms).

Figure4. Markovmodel.Therelativeprobabilitiesofeachtwo-callsequenceforeachofthe12calltypesidentifiedbytheMarkovmodelsareshown.Thesum ofallproportionsofeachstartingcallis1,andthesumofallMarkovprobabilitiesis100% × 12calls.Thelinethicknessrepresentstherelativeprobabilityofa callsequence.

Whencallsequencesweresodefined,shortandlongsequenceswere identifiedaround100msand1s,respectively(SupplementalFigureS7). BumetanidelengthenedthelongsequencedurationinKOpupscompared withthatinvehicle-treatedKOpups.

Fmr1 KOAltersCallSequences

Havingdefinedcallsequences,wenextdeterminedhowvariouscalltypes wereorderedwithinsequences.Wedeterminedtheprobabilitiesoftwo consecutivecallsforagivenstartingcallusingMarkovmodeling.This modelisbasedontheMarkovproperty,wherefuturestatesdependonly onthecurrentstate.Theprobabilitiesofcallsequencesweredetermined basedontwoconsecutivecalls.Inotherwords,theprobabilityofthenext calltypewascomputedwithineachcalltype;thesumofprobabilitiesof alltwo-callsequencesstartingfromagivencalltypewasalways1.0.Thus, thisanalysiswasnotinfluencedbytheprobabilitiesofthefirstcalloftwo consecutivecallsemittedbyeachsubject.Thisanalysisrevealeddistinct frequentlyemittedtwoconsecutivecallsofvehicle-treatedWTandKO pups(Figure4).Bumetaniderestoredthealteredtwo-callsequencesof KOpups.

BecauseoftheMarkovproperty,thetwo-callsequencesstartingfrom lessemittedcalltypestendtobeoverestimated.Toevaluatecallsequenceswithineachmousewithallstartingcalltypes,weincorporated aseparateanalysisofhowfrequentlyeachtwo-callpairwasemitted.In thisanalysis,thesumofprobabilitiesofalltwo-callsequencesstarting fromallcalltypeswasalways1.0.Two-callpairsstartingandendingin harmonicwerepredominantinallgroups(SupplementalFigureS8).

PrepartumBumetanideTreatmentReducesPostpubertalSocial InteractioninKOMice

Whenthepupsreached6and8weeksofage,theyweresequentially testedforsocialinteraction.Wetestednaturalisticsocialinteractionin ahomecagesettingbecauseitisabettervalidationthanotherprocedures(22),andmolecularmechanismsunderlyingdirectsocialcontactin suchaset-upandindirectcontactwithabarrierdiffer(23).

Therewereafewtestorstimuluspartnermiceineachgroupthatexhibitedaggressivebehavior.Suchcaseswereeliminatedfromtheanalysis(24)forthreereasons.First,geneticbasesofaffiliativesocialinteractionandaggressivebehaviorarenonidentical(25).Second,aggressive

Figure5. Socialinteraction.Thetime(mean±SEM)spentinactivesocialinteractionat6weeksofage(A)and8weeksofage(B)isshown.(A)KOmicespent lesstimeinsocialinteractionthanWTmice(Genotype,F(1,36) = 4.1160, p = 0.0499)andbumetanidetreatmentequallyreducedsocialinteractioninboth genotypegroups(Treatment,F(1,36) = 37.1341, p < 0.0001;Interaction,F(1,36) = 1.1674, p = 0.2871).WT/Vehicle, n = 8;KO/Vehicle, n = 11;WT/Bumetanide, n = 11,KO/Bumetanide, n = 10.(B)WTandKOmicedidnotdiffer(Genotype,F(1,33) = 0.0399, p = 0.8429)andtheeffectofbumetanidetreatmentwasnot significant(F(1,33) = 3.4975, p = 0.0704)withoutaninteractioneffect(F(1,33) = 0.1661, p = 0.6862).WT/Vehicle, n = 7;KO/Vehicle, n = 11;WT/Bumetanide, n = 9,KO/Bumetanide, n = 10.

behaviorisnotaprominentelementoffragileXsyndrome,butalteredaffiliativesocialinteractionisanelement.Third,aggressivebehaviorindirectlysuppressestheoccurrenceofaffiliativesocialinteraction,thereby artificiallyunderestimatingit.Thefollowingtestmicewereeliminated ineachgroup:6weeks:VehicleWT,1mouse;BumetanideWT,1mouse; BumetanideKO,2mice.8weeks:VehicleWT,1mouse;BumetanideWT, 3mice;BumetanideKO,1mouse.Wealsoeliminatedcaseswherethe stimulusmicewereagitatedandhyperactive(6weeks,VehicleKO,1case. 8weeks:VehicleWT,1case;BumetanideKO,1case),assuchbehaviorof thestimulusmousemakesitphysicallyimpossibleforatestmousetoengageinaffiliativesocialinteraction.

KOmiceshowedlowersocialinteractionlevelsthanWTmice;prepartumbumetanidetreatmentequallyloweredsocialinteractionlevelsin bothWTandKOmiceat6weeksofage(Figure5A).

At8weeksofage,vehicle-treatedWTandKOmicedidnotdiffer,and bumetanidehadnostatisticallysignificanteffectonsocialinteractionin WTandKOmice(Figure5B).

PredictiveVariablesofNeonatalVocalizationforPostpubertalAffiliative SocialInteraction

Ifamechanisticlinkexistsbetweenneonatalvocalizationsandthedevelopmentofpostpubertalsocialbehavior,theformershouldpredictthelatter.Toidentifysuchpredictivevariablesofneonatalvocalizationsamong thenumbersandprobabilitiesofcalltypesandcallsequences,wedevelopedLeastAbsoluteShrinkageandSelectionOperator(Lasso)regressionmodelsforeachgroup.Theacousticvariableswerenotincludedin thisanalysis,astherewasnodifferenceintheiraveragesbetweengenotypesortreatments,andsomecalltypeswerenotemittedinsomemice, thusprovidingnoacousticparameter(e.g.,bandwidthandamplitude) (SupplementalTableS3).

Thisanalysisidentifiedauniquesetofspecificvariableswithineach groupthatpredictaffiliativesocialinteractionlevelsat6weeksofage (Figure6).Themostrobustpredictorsofvehicle-treatedWTmicewere thenumberofflat->chevronandtheproportionofchevron->chevron; thoseofvehicle-treatedKOmiceweretheMarkovprobabilityofchevron>short,andthenon-Markovproportionsofharmonic->chevronand chevron->two-stepcalls.Thesevariableswerealsosignificantlycorrelatedwiththescoresofsocialinteraction(see Figure6 inset;SupplementalTableS2;SupplementalFigureS6).

Inbumetanide-treatedmice,severalvariablesofneonatalvocalizationwereidentifiedaspredictorsbyLassomodels(Figure6).Themost robustpredictorsweretheproportionoftwosteps->flatandMarkov probabilityofharmonic->step-upinWTmice;theMarkovprobabilities ofstep-down->harmonic,harmonic->chevron,complex->upwardfrequencymodulation,andchevron->twosteps,andnon-Markovproportionsofdownwardfrequencymodulation->flatinKOmice.Remarkably, noneoftheLasso-selectedvariablesweresignificantlycorrelatedwith socialinteractionscoresinbumetanide-treatedWTorKOmice(Figure6 inset;SupplementalTableS2;SupplementalFigureS6).Thisresultis likelyduetothenonspecificeffectsofbumetanideonsocialinteraction inbothWTandKOmice(see Figure5).

Intheanalysisabove,weidentifiedneonatalcallparametersthatbest predictedpostpubertalsocialinteractionwithin6-weekvehicle-treated WTorKOmice.Wenextidentifiedneonatalcallparametersthatbest differentiatedsocialinteractionscoresandgenotypesinpooleddataof bothvehicle-treatedWTandKOmiceat6weeks.First,aLassoregressionmodelwithsocialscoresasthecoefficientidentifiedsequencesand callnumbersaspredictorsofsocialinteraction(SupplementalFigure S9A,e.g.,Fl->Ch,Sh->Fl).Onlytwoofthemweresignificantlycorrelatedwithsocialinteractionscores(Fl->ChandCh->Sh;Supplemental TableS2;SupplementalFigureS9A).Second,aLassoregressionmodel identifiedthenumberofFlat->Chevronasapredictorofthegenotype (SupplementalFigureS9B).However,thispredictorfailedtodiscriminatethegenotype(seeSupplementalFigureS9BandSupplemental TableS2).

Althoughtherewasnoeffectofgenotypeorbumetanideonsocialinteractionat8weeksofage(Figure5),weappliedtheLassomethodtodeterminewhichneonatalvocalizationvariablespredictindividualvariation insocialinteraction(SupplementalFigureS10).Distinctsetsoftwo-call sequencespredictedindividualvariationwithineachgenotype,including theMarkovprobabilityofcomplex->chevronandthenon-Markovproportionofchevron->complexinvehicle-treatedWTmice.Invehicle-treated KOmice,theMarkovprobabilityofupwardfrequencymodulation->two stepsandthenon-Markovproportionofharmonic->chevronwererobust predictors.

Inbumetanide-treatedWTmice,Lassomodelsidentifiedsomesequences(e.g.,complex->upwardfrequencymodulationandtwo-step>upwardfrequencymodulation;SupplementalFigureS10),allofwhich

Figure6. Neonatalvocalizationpredictorsforsocialinteractionat6weeksofage.Thefractionofdevianceexplainedandthecoefficientsofvariableswere determinedbytheLassoregressionmodel.Allparameters(calltypenumberandproportions,callsequencenumber,Markovprobabilities,andnon-Markov proportions)wereusedforselection.Lassomodelsidentifiedseveralpredictorsforsocialinteractionscoreswithineachgroup.Eachinsetshowscallsequences thatweresignificantlycorrelatedwiththeindividualpost-pubertalsocialinteractionscores(seeSupplementalTableS2and Figure6).TheMarkovprobabilities, non-Markovproportions,andnumbersoftwo-callsequenceswereselected.Thesmallvaluesalongthefractionofdevianceexplainedaxisarerobustpredictors ofsocialinteraction.Ha,harmonic;Ch,chevron;Co,complex;Df,down-frequencymodulation;Fl,flat;Ms,multi-step;Rc,reversechevron;Sh,short;Sd,stepdown;Su,step-up;Ts,two-step;Uf,up-frequencymodulation,MP,Markovprobability;P,non-Markovproportion;#,number.

weresignificantlycorrelatedwiththepostpubertalsocialinteraction scores(SupplementalFigureS10inset;SupplementalTableS2).

Inbumetanide-treatedKOmice,aLassomodelselectedtheMarkov probabilityofflat->upwardfrequencymodulationandupwardfrequency modulation->upwardfrequencymodulationandnumberofshort->short asthemostrobustpredictorsforsocialinteraction(SupplementalFigure S10),noneofwhichweresignificantlycorrelatedwiththesocialscores (SupplementalFigureS10inset;SupplementalTableS2).

Discussion

Wehypothesizedthattheintracellularconcentrationofchlorideionsin neuronsaroundthetimeofbirthisacriticaldeterminantforthecausal sequentialdevelopmentofneonatalandpostpubertalsocialbehaviors.

Thishypothesiswasbasedonthepioneeringreportthatbumetanide, anNKCC1(Na+ -K+ -2Cl cotransporter)inhibitorthatcontrolsintracellularchlorideionconcentration,restoredneonatalvocalizationsinnoncongenic Fmr1 KOpups(8).Weusedacongenic Fmr1 KOmouseto determinethepredictivevariablesofneonatalvocalizationforthepostpubertalsocialinteractionscoresaswellastheimpactofbumetanide onthesedevelopmentalvariables.Ourdatashowedthat(1) Fmr1 deletionreducedthenumberofspecificneonatalcalltypesandprobabilities ofcallsequences;(2)bumetaniderestoredtheseneonatalphenotypes; (3) Fmr1 deletionreduceddirectsocialinteractionat6weeks,butnotat 8weeks,ofage;(4)bumetanidenonspecificallyreducedthepostpubertal socialinteractionlevelinWTandKOmice,resultinginindistinguishable

socialinteractionlevelsat6weeks;(5)distinctneonatalvocalizationcall sequencespredictedthepostpubertalsocialinteractionlevelinvehicletreatedWTandKOmiceat6weeks;and(6)suchpredictorsdidnotexist inbumetanide-treatedWTandKOmicebecausebumetanidenonspecificallyreducedsocialinteractionscorestothelevelwherethetwogenotypegroupswereindistinguishable.

Unlessunavoidable,wewilldiscussonlythosestudiesthatusedcongenicorcoisogenic Fmr1 KOmicelinesoranF1hybridlinewherethehomogeneousgeneticbackgroundsofWTandKOmicearemaintained.Noncongenicmicewith“mixed”geneticbackgroundsconsistentlycarrymore breederlineallelesinWTmiceandmoreEScellalleles(e.g.,129/Sv)inKO micenearthedeletedgene(10).Suchmodelsdonotidentifyphenotypes thatgenuinelyreflecttheimpactof Fmr1 deletionalone.Moreover,we limitourdiscussiontostudiesthatmanuallyclassifiedcallsorusedautomaticcallclassificationsystemswithlowfalsenegativeandfalsepositive ratesbecausehighfalsenegativeandpositiveratescompromisetheaccurateevaluationofneonatalcalls(26).

Weobservedthatmalecongenic Fmr1 KOmiceemittedfewercallsof specificcalltypes(harmonicandflat)butexhibitednormalpercentages ofallcalltypes.Previouswell-controlledstudiesidentifiedalterationsof variousneonatalvocalizationparametersincongenic Fmr1 KOpups.Congenic Fmr1 KOpupswithanFVBbackgroundemittedmoretwo-syllable andfrequencystepsatP7thanWTpups;however,sexwasnotspecified inthisstudy(13).Inanotherstudy,malecongenic Fmr1 KOpupswith anFVBbackgroundemittedfewercallsatP9andP13andmorecallsat P12thanWTpups(27).Ourresultsareconsistentwiththisobservationin thatKOpupsemittedfewercallsthanWTpups(see Figure1 inset).While poweranalysesindicatethatstatisticallysignificantdifferencesmight beachievedwithlargersamplesizesforchevron(n = 22),step-up(N = 13),up-frequencymodulation(N = 15),alltheothercalltypesareestimatedtorequiremuchlargesamplesizes(seeSupplementalTableS2and Figure1,Poweranalysis).Thus, Fmr1 KOaffectsharmonicandflatcall typesmorerobustlythanothercalls.

Whencallswereanalyzedbyproportions,wefounddecreasedproportionsofharmonicandtwo-stepcallsandhigherproportionsofchevron inKOpups.However,noneofthesealterationsreachedstatisticalsignificance.Inapreviousstudy,male Fmr1 KOpupswithanFVBbackground producedproportionallymorechevronandfrequencystepcalltypesand decreasedproportionsofcomplex,composite,downward,harmonic,twosyllable,andshortcalltypesatP8(21).Alargersamplesizeoftheirstudy (WT, n = 17;KO, n = 13)isonelikelyfactorforsignificanceinmorecall typesintheirstudythaninourstudy(WT, n = 9;KO, n = 12).Poweranalysesshowedthatwithlargersamplesizes,vehicle-treatedWTandKO micearelikelytoachieveastatisticallysignificantreductioninproportionsofharmonic(N = 13)andstep-up(similartotwo-syllable, N = 45) callsandincreasesindown-frequencymodulation(similartodownward) (N = 39)andshort(N = 48)calls(SupplementalTableS2;SupplementalFigureS1).Theothercalltypesrequiremuchlargersamplesizesto achievestatisticalsignificance:chevron(N = 69),frequencystep(multiplesteps, N = 830;twosteps, N = 704),complex(N = 638)calltypes (SupplementalTableS2;SupplementalFigureS1).Togetherwiththese poweranalyses,ourdataclearlyindicatethat Fmr1 deletionimpactsthe proportionsofharmonic,down-frequencymodulation,step-up,andshort callsinthisorder.

Apreviousstudydemonstratedthatnon-congenic Fmr1 KOmiceexhibited higher probabilitiesofchevronanddownwardcalltypesthanWT pupsatP8(8).Ourstudyshowedthatthepercentagesofchevronand down-frequencymodulationcallswerehigherinmaleKOpupsthanin maleWTpupsatP7(SupplementalFigureS1),andbumetanidetended tocorrectthesetrendswhenusingsamplesizes(n = 9–12)similarto thoseinthepreviousstudy(8)(n = 9–13).However,noneofthesetrends achievedstatisticalsignificanceinourstudy,althoughapoweranalysisindicatesthatanincreasedproportionofdown-frequencymodulation (N = 39)andchevron(N = 69)callsinKOmicemayachievesignificance withmuchlargersamplesizes(seeSupplementalTableS2andSupplementalFigureS1).Severalfactorsarelikely.First,thestudybyTyzioand colleagueseliminatedpupsthatemittedlessthan50callsduringa3minperiod,butwedidnoteliminatesuchcasesbecauseweconsidered

lowcallnumbersasaphenotype.Second,ourandtheirrecordingtime durationswere5minand3min,respectively.Thephenotypetheydetectedmightoccurinthefirst3minofourtesting.However,thiswas notthecase;whendataofthefirst3minwereanalyzed,westilldidnot findstatisticallysignificantincreasesinchevronordownwardfrequency modulation(SupplementalTableS2,Figure1_Number_3min;SupplementalTableS2,Figure1_Proportion_3min).Third,thestudybyTyzio andcolleaguesdidnotdeterminethesexofmiceused,whereasourstudy usedmalesonly.Fourth,theirstudyanalyzedandpresentedonlychevron anddownwardcalltypes.Despitethesemethodologicaldifferences,our dataareconsistentwiththeirfindingthat Fmr1 deletionalterstheproportionsofspecificneonatalcalltypes,andtheeffectisnormalizedby bumetanide.OurstudyfurthershowedthatbumetaniderestoreddefectivecallsequencesofKOpupstolevelssimilartothoseofWTpups.While alargersamplesizemightidentifymorecalltypesthatdifferbetween thegenotypes,itisclearthatsomecalltypes(e.g.,harmoniccalltypes) aremoreeasilyaffectedby Fmr1 deletionthanothers.

OurobservationsfurtherextendedthestudyofTyzioandcolleagues byincludingananalysisofpostpubertalsocialinteractionandtheeffects ofbumetanideonthisphenotype. Fmr1 deletionimpairedpostpubertal directsocialinteractionat6butnot8weeksofage.Previousstudiesof Fmr1 KOmicedidnotconsistentlyfindrobustsocialinteractiondeficits. Congenic Fmr1 KOmiceshowedhigher,indistinguishable,orlowerlevels ofactivedirectsocialinteractionthanthoseofWTmice(28–34).These studiesused8-to24-week-oldmice.Ourandothers’datafrom8-weekoldmiceindicatethat Fmr1 deletionhaslittleornoeffectonsocialapproachandsociabilityatthisage(32–34).Ourobservationssuggestthat detectabledeficitsinaffiliativesocialinteractionappearat6weeksof age.Moreover,wedetectedastatisticallysignificantgenotypedifference afterexcludingcaseswhereeitherstimulusortestmiceexhibitedaggressivebehaviorsorhyperactivity(see Results).Itmightbedifficulttodetectasubtledifferenceinaffiliativesocialinteractionin Fmr1 KOmiceif suchconfoundingfactorsarenoteliminatedornotdetectableinathreechamberapparatuswhereaggressiveandaffiliativesocialapproachcannotbeseparatedandareequallyrecordedasmoretimeinthevicinityof acagedstimulusmouse.Ingeneral,theratherweakdefectsinsocialbehavioronagroupbasisin Fmr1 KOmicearecongruentwithclinicalobservationsthatindividualswith Fmr1 deletionsshowincompletepenetrance forthefullcriteriaofASDdiagnosis(35).

Anovelaspectofthepresentstudyisthatweidentifiedneonatal vocalizationsequencesthatbestpredictpostpubertalsocialinteraction scores.Thenumberofflat->chevronandMarkovprobabilityofchevron>shortsequenceweresignificantlycorrelatedwiththepostpubertalsocialinteractionscoresinapooleddataofvehicle-treatedWTandKO mice(SupplementalFigureS9A).Theseparameterswerealsoidentifiedasthemostrobustpredictorswhenthebestpredictorswereexploredwithineachgenotype(see Figure6).Inotherwords,thelevelof thesecallsequencescanprovideinsightsintothefuturedevelopmentaltrajectoryofsocialinteraction.Thisobservationisnotinconsistent withthehypothesisthatacommondevelopmentalmechanismexistsbetweenneonatalsocialcommunicationandpostpubertalsocialinteractionandthatthenormalpostpubertalsocialinteractionrequiresnormal neonatalsocialcommunication,includingthenumberofflat->chevron sequence.Whilethebiologicalsignificanceofthesecallsequencesis notclear,wepreviouslydemonstratedthatalteredcallsequencesina mousemutantforanothergeneimplicatedinneurodevelopmentaldisorderslostthecapacitytoelicitmaternalapproach(11).Moreworkis neededtocriticallyevaluatewhetherthecallsequencealterationof Fmr1 KOpupscontributestoacausalchainfromthegenotypeofpups,impairedmaternalcare,andimpaireddevelopmentofsocialandcognitive capacities(17, 18).

Whilethenumberofflat->chevronwasidentifiedbyaLassomodelas apredictorforthegenotype(SupplementalFigureS9B),thisvariabledid notclearlydiscriminateWTandKOgenotypes(seeSupplementalTable S2andSupplementalFigureS9B).Thisweakdiscriminatingpowerofthe Lasso-identifiedvariableislikelyduetotheoverlappingnatureofsocial interactionscoresbetweenWTandKOmiceandaveryweakdifference insocialscoresbetweenthetwogenotypes(Figure5A).Inmoregeneral

terms,theneonatalvariablesmightbemoresuitableinpredictingthe continuousnatureofpostpubertalsocialscoresthanthecategoricalclassificationofthegenotype.

AlthoughtheLassomodelsextractedpredictiveneonatalcallvariablesforthesocialinteractionscoresofeachgenotypewithbumetanide treatment,nomodelsachievedstatisticallysignificantcorrelationcoefficientswiththesocialinteractionscoresinbumetanide-treatedWTandKO mice(Figure6).Onereasonforthelackofcorrelationsisthatbumetanide treatmenteliminatedtheeffectsofgenotypeonpostpubertalsocialinteractionbynonspecificallyreducingthesocialinteractionlevelsinWT andKOmice(see Figure5).Thus,theeffectsofbumetanideonneonatal andpostpubertalsocialbehaviorsaredissociated;bumetaniderestored neonatalsocialcommunicationbuthadnonspecificnegativeeffectson postpubertalsocialinteractioninWTandKOmice.Thisdissociationcould beinterpretedassuggestingthatdistinctmechanismsexistforneonatalsocialcommunicationandpostpubertalsocialinteraction.Morework isneededtocriticallyevaluatethemechanisticoriginsofneonatalsocial communicationandpostpubertalsocialinteraction.

Thisresultdoesnotsupportthehypothesisthatbumetanide,when givenaroundthetimeofbirth,hasbeneficialeffectsonpostpubertalsocialimpairmentsinpatientswithfragileXsyndrome.However,possibilitiesremainthatlowerdosesofbumetanidehavemorespecificameliorativeeffectsonthelatersocialinteractionorthatthisdrughasbeneficial effectsonothertypesofsocialbehaviorsuchassocialincentivelearning (36)ormaternalsocialbehavior(11, 37)ornonsocialbehaviors,includingsensoryhypersensitivity(38)andtheircellularcorrelates(38, 39).Alternatively,distinctmechanisticoriginsanddifferentialdependenceon peripartumGABAsignalingmightexistforneonatalsocialcommunicationandpostpubertalsocialinteraction.Moreworkisneededtoexplore thepossibleeffectsofbumetanideadministeredatpostnatalorearlier embryonicperiods.

AlthoughbumetanideislargelyineffectiveinalleviatingASDsymptomsinhumans,thistreatmentisgenerallystartedafteradiagnosisof ASDat2–3yearsofage.Iftheperinatalperiodisthecriticalperiodforthe therapeuticeffectsofbumetanideonneonatalsocialcommunication,as suggestedbyourobservations,itstherapeuticeffectswouldbeexpected tobemostrobustwhenitisappliedperinatallyanditsoutcomeisevaluatedmuchearlier.Ourobservationsandcomputationalapproachesprovideatemplateforfutureworktoexplorethecausallydistinctneuronal substratesthatsubserveneonatalandlaterASD-linkedbehaviors.

Methods

Mice

WeusedmaleFVB.129P2-Pde6+ Tyr c-ch Fmr1tm1Cgr /Jmice(Fmr1 /y , #004624,JacksonLaboratory,BarHarbor,ME,USA)andtheirWTlittermates.Wechosemalemice,asthesymptomsofFragileXsyndrome inhumansaremoresevereinmalesthanfemalesandfemalepatients tendtoexhibitagreaterdegreeofinterindividualvariability(40).These miceweregeneratedbycrossingmale Fmr1 /y mice(12–24weeksold) withfemale Fmr1+/ mice(8–20weeksold)asbreeders.TheirgenotypesweredeterminedbyPCRusingthefollowingprimers:5’-TGTGATA GAATATGCAGCATGTGA-3’,WTforward;5’-CACGAGACTAGTGAGACGTG-3’, homozygousforward;5’-CTTCTGGCACCTCCAGCTT-3’,reverseforboth genotypes.

This Fmr1 mutantstrainoriginallycontained129P2/OlaHsdalleles derivedfromE14EScells,butwasconvertedtoacongeniclinethrough 11generationsofbackcrossingofmutantmicetotheFVBstrain.This backcrossingeliminatedbothcopiesofthe Pde6b mutantallele,agene responsibleforretinaldegeneration;mutantmicedonotsufferfrom retinaldegenerationorblindness.Becausethisisacongenicstrain,the confoundingeffectsofunequallyenriched129P2/OlaHsdallelessurroundingthe Fmr1 geneinmutantsandthoseofFVBallelesintheirWT littermatesareminimized(10).

Treatment

Femalebreederswereexaminedforaplugeveryday;whenitwaspresent, thiswasdefinedas0.5dayspostcoitum(dpc).Pregnantfemaleswere thenseparatedfromtheirmalepartners.Inthelastweekofpregnancy, cagebeddingwasnotchangedtominimizestress.Micewererandomly

assignedtoeitherthevehicleorbumetanidetreatmentgroup.At18.5 dpc,bumetanide(#14630,CaymanChemicalCompany,AnnArbor,MI, USA)orvehiclewasgiveninthedrinkingwater,basedontheexpected volumeconsumptionandthedam’sbodyweight.Thistimepointwaschosenbasedonapublishedstudy(8).Ourpilotstudyshowedthatmiceconsumeatleast5mlin24h,andthesolutionconcentrationwasadjusted, basedonthedam’sweight,togreaterthan2mg/kgbumetanide.Thisregimenachievedthetargetdosewhenpartumwasconfirmedatandafter 19.5dpc.Theconsumeddoseofbumetaniderangedfrom2.928to 4.12mg/kg(SupplementalTableS1).

Behavior

Malecongenic Fmr1+ /y (WT)and Fmr1 /y (KO)micewereusedfor behavioralanalyses.

UltrasonicVocalization

WhenmalepupsreachedP7,thecagecontainingthemotherandthelitterwastransferredtothetestroom30minbeforetesting.Thisdevelopmentaltimepointwaschosen,asapreviousstudyshowedthat Fmr1 KO pupsdifferedfromWTpupsinvocalizationsatP7,butnotatP4orP10 (13).Moreover,anotherstudytestedtheeffectsofbumetanideonvocalizationsatP8(8).Eachpupwasthenmovedtoatestchamber(18cm long × 18cmwide × 30cmhigh).Ultrasonicvocalizationswererecorded for5minusinganUltraSoundGate(Avisoft,Germany)connectedtoa computerequippedwithAvisoft-RECORDERsoftware(Avisoft).Thesamplingratewassetto250kHz(format,16bit).Thelowcut-offfrequency wassetat10kHztoreducebackgroundnoiseoutsidetherelevantfrequencyband.Thefrequencywindowforanalysisrangedfrom15to150 kHz.Calldetectionwasperformedusinganautomaticthreshold-based algorithmandaholdtimemechanism(holdtime:10ms).

Theweightsofdamsweremeasuredtocalculatethetotaldoseof bumetanidetheyconsumed.However,wedidnotmeasurethebody weightsofpups.Thepups’bodyweightsarenotalteredinthisspecific mousemodeloffragileXsyndrome(Jax#004624)comparedwiththose ofWTlittermates,andnocorrelationofbodyweightswithchangesincall typeswasreported(41, 42).

AffiliativeSocialInteraction

Malemicethatweretestedforneonatalvocalizationweresequentially testedforsocialinteractionat6and8weeksofage.Thetestsubjectsand age-matchedmale Fmr1+/y non-littermates,usedasstimulusmice,were habituatedtothetestroomfor30min.Thetestandstimulusmicewere simultaneouslyplacedinatestapparatus(20cmlong × 28cmwide × 15cmhigh;50lux),andtheirbehaviorwasrecordedfor5min.Underthis experimentalcondition,micegenerallyexhibitlowlevelsofaggressive behaviors(12, 43–47).Weusedthisnaturalistictestinsteadofthethreechambersociabilitytestapparatusbecausetheformerisrecommended forultimatevalidationandthelatterhasmanytechnicalandinterpretive issues(22, 48).Raterswereblindedtothegenotypeandtreatmentuntil testingandscoringwerecompleted.

ComputationalAnalysis

CallTypeClassification. Sonogramswereinspected,andgenuinenoises wereeliminatedfromtheanalysis.VocalMatsoftware(26)wasusedto determinecalltypes.Thissoftwarehasthelowestfalsepositiveandfalse negativeratesamongallcalltypeclassifiers(26).Onemodificationwas applied.VocalMatdetectsonlysalientelementsinsonogramsofwhatwas classifiedas“harmonic”inourpreviousstudies(11, 12, 45)andclassifies suchelements(e.g.,step-upandstep-down)ascalltypes.Toavoidthese falsenegativecases,wemanuallyinspectedallcalltypesandreclassified suchcasesasharmonic.

UMAP. WeusedtheUMAPmethod(49)toindependentlyclassifycall typesandevaluatetheimpactof Fmr1 /y andbumetanidetreatmenton calltypes.UMAPisadimensionalityreductiontechniquebasedonRiemanniangeometryandalgebraictopologythathelpsclusterdatawith similarfeatures.WeutilizedthePythonlibrary“umap-learn”(version 0.5.5),andthequantitativeparametersofVocalMatwereusedasinputs. Thequantitativeparametersincludedthelength(duration)andbandwidthofeachcall,theminimumandmaximumfrequencyvaluesinkHz

(min_freq_main,max_freq_main,mean_freq_main,min_freq_total,max_ freq_total,mean_freq_total),andsoundintensityindB(min_intens_total, max_intens_total,andmean_intens_total)ofvariouscomponentsofeach call,where“main”and“total”designatethemostintensewavecomponentandallwavecomponents,respectively,ofeachcall.Additionally,the followingparametersweresetforUMAPcalculation:random_state,0and n_neighbors,30.Theremainingparameterswereleftattheirdefaultvalues.AftercallclusterswereidentifiedbyUMAP,welabeledeachdata pointbasedonthemodifiedVocalMatcalltypeclassification.

Totestthevalidityandrobustnessofthisapproach,wecreatedbootstrappedclustersfromrandomlychosendatapointswithineachcalltype 2000times.Eachrandomselectiongeneratedthemediandatapointfor eachcalltype.These2000medianvaluespercalltypewereplottedand comparedwiththepositionsofthedatapointdistributionofeachcallin UMAPs.Thepositionsofthesemedianvaluesclusteredatthecenterof eachcalltypeofUMAP,therebyvalidatingtheUMAPdata.

CallSequenceAnalysis. Aswereportedpreviously(11, 12),wequantitativelydefinedacallsequenceasaseriesofcallswithintercallintervals belowtheintersectionbetweenthetheoreticalandobserveddistribution curves.Twocallswithanintercallintervallongerthanthecross-pointof thetwocurveswereconsideredtobelongtothelastandfirstcalloftwo distinctcallsequences.Two-callpairswithinso-definedsequenceswere thenusedforMarkovmodeling,usingourpublishedprocedure(11, 12). Therewere0countsofsomecallpairsinsomeanimals.Acountof1was addedtoallcallpairsofeachanimaltoavoid0probabilities.

LassoModel. WeappliedtheLassoregressionmodel,followingourpreviousmethod(12),toextractpredictivevariablesofthenumberandproportionofeachcalltypeandtwo-callpairswithinsequencesforindividual socialinteractionscores.

StatisticalAnalysis

Allcomputerprogramsanddataareavailableuponrequest.Analysisof variance(ANOVA)wasusedtocomparemorethantwogroups,andStudent’sunpairedandpaired t-testswereusedforcomparisonsoftwo groups.ThenormalityandhomogeneityofvarianceofdatawereevaluatedusingtheShapiro–WilkandLevenetests,respectively.Wheneither assumptionwasviolated,datawereanalyzedusingtheMann–Whitney testforunpaireddataandtheWilcoxonnonparametrictestforpaired data.However,whenasamplesizewastoosmallforthenormalitytest (n < 10),thehomogeneityofvariancealonewasusedtodecidewhether toanalyzedatawithparametricornonparametrictests.Theminimumsignificancelevelwassetat p < 0.05.Whenmorethantwotestswereappliedtoadataset,thesignificancelevelwasadjustedusingBenjamini–Hochbergcorrectionata5%falsediscoveryrate(FDR).Allstatistical valuesareprovidedinSupplementalTableS2;theoriginal p valuesthat remainedsignificantafterthisadjustmentareshowninfigurelegends. Excludedcasesaredetailedinthe Results section.

StudyApproval

AnimalhandlingandusefollowedprotocolsapprovedbytheAnimalCare andUseCommitteeofHirosakiUniversityGraduateSchoolofMedicine andwereinaccordancewiththeRulesforAnimalExperimentationofHirosakiUniversity.

DataAvailability

Allrawdataandsupportinganalyticalcodeareavailableuponrequest. AllstatisticaldataareprovidedinSupplementalTableS2.Allreagents andthemousemodelarepubliclyavailable.

Acknowledgments

WethankMs.SachikoKamikawa,Mr.DaikiTsushima,Ms.YurikoTakagi, andMs.TakakoTakehanafortechnicalassistance.

AuthorContributions

YSconductedanddesignedallexperimentsandwrotethemanuscript.TT analyzedalldata,madeallfigures,andwrotethemanuscript.SScollected data.THanalyzedalldata.KNoversawtheentirework,designedallexperiments,andsupervisedYSandSS.NHoversawtheentireanalysisof

alldata,supervisedTTandTH,analyzedalldata,madefigures,andwrote theentiremanuscript.

Themanuscripthasbeenreadandapprovedbyallauthors.Allauthors takefullresponsibilityforalldata,figures,andtextandapprovethecontentandsubmissionofthestudy.Norelatedworkisunderconsideration elsewhere.Allauthorsstatethatallunprocesseddataareavailable,and allfiguresprovideaccuratepresentationsoftheoriginaldata.

Correspondingauthors:ProfessorKazuhikoNakamuraforanyaspect oftheworkexceptfordataanalysesandProfessorNoboruHiroifordata analyses.Thesecorrespondingauthorstakefullresponsibilityforthesubmissionprocess.

FundingSources

Theresearchreportedinthispublicationwaspartlysupportedby theNationalInstitutesofHealth(R01MH099660;R01DC015776; R03HD108551;R21HD105287toNH),theJSPSKAKENHI(JP19K17103 toYS),andtheHirosakiInstituteofNeuroscience,Japan(KN).Thecontentissolelytheresponsibilityoftheauthorsanddoesnotnecessarily representtheofficialviewsoftheNationalInstitutesofHealth.An open-accesslicensehasbeenselected.

AuthorDisclosures

Theauthorshaveconfirmedthatnoconflictofinterestexists.Thecorrespondingauthorshadfullaccesstoallthedatainthestudyandhadfinal responsibilityforthedecisiontosubmitforpublication.

References

1.VorstmanJ,SebatJ,BourqueVR,JacquemontS.Integrativegeneticanalysis:cornerstoneofprecisionpsychiatry.MolPsychiatry.2024.DOI: 10.1038/ s41380-024-02706-2.PMID:39215185

2.LiM,ShinJ,RisgaardRD,ParriesMJ,WangJ,ChasmanD,etal.Identification ofFMR1-regulatedmolecularnetworksinhumanneurodevelopment.Genome Res.2020;30(3):361–74.DOI: 10.1101/gr.251405.119.PMID:32179589; PMCID: PMC7111522

3.LeighMJ,HagermanRJ.NeurodevelopmentalDisorders.EditedbyRubenstein JL,RakicP,ChenB,KwanKY,Wynshaw-BorisA.NewYork:AcademicPress; Elsevier;2020,chap.15,pp.351–75.

4.BonaccorsoCM,SpatuzzaM,DiMarcoB,GloriaA,BarrancottoG,CupoA,etal. FragileXmentalretardationprotein(FMRP)interactingproteinsexhibitdifferentexpressionpatternsduringdevelopment.IntJDevNeurosci.2015;42:15–23. DOI: 10.1016/j.ijdevneu.2015.02.004.PMID:25681562

5.MillerJA,DingS-L,SunkinSM,SmithKA,NgL,SzaferA,etal.Transcriptional landscapeoftheprenatalhumanbrain.Nature.2014;508(7495):199–206. DOI: 10.1038/nature13185.PMID:24695229;PMCID: PMC4105188

6.Ben-AriY,CherubiniE.TheGABApolarityshiftandbumetanidetreatment:makingsenserequiresunbiasedandundogmaticanalysis.Cells.2022;11(3):396. DOI: 10.3390/cells11030396.PMID:35159205;PMCID: PMC8834580

7.TyzioR,CossartR,KhalilovI,MinlebaevM,HübnerCA,RepresaA,etal.MaternaloxytocintriggersatransientinhibitoryswitchinGABAsignalinginthefetal brainduringdelivery.Science.2006;314(5806):1788–92.DOI: 10.1126/science. 1133212.PMID:17170309

8.TyzioR,NardouR,FerrariDC,TsintsadzeT,ShahrokhiA,EftekhariS,etal. Oxytocin-mediatedGABAinhibitionduringdeliveryattenuatesautismpathogenesisinrodentoffspring.Science.2014;343(6171):675–9.DOI: 10.1126/ science.1247190.PMID:24503856

9.FuentesJ,ParelladaM,GeorgoulaC,OliveiraG,MarretS,CrutelV,etal. Bumetanideoralsolutionforthetreatmentofchildrenandadolescentswith autismspectrumdisorder:resultsfromtworandomizedphaseIIIstudies. AutismRes.2023;16(10):2021–34.DOI: 10.1002/aur.3005.PMID:37794745

10.HiroiN.Criticalreappraisalofmechanisticlinksofcopynumbervariantstodimensionalconstructsofneuropsychiatricdisordersinmousemodels.Psychiatry ClinNeurosci.2018;72(5):301–21.DOI: 10.1111/pcn.12641.PMID:29369447; PMCID: PMC5935536

11.TakahashiT,OkabeS,BroinPÓ,NishiA,YeK,BeckertMV,etal.Structure andfunctionofneonatalsocialcommunicationinageneticmousemodelof autism.MolPsychiatry.2016;21(9):1208–14.DOI: 10.1038/mp.2015.190.PMID: 26666205;PMCID: PMC4909589

12.NakamuraM,YeK,ESilvaMB,YamauchiT,HoeppnerDJ,FayyazuddinA,etal. Computationalidentificationofvariablesinneonatalvocalizationspredictive forpostpubertalsocialbehaviorsinamousemodelof16p11.2deletion.Mol Psychiatry.2021;26(11):6578–88.DOI: 10.1038/s41380-021-01089-y.PMID: 33859357;PMCID: PMC8517042

13.LaiJKY,Sobala-DrozdowskiM,ZhouL,DoeringLC,FaurePA,FosterJA.Temporal andspectraldifferencesintheultrasonicvocalizationsoffragileXknockout

gp.genomicpress.com

miceduringpostnataldevelopment.BehavBrainRes.2014;259:119–30.DOI: 10.1016/j.bbr.2013.10.049.PMID:24211451

14.ÓBroinP,BeckertMV,TakahashiT,IzumiT,YeK,KangG,etal.Computational analysisofneonatalmouseultrasonicvocalization.CurrProtocMouseBiol. 2018;8(2):e46.DOI: 10.1002/cpmo.46.PMID:29927553;PMCID: PMC6055925

15.MaiL,InadaH,KimuraR,KannoK,MatsudaT,TachibanaRO,etal.Advancedpaternalagediversifiesindividualtrajectoriesofvocalizationpatternsinneonatalmice.iScience.2022;25(8):104834.DOI: 10.1016/j.isci.2022.104834.PMID: 36039363;PMCID: PMC9418688

16.HiramotoT,BokuS,KangG,AbeS,ESilvaMB,TanigakiK,etal.Transcriptionalregulationofneonatalneuralstemcellsisadeterminantofsocialbehavior.bioRxiv.2023. https://www.biorxiv.org/content/10.1101/2021.11.12. 468452v2

17.EspositoG,HiroiN,ScattoniML.Cry,baby,cry:expressionofdistressasa biomarkerandmodulatorinAutismspectrumdisorder.IntJNeuropsychopharmacol.2017;20(6):498–503.DOI: 10.1093/ijnp/pyx014.PMID:28204487; PMCID: PMC5458334

18.KikusuiT,HiroiN.Aself-generatedenvironmentalfactorasapotentialcontributortoatypicalearlysocialcommunicationinautism.Neuropsychopharmacology.2017;42(1):378.DOI: 10.1038/npp.2016.225.PMID:27909329;PMCID: PMC5143512

19.PremoliM,MemoM,BoniniSA.Ultrasonicvocalizationsinmice:relevanceforethologicandneurodevelopmentaldisordersstudies.NeuralRegen Res.2021;16(6):1158–67.DOI: 10.4103/1673-5374.300340.PMID:33269765; PMCID: PMC8224126

20.GlassTJ,LenellC,FisherEH,YangQ,ConnorNP.UltrasonicvocalizationphenotypesintheTs65Dnanddp(16)1YeymousemodelsofDownsyndrome.Physiol Behav.2023;271:114323.

21.NolanSO,HodgesSL,LugoJN.High-throughputanalysisofvocalizationsreveals sex-specificchangesinFmr1mutantpups.GenesBrainBehav.2020;19:e12611. DOI: 10.1016/j.physbeh.2023.114323.PMID:37573959;PMCID: PMC10592033

22.SilvermanJL,YangM,LordC,CrawleyJN.Behaviouralphenotypingassaysfor mousemodelsofautism.NatRevNeurosci.2010;11(7):490–502.DOI: 10.1038/ nrn2851.PMID:20559336;PMCID: PMC3087436

23.FukumitsuK,KanekoM,MaruyamaT,YoshiharaC,HuangAJ,McHughTJ,etal. Amylin-calcitoninreceptorsignalinginthemedialpreopticareamediatesaffiliativesocialbehaviorsinfemalemice.NatCommun.2022;13(1):709.DOI: 10.1038/s41467-022-28131-z.PMID:35136064;PMCID: PMC8825811

24.SankoorikalGMV,KaercherKA,BoonCJ,LeeJK,BrodkinES.Amousemodelsystemforgeneticanalysisofsociability:C57BL/6JversusBALB/cJinbredmouse strains.BiolPsychiatry.2006;59(5):415–23.DOI: 10.1016/j.biopsych.2005.07. 026.PMID:16199013

25.BolivarVJ,WaltersSR,PhoenixJL.Assessingautism-likebehaviorinmice: variationsinsocialinteractionsamonginbredstrains.BehavBrainRes. 2007;176(1):21–26.DOI: 10.1016/j.bbr.2006.09.007.PMID:17097158;PMCID: PMC1831820

26.FonsecaAH,SantanaGM,BosqueOrtizGM,BampiS,DietrichMO.Analysisof ultrasonicvocalizationsfrommiceusingcomputervisionandmachinelearning.Elife.2021;10:e59161.DOI: 10.7554/eLife.59161.PMID:33787490;PMCID: PMC8057810

27.ReynoldsCD,NolanSO,JeffersonT,LugoJN.Sex-specificandgenotypespecificdifferencesinvocalizationdevelopmentinFMR1knockoutmice.Neuroreport.2016;27(18):1331–5.DOI: 10.1097/WNR.0000000000000701.PMID: 27824730;PMCID: PMC5290539

28.SpencerCM,AlekseyenkoO,SeryshevaE,Yuva-PaylorLA,PaylorR.Altered anxiety-relatedandsocialbehaviorsintheFmr1knockoutmousemodeloffragileXsyndrome.GenesBrainBehav.2005;4(7):420–30.DOI: 10.1111/j.1601183X.2005.00123.x.PMID:16176388

29.SpencerCM,GrahamDF,Yuva-PaylorLA,NelsonDL,PaylorR.SocialbehaviorinFmr1knockoutmicecarryingahumanFMR1transgene.BehavNeurosci. 2008;122(3):710–5.DOI: 10.1037/0735-7044.122.3.710.PMID:18513141

30.MineurYS,HuynhLX,CrusioWE.SocialbehaviordeficitsintheFmr1mutant mouse.BehavBrainRes.2006;168(1):172–5.DOI: 10.1016/j.bbr.2005.11.004 PMID:16343653

31.McNaughtonCH,MoonJ,StrawdermanMS,MacleanKN,EvansJ,StruppBJ.Evidenceforsocialanxietyandimpairedsocialcognitioninamousemodelof fragileXsyndrome.BehavNeurosci.2008;122(2):293–300.DOI: 10.1037/07357044.122.2.293.PMID:18410169

32.LiuZH,SmithCB.Dissociationofsocialandnonsocialanxietyinamousemodel offragileXsyndrome.NeurosciLett.2009;454(1):62–6.DOI: 10.1016/j.neulet. 2009.02.066.PMID:19429055;PMCID: PMC3092374

33.LiuZ-H,ChuangDM,SmithCB.Lithiumamelioratesphenotypicdeficits inamousemodeloffragileXsyndrome.IntJNeuropsychopharmacolog. 2011;14(5):618–30.DOI: 10.1017/S1461145710000520.PMID:20497624; PMCID: PMC3102293

34.NolanSO,ReynoldsCD,SmithGD,HolleyAJ,EscobarB,ChandlerMA,etal.DeletionofFmr1resultsinsex-specificchangesinbehavior.BrainBehav.2017;7(10): e00800.DOI: 10.1002/brb3.800.PMID:29075560;PMCID: PMC5651384

35.RobertsJE,WeisenfeldLA,HattonDD,HeathM,KaufmannWE.Socialapproach andautisticbehaviorinchildrenwithfragileXsyndrome.JAutismDevDisord. 2007;37(9):1748–60.DOI: 10.1007/s10803-006-0305-9.PMID:17180715

36.HiramotoT,SumiyoshiA,KatoR,YamauchiT,TakanoT,KangG,etal.HighlydemarcatedstructuralalterationsinthebrainandimpairedsocialincentivelearninginTbx1heterozygousmice.MolPsychiatry.2024.DOI: 10.1038/s41380024-02797-x.PMID:39463450

37.KatoR,MachidaA,NomotoK,KangG,HiramotoT,TanigakiK,etal.Maternalapproachbehaviorstowardneonatalcallsareimpairedbymother’s experiencesofraisingpupswithariskgenevariantforautism.DevPsychobiol.2021;63(1):108–13.DOI: 10.1002/dev.22006.PMID:32573780;PMCID: PMC7755688

38.KourdougliN,NomuraT,WuMW,HeuvelmansA,DoblerZ,ContractorA,etal. TheNKCC1inhibitorbumetaniderestorescorticalfeedforwardinhibitionand lessenssensoryhypersensitivityinearlypostnatalfragileXmice.BiolPsychiatry.2024;S0006-3223(24):01427-6.DOI: 10.1016/j.biopsych.2024.06.023 PMID:38950809

39.HeQ,ArroyoED,SmukowskiSN,XuJ,PiochonC,SavasJN,etal.CriticalperiodinhibitionofNKCC1rectifiessynapseplasticityinthesomatosensorycortexandrestoresadulttactileresponsemapsinfragileXmice.MolPsychiatry. 2019;24(11):1732–47.DOI: 10.1038/s41380-018-0048-y.PMID:29703945; PMCID: PMC6204122

40.MarlboroughM,WelhamA,JonesC,RecklessS,MossJ.AutismspectrumdisorderinfemaleswithfragileXsyndrome:asystematicreviewandmeta-analysis ofprevalence.JNeurodevDisord.2021;13(1):28.DOI: 10.1186/s11689-02109362-5.PMID:34294028;PMCID: PMC8299695

41.RoyS,WatkinsN,HeckD.Comprehensiveanalysisofultrasonicvocalizations inamousemodeloffragileXsyndromerevealslimited,calltypespecific deficits.PLoSOne.2012;7(9):e44816.DOI: 10.1371/journal.pone.0044816 PMID:22984567;PMCID: PMC3439444

42.PetroniV,SubashiE,PremoliM,WöhrM,CrusioWE,LemaireV,etal.AutisticlikebehavioraleffectsofprenatalstressinjuvenileFmr1mice:therelevanceof sexdifferencesandgene-environmentinteractions.SciRep.2022;12(1):7269. DOI: 10.1038/s41598-022-11083-1.PMID:35508566;PMCID: PMC9068699

43.SuzukiG,HarperKM,HiramotoT,FunkeB,LeeM,KangG,etal.Overexpressionofahumanchromosome22q11.2segmentincludingTXNRD2,COMT andARVCFdevelopmentallyaffectsincentivelearningandworkingmemoryin mice.HumMolGenet.2009;18(20):3914–25.DOI: 10.1093/hmg/ddp334.PMID: 19617637;PMCID: PMC2748897

44.SuzukiG,HarperKM,HiramotoT,SawamuraT,LeeM,KangG,etal.Sept5deficiencyexertspleiotropicinfluenceonaffectivebehaviorsandcognitivefunctionsinmice.HumMolGenet.2009;18(9):1652–60.DOI: 10.1093/hmg/ddp086 PMID:19240081;PMCID: PMC2733818

45.HiramotoT,KangG,SuzukiG,SatohY,KucherlapatiR,WatanabeY,etal.Tbx1: identificationofa22q11.2geneasariskfactorforautismspectrumdisorder inamousemodel.HumMolGenet.2011;20(24):4775–85.DOI: 10.1093/hmg/ ddr404.PMID:21908517;PMCID: PMC3221538

46.HarperKM,HiramotoT,TanigakiK,KangG,SuzukiG,TrimbleW,etal.Alterationsofsocialinteractionthroughgeneticandenvironmentalmanipulationof the22q11.2geneSept5inthemousebrain.HumMolGenet.2012;21:3489–99. DOI: 10.1093/hmg/dds180.PMID:22589251;PMCID: PMC3392117

47.YamauchiT,KangG,HiroiN.HeterozygosityofmurineCrkldoesnotrecapitulatebehavioraldimensionsofhuman22q11.2hemizygosity.GenesBrainBehav.2021;20(5):e12719.DOI: 10.1111/gbb.12719.PMID:33269541;PMCID: PMC8169709

48.JabarinR,NetserS,WagnerS.Beyondthethree-chambertest:towardamultimodalandobjectiveassessmentofsocialbehaviorinrodents.MolAutism. 2022;13(1):41.DOI: 10.1186/s13229-022-00521-6.PMID:36284353;PMCID: PMC9598038

49.McInnesL,HealyJ,MelvilleJ.UMAP:Uniformmanifoldapproximationandprojectionfordimensionreduction.arXiv.2018;1802.03426.

Publisher’snote: GenomicPressmaintainsapositionofimpartialityandneutrality regardingterritorialassertionsrepresentedinpublishedmaterialsandaffiliations ofinstitutionalnature.Assuch,wewillusetheaffiliationsprovidedbytheauthors, withouteditingthem.Suchusesimplyreflectswhattheauthorssubmittedtousand itdoesnotindicatethatGenomicPresssupportsanytypeofterritorialassertions.

OpenAccess. ThisarticleislicensedtoGenomicPressundertheCreativeCommonsAttribution-NonCommercial-NoDerivatives4.0InternationalLicense(CCBY-NC-ND4.0).Thelicensemandates:(1)Attribution:Credit

mustbegiventotheoriginalwork,withalinktothelicenseandnotificationofany changes.Theacknowledgmentshouldnotimplylicensorendorsement.(2)NonCommercial:Thematerialcannotbeusedforcommercialpurposes.(3)NoDerivatives: Modifiedversionsoftheworkcannotbedistributed.(4)Noadditionallegalortechnologicalrestrictionsmaybeappliedbeyondthosestipulatedinthelicense.Public domainmaterialsorthosecoveredbystatutoryexceptionsareexemptfromthese terms.Thislicensedoesnotcoverallpotentialrights,suchaspublicityorprivacy rights,whichmayrestrictmaterialuse.Third-partycontentinthisarticlefallsunderthearticle’sCreativeCommonslicenseunlessotherwisestated.Ifuseexceeds thelicensescopeorstatutoryregulation,permissionmustbeobtainedfromthe copyrightholder.Forcompletelicensedetails,visit https://creativecommons.org/ licenses/by-nc-nd/4.0/.Thelicenseisprovidedwithoutwarranties.

GenomicPsychiatry

RESEARCHARTICLE

Anovelneurodevelopmental-neurodegenerativesyndromethatcosegregateswitha homozygousSPAG9/JIP4stop-codondeletion

NataliaAcosta-Baena1 , 2 ,JohannaTejada-Moreno1 ,AlejandroSoto-Ospina1 , 2 , 3 ,AlejandroMejía-García1 ,MauricioPreciado1 , JessicaNanclares-Torres1 , 2 ,MaríaAntonietaCaro1 ,WinstonRojas1 ,GloriaP.Cardona-Gómez2 ,LucíaMadrigal2 ,MauricioArcos-Burgos4 , andCarlosAndrésVillegas-Lanau1 , 2

Thisreportoutlinestheclinicalfeaturesofacomplexneurologicalphenotypesharedbythreesiblingsfromaconsanguineousfamily, characterizedbyintellectualdisabilities,speechdevelopmentaldelay,gaitdisturbance,cerebellarsyndromesigns,cataracts,anddysmorphic features(squareandcoarsefacialfeatures,thicklips,deeppalate,smallandspacedteeth,low-setears,strabismus,eyelidptosis,andblond hair).Seizuresandbrainatrophywerelaterevident.Inthecosegregationanalysis,fivefamilymembersand12familycontrolswerestudiedby whole-exomeandSangersequencing.Thestructuralandfunctionaleffectsoftheproteinwereexploredtodefinethemutatedvariant’s potentialdeleteriousimpairment.Neurologicalandneuropsychologicalfollow-upsandbrainmagneticresonanceimaging(MRI)were performed.WeidentifiedasingleframeshifthomozygousnucleotidedeletionintheSPAG9/JIP4gene(NM_001130528.3):c.2742del(p. Tyr914Ter),causingaprematurestopcodonandtruncatingtheproteinandoriginatingapossiblelossoffunction.Thevariantcosegregatedin affectedindividualsasanautosomalrecessivetrait.Theinsilicoproteinfunctionalanalysesindicateapotentiallossof66phosphorylationand 29posttranslationalmodificationsites.Additionally,amutatedproteinstructuremodelshowsasignificantmodificationofthefoldingthat verylikelywillcompromisefunctionalinteractions.SPAG9/JIP4isadynein-dynactinmotoradapterforretrogradeaxonaltransport,regulating theconstitutivemovementofneurotrophicfactorsignalingandautophagy-lysosomalproducts.Understressconditions,itcanpotentiatethis transportbythep38mitogen-activatedproteinkinases(p38MAPK)signalingcascade.Bothfunctionscouldbeassociatedwiththedisease mechanism,alteringtheaxon’sdevelopmentandgrowth,neuronalspecification,dendriteformation,synaptogenesis,neuronalpruning, recyclingneurotransmittersandfinally,neuronalhomeostasis—promisingcommonmechanismstobeusedwithinvestigationalmoleculesfor neurodevelopmentaldiseasesandneurodegeneration.

GenomicPsychiatry January2025;1(1):73–84;doi: https://doi.org/10.61373/gp024a.0052

Keywords: Intellectualdisability,neurodevelopment,neurodegeneration,dementia,syndrome,axonaltransport,retrogradesignaling,signalingendosomes, MAPKp38signalingpathway,dynein-dynactinmotoradapter

Introduction

Themoleculartransportofmoleculesattheintracellularlevelisessential toacell’sdevelopmentandsurvival(1).Thischallengeforneuronsispermanentduetotheeverlastinganddistantpolarizationbetweentheaxons andtheneuronalbody.However,distanceisnottheonlychallenge;localizeddeliveryofpresynapticcomponentsmustbesuccessfullyovercome tomaintainsynaptictransmission(2).Tocarryoutthisprocess,neurons use“axonaltransport”toshipmultiplesubstancesthatmovealongthe microtubulesoftheaxoninabidirectionalway(3, 4).

Thekinesincomplexdrivesanterogrademovementtransport(from thesomatotheaxontip)andshipstransportsubstancessuchas RNA,proteins,andorganellestogrowthconesandsynapses(5). Theopposite,retrogrademovement(fromtheaxontotheneuronalbody),isdyneindependentandimportantforneurotrophicfactorsignaling(6),autophagy-lysosomal-autophagy,degradation,and nerveregeneration.Themachineryforthisaxonaltransportincludes motorandmicrotubuleproteinsandessentialadapters(7).Furthermore,proteinkinasesignalingpathwaysandposttranslationalmicrotubulemodificationsarerequiredtoensureefficienttransportinto neurons(2).

Alterationsinaxonaltransportcanemergethroughseveralmechanisms:(1)defectsintheorganizationofthecytoskeleton,(2)alterations inthebindingofmotorproteinstomicrotubules,(3)abnormalkinase ordyneinactivities,(4)destabilizationofmotorcargobinding,and(5)

alterationsinmitochondrialdysfunctionenergy(8).Thusfar,inadequate andnonprogressiveretrogrademovementscandisruptsynapses,axonal growth,plasticity,andneuronalhomeostasis.Multipleneurologicaldiseasesareassociatedwithaxonaltransportdisorders(7, 9).

TheJIP4protein,encodedbythe SPAG9 gene,isadynein-dynactinmotoradapterthatfavorsaxonalretrogradeflow.JIP4isubiquitouslyexpressed,includingthecentralandtheperipheralnervoussystem(10). Proteinexpressionstudiesinbrain-derivedneurodevelopmentaxons haveshownhighlevelsofJIP4,whicharedetectedinlysosomalfractions andautophagicvacuoles(11).JIP4promotesandstabilizestheassociationwithdynactinwhileantagonizingkinesinbinding(12).Thus,inamutuallyexclusivemanner,retrogradetransportisactivated.JIP4isinvolved inpostnatalbraindevelopment(13)andneuronalhomeostasisbyintracellularmetabolitesrecyclingtomaintainneuronalhomeostasis(14).In humans,SPAG9/JIP4hasbeenassociatedwiththeprognosisofdifferent typesofcancer(15)butneverlinkedtointellectualdisabilityand/orcomplexneurodevelopmentalphenotypes.

Thisarticledescribesthreehomozygoussiblingswithamutantvariantofthe SPAG9 gene,affectedbyacomplexphenotypecharacterized bydevelopmentalandlanguagedelay,severelearningdifficulties,and motorcompromiseimpairment.Thefollow-upofthisfamilyformore than10yearshasalsosuggestedacognitivedeteriorationprogressive impairment,suggestingasubsequentneurodegenerativeprocess.Preliminaryfindingswerepresentedonaposter(16).

1 GrupodeGenéticaMolecular(GENMOL),UniversidaddeAntioquia,Medellín,Colombia; 2 GrupodeNeurocienciasdeAntioquia(GNA),FacultaddeMedicina,Universidad deAntioquia,Medellín,Colombia; 3 GrupodeInvestigaciónenAlimentos(GRIAL),Facultaddeingeniería,CorporaciónUniversitariaLasallista,Caldas,Colombia; 4 Grupode InvestigaciónenPsiquiatría(GIPSI),DepartamentodePsiquiatría,InstitutodeInvestigacionesMédicas,Facultaddemedicina,UniversidaddeAntioquia,Medellín,Colombia. CorrespondingAuthor: NataliaAcosta-Baena,UniversidaddeAntioquia,FacultaddeMedicina,GrupodeNeurocienciasdeAntioquia(GNA),SIU,SededeInvestigación Universitaria,AA1226,Calle62Número52-59,Medellín,Colombia.Phone/Fax:57-4-2196444.E-mail: natalia.acosta@gna.org.co Received:6March2024.Revised:6June2024.Accepted:19June2024. Publishedonline:5August2024.

Methods

StudySiteandFamily

Thisstudywascarriedoutatthe“UniversidaddeAntioquia,”Medellin, Colombia,incollaborationbetweenTheGrupodeNeurocienciasdeAntioquia(GNA)andGenéticaMolecular(GENMOL)researchgroups.The bioethicscommitteeoftheuniversity(ComitédeBioética,SedeInvestigaciónUniversitariaCBE-SIU)approvedtheprotocolstudy.Thesubjects whowerestudiedsignedtheinformedconsentformafteradetailedexplanationoftheobjectivesandproceduresofthestudy.Incaseswherethe subjectdidnotknowhowtosign,parentsorrepresentativesgaveconsent andsignedtheform.ThefamilywasidentifiedinAntioquia,Colombia,in 2011andclinicallyfollowedupwithsubsequentfollow-upsuntil2021.

CharacterizationofthePhenotype

Thephysician’steamfromtheGNAcarriedoutmedical,neurological,and psychiatricfollow-ups.Laboratorytests,brainmagneticresonanceimaging(MRI),andneuropsychologicalevaluationswereperformedonthe cases.Affectedindividualswereevaluatedatamedicalschoolpediatricneurologymeetingstaffattheuniversityhospitaltodiscussthecomplexphenotypeandtoconsidersomepotentialdifferentialdiagnoses. TheneuropsychologicalevaluationswerecarriedoutusingtheGNAprotocol,andtheWechslerIntelligenceScale(17)wasadditionallyincluded. Theseverityofthecaseswasassessedusingacomprehensivebatteryof structuredandsemi-structuredclinicaltoolsbasedontheDSM-5criteria, accordingtoIQmeasuresandfunctionalperformancescaleassessment indailylife.Acquireddementiaorcognitiveimpairmentwasdiagnosed accordingtoestablishedstandardcriteriausingneurologicalandneuropsychologicalevaluationtoolsandfamilyreports.Amoredetailed descriptionoftheseinstrumentsispresentedelsewhere(18).

GeneticAnalysis

DNAextractionfollowedastandardextractionprotocolwiththeperipheralbloodsamplesusingthesaltingoutmethod(19),andthesamples werestoredat 20°Cuntilsequencing.Macrogenperformedthewholeexomesequencing(WES).Thecodingregionsofthegenomeweresequencedbynext-generationsequencingusingtheIlluminaplatformwith anaveragecoverageof100X.TheSureSelectXTLibraryPrepKit(Target EnrichmentSystemforIlluminaVersionB.2,April2015)enrichedthelibrary(20).SequencingwasperformedonaHiSeq4000instrumentfollowingthestandardprotocoltoreacha100Xdeepreadaverage.Thedata wereprocessedusingtheHCSsoftware[HiSeqControlSoftware(HCS3.3) version3.3].SequencingdatawereconvertedtotheFASTQformatusingtheIlluminapackagebcl2fastqmodule[version2.16.0.10fromIllumina(21)].Thebioinformaticanalysiswascarriedoutwiththesedata afterward.

BioinformaticAnalysis

Thequalityofthereadswasevaluatedwiththefastqcv0.11.5tool fromtheBabrahamInstitute, http://www.bioinformatics.babraham.ac. uk/projects/fastqc (22).Subsequently,thesequencesweremappedtothe hg19referencegenomeavailableattheUniversityofCalifornia,Santa Cruz(UCSC)website, http://hgdownload.cse.ucsc.edu/goldenpath/hg19/ chromosomes/ usingtheBurrows-WheelerAligner,asimplementedin thebwa-0.7.12software, http://bio-bwa.sourceforge.net/ (23).VariantcallingwasperformedusingtheBroadInstitute’sGenomeAnalysisToolKitGATKtool(GATK)v3.8-1BestPracticesforGermline SNP&IndelDiscoveryintheWholeGenomeandExomeSequence https://software.broadinstitute.org/gatk/ (24).Fortheprocessofmarkingduplicates,thePicardv1.119tool https://broadinstitute.github.io/ picard/ wasused.Baserecalibrationprocesses(BQSR–basequalityscorerecalibration),thesearchforsingle-nucleotidepolymorphism (SNP)-typevariantsandINDELS(variantcalling)andvariantfiltering (hardfiltering)werecarriedoutconsideringtheprotocolsuggested bythetoolGATK(GenomeAnalysisToolKit)fromtheBroadInstitute (BestPracticesforGermlineSNP&IndelDiscoveryinWholeGenome andExomeSequence) https://software.broadinstitute.org/gatk/bestpractices/bp3step.php?case=GermShortWGS.Oncethevariantswere identified,theannotationwascarriedoutwiththewANNOVAR(25)and EnsemblVariantEffectPredictorprograms(26),whichmakeuseofthe

informationcollectedindifferentdatabasesandbioinformatictoolsfor thesearchoftheallelicfrequenciesofthevariantsinthedifferentcontinentalpopulationssuchas1000Genomes,ExAC,ESP6500andgnomeAD.

Theclinicalinterpretationofgeneticvariantswasconsideredbythe guidelinesproposedbytheAmericanCollegeofMedicalGeneticsand GenomicsandtheMolecularPathologyAssociation(ACMG)(27).The toolsInterVar(28) http://wintervar.wglab.org/ andVarSome(29) https:// varsome.com/ wereusedtoclassifyeachoftheidentifiedcandidate variants.

Thevariantswereprioritizedconsideringthefollowingcriteria:(1) Qualityofthesequences:Depthacrosssamples(DP>30).(2)Modeof inheritance:autosomalrecessive.(3)Allelicfrequency(MAF <0.01)ina populationdatabase(1000Genomes,ExAC,ESP6500,gnomAD).Wefilteredonlyvariantswithafrequencylessthan0.01withahigherprobabilityofcausingmajoreffectsandrareMendelianconditions.(4)Exomic variantsorvariantsatsplicingsiteswereincluded.(5)Pathogenicvariants,probablypathogenicorvariantsofuncertainsignificance—VUS— werealsoincluded.(6)Pathogenicitypredictors:variantscatalogedas deleteriousorpossiblydeleteriousbymorethanthreepathogenicitypredictors,including,thatis,SIFT,andPolyphem2Polyphen2,andpresenting withvalueshigherthan14bytheCADDpredictor,and(7)Thepotential relationshipwiththephenotypebyconsideringHumanPhenotypeOntologytermswereevaluated.

SangerSequencing

ThevariantidentifiedwasreplicatedusingSangersequencinginfour samples:twoaffectedindividualswithDNAavailableandbothparents.FinchTVversion1.4.0(Geospiza,Inc.;Seattle,WA,USA), http:// www.geospiza.com/Products/finchtv.shtml wasusedtoevaluatethe qualityofthechromatograms.WeusedAliviewversion1.18 http:// www.ormbunkar.se/aliview/ (30)andnovoSNPversion3.0.1 http://www. molgen.ua.ac.be/bioinfo/novosnp (31)toidentifyandanalyzecandidate variant.

FunctionalandStructuralAnalysis

Thebioinformaticsstudybeganwiththeanalysisoftheprimarysequence inFASTAformattocharacterizethesystemfromthepotentialperspective ofposttranslationalproteinmodificationsconsideringthecalculationof N-glycosylationofaminoacidswithamidegroupsintheirsidechain,from theprobabilityasestimatedbymeasuredwiththeNetGlyc1.0server software.

Similarly,theinteractionofO-glycosylationsitesbytheOHfunctional groupwasmeasuredwiththeNetOglyc4.0serversoftware.Likewise,the phosphorylationpatternsweremeasuredwiththeNetPhosK3.1server softwarefortheaminoacidswhosesidechainisserine,threonine,ortyrosineispresentinthesequenceoftheevaluationof17kinases:ataxiatelangiectasia(ATM),creatinekinaseI(CKI),creatinekinaseII(CKII), Ca2+/calmodulin-dependentproteinkinaseII(CaM-II),DNA-dependent proteinkinase(DNA-PK),epidermalgrowthfactorreceptor(EGFR),epidermalgrowthfactorreceptor-3(GSK3),insulinreceptor(INSR),protein kinaseA(PKA),proteinkinaseB(PKB),proteinkinaseC(PKC),proteinkinaseG(PKG),ribosomalS6kinase(RSK),Srcfamilykinases(SRC),celldivisioncyclegeneinSchizosaccharomycespombe,namedcdk1inmammals (cdc2),cyclin-dependentkinase5(cdk5),andp38mitogen-activatedproteinkinases(p38MAPK)(32–34).

Toidentifythethree-dimensionalstructureofSPAG9,portionsofthe proteinsequenceweresearchedforintheProteinDataBank.TheanalyzedstructurebyX-raydiffractionwitharesolutionof1.80Åwasconstitutedby70aminoacids(ID:2W83).Thisstructuralfragmentwasusedas atemplateforthecompletemodel(35).

TomodeltheproteinstructuresoftheSPAG9andtheSPAG9Tyr914Ter variants,three-dimensionalSPAG9/JIP4wild-type,aswellasotherlikely structures,wereobtainedfromtheAlphafoldrepositorybuiltbythe DeepMind-Evoformermodule(36).Fivemodelswithasignificantspatial arrangementconvergenceasmeasuredbythelocaldistancedifference test(37)werechosen.ThemachinelearningmodelingallowedthereconstructionofthetruncatedproteinencodedbytheSPAG9Tyr914Ter variant.Fromthefivemodels,weselectedtheonewiththebestmolecularscore(38).Theglobalalignmentbetweenthewild-typeandthe

Table1. Clinicalcharacteristicsofaffectedindividuals Case1Case2Case3

Ageatexam,years 363432

Gender MFF

Height(cm) 165168172

BodyMassIndex 27.529.124

Headcircumference(cm) 575858

Faciesandgeneralcharacteristics

Blondhair,thicklips,coarsefacialfeatures,squareface,deeppalate,low-setears,spacedteeth. Singlepalmarcrease,pescavus.

Skin Hyperpigmentedmaculesinthe periorbitalregionandface

Hyperpigmentationinperiorbital region

Reporteddyslipidemia ++−

Otherpathologies Asthma,rhinitis

Delayedpsychomotordevelopment/ Intellectualdisability +++

Languagedisturbance +++

Cataracts +++

Strabismus +++

Eyelidptosis BilateralUnilateral(left)

Seizures

Seizuresfrom34yearsofage

Gaitdisturbance Scoliosis.Walkwithbothfeet apartandwiththeballsofthe feetwithexternaldeviation

Parkinsonism

Cerebellarsyndrome (intention tremor,dysdiadochokinesia,ataxia, dysmetria)

Impairedtandemgait,slight outwarddeviationoftheballsof thefeet

Impairedtandemgait

AtaxiaDysmetriaDysmetriaanddysdiadochokinesis

Dystonia +−−

Dysarthria

Impairedcoordination +++

Pathologicalreflexes Suckingreflex Suckingreflex

Plantarreflexes

Urinaryincontinence +−−

Supranuclearpalsy

Nystagmus ++−

Psychiatricsymptoms/behavior Hepullsouthisnailsandteeth. Aggressiveness.

Apathy,abulia,compulsiontoeatIrritabilityanddisinhibition

Superiormember

Spasticity

Weakness

Hyperreflexia

Sensorydisability

Lowermember

Spasticity

Weakness

Hyperreflexia

Sensorydisability

mutantproteinmodelswasachievedwiththeNeedlemanWunschalgorithmappliedtotheBLOSUM62matrixandquantifyingtheRMSDstandarddeviationbetweenthemodels.Thethree-dimensionalmodelswere picturedwiththeChimeraU.C.S.Fvisualizerv1.1.1(39).

Results

ClinicalDescriptionoftheAffectedSiblings Twoparentsandthreeaffectedchildrenconstitutethenuclearfamily. Table1 detailsthesummaryofclinicalfindingsforeachindividual.

Case1. Male,firstborn,40weeks,normalpregnancy.Spontaneousvertexdeliverywithoutanycomplications.Averageweightatbirth.At1year oflife,significantmotordelaydevelopmentofbilateraleyecataracts. Headsupportisat4yearsold,butwalkingisdifficult.Hecouldnotchew andswallowfooduntilhewas6yearsold,forwhichhewasfedonlywith blendedfood.Thefirsttwowords,“mama”and“papa,”areat4yearsold. Attheageof30,thedevelopmentofcompleteoralsentencesbegins.At

ResearchArticle Acosta-Baenaetal.

34yearsold,developmentofgeneralizedtonic-clonicseizures.Entirely dependentonalldailylivingactivitiesbutwithbehaviorchangesinrecentyears.Hepulledouthisnailsandhisteethaggressivity.Functional scaleshavedeterioratedovertime.

Case2. Female,secondpregnancyproduct,withoutsignificantprenatal orperinatalhistory.Spontaneousvertexdeliverywithoutanycomplications.Holdtheheadandtrunkupat8monthsold.Walkingandpronunciationoffirstwordsaround16monthsold.Severelearningandmental disability(onlycansign).Currently,shepronouncesonlythreewords.She isindependentindailylifefunctionsandhelpshermotherwithsimple householdtasks.

Case3. Thethirdaveragepregnancyfemaleproduct.Spontaneousvertexdeliverywithoutanycomplications.Sittingat10monthsold,walking ageat15monthsold,andfirstwordsat24monthsold.Developedbilateralcataractsat4yearsold.Mildmotorandlearningdelaydevelopment.

Table2. Summaryofneuropsychologicalassessmentofaffectedindividuals

CognitivefunctionCase1Case2Case3

Mini-MentalStateExamination(MMSE)/30 61319

Orientation

FarbelowaverageFarbelowaverageBelowaverage

Verbalfluency/denomination 07Intheaverageageandschooling

Wordlistmemory/10 015

Evocationmemory/10 013

Visualmemory

CannottakethetestCannottakethetestFarbelowaverage

Attention CannottakethetestCannottakethetestCannottakethetest

Executivefunction

CannottakethetestCannottakethetestCannottakethetest

Visuoconstructivefunction CannottakethetestCannottakethetestCannottakethetest

Apraxia +++

FullscaleIQ

VerbalIQ

PerformanceIQ

Sheworksasalaundressinadairy—recentyearswithmarkeddisinhibition.

NeuropsychologicalAssessment. Thethreesiblingswereclassifiedwith moderateintellectualdisabilityaccordingtotheDSM-5criteria,andall threeobtainedanIQscoreof45(Table2).

BrainImaging. BrainMRIwasperformedforallaffectedindividuals.The MRIresultsshowheterogeneitybetweenallofthem(Figure1).Therewas nocorticaldysplasiaorpolymicrogyriainanyofthecases.Tractography bydiffusiontensorimagingarenormal.Cochlea,vestibule,andbrainstem arenormal.Inallthreesiblings,thereismildmicroangiopathy(Fazekas scalegrade1fordeepwhitematter).Ventriculomegalyispredominantly left,withslightprominenceofthesulcioftheuppercerebellarvermis. Itdrawsattentiontodecreasedirondepositsintheglobuspallidusand aslightincreaseintheputamen,beingmoresignificantincase3.Case 1attractsattentionformicrocephaly,decreasedfronto-occipitaldiameteraccordingtobiometricparametersbyageandsex(Figure1A)(40). Thehypoplasticcorpuscallosum(CC)withoutdysplasia,withadecreased thicknessofthegenu(40).Bilateralhippocampalmalrotationwithboth collateralsulciarevertical(Figure1B).Slightirondepositintheputamen.Case2withlowerlimitfrontal-occipitaldiameteranddecreased thicknessofthegenuofCC,lefthippocampalmalrotation.Incase3,we additionallyseemalrotationofthelefthippocampus.Theputamennucleusisseenwithmoresignificantirondeposits,andunliketheother cases,thereisagenesisoftheseptumpellucidum(Figure1B).Also,there isaverythinCC,mainlythesplenium.Lossofsubcorticalvolume,witha moredilatedfourthventricleandincreasedirondepositsinthedentate nucleus.

Identification,ClinicalInterpretation,andValidationof CandidateVariants

Thecompletefamilyincluded36members.Threeaffectedsiblingsand theirtwoparentswereavailableforWES.Weextendtheanalysesto theremainingfamilymembers,availablein17individualexomes.AhomozygousdeletionintheSPAG9gene (NM_001130528.3):c.2742del (p.Tyr914Ter) wasidentifiedinthethreeaffectedsiblings-heterozygous intheirparentsandamaternaluncle.Thisvarianthasnotbeenfound inotherfamilymembersanddisparatepopulationsaccordingto1000 Genomes,ExACandGnomADdatabases.Ithasnotbeenfoundinexomes (coverage:86.8)andgenomes(coverage:31.7),accordingtoVarSome (29). Figure2 showsthecompletegenealogyandtheresultsoftheSanger sequencingofthefourindividuals.

StructuralandFunctionalAnalysisoftheSPAG9/JIP4ModelProteinand ItsRelationshipwiththeSPAG9Tyr914

TheSPAG9/JIP4proteinisexpressedatthecytoplasmiclevelandinthe celllysosome,belongstochromosome17andhasamassof146,205(Da). Ithassixisoforms,andtheisoformwiththehighestfrequencyrelated totheinteractionwithkinesinistheisoformwithacompositionof1321

aminoacids(41–43).Itbindstodyneinandkinesin-1intheleucinezipper II(JIPLZII)domain(Figure3),allowingbidirectionalvesiculartransport alongthemicrotubulesandtheirdynamics(44).

Themutationfoundatposition914isassociatedwithanucleotide changethatproducesaterminationcodonduetoguanine(G)deletion.Thisstopcodonpreventstheproteinfromextendingfurtherand causinglossofstructuralinformation,butitdirectlyaffectsthethreedimensionalarrangement.Therefore,theproteinpresentedchangesin lengthandaminoacidcompositionduetothelackofassemblyof407 aminoacids.Inthecharacterizationofthesystem,theeffectontheposttranslationalmodificationsthattheproteincanundergoandthechanges itcangeneratewereanalyzed.Calculationofphosphorylationsites,OglycosylationandN-glycosylationsitesweremadefromtheprimarysequencestocharacterizethetwoproteins,asshownin Table3

ForSPAG9wt,thereare257phosphorylationsitesintotal(Table4). Therepeatednumbersareduetotheirbeingphosphorylatedbyvarious kinasesatthesamepositionwhentheyexceedthenormalizedphosphorylationvalueof0.500.Themutationidentifiedatposition914,which,in thiscase,producesastopcodon,meansthattheproteincannotextend furtherandlosesstructuralinformation,whichdirectlyaffectsthethreedimensionalarrangement.Regardingphosphorylation,duetothespatial effectfromposition909,thephosphorylationsconsidereduptothetotal SPAG9proteinwith1321aminoacidswerelost(Table4).Thesekinases contemplatepositionswithatriplepossibilityofphosphorylation,such asposition1188withanonspecificenzymeandtwoessentialenzymes (proteinkinaseAandproteinkinaseC)involvedincellsignaling.Inthe sameway,position1238withthekinasesp38MAPK,cdk5andGSK3;position1249withanonspecificenzyme,proteinkinaseCandcdc2;similarly,position1262withanonspecificenzyme,DNA-PKandATM.Finally, position1264hasphosphorylationlossofanonspecificenzyme,cdk5and p38MAPK.

RegardingtheO-glycosylations,106glycosylationsiteswereconsideredforSPAG9wt,whichconsideredaprobabilitygreaterthanthethresholdat0.5.WhentheSPAG9Tyr914Termutationoccurred,therewasadecreaseinthetotalnumberofO-glycosylationsites,amongwhichchanges appearedintheN-terminalaminoacidresidueduetotheeffectofthe changeinspatialarrangementwithposition16.Thesechangesconceive effectsbyearlyproteinterminationandlossofglycosylationforpositions 905,909,911,915,937,938,949,1179,1188,1238,1241,1242,1243, 1244,1246,1249,1256,and1262.ThesealterationsinO-glycosylation affectproteinpolarityandtheadhesionofothercirculatingproteinsystems.N-glycosylationwasalsoahighlyaffectedpost-translationalmodification.Sixmodificationsweremadeatpositions309,565,694,830, 939,and1176,butduetothemutationSPAG9 Tyr914Ter, onlyonemodificationwasperformedatposition309.Molecularmodelingallowedus toobtaintheSPAG9wtprotein,asshownin Figure4A andthevariantwith thestopcodoninthree-dimensionalalignmentwiththenativestructure, in Figure4B

Figure1. FindingsreportedonbrainMRIofthreesiblings.(A)Comparisonbetweenthethreecasesaccordingto1.Measurementsofthefronto-occipitaldiameter (FOD)andparametersoftheCC(GT:Thicknessofthegenu,BT:Thicknessofthebody,IT:Thicknessoftheisthmus,ST:Thicknessofthesplenium)2.Gradient ofirondepositsintheputamennucleus,fromlowesttohighest,withcase3beinghighest.3.Cerebellumandfourthventricle.(B)1.Bilateralmalrotation hippocampal(Case1).2.Agenesisoftheseptumpellucidum(Case3).

Discussion

Thisstudyreportsanewsyndromewithcongenitalalterations,neurodevelopmentdisorder,andneurodegeneration.Theexomesanalyzedfrom 17familymembers,Sangersegregationanalysis,andstructuralandfunctionalevidencehelpdeterminepossiblepathogenicvariantswithsignificanteffects.Withtheobservationspresented,wecanconcludethat

thisrarediseasecanbeassociatedwiththehomozygousdeletionof SPAG9/JIP4gene.ThefamilywasidentifiedfromtheruralareaofnorthernAntioquia,Colombia,whereageneticisolatewaspreviouslyreported, withafoundereffectandseveralgeneticdisordersassociatedwithapossiblegeneticbottleneck(45–47).

(Continued)

Thesethreesiblingspresentsimilarclinicalcharacteristics.Theyhad closescoresontheintelligencescale(IQ)despitesuchadissimilarMiniMentalStateExamination(MMSE),probablybecauseofthedifferences inlanguage.Inotheraspects,wecanseeheterogeneityinseveritydespitehavingthesamemutation.Themalecaseistheonewhohasthe

mostseveremotordisorder,withmoreincredibledifficultyinlanguage andfunctionality,inadditiontoseverepsychiatricsymptomsandfacial dysmorphism.Theyoungersister(case3)appearstohaveotheressential alterationsonMRI.However,functionally,sheperformedbetterindaily livingactivitiesandrevealedminordifferencesinfacialfeatures.

Figure2. Family’spedigreeandSangersequencing.(A)Pedigreeshowsfourgenerationsofthecompletefamily.Squaresaremen,andcirclesarewomen.The arrowindicatestheindexcase.Romannumeralsaregenerations,andArabicnumeralsrepresentthepositionofeachindividualinthefamily.Filledsquaresand circlesrepresentaffectedfamilymembers.Slash(/)indicatesadeceasedperson.Thesamelinebetweentwoindividualsrepresentsconsanguinity.Individuals withDNAsamplesareindicatedwithaplus(+)symbol.(B)Chromatogramsofthreesubjects(parentsandtwosiblings)wereavailableandvisualizedwith novoSNP(31).Thereferencesequenceisvisualizedinthefirsttrace.Variationishighlightedinredcolor.TheunaffectedparentsIII:1andIII:2are heterozygous (G/ ),andthetwoaffectedchildrenIV:1andIV:2arehomozygous( / )forthevariant (NM_001130528.3):c.2742del

ResearchArticle Acosta-Baenaetal.

Figure1.

Figure3. Localizationof (NM_001130528.3):c.2742del(p.Tyr914Ter) inthedomainsoftheSPAG9/JIP4protein.SchemeoftheSPGA9/JIP4proteinwiththe maindomainsandthelocationoftheidentifiedvariant.

AccordingtotheMRI,microcephalyandbilateralhippocampalmalrotationincase1wereevident.Hippocampalrotationcanbeginbetween gestationweeks21–32.Asymmetricaldevelopmentisexpected,withthe rightsidefasterthantheleft(48).Amalrotationorincompleteinversion ofthehippocampuscanbeexpectedin19%.However,itcanalsobeassociatedwithstructuralvariantsassociatedwithbraindevelopmentthat predisposetoepilepsytosomeextent(49).Itisstrikingthatthiscase hasbeentheonlyoneofthethreesiblingswhohaspresentedconvulsive episodesaftertheageof34.

TheCCisthemainstructurethatconnectsthecerebralhemispheres andintegratesmotor,cognitive,andsensoryinformation.Morphological anomaliescorrelatewithalterationsincognitiveandbehavioraldevelopment.Eachsubregion(genus,body,isthmus,andsplenium)isassociatedwithdevelopmentandfunctioninthecortex.Weobservedadecreaseinthesizeofthegenuandsplenium.Genuareprojectionsfrom theprefrontalcortex.Thespleniumhasfibersfromtheoccipital-parietal andtemporalcortex(50).FullmaturityoftheCCappearstooccurinearly adulthood.IthasbeensuggestedthattheincreaseinCCsizeatthatageis relatedtotheincreaseinaxonalsize(51).Inallthreecases,thereisventriculomegaly,possiblyassociatedwithsubcorticalatrophyandironaccumulationintheputamenandthedentatenucleus.Findingsthatcould beassociatedwithneurodegenerativechanges.Ironisthemostabundant metalinneurons;transportandstoragefailuresareprocessesassociated withneurodegenerativedisorders(52).Itisinterestingtoexplorethese findingsfurthersincetheywouldprovidecluestomechanismsnotyetunderstoodindementiasyndromes.

Thesecaseswereidentifiedinthefourthdecadeoflife,sowecanobservetheevolutionofaneurodevelopmentaldisorderwhosecauseremainsandappearstobeprogressing.Insubsequentevaluations,allsiblingshadworsenedinthefunctionalscales(datanotshown)andbrain atrophy.Alsonoteworthyistheonsetofseizuresatage34andworsening motorandbehaviorimpairmentincase1.Aspectsthatsuggestpossible degenerationafterthedevelopmentaldisorder.

OurfindingsconcludethatdeletionintheSPAG9gene (NM_001130528.3):c.2742del(p.Tyr914Ter) generateschangesin theproteinregardinglengthandaminoacidcompositionduetolack ofassemblyof407aminoacids.Thisaffectsposttranslationalmodifications,affectingkeysitesforN-glycosylation,O-glycosylation,and phosphorylation.Thesethree-dimensionaleffectsandmodificationsare responsibleforchangingthechemicalenvironmentoftheprotein,which impliesanalterationincellfunction,eitherbyactivatingametabolic pathwayorcellsignaling,suchastheinteractionwithcofactorsand ligandssuchasdyneinandkinesin-1,amongothers.Theidentified homozygousdeletionproducesadoubletruncatedprotein,withtheabsenceofimportantkinasephosphorylationsites,includingtwopositions forp38MAPK,inadditiontotheabsenceof24sitesforO-glycosylation andfivesitesforN-glycosylationforitsproperfunction.

JIP4proteinhastwoknownmolecularfunctions:(1)Dynein-dynactin motoradapterforretrogradeflow.(2)Scaffoldproteinthatpotentiates thep38MAPKsignalingcascade.Murinestudieswithadoubleknockout (KO)toJIP4haveshownneurodegeneration(11),butnopreviouscases withthisphenotypeassociatedwithJIP4mutationshadbeenreported. Thealterationsinneurodevelopmentandneurodegenerationseeninour patientscouldbeexplainedbypermanentalterationretrogradeaxonal transportandsignalingdeficienciesp38MAPKcascade.

p38MAPKregulatesseveralcellularfunctionsinthecentralnervous system,suchasmetabolism,secretion,migration,differentiation,apoptosis,andsenescence(53).Thecascadeconsistsofthreephosphorylation

levelstoactivatep38,startingwithaMAPkinase(MAP3K),thenaMAP2K, andfinallyp38MAPkinase.Proteinkinasesregulateaxonaltransportby phosphorylatingmotorandadapterproteinsandcargoesdirectlyandindirectlybymodifyingthemicrotubulenetwork(54).MAPKp38cannegativelyregulateaxonaltransport.Inpatientsandmicewithamyotrophic lateralsclerosis(ALS),overactivationofthissignalingpathwayproduces alterationsinaxonaltransportinthespinalcord(55).Scaffoldingproteins,suchasJIP4,recruitupstreamMAP2KandMAP3Ktoenhancethe activationofp38kinases(10).JIP4regulatesretrogradeandconstitutivetransportoflysosomes,butunderstressconditions,itactivates thep38MAPKsignalingpathwaywithposttranscriptionalregulationof TMEM55B.TMEM55BrecruitsJIP4todeliverdynein-dynactintolysosomalmembranes(56).DepletionofTMEM55BorJIP4resultsinthedispersaloflysosomestowardthecellperiphery(57).Moreresearchisrequired tounderstandalterationsinJIP4andtheirimpactonregulatingmTORC signaling(58).

TheshorteningoftheproteinwasbeforethepositionoftheWD40 domain(12).Proteinswiththistypeofdomainareassociatedwiththe functionofinteractingwithotherproteins(59).Thisdomainwouldgive itsscaffoldingfunction,whichisfundamentaltocriticalfunctionsinsignalingpathwaysandthegatheringofmultiplepartnerstofacilitateconcertedinteractionsandmolecularfunctions.Functionalstudiesarerequiredtodeterminetheimplicationsofthesefindingsforregulation,cell typesorspecifictissues,andmachineryinvolvedineachprocesswhere retrogradetransportisinvolved.

TheJIP4homologousprotein,previouslyidentifiedasJIP3,overlaps withJIP4inregulatingaxonallysosometransportinneurons(60).Accordingtopreviousstudies,ithasbeensuggestedthatJIP3andJIP4 arefunctionallyredundantandwhosemaindifferenceistheexpressionofJIP3onlyinneuronalcells(14).Ithasbeenhypothesizedthat ifJIP3isnotexpressed,JIP4canreplaceJIP3inthekinesinactivation complex(14).DenovoheterozygousmutationsintheMAPK8IP3gene encodingtheJIP3alsoshowaphenotypeofintellectualdisabilityand brainabnormalities(61, 62).Thereportedvariantsarelocatedinthefour maindomainsoftheJIP3protein,includingthreemutationswithinthe WD40domain(62).Here,wereportthesefirstthreecaseswithpossible pathogenicmutationsinJIP4,whichdemonstratetheimportanceofJIP4 atthebrainleveldespitethepresenceofJIP3.Thiscouldagreewiththe statementthatJIP4hasdifferentfunctionsthanJIP3,anditspresence isessentialandnotreplaceableincertainbrainfunctionsorsignaling pathways(10).

Retrogradeendosomalsignalinginneuronsincludesthefollowing steps:internalizationofligand–receptorcomplexesintoaxonterminals, sortingofcomplexesintoactivesignalingvesicles,transportalongaxonal microtubulestocellbodies,signalingendosomalandthedismantlingof thecomplex(63).Thecentralmotorforretrogradetransportisacytoplasmicdyneincomplexcomposedofmultiplesubunits.Thiscomplexbinds tomicrotubulesandhydrolyzesATP.However,onitsown,itcannotcarry outtransportwithoutdissociatingfrommicrotubules,soitdependson adapterproteinsforefficientprocessivity(9).

HowDoesDefectiveRetrogradeAxonalTransportContributeto NeurodevelopmentalDisorders?

Retrogradeintracellularcommunicationisessentialforbraindevelopmentandmaintenance(2).Theneurotrophinfamilyofgrowthfactors aresynthesizedandsecretedawayfromneuronalcellbodies,propagate retrogradelyalongtheaxontothebodyoftheneuronandarerequired forproperneuronalsurvival,axonalgrowth,geneexpression,neuronal

Table3. Phosphorylationandposttranslationalmodificationssitesinwild-typeSPAG9andSPAG9Tyr914Ter

ProteinPhosphorylationsitesO-glycosylationsitesN-glycosylationsites wild-type SPAG9

257phosphorylationsites: Positions9,21,21,25,30,30,32,87, 109,109,109,119,119,119,123,123, 126,126,143,143,183,183,183,185, 185,194,194,203,203,217,217,226, 226,238,238,242,244,245,245,249, 251,268,268,268,268,268,272,272, 275,276,276,276,279,283,292,305, 305,329,330,332,332,332,339,339, 339,347,347,347,348,358,363,363, 364,365,379,381,381,381,387,388, 391,391,418,493,493,497,504,504, 504,538,538,550,550,550,551,551, 551,557,561,561,562,563,564,564, 564,566,566,567,567,578,582,582, 583,586,586,588,588,593,593,594, 594,594,595,595,595,597,611,614, 617,620,620,629,683,684,705,705, 710,713,728,730,730,730,732,732, 733,733,756,763,764,790,804,804, 806,806,813,815,822,826,829,831, 832,835,837,837,848,858,858,858, 858,858,861,865,865,865,879,879, 887,892,895,901,901,905,909,909, 909,932,935,937,944,944,966,966, 967,986,996,996,1002,1021,1036, 1049,1049,1054,1054,1069,1081, 1081,1090,1090,1105,1110,1111, 1111,1131,1138,1144,1149,1149, 1169,1173,1175,1188,1188,1188, 1198,1205,1205,1238,1238,1238, 1241,1242,1244,1249,1249,1249, 1256,1262,1262,1262,1264,1264, 1264,1273,1273,1278,1290,1290, 1302.

SPAG9

Tyr914Ter

191phosphorylationsites:

Positions9,21,21,25,30,30,32,87, 109,109,109,119,119,119,123,123, 126,126,143,143,183,183,183,185, 185,194,194,203,203,217,217,226, 226,238,238,242,244,245,245,249, 251,268,268,268,268,268,272,272, 275,276,276,276,279,283,292,305, 305,329,330,332,332,332,339,339, 339,347,347,347,348,358,363,363, 364,365,379,381,381,381,387,388, 391,391,418,493,493,497,504,504, 504,538,538,550,550,550,551,551, 551,557,561,561,562,563,564,564, 564,566,566,567,567,578,582,582, 583,586,586,588,588,593,593,594, 594,594,595,595,595,597,611,614, 617,620,620,629,683,684,705,705, 710,713,728,730,730,730,732,732, 733,733,756,763,764,790,804,804, 806,806,813,815,822,826,829,831, 832,835,837,837,848,858,858,858, 858,858,861,865,865,865,879,879, 887,892,895,901,901,905,909,909.

106O-Glicosilaciónsites: Positions16,25,128,183,185,190, 191,194,203,226,229,238,244,245, 249,251,268,272,275,276,279,280, 283,287,290,292,305,325,329,330, 332,358,363,364,365,367,387, 493,497,504,538,551,557,561, 562,563,564,566,567,582,583, 586,588,593,594,595,597,604, 617,620,658,705,710,724,728, 730,815,822,826,828,829,831, 832,835,843,848,853,857,858, 860,861,865,879,887,892,895, 901,905,909,911,915,937,938, 949,1179,1188,1238,1241,1242, 1243,1244,1246,1249,1256,1262).

6N-Glicosilaciónsites: Positions

309NKSE(0,6999)

565NTTK(0,5121)

694NLSG(0,5093)

830NSSA(0,5031)

939NDSD(0,5029)

1176NKTS(0,5162)

82O-Glicosilaciónsites: Positions25,128,183,185,190,191, 194,203,226,229,238,244,245, 249,251,268,272,275,276,279, 280,283,287,290,292,305,325, 329,330,332,358,363,364,365, 367,387,493,497,504,538,551, 557,561,562,563,564,566,567, 582,583,586,588,593,594,595, 597,604,617,620,658,710,724, 728,730,732,815,826,828,829, 835,853,857,858,860,861,865, 879,887,892,895,901.

1N-Glicosilaciónsite: Position 309NKSE(0,6928)

Comparisonbetweenprimarysequencesoftwoproteins(wild-typeandmutated)accordingtophosphorylation,O-glycosylationandN-glycosylation sites.

Table4. Positionsphosphorylatedbykinasesthatinteractwith SPAG9wt andtheeffectof SPAG9Tyr914Ter

PositionsphosphorylatedbykinasesinSPAG9(wild-type)are notpresentinSPAG9Tyr914Ter

PositionAminoacidEnzymePositionAminoacidEnzyme

909SATM1149TPKA

909SDNA-PK1149Tcdc2 909SCKI1169SPKA

932Sunsp1173TPKC 935YSRC1175TPKC

937Sunsp1188Sunsp

944Yunsp1188SPKA 944YINSR1188SPKC

966SPKA1198Sunsp

966Scdc21205TPKC 967Scdc21205TPKG

986SPKC1238Sp38MAPK

996Sunsp1238Scdk5

996SPKC1238SGSK3

1002Sunsp1241Sunsp

1021TDNA-PK1242Sunsp 1036Scdc21244Sunsp 1049Sunsp1249TPKC 1049SPKA1249Tunsp

1054Tunsp1249Tcdc2

1054TPKC1256Sunsp 1069Yunsp1262Sunsp 1081Sunsp1262SDNAPK

1081SPKC1262SATM 1090Sunsp1264Tunsp 1090SPKA1264Tcdk5

1105SPKC1264Tp38MAPK 1110SRSK1273Sunsp 1111TPKC1273SCKII 1111Tunsp1278Yunsp 1131Yunsp1290SCKII 1138TPKC1290Scdc2 1144Scdc21302Scdc2

Sixty-sixlostphosphorylationsitesofthemutatedproteinduetothe spatialeffectfromposition909(unsp = unspecificenzyme,S = serine, T = threonine,Y = tyrosine).

subtypespecification,axonextensionandbranching,dendriteformation,neurotransmitters,synaptogenesisandsynapticfunctionandaxon regeneration(64).

SynapticdysfunctionappearstoberelevantintheabsenceofJIP4.AlterationsintheJIP4scaffoldproteincandirectlyimpactsynapses,mainly atthepresynapticbutalsoatthepostsynapticlevels(65, 66).Thetransportofneurotrophicfactorsnecessaryfortheformationandmaintenance ofsynapsesatthepresynapticlevelandthepostsynapticlevelseemsto involvetheactivityoflysosomesresponsibleforsynapticorganization andneuronalpruning.

RecentreportdemonstratedthataxonallysosomaltransportisalteredbythelossofJIP4.JIP4/JIP3couldalsoberegulatingthestructure anddynamicsoftheneuronalcytoskeleton(58).Studiesinmousemotorneuronsconcludesthatadequatelysosomalactivityiskeytonatural synapseeliminationinmousemotorneuron(67).Authorshavesuggested possiblecommonmechanismsforthisregulationinnervoussystemboth attheperipheralandcentrallevels,duringneuronalpruningandeliminationofaxonalconnectionstocausesynapticrefinement(68).

MultipleMendelianmutations,theyhavebeenassociatedwithdefects inmotorproteins,adapters,orregulatorsofaxonaltransport(65).Some neurodevelopmentaldiseasesinvolvedspecificallywithproteinswith functionsinretrogradetransportpreviouslyidentified(9)aresummarizedbelow.Geneticalterationsinthedyneincytoplasmic1heavychain 1(DYNC1H1gene)withassociatedphenotypes:Charcot-Marie-Toothdisease,axonal,type2O,corticaldysplasia,complex,withotherbrainmalformations13andspinalmuscularatrophy,lowerextremity-predominant1. Mutationsinregulators(NDE1andBICD2)havebeenreported(69).NDE1 isassociatedtolissencephaly4(withmicrocephaly)andmicrohydranencephaly.BICD2-associatedphenotypesarespinalmuscularatrophy,lower extremity-predominant,2Aand2B.PAFAH1B1orLYS1isalsoanimportantgenerequiredfordyneinandmicrotubuledependentprocesses,and itisassociatedwithlissencephalytype1(70).Allofthesephenotypes seemtoinvolvemoresevereandearlierchangesinbraindevelopment thanthephenotypepresentedhere,withclearmalformationsofcerebral corticaldevelopment(MCD)(71).Inourcases,noMCDpatternswereevidentintheneuroimaging.

HowDoesDefectiveRetrogradeAxonalTransportContributeto NeurodegenerativeDiseases?

Lysosomesrecycleoreliminatedamagedormisfoldedproteinsasthey traveltotheneuronalsomaviaretrogradeaxonaltransport.Retrogradetransportoflysosomesisrecognizedasanimportantregulator ofautophagy.Autophagymaintainshomeostasisandpreventstheaccumulationoftoxicmaterialwithinthecell.Neuronsareparticularlysensitivetothistoxicaccumulation(72).Multipleneurodegenerativediseases

Figure4. Representationofthethree-dimensionalmodelintapes.(A)RegionoftheSPAG9wtproteinafterposition914(inyellowandorange).(B) SPAG9wt and SPAG9Tyr914Ter (violet)proteins.Therewasnoalignmentofthestructures.Theeffectofthechargesoftheaminoacidswaslost,affectingtheirfolding andinducingchangesinanglesthatalterthefunctionalinteraction.

havebeenrelatedtodefectsinaxonaltransport,includingAlzheimerdisease(AD),Parkinson’sdisease,ALS,Huntingtondisease,frontotemporaldementia,Perrysyndrome,Charcot-Marie-Toothtype2B,amongothers(73).Autophagyistheprocessbywhichagedortoxicproteinsand organellesareengulfedbythemembraneforminganautophagosome thatthenfuseswithalysosometoformanautolysosome,withtheaim ofdegradingthecontentsofthevesiclebylysosomalhydrolases.Lysosomalretrogradetransportregulatesautophagicfluxbyfacilitatingthe formationofautophagosomesandfusionbetweenautophagosomesand lysosomes(72).JIP4phosphorylationactsasaswitchthatcontrols lysosomaldistributionsignalingpathwaysdependingonthetypeof autophagy-inducingsignal(72).Axonaltransportofautophagosomesis regulatedbyJIP4(74).

ThereisevidenceofJIP3thehomologofJIP4anditsroleinneurodegeneration.TheabsenceofJIP3showedalterationinzebrafishretrograde transportandlysosomeaccumulation(75).Andindystrophicaxonsofthe Jip3KOmouse,immaturelysosomeswerefoundinthecellbody(76). IthasbeenseenthatblockingretrogradetransportleadstopoormaturationanddegradationoflysosomescontributestotheiraxonalaccumulationandalteredmaturationinaxonalinflammationsofAD.InJIP3 KOmouseneurons,AD-likeaccumulationsoflysosomeswereidentified (76)andinJIP3 +/ hadworseningamyloidplaquepathology.These resultsshowtheimportanceofJIP3-dependentaxonallysosometransportinregulatingamyloidprecursorproteinprocessing;however,inthe 19unrelatedindividualswithdenovovariantsinJIP3,withintellectual disabilityphenotypeandbrainmalformations;nosubsequentneurodegenerativechangesorsignsofdevelopmentalregressionweredescribed (61, 62).Thischaracteristicwasalsonotmentionedinarecentcase report(77).

Ourthreecasesareonaverage34yearsoldandfollow-upformore than10yearswithworseningcognitiveandbehavioralfunctionhascorroboratedprogressivecognitivedeterioration.Wedidnotfindsimilar findingsintheliteraturecausedbydysfunctionintheretrogradetransportmachineryoraxonaltransportingeneral,wherecaseswithprogressivephenotype,withneurodevelopmentaldiseaseandsubsequentcentralneurodegenerationphenotype,arereported(9).

Theseobservationsgeneratemultiplequestionswhosefutureanswerscouldexplainthedescribedfamily’scausalpathologicalmechanismsandmanyotherdiseasesinvolvedincerebralretrogradetransport, wheredevelopmentanddegenerationtautologicallyconverge.

DeclarationofPossibleConflictsofInterests: Allcontributorshave confirmedthatnoconflictofinterestexits.

AuthorContributions

N.A.-B.andC.A.V.-L.hadfullaccesstoallthedatainthestudy.

• Studyconceptanddesign:N.A.-B.,J.T.-M.,L.M.,andC.A.V.-L.

• Acquisition,analysis,orinterpretationofdata:N.A.-B.,J.T.-M.,A.S.-O., A.M.,M.P.,andJ.N.-T.

• Draftingthemanuscript:N.A.-B.andM.A.-B.

• Criticalrevisionofthemanuscriptforimportantintellectualcontent: M.A.C.,W.R.,G.P.C.,andM.A.-B.

• Bioinformaticandstructuralanalysis:N.A.-B.,J.T.-M.,andA.S.-O.

• ObtainingfundingandStudysupervision:C.A.V.-L.andM.A.-B.

DataAvailability

Thedatasetsusedandanalyzedduringthecurrentstudyareavailable fromthecorrespondingauthoruponreasonablerequest.

Acknowledgments

StudysupportedbyUniversidaddeAntioquiaandMINCIENCIASgrant number1115-807-63223,RepublicofColombia.Thisworkisdedicated tothememoryofProfessorGabrielBedoya.WeespeciallythankProfessor SergioVargasforhiscontributionsinreadingthebrainMRI,themembers oftheGENMOLandtheGNAgroupswhohelpedinsomewaytomakethis studypossible,andthefamilystudiedfortheiravailabilityandtrust.

References

1.JongsmaMLM,BakkerN,NeefjesJ.Choreographingthemotor-drivenendosomaldance.JCellSci.2023;136(5):jcs259689.DOI: 10.1242/jcs.259689.PMID: 36382597;PMCID: PMC9845747

2.Guedes-DiasP,HolzbaurELF.Axonaltransport:drivingsynapticfunction.Science.2019;366:eaaw9997.DOI: 10.1126/science.aaw9997.PMID:31601744; PMCID: PMC6996143

3.HirokawaN,Sato-YoshitakeR,KobayashiN,PfisterKK,BloomGS,BradyST. Kinesinassociateswithanterogradelytransportedmembranousorganelles invivo.JCellBiol.1991;114(2):295–302.DOI: 10.1083/jcb.114.2.295.PMID: 1712789;PMCID: PMC2289077

4.HirokawaN,Sato-YoshitakeR,YoshidaT,KawashimaT.Braindynein(MAP1C) localizesonbothanterogradelyandretrogradelytransportedmembranousorganellesinvivo.JCellBiol.1990;111(3):1027–37.DOI: 10.1083/jcb.111.3.1027 PMID:2143999;PMCID: PMC2116262

5.GuillaudL,El-AgamySE,OtsukiM,TerenzioM.Anterogradeaxonaltransportin neuronalhomeostasisanddisease.FrontMolNeurosci.2020;13:556175.DOI: 10.3389/fnmol.2020.556175.PMID:33071754;PMCID: PMC7531239

6.YamashitaN.Retrogradesignalingviaaxonaltransportthroughsignalingendosomes.JPharmacolSci.2019;141(2):91–6.DOI: 10.1016/j.jphs.2019.10.001 PMID:31679963;PMCID: PMC7531239

7.BerthSH,LloydTE.Disruptionofaxonaltransportinneurodegeneration.JClin Invest.2023;133:e168554.DOI: 10.1172/JCI168554.PMID:37259916;PMCID: PMC10232001

8.MillecampsS,JulienJP.Axonaltransportdeficitsandneurodegenerativediseases.NatRevNeurosci.2013;14(3):161–76.DOI: 10.1038/nrn3380.PMID: 23361386

9.SleighJN,RossorAM,FellowsAD,TosoliniAP,SchiavoG.Axonaltransport andneurologicaldisease.NatRevNeurol.2019;15(12):691–703.DOI: 10.1038/ s41582-019-0257-2.PMID:31558780

10.KelkarN,StandenCL,DavisRJ.RoleoftheJIP4scaffoldproteininthe regulationofmitogen-activatedproteinkinasesignalingpathways.MolCell Biol.2005;25(7):2733–43.DOI: 10.1128/MCB.25.7.2733-2743.2005.PMID: 15767678;PMCID: PMC1061651

11.DumrongprechachanV,SalisburyRB,ButlerL,MacDonaldML,Kozorovitskiy Y.Dynamicproteomicandphosphoproteomicatlasofcorticostriatalaxonsin neurodevelopment.Elife.2022;11:e78847.DOI: 10.7554/eLife.78847.PMID: 36239373;PMCID: PMC9629834

12.MontagnacG,SibaritaJB,LoubéryS,DavietL,RomaoM,RaposoG,etal.ARF6 InteractswithJIP4tocontrolamotorswitchmechanismregulatingendosome trafficincytokinesis.CurrBiol.2009;19(3):184–95.DOI: 10.1016/j.cub.2008.12. 043.PMID:19211056

13.SatoT,IshikawaM,MochizukiM,OhtaM,OhkuraM,NakaiJ,etal.JSAP1/JIP3 andJLPregulatekinesin-1-dependentaxonaltransporttopreventneuronaldegeneration.CellDeathDiffer.2015;22(8):1260–74.DOI: 10.1038/cdd.2014.207 PMID:25571974;PMCID: PMC4495352

14.CasonSE,HolzbaurELF.Axonaltransportofautophagosomesisregulatedby dyneinactivatorsJIP3/JIP4andARF/RABGTPases.bioRxiv2023.DOI: 10.1101/ 2023.01.28.526044.PMCID: PMC9901177

15.YangP,QiaoY,MengM,ZhouQ.Cancer/testisantigensasbiomarkerand targetforthediagnosis,prognosis,andtherapyoflungcancer.FrontOncol. 2022;12:864159.DOI: 10.3389/fonc.2022.864159.PMID:35574342;PMCID: PMC9092596

16.Acosta-BaenaN,Tejada-MorenoJA,GarcíaAM,CaroMA,Villegas-LanauCA, Bedoya-BerríoG.DeletionoftheSPAG9genecauseautosomal-recessiveintellectualdisability.GeneralNeuroscience.2021;17(S12):e058215.DOI: 10.1002/ alz.058215

17.WechslerD.Themeasurementofadultintelligence(3rded.).Baltimore: Williams&WilkinsCo;1946.

18.Acosta-BaenaN,Sepulveda-FallaD,Lopera-GómezCM,Jaramillo-ElorzaMC, MorenoS,Aguirre-AcevedoDC,etal.Pre-dementiaclinicalstagesinpresenilin1E280Afamilialearly-onsetAlzheimer’sdisease:aretrospectivecohortstudy.LancetNeurol.2011;10(3):213–20.DOI: 10.1016/S1474-4422(10) 70323-9.PMID:21296022

19.MillerSA,DykesDD,PoleskyHF.AsimplesaltingoutprocedureforextractingDNAfromhumannucleatedcells.NucleicAcidsRes.1988;16(3):1215. DOI: 10.1093/nar/16.3.1215.PMID:3344216;PMCID: PMC334765

20.ChenR,ImH,SnyderM.Whole-exomeenrichmentwiththeagilentSureSelecthumanallexonplatform.ColdSpringHarbProtoc.2015;2015(7):626–33. DOI: 10.1101/pdb.prot083659.PMID:25762417;PMCID: PMC4490097

21.Illumina.bcl2fastqconversionsoftwarev1.8.4userguide.2013.Availablefrom: https://support.illumina.com/sequencing/sequencing_software/bcl2fastqconversion-software.html

22.FASTQCSAAqualitycontroltoolforhighthroughputsequencedata.2010.

23.LiH,DurbinR.FastandaccurateshortreadalignmentwithBurrowsWheelertransform.Bioinformatics.2009;25(14):1754–60.DOI: 10.1093/ bioinformatics/btp324.PMID:19451168;PMCID: PMC2705234

24.DePristoMA,BanksE,PoplinR,GarimellaKV,MaguireJR,HartlC,etal.A frameworkforvariationdiscoveryandgenotypingusingnext-generationDNA sequencingdata.NatGenet.2011;43(5):491–8.DOI: 10.1038/ng.806.PMID: 21478889;PMCID: PMC3083463

25.ChangX,WangK.wANNOVAR:annotatinggeneticvariantsforpersonalgenomes viatheweb.JMedGenet.2012;49(7):433–6.DOI: 10.1136/jmedgenet-2012100918.PMID:22717648;PMCID: PMC3556337

26.McLarenW,GilL,HuntSE,RiatHS,RitchieGRS,ThormannA,etal.Theensembl varianteffectpredictor.GenomeBiol.2016;17(1):122.DOI: 10.1186/s13059016-0974-4.PMID:27268795;PMCID: PMC4893825

27.RichardsS,AzizN,BaleS,BickD,DasS,Gastier-FosterJ,etal.Standardsand guidelinesfortheinterpretationofsequencevariants:ajointconsensusrecommendationoftheAmericanCollegeofMedicalGeneticsandGenomicsand theAssociationforMolecularPathology.GenetMed.2015;17(5):405–24.DOI: 10.1038/gim.2015.30.PMID:25741868;PMCID: PMC4544753

28.LiQ,WangK.InterVar:clinicalinterpretationofgeneticvariantsbythe2015 ACMG-AMPguidelines.AmJHumGenet.2017;100(2):267–80.DOI: 10.1016/j. ajhg.2017.01.004.PMID:28132688;PMCID: PMC5294755

29.KopanosC,TsiolkasV,KourisA,ChappleCE,AguileraMA,MeyerR,etal. VarSome:thehumangenomicvariantsearchengine.Bioinformatics. 2019;35(11):1978–80.DOI: 10.1093/bioinformatics/bty897.PMID:30376034; PMCID: PMC6546127

30.LarssonA.AliView:afastandlightweightalignmentviewerandeditorforlarge datasets.Bioinformatics.2014;30(22):3276–8.DOI: 10.1093/bioinformatics/ btu531.PMID:25095880;PMCID: PMC4221126

31.WeckxS,Del-FaveroJ,RademakersR,ClaesL,CrutsM,DeJongheP,etal. novoSNP,anovelcomputationaltoolforsequencevariationdiscovery.Genome Res.2005;15(3):436–42.DOI: 10.1101/gr.2754005.PMID:15741513;PMCID: PMC551570

32.BlomN,Sicheritz-PonténT,GuptaR,GammeltoftS,BrunakS.Predictionofposttranslationalglycosylationandphosphorylationofproteinsfromtheamino acidsequence.Proteomics.2004;4(6):1633–49.DOI: 10.1002/pmic.200300771 PMID:15174133

33.SteentoftC,VakhrushevSY,JoshiHJ,KongY,Vester-ChristensenMB, SchjoldagerKTBG,etal.PrecisionmappingofthehumanO-GalNAcglycoproteomethroughSimpleCelltechnology.EMBOJ.2013;32(10):1478–88.DOI: 10.1038/emboj.2013.79.PMID:23584533;PMCID: PMC3655468

34.GuptaR,BrunakS.Predictionofglycosylationacrossthehumanproteomeand thecorrelationtoproteinfunction.PacSympBiocomput.2002;322:310–22. PMID:11928486

35.IsabetT,MontagnacG,RegazzoniK,RaynalB,ElKhadaliF,EnglandP,etal.The structuralbasisofArfeffectorspecificity:thecrystalstructureofARF6inacomplexwithJIP4.EMBOJ.2009;28(18):2835–45.DOI: 10.1038/emboj.2009.209 PMID:19644450;PMCID: PMC2750013

36.JumperJ,EvansR,PritzelA,GreenT,FigurnovM,RonnebergerO,etal. HighlyaccurateproteinstructurepredictionwithAlphaFold.Nature. 2021;596(7873):583–9.DOI: 10.1038/s41586-021-03819-2.PMID:34265844; PMCID: PMC8371605

37.López-RiveraJJ,Rodríguez-SalazarL,Soto-OspinaA,Estrada-SerratoC,Serrano D,Chaparro-SolanoHM,etal.StructuralproteineffectsunderpinningcognitivedevelopmentaldelayofthePURAp.Phe233delmutationmodelledbyartificialintelligenceandthehybridquantummechanics–molecularmechanics framework.BrainSci.2022;12(7):871.DOI: 10.3390/brainsci12070871.PMID: 35884678;PMCID: PMC9313109

38.VaradiM,AnyangoS,DeshpandeM,NairS,NatassiaC,YordanovaG,etal.AlphaFoldproteinstructuredatabase:massivelyexpandingthestructuralcoverageofprotein-sequencespacewithhigh-accuracymodels.NucleicAcidsRes. 2022;50(D1):D439–44.DOI: 10.1093/nar/gkab1061.PMID:34791371;PMCID: PMC8728224

39.PettersenEF,GoddardTD,HuangCC,CouchGS,GreenblattDM,MengEC, etal.UCSFchimera-avisualizationsystemforexploratoryresearchand analysis.JComputChem.2004;25(13):1605–12.DOI: 10.1002/jcc.20084 PMID:15264254

40.GarelC,ContI,AlbertiC,JosserandE,MoutardML,LePointeHD.Biometryof thecorpuscallosuminchildren:MRimagingreferencedata.AmJNeuroradiol.2011;32(8):1436–43.DOI: 10.3174/ajnr.A2542.PMID:21799035;PMCID: PMC7964359

41.UniProtConsortium.UniProt:theuniversalproteinknowledgebasein2023.NucleicAcidsRes.2023;51:523–31.DOI: 10.1093/nar/gkac1052.PMID:36408920; PMCID: PMC9825514

42.ApweilerR,BatemanA,MartinMJ,O’DonovanC,MagraneM,Alam-Faruque Y,etal.Activitiesattheuniversalproteinresource(UniProt).NucleicAcids

Res.2014;42(D1):191–8.DOI: 10.1093/nar/gkt1140.PMID:24253303;PMCID: PMC3965022

43.UniProtConsortium.ReorganizingtheproteinspaceattheUniversalProtein Resource(UniProt).NucleicAcidsRes.2012;40(2):D71-5.DOI: 10.1093/nar/ gkr981.PMID:22102590;PMCID: PMC3245120

44.CelestinoR,GamaJB,Castro-RodriguesAF,BarbosaDJ,RochaH,d’Amico EA,etal.JIP3interactswithdyneinandkinesin-1toregulatebidirectional organelletransport.JCellBiol.2022;221(8):e202110057.DOI: 10.1083/jcb. 202110057.PMID:35829703;PMCID: PMC9284427

45.MooneyJA,HuberCD,ServiceS,SulJH,MarsdenCD,ZhangZ,etal.UnderstandingthehiddencomplexityofLatinAmericanpopulationisolates.Am JHumGenet.2018;103(5):707–26.DOI: 10.1016/j.ajhg.2018.09.013.PMID: 30401458;PMCID: PMC6218714

46.Carvajal-CarmonaLG,OphoffR,ServiceS,HartialaJ,MolinaJ,LeonP,etal.Geneticdemographyofantioquia(Colombia)andthecentralvalleyofcostarica. HumGenet.2003;112(5–6):534–41.DOI: 10.1007/s00439-002-0899-8.PMID: 12601469

47.Cardoso-dos-SantosAC,RealesG,Schuler-FacciniL.ClustersofraredisordersandcongenitalanomaliesinSouthAmerica.RevPanamSalud Pública.2023;47:e98.DOI: 10.26633/RPSP.2023.98.PMID:37363626;PMCID: PMC10289474

48.BajicD,MoreiraNC,WikströmJ,RaininkoR.Asymmetricdevelopmentof thehippocampalregioniscommon:afetalMRimagingstudy.AmJNeuroradiol.2012;33(3):513–8.DOI: 10.3174/ajnr.A2814.PMID:22116115;PMCID: PMC7966435

49.FuTY,HoCR,LinCH,LuYT,LinWC,TsaiMH.Hippocampalmalrotation:agenetic developmentalanomalyrelatedtoepilepsy?BrainSci.2021;11(4):463.DOI: 10. 3390/brainsci11040463.PMID:33916495;PMCID: PMC8067421

50.BlaauwJ,MeinersLC.Thespleniumofthecorpuscallosum:embryology, anatomy,functionandimagingwithpathophysiologicalhypothesis.Neuroradiology.2020;62:563–85.DOI: 10.1007/s00234-019-02357-z.PMID:32062761; PMCID: PMC7186255

51.KeshavanMS,DiwadkarVA,DeBellisM,DickE,KotwalR,RosenbergDR,etal. Developmentofthecorpuscallosuminchildhood,adolescenceandearlyadulthood.LifeSci.2002;70(16):1909–22.DOI: 10.1016/s0024-3205(02)01492-3 PMID:12005176

52.CerasuoloM,DiMeoI,AuriemmaMC,TrojsiF,MaiorinoMI,CirilloM,etal.Iron andferroptosismorethanasuspect:beyondthemostcommonmechanisms ofneurodegenerationfornewtherapeuticapproachestocognitivedeclineand dementia.IntJMolSci.2023;24(11):9637.DOI: 10.3390/ijms24119637.PMID: 37298586;PMCID: PMC10253771

53.AsihPR,PrikasE,StefanoskaK,TanARP,AhelHI,IttnerA.Functionsofp38MAP kinasesinthecentralnervoussystem.FrontMolNeurosci.2020;13:570586.DOI: 10.3389/fnmol.2020.570586.PMID:33013322;PMCID: PMC7509416

54.GibbsKL,GreensmithL,SchiavoG.Regulationofaxonaltransportbyproteinkinases.TrendsBiochemSci.2015;40:597–610.DOI: 10.1016/j.tibs.2015.08.003 PMID:26410600

55.TortaroloM,VeglianeseP,CalvaresiN,BotturiA,RossiC,GiorginiA,etal.Persistentactivationofp38mitogen-activatedproteinkinaseinamousemodel offamilialamyotrophiclateralsclerosiscorrelateswithdiseaseprogression. MolCellNeurosci.2003;23(2):180–92.DOI: 10.1016/s1044-7431(03)00022-8 PMID:12812752

56.BallabioA,BonifacinoJS.Lysosomesasdynamicregulatorsofcellandorganismalhomeostasis.NatRevMolCellBiol.2020;21(2):101–18.DOI: 10.1038/ s41580-019-0185-4.PMID:31768005

57.WillettR,MartinaJA,ZeweJP,WillsR,HammondGRV,PuertollanoR.TFEBregulateslysosomalpositioningbymodulatingTMEM55BexpressionandJIP4recruitmenttolysosomes.NatCommun.2017;8(1):1580.DOI: 10.1038/s41467017-01871-z.PMID:29146937;PMCID: PMC5691037

58.RafiqNM,LyonsLL,GowrishankarS,DeCamilliP,FergusonSM.JIP3links lysosometransporttoregulationofmultiplecomponentsoftheaxonal cytoskeleton.CommunBiol.2022;5(1).DOI: 10.1038/s42003-021-02945-x PMID:35013510;PMCID: PMC8748971

59.StirnimannCU,PetsalakiE,RussellRB,MüllerCW.WD40proteinspropelcellular networks.TrendsBiochemSci.2010;35(10):565–74.DOI: 10.1016/j.tibs.2010. 04.003.PMID:20451393

60.GowrishankarS,LyonsL,RafiqNM,Roczniak-FergusonA,DeCamilliP,Ferguson SM.OverlappingrolesofJIP3andJIP4inpromotingaxonaltransportoflysosomesinhumaniPSC-derivedneurons.MolBiolCell.2021;32(11):1094–103. DOI: 10.1091/mbc.E20-06-0382.PMID:33788575;PMCID: PMC8351540

61.IwasawaS,YanagiK,KikuchiA,KobayashiY,HaginoyaK,MatsumotoH,etal.RecurrentdenovoMAPK8IP3variantscauseneurologicalphenotypes.AnnNeurol. 2019;85(6):927–33.DOI: 10.1002/ana.25481.PMID:30945334

62.PlatzerK,StichtH,EdwardsSL,AllenW,AngioneKM,BonatiMT,etal.Denovo variantsinMAPK8IP3causeintellectualdisabilitywithvariablebrainanomalies.

AmJHumGenet.2019;104(2):203–12.DOI: 10.1016/j.ajhg.2018.12.008.PMID: 30612693;PMCID:PMC6369540.

63.ZweifelLS,KuruvillaR,GintyDD.Functionsandmechanismsofretrogradeneurotrophinsignalling.NatRevNeurosci.2005;6:615–25.DOI: 10.1038/nrn1727 PMID:16062170

64.HarringtonAW,GintyDD.Long-distanceretrogradeneurotrophicfactorsignallinginneurons.NatRevNeurosci.2013;14(3):177–87.DOI: 10.1038/ nrn3253.PMID:23422909

65.XiongGJ,ShengZH.Presynapticperspective:axonaltransportdefectsinneurodevelopmentaldisorders.JCellBiol.2024;223:e202401145.DOI: 10.1083/ jcb.202401145.PMID:38568173;PMCID: PMC10988239

66.Exposito-AlonsoD,RicoB.Annualreviewofgeneticsmechanismsunderlying circuitdysfunctioninneurodevelopmentaldisorders.AnnuRevGenet.2022;56: 391–422.DOI: 10.1146/annurev-genet-072820-023642.PMID:36055969

67.SongJW,MisgeldT,KangH,KnechtS,LuJ,CaoY,etal.Lysosomalactivity associatedwithdevelopmentalaxonpruning.JNeurosci.2008;28(36):8993–9001.DOI: 10.1523/JNEUROSCI.0720-08.2008.PMID:18768693;PMCID: PMC2693713

68.LichtmanJW,ColmanH.Synapseeliminationreviewandindeliblememory.Neuron.2000;25(2):269-78.DOI: 10.1016/s0896-6273(00)80893-4.PMID: 10719884

69.LipkaJ,KuijpersM,JaworskiJ,HoogenraadCC.Mutationsincytoplasmicdynein anditsregulatorscausemalformationsofcorticaldevelopmentandneurodegenerativediseases.BiochemSocTrans.2013;41(6):1605–12.DOI: 10.1042/ BST20130188.PMID:24256262

70.ReinerO,CarrozzoR,ShenY,WehnertM,FaustinellaF,DobynsWB,etal.IsolationofaMiller–DickerlissencephalygenecontainingGprotein β -subunitlikerepeats.Nature.1993;364(6439):717–21.DOI: 10.1038/364717a0.PMID: 8355785

71.BarkovichAJ,GuerriniR,KuznieckyRI,JacksonGD,DobynsWB.Adevelopmental andgeneticclassificationformalformationsofcorticaldevelopment:Update 2012.Brain.2012;135:1348–69.DOI: 10.1093/brain/aws019.PMID:22427329; PMCID: PMC3338922

72.SasazawaY,SoumaS,FuruyaN,MiuraY,KazunoS,KakutaS,etal.Oxidativestress-inducedphosphorylationofJIP4regulateslysosomalpositioning incoordinationwithTRPML1andALG2.EMBOJ.2022;41(22):e111476.DOI: 10.15252/embj.2022111476.PMID:36394115;PMCID: PMC9670204

73.PerlsonE,MadayS,FuMM,MoughamianAJ,HolzbaurELF.Retrogradeaxonal transport:pathwaystocelldeath?TrendsNeurosci.2010;33:335–44.DOI: 10. 1016/j.tins.2010.03.006.PMID:20434225;PMCID: PMC2902719

74.CasonSE,HolzbaurELF.AxonaltransportofautophagosomesisregulatedbydyneinactivatorsJIP3/JIP4andARF/RABGTPases.JCellBiol. 2023;222(12):e202301084.DOI: 10.1016/j.tins.2010.03.006.PMID:20434225; PMCID: PMC2902719

75.DrerupCM,NechiporukAV.JNK-interactingprotein3mediatestheretrograde transportofactivatedc-JunN-terminalkinaseandlysosomes.PLoSGenet. 2013;9(2):e1003303.DOI: 10.1371/journal.pgen.1003303.PMID:23468645; PMCID: PMC3585007

76.GowrishankarS,WuY,FergusonSM.ImpairedJIP3-dependentaxonallysosome transportpromotesamyloidplaquepathology.JCellBiol.2017;216(10):3291–305.DOI: 10.1083/jcb.201612148.PMID:28784610;PMCID: PMC5626538

77.KártesziJ,ZieglerA,TihanyiM,ElmontB,ZhangY,PatócsB,etal.CompoundheterozygousvariantsinMAPK8IP3weredetectedinseverecongenitalhypotoniamimickinglethalspinalmuscularatrophy.AmJMedGenetA. 2023;191(9):2428–32.DOI: 10.1002/ajmg.a.63340.PMID:37462082

Publisher’snote: GenomicPressmaintainsapositionofimpartialityandneutralityregardingterritorialassertionsrepresentedinpublishedmaterialsandaffiliationsofinstitutionalnature.Assuch,wewillusetheaffiliationsprovidedbytheauthors,withouteditingthem.Suchusesimplyreflectswhattheauthorssubmitted tousanditdoesnotindicatethatGenomicPresssupportsanytypeofterritorial assertions.

OpenAccess. ThisarticleislicensedtoGenomicPressundertheCreativeCommonsAttribution-NonCommercial-NoDerivatives4.0InternationalLicense(CCBY-NC-ND4.0).Thelicensemandates:(1)Attribution:Credit mustbegiventotheoriginalwork,withalinktothelicenseandnotificationofany changes.Theacknowledgmentshouldnotimplylicensorendorsement.(2)NonCommercial:Thematerialcannotbeusedforcommercialpurposes.(3)NoDerivatives: Modifiedversionsoftheworkcannotbedistributed.(4)Noadditionallegalortechnologicalrestrictionsmaybeappliedbeyondthosestipulatedinthelicense.Public domainmaterialsorthosecoveredbystatutoryexceptionsareexemptfromthese terms.Thislicensedoesnotcoverallpotentialrights,suchaspublicityorprivacy rights,whichmayrestrictmaterialuse.Third-partycontentinthisarticlefallsunderthearticle’sCreativeCommonslicenseunlessotherwisestated.Ifuseexceeds thelicensescopeorstatutoryregulation,permissionmustbeobtainedfromthe copyrightholder.Forcompletelicensedetails,visit https://creativecommons.org/ licenses/by-nc-nd/4.0/.Thelicenseisprovidedwithoutwarranties.

GenomicPsychiatry

OPEN RESEARCHREPORT

TreatmentwithshRNAtoknockdown the5-HT2Areceptorimprovesmemory invivoanddecreasesexcitabilityin primarycorticalneurons

TroyT.Rohn1 ,DeanRadin1 ,TracyBrandmeyer1 , PeterG.Seidler1 ,BarryJ.Linder1 ,TomLytle1 ,DavidPyrce1 , JohnL.Mee1 ,andFabioMacciardi1 , 2

1 Cognigenics,Eagle,Idaho,83616,USA

2 DepartmentofPsychiatryandHumanBehavior,UniversityofCalifornia, Irvine,California92697,USA

CorrespondingAuthor: TroyT.Rohn,1372S.EagleRoad,Suite197 Eagle,Idaho83616USA.E-mail: troy.rohn@cognigenics.io

GenomicPsychiatry January2025;1(1):85–93; doi: https://doi.org/10.61373/gp024r.0043

ShorthairpinRNAs(shRNA),targetingknockdownofspecificgenes, holdenormouspromiseforprecision-basedtherapeuticstotreatnumerousneurodegenerativedisorders.WedesignedanAAV9-shRNA targetingthedownregulationofthe5-HT2Areceptor,andrecently demonstratedthatintranasaldeliveryofthisshRNA(referredtoas COG-201),decreasedanxietyandenhancedmemoryinmiceandrats.In thecurrentstudy,weprovideadditionalinvivodatasupportingarole ofCOG-201inenhancingmemoryandfunctionalinvitrodata,whereby knockdownofthe5-HT2Areceptorinprimarymousecorticalneurons ledtoasignificantdecreaseinmRNAexpression(p = 0.0007),protein expression p-value = 0.0002,andinspontaneouselectricalactivityas measuredbymultielectrodearray.Inthisregard,weobservedasignificantdecreaseinthenumberofspikes(p-value = 0.002),themeanfiringrate(p-value = 0.002),thenumberofbursts(p-value = 0.015),and adecreaseinthesynchronyindex(p-value = 0.005).Thedecreasein mRNAandproteinexpression,alongwithreducedspontaneouselectricalactivityinprimarymousecorticalneurons,corroborateourinvivo findingsandunderscoretheefficacyofCOG-201indecreasing HTR2A geneexpression.ThisconvergenceofinvitroandinvivoevidencesolidifiesthepotentialofCOG-201asatargetedtherapeuticstrategy. TheabilityofCOG-201todecreaseanxietyandenhancememoryin animalmodelssuggeststhatsimilarbenefitsmightbeachievablein humans.Thiscouldleadtothedevelopmentofnewtreatmentsforconditionslikegeneralizedanxietydisorder,post-traumaticstressdisorder(PTSD),andcognitiveimpairmentsassociatedwithagingorneurodegenerativediseases.

Keywords: RNAinterference,5-HT2Areceptor,memoryenhancement, neuronalexcitability,anxiety,cognitiveimpairment.

Introduction

Neurologicaldisorderssuchasmildcognitiveimpairment(MCI)and chronicanxietyareamajorpublicmentalhealthchallenge,affecting millionsofpeopleworldwide.MCIisoftenatransitionalstagebetween healthyaginganddementia.Dependingontheinclusioncriteria,the prevalenceofMCIhasbeenestimatedtobebetween5.0%and36.7%(1). Accordingtoasystematicreviewandmeta-analysis,theoverallpooled prevalenceofanxietyinpatientswithMCIisapproximately21%.This prevalenceratevariesbasedonthesourceofthesampleandthemethod ofdiagnosis.Forexample,theprevalenceofanxietyincommunity-based samplesofpatientswithMCIisabout14.3%,whileitisapproximately 31.2%inclinic-basedsamples(2).Basedonthesestatistics,weestimate

thatroughly1.5–2millionAmericanssufferfromMCIwithanunderlying anxietydisorder.Currently,thereisnosinglemedicationtotreatboth cognitiveimpairmentsandanxietyinthispatientpopulation.

Precision-basedtherapeuticssuchasRNAinterferenceofferapromisingnewapproachtotreatingneurologicalandneurodegenerativedisorders.ShorthairpinRNA(shRNA)representsoneclassofRNAinterference moleculesthathasamechanismbasedonthesequence-specificdegradationofhostmRNAthroughcytoplasmicdeliveryanddegradationof double-strandedRNAthroughtheRNA-inducedsilencingcomplex(RISC) pathway(3, 4).WedesignedplasmidscontainingtheRNAinstructionsto constructaspecificshRNAtosilencethe HTR2A gene(U.S.PatentApplicationNo.63/567,853).The HTR2A geneencodesforthe5-HT2Areceptor,oneofthe15knownserotoninreceptorsubtypesexpressedin thebrain,andisimplicatedinbothanxietydisorders(5, 6)andmemory (7–9).Thisplasmidcontainsaneuronalspecificpromoter,MeCP2andis packagedwithinAAV9viralparticles.IntranasaltreatmentofthisAVV9shRNA(hereintermedCOG-201)inmiceorratssignificantlydecreased anxietyandimprovedmemory(10).Inthisstudy,wepresentfurtherevidencesupportingthememory-enhancingeffectsCOG-201.Wealsoprovidefunctionaldatafromexperimentsonprimarycorticalneuronstaken frommice.OurresultsshowthattreatmentwithCOG-201leadstoreducedspontaneouselectricalactivityintheseneurons.Thiseffectoccursspecificallyafterreducingtheexpressionofthe5-HT2Areceptor. ThesefindingsbolsterthepotentialofintranasalshRNAdeliveryasanoninvasivetherapeuticmethodandestablishafoundationforcontinuedinvestigationintoitsroleintreatinganxietyandcognitivedeficitslinkedto aspectrumofneurodegenerativediseases.

Methods shRNADesignandAAV9VectorDesign

ConstructionofthemouseshRNAtotargetknockdownofthe5-HT2Areceptorwasaspreviouslydescribed(11).Themouse HTR2A geneconsists ofthreeexonsthatgiverisetotwomajorisoformsandisfoundonchromosome13.ThepredictedbindingregionoftheprimaryRNAtranscript forthissequenceisthebeginningofexon2,whichwouldleadtothepotentialknockdownofallpossibleisoforms.Thefollowingsequencewas usedforassemblyoftheshRNAbasedon invitro testingindicatinga77% knockdown:

GCTGAGCACATCCAGGTAAATCCAGGTTTTGGCCACGACTGACCTGGATTT CTGGATGTGCTCAG

Noknockdownwasobservedwiththeemptyvectorcontrolorascrambled shRNAcontrol(Figure2B).Forvalidationandscreening,knockdownwas verifiedusingHEK293cellscotransfectedwiththecDNAplasmidcontainingthe HTR2A genetarget.Forinvitrotreatmentofprimarymousecorticalneurons,shRNAdeliverysubcloningoftheshRNAwascarriedoutina modifiedpAAV cis-plasmidundertheneuronal-specificpromoter,MeCP2. TheinclusionoftheMeCP2promoterisacrucialelementdesign,asitensuresexpressionoftheshRNAplasmidonlyinneuronalpopulations.Areportergeneenhancedgreenfluorescentproteinwassubclonedupstream oftheshRNAsequence.AAV9virallarge-scaletransfectionofplasmids wascarriedoutinHEK293cellsandpurifiedthroughaseriesofCsClcentrifugations.Titerload(ingenomecopynumberpermL,orGC/mL)was determinedthroughquantitativereal-timePCR,withtypicalyieldsgiving 1–2 × 1013 GC/mL.AllAAV9vectorswerestoredinphosphatebuffered saline(PBS)with5%glycerolat 80°Cuntilused.Design,manufacturing,andpurificationofAAV9vectorsusedinthisstudywereperformed byVectorBiolabs(Malvern,PA).

NovelObjectRecognitionTest

Theobjectrecognitiontaskisusedtoassessshort-termmemory, intermediate-termmemory,andlong-termmemoryinratsandwasperformedaspreviouslydescribed(11).Thetaskisbasedonthenaturaltendencyofratstopreferentiallyexploreanovelversusafamiliarobject, whichrequiresmemoryofthefamiliarobject.Thetimedelaydesignallowsforthescreeningofcompoundswithpotentialcognitiveenhancing propertiestoovercomethenaturalforgettingprocess.Wistarmalerats

Received:24April2024.Revised:28May2024and16June2024.Accepted:19June2024. Publishedonline:5August2024.

(12animalspergroup)wererandomlyassignedtotwogroupsconsisting ofvehicle(PBS)orCOG-201treated.FollowingadministrationofthevehicleorCOG-201,ratswereassessedinthistask3weeksposttreatmentand thediscriminationindexwascalculated.Tocalculatethediscrimination index,thefollowingequationwasused:(timeexploringnovelobject-time exploringfamiliarobject)/(timeexploringnovelobject + timeexploring familiarobject),multipliedby100toconverttoapercentage.Thearena andobjectswerecleanedwith70%alcoholbetweeneachrattestsession. ThesebehavioralstudieswereperformedbyNeurofitSAS.Allanimalcare andexperimentalprocedureswereperformedinaccordancewithinstitutionalguidelinesandwereconductedincompliancewithFrenchAnimalHealthRegulation.Forallbehavioralstudies,animalswerekeyed, anddatawereblindeduntiltheendofexperiments.

PrimaryMouseCorticalNeuronCulturesandTreatmentwithCOG-201 Primarycorticalneuronsfromfreshmousebrainembryoswereisolated andplatedontocoated24-wellplatesatadensityof5 × 105 cells/ well.CorticalneuronsweremaintainedinNeurobasal-AMedium,supplementedwithB27,Glutamax,andantibiotics(100U/MIpenicillinand 100 μg/mLstreptomycin).Culturedneuronswereincubatedat37°Cand 5%CO2 andhalfthemediawereexchangedwithfresh,completemedia every3days.Onday6followingplating(DIV6),corticalneuronswere treatedexogenouslywithastockconcentrationofCOG-201at1 × 1013 (GC/mL)toafinalmultiplicityofinfection(MOI)of2 × 105 .TheMOIrefers tothenumberofviralparticlesperneuron.Alternatively,corticalneurons weretreatedatthesameMOIusingAAV9-MeCP2-GFP-scrambled-shRNA representingthe HTR2A targetsequencebutrandomlyscrambled.Culturedneuronalmediawasreplacedwithhalf,fresh,completemediaevery 3daysfor10days(DIV16)atwhichpointcellswerefixedforimmunocytochemistryoranalyzedforspontaneouselectricalactivityviaMEA.Preparationandmaintenanceofprimarymousecorticalneuroncultureswas carriedoutbyCreativeBiolabs(Shirley,NY).

EthicalAnimalTreatmentStatement

CreativeBiolabscomplieswithallprovisionsoftheAnimalWelfareAct andotherregulationsrelatedtoanimals.Everyindividualinvolvedinthe careanduseoflaboratoryanimalsfullyunderstandstheresponsibilities,suchas:avoidsorminimizesdiscomfort,distress,andpaininexperimentalanimalsconsistentwithsoundscientificpractices;usesminimum numberofanimalsnecessarytoobtainvalidresults.AllexperimentalprotocolswereapprovedbytherelevantInstitutionalAnimalCareandUse Committee.

ImmunohistochemicalFluorescenceMicroscopy

Immunofluorescencehistochemistrywasaspreviouslydescribed(10, 11).

Briefly,followingdehydration,4 μmparaffin-embedded,sagittalsections werecutjustlateraltothemidlineandusedforimmunofluorescencelabeling.Briefly,alltissuesectionswerelabeledwithanti-GFPantibody (rabbitmAB#2956)1:1,000(CellSignalingTechnology,Inc.,Danvers,MA, USA)oranti-5HT-2Areceptorantibody(rabbitpolyclonal,#24288)at 1:500dilution(Immunostar,Hudson,WI).SecondaryantibodieswereconjugatedtoFITCorCy3.DAPIwasusedasanuclearstain.WholeslidescanningwasperformedusingaPannoramicMidiIIscannerusinga40Xobjectivelenswithopticalmagnificationof98X,0.1 μm/pixel.Allsectioning, immunolabeling,andcapturingofimageswascontractedouttoiHisto (Salem,MA).

ImmunocytochemistryProtocol

Cellswereculturedunderappropriateconditionsbeforetheimmunocytochemistryprocedurewasinitiated.Forfixation,cellsweretreatedwith 4%paraformaldehydepreparedin1xPBS.Thefixationsolutionwaspreheatedto37°Cpriortouse.Cellswereincubatedwiththissolutionfor 10minutesatroomtemperaturetopreservecellulararchitectureand antigenicity.Followingfixation,cellswerewashedthricewith1xPBS,with eachwashlastingfor3minutes,toremoveexcessfixative.Topermeabilizethecellmembranes,0.1%TritonX-100(dilutedinPBS)wasaddedto thewells,andthecellswereincubatedfor15minutesatroomtemperature.Thisstepfacilitatestheentryofantibodiesintothecells.Subsequently,cellswereagainwashedthreetimeswith1xPBSfor3minutes eachtoremovethepermeabilizationagent.

Thecellswerethenblockedwith500 μLofready-to-usegoatserum for1houratroomtemperaturetopreventnon-specificbindingofthe primaryantibodies.Afterblocking,theprimaryantibodieswerediluted inthegoatserum;GFPmonoclonalantibodyfrommousewasdilutedat 1:500,and5HT2Aantibodyfromrabbitat1:100.Theprimaryantibody solutionwasaddedtothewells,andthecellswereincubatedovernight at4°C.Thenextday,thecellswerewashedthreetimeswith1xPBSfor 3minuteseachtoremoveunboundprimaryantibodies.Thesecondary antibodieswerethenprepared:AF488Goatanti-MouseIgG(H+L)and AF555Goatanti-RabbitIgG(H+L),bothdilutedat1:400ingoatserum. Thesecondaryantibodysolutionwasaddedtothewells,andcellswere incubatedfor2hoursatroomtemperatureinthedarktoprotectthe fluorophoresfromphotobleaching.Afterincubationwiththesecondary antibodies,cellswerewashedwith1xPBStoremoveanyunboundantibodies.Subsequently,nucleiwerestainedwithaHoechstsolution,which wasaddeddirectlytothewells.Thecellswereincubatedinthedarkfor 5–10minutes,followedbyafinalwashwithPBS.Finally,thestainedcells wereimagedusingappropriatefluorescencemicroscopytodetectthe signalsfromthefluorophore-conjugatedantibodies.Uponcompletionof imaging,theslidesweresealedtopreventdryingandtopreservethefluorescenceforfutureanalysis.Immunocytochemistrywasperformedby CreativeBiolabs(Shirley,NY,USA).

WesternBlotAnalysisProtocol

Followingtreatment,proteinswereextractedfromcorticalneuronsthe proteinconcentrationwasdeterminedusingastandardproteinassay. EqualamountsofproteinfromeachsamplewerethendilutedwithPBS tonormalizethevolumeacrossallsamples.Thesamplesweremixedwith loadingbufferata1:4volumeratioanddenaturedbyheatingat100°Cfor 10minutes.Forelectrophoresis,sampleswereloadedintoaprecastpolyacrylamidegelalongsideamolecularweightmarker.Theproteinswere thentransferredontoapolyvinylidenedifluoride(PVDF)membraneusingasemi-drytransfersystem.Posttransfer,thePVDFmembranewas blockedin5%non-fatmilkpreparedinTris-bufferedsalinewithTween20 (TBST)topreventnon-specificproteinbinding.Subsequently,themembranewasincubatedwithaprimaryantibodyagainstthe5-HT2Areceptor,dilutedtoaconcentrationof0.3 μg/mL,andplacedovernightat4°C onashaker.ThemembranewaswashedthreetimeswithTBSTfor10minutesandthenincubatedwithagoatanti-rabbitsecondaryantibodysolutionfor1houratroomtemperatureonashaker.Forthedetectionofthe antibody–proteincomplex,achemiluminescentsubstratewasprepared andaddedtothemembrane,whichwasthenincubatedfor5minutes.The intensityofthebandswasanalyzedbydensitometrytodeterminetherelativeamountsofthetargetproteinpresentinthesamples.Westernblot analysiswasperformedbyCreativeBiolabs(Shirley,NY,USA).

QuantitativeReal-timeqPCR

Real-timeqPCRwasperformedaspreviouslydescribed(11).Briefly, totalRNAwasextractedfromprimarycorticalmouseneuronsusing astandardextractionprotocolwithTRIzol,dissolvedindiethylpyrocarbonate(DEPC)-treateddeionizedwaterandquantified.Followingreversetranscription,qPCRwascarriedoutusingthefollowing primers:Primer-F:5’-AGAGGAGCCACACAGGTCTC-3’andPrimer-R:5’ACGACAGTTGTCAATAAAGCAG-3’.Therelativeexpressionwasdetermined bycalculatingthe2 ct value.The2ˆ( ddCt)valuewasthencalculated andnormalizedtoGAPDHforeachtreatment(AVV9-scrambledvs.COG201).TheRNAextractionandqPCRwereperformedbyCreativeBiogene (Shirley,NY,USA).

MultielectrodeArrayAnalysis

MEAanalysiswasperformedaspreviouslydescribed(11).Briefly,themicroscopeusedwasanEvosXLCore.Twenty-four-wellMEAplateswere coatedwith500 μL0.07%polyetherimide(PEI)andincubatedfor1hour. Plateswerethenwashedfourtimesinsteriledeionizedwateranddried overnightinabiosafetycabinet.Primarycorticalneuronsfromfresh mousebrainembryoswereisolatedandplatedontocoated24-wellplates atadensityof5 × 105 cells/well.Corticalneuronsweremaintainedin Neurobasal-AMedium,supplementedwithB27,Glutamax,andantibiotics(100U/MIpenicillinand100 μg/mLstreptomycin).Culturedneurons wereincubatedat37°Cand5%CO2 andhalfthemediawereexchanged

withfresh,completemediaevery3days.Treatment(MOIof2 × 105 )occurredonday6for24hoursat37°Catwhichtimethemediawasreplaced withfresh,completemedia.MEAanalysiswasthenperformedonday16, 10daysafterinfection.MEAanalysiswasperformedbyCreativeBiolabs (Shirley,NY).

StatisticalAnalysis

ForPCR,andWesternblotquantification, t testsfortwoindependent meanswerecalculatedusingexcelsoftwareusingasignificancelevelset at0.05andone-tailedhypotheses.MicroelectrodearraydatawereanalyzedviarepeatedmeasuresANOVAsusingStatistica(Version13.5,Tibco Software).Alldatausedinthesetestswerecheckedandfoundtoconform toparametricassumptions.

AcknowledgmentofGenerativeArtificialIntelligenceandArtificial Intelligence–assistedTechnologiesUsedinWriting Inthecourseofthiswork’spreparation,theauthor(s)employedChatGPT 4withtheintenttoimprovereadabilityandlanguage.Uponutilizingthis tool/service,theauthorsundertookcomprehensivereviewandmodificationasnecessaryandassumefullaccountabilityforthecontentofthe publication.

ResultsandDiscussion

Inarecentstudy,wehavedemonstratedadecreaseinanxietyandimprovementinmemoryfollowingintranasaldeliveryofCOG-201inrats ormice(10).Inthatstudy,anovelrecognitionobjecttestinnormal, 2-month-oldratswerecarriedoutfollowingtreatmentwithCOG-201. Wereportedasignificantincreaseinboththecontact-recognitionindex (92%)andtime-recognitionindex(73%).Inthecurrentstudy,wenowreportasignificantincreaseinthediscriminationindexinthenovelrecognitionobjecttest3weeksposttreatmentwithCOG-201(Figure1A),and knockdownofthe5-HT2Areceptor(Figure1C)followingintranasaldelivery.Thediscriminationindexisameasureusedinthenovelobjectrecognitiontesttoquantifythedifferenceinexplorationtimebetweenanovel andafamiliarobject.Apositivediscriminationindexsuggeststhatthe animalspentmoretimeexploringthenovelobject,whichimpliesrecognitionofthefamiliarobjectand,thus,intactmemory. Figure1A indicates thevehicle-treatedgroupexhibiteda 28.9%discriminationindex,which suggeststhat,onaverage,theratsspentmoretimewiththefamiliarobjectthanwiththenovelobjectduringtheretentiontest.Oneinterpretationoftheseresultsisthatthecontrolgroupeitherdidnotremember thefamiliarobjectortherewasanalternativefactoratplay(e.g.,anxiety,stress).Incontrasttothecontrolgroup,theratstreatedwithCOG201displayedadiscriminationindexincreaseof22.5%.Thus,onaverage,treatedratsdedicatedmoretimetointeractingwithanewobject ratherthanafamiliarone,indicativeofenhancedmemoryretention.The positiveeffectsofCOG-201onmemoryretentionarefurtherhighlighted whenconsideringthesignificantnegativediscriminationindexobserved inthegrouptreatedwiththevehiclealone.Thecontrastbetweenthe groupscouldsuggestthatCOG-201notonlyimprovesmemoryretention directlybutmayalsoimproveitindirectlybyreducinganxiety,orthrough asynergisticeffectofbothmechanisms.

Theseresults,takentogetherwithourpreviousfindingssupporta memoryenhancementactionofCOG-201.However,themissingcomponentisfunctionaldataconnectingtheknockdownofthe5-HT2AreceptortothebehavioralactionsofCOG-201.Anadditionalaimofthecurrentstudywastoprovidefunctionaldatatosupportthesebehavioral findings.Theserotonin5-HT2Areceptoristhemajorexcitatoryreceptorsubtypeinthecortex.Forexample,thisreceptorhasbeenlinked withstress-induceddystonia,emphasizingitsroleinmediatingneuronal excitability(12).Inaddition,the5-HT2Areceptorhasbeenassociated withexcitatoryeffectsintheneocortexandhasbeenlinkedtoworkingmemoryfunctionbyinfluencingbothexcitatoryandinhibitoryelementswithinlocalcircuitry(13).Moreover,the5-HT2Areceptorhasbeen foundtodirectlystimulatekeyexcitatoryglomerularneuronsintheolfactorybulb,furthersupportingitsroleinexcitatorysynaptictransmission (14).Overall,the5-HT2Areceptorplaysacrucialroleinmemory,anxiety,andpainmodulation,exertingexcitatoryeffectsintheseprocesses. Therefore,weexaminedwhetherexposureofCOG-201toprimaryculture

Figure1. Intranasaladeno-associatedvirusdeliveryofAAV9-MeCP2-GFPmouseHTR2A-shRNAimprovesmemoryinrats.Thetargetsequenceused tosynthesizetheshRNAis100%conservedbetweenmiceandrats.Totest whetherCOG-201knockdownoftherat5-HT2Areceptorimprovesmemory, Wistarrats(12animalspergroup)wererandomlyassignedtotwodifferent groupsconsistingofvehicle-controlsorCOG-201.Followingtreatmentonday 1,animalswereassessedbehaviorally3weekslater,andthediscrimination indexwascalculated(see Methods fordetails).(A)At3weeks,therewas asignificantdifferenceinthediscriminationindexbetweenthetwogroups (p-value = .00025),withthevehiclecontrolsat 28.8%(greenbar)versus COG-201–treated +22.5%(pinkbar).Thegreenbar(labeled“Vehicle")shows theperformancethecontrolgroup.Thisgroup’sdiscriminationindexisaround 20%,indicatingafailureofpreferenceforthenovelobjectoverthefamiliarone.Thisindicatespoorperformanceinrecognizingthenewobject.On theotherhand,thepinkbar(labeled“shRNA”)representsthegroupofmice thatreceivedtreatmentwithshRNA.Theirdiscriminationindexisaround30%, meaningtheyspentsignificantlymoretimeexploringthenovelobjectcomparedtothefamiliarone.Thisindicatesbetterperformanceinrecognizingthe newobject.(B and C)Representative,mergedimmunofluorescenceimageof vehicle-controlanimalsdepictingthepresenceof5-HT2Areceptorproteinlabeling(redfluorescence)withintheolfactorybulb.Thebluestainingreflects nuclearstainingwithDAPI.Asexpected,therewasnoexpressionofGFPin vehiclecontrols(B)whilestrongGFPlabelingwasobservedincellbodiesof neuronsofshRNA-treatedrats(C).PanelCalsodepictsagenerallackof5HT2Afluorescence,supportingaknockdownofthereceptorfollowingCOG201treatment.Imagesarerepresentativeof3separateratsforeachgroup.

Figure2. TargetingstrategytoknockdownthemouseHTR2AgeneusingshRNAandtransductionefficiencyinprimarymousecorticalneurons.(A)Schematic displayingthe HTR2A mousegeneencodesasingleprotein-codingtranscript, Htr2a-201,locatedonchromosome14(11).Thetargetsequencewasconstructed torecognizethebeginningofexon2(redarrow,A).Knockdownofexon2preventtheproductionofallknownfull-lengthisoformsofthe5-HT2Areceptorsin mice.(B)Toverifyknockdown,invitroexperimentswereundertakenusingfourdifferentshRNAs,withshmir#4givingthelargestpercentknockdownofHTR2A mRNA(77%)comparedto0%knockdownforeithertheemptyvectorcontrolorascrambledshRNAcontrol.(C–F)TransductionefficiencyofAAV9-mHTR2AshRNAinmouseprimarycorticalneurons.(C and D)depictrepresentativemicroscopicimagesinmouseneuronsfollowinga10-daytreatmentwithscrambled AAV9shRNA-AAV9viralparticles(C and D)ormHTR2AshRNA-AAV9viralparticlesataMOIof2 × 105 (D and F).PanelsCandDrepresentbright-fieldimages whilePanelsEandFarefluorescenceimagesrepresentinggreenfluorescenceproteinexpression.Forbothconstructs,strongGFPexpressionwasobserved. neuronswouldleadtoadecreaseinelectricalactivityasmeasuredby MEA.Inthiscase,wemeasuredthespontaneousactivityofnetworksfollowingtreatmentbyrecordingfieldpotentials.TheadvantageofMEAis thatitcangeneratehigh-throughputreadoutofneuronalpopulations withtheplacementofmultipleelectrodesrecordingallatoncerather thanindividually.

Asaninitialapproach,wedeterminedtherelativetransductionefficiencyinprimaryculturedmouseneuronsfollowing invitro treatment witheitherCOG-201,orascrambledAAV9-shRNAversion. Figure2A outlinesthe HTR2A genetargetingstrategy,whereshRNAisdesignedtobind

atthestartofexon2,effectivelyhaltingthesynthesisofallknownfulllength5-HT2Areceptorisoforms. Figure2B demonstratestheefficacy ofourtargetedsilencingapproach,whereshmir#4induceda77%decreaseinHTR2AmRNAlevels.Thisreductionisinstarkcontrasttothe negligibleimpactobservedwiththescrambledshRNAcontrol.ThecomparisonwasmadeinHEK293cellsthatwerecotransfectedwithacDNA plasmidspecificallyengineeredtocontainthe HTR2A genesequencetargetedbytheshRNAs.Asexpected,followingtreatmentofmouseprimary corticalneurons,hightransductionefficiencyofAAV9-mediatedshRNA deliveryforboththeAVV9-scrambledshRNA(Figure2E)andCOG-201

Figure3. TreatmentofmouseprimarycorticalneuronswithshRNAleadsto knockdownofthe5-HT2Areceptor.Primarycorticalneuronsweretreated onday6ofplatingwithscrambledAAV9shRNA-AAV9viralparticles(A)or COG-201(B)atMOIof3 × 105 for10days(day16,10dpi)atwhichtime, mRNAwasisolatedforreal-timeqPCRexperiments.ResultsdisplaytherelativechangeinexpressionusingGAPDH(Continuedonthenextcolumn)

(Continued)asaninternalcontrol.Real-timeqPCRresultsrepresentatotalof threeseparatetreatmentsforeachconditioninwhichcellswerepooledand frozenat 80°C.PCRexperimentswereperformedintriplicate.Theresultsindicatedasignificant38%decreaseinHTR2AmRNAexpressionascompared tovehiclecontrols, p = .0007.(B–D)Corticalneuronsweretreatedatvarious concentrationsandcellhomogenateswerepreparedforWesternblotanalysis.Transferredmembraneswereincubatedwith0.3 μg/mLofanti-5HT2A receptorantibodyovernightat4°Cfollowedbygoatanti-rabbitsecondary antibodyfor1houratroomtemperature.PanelBdisplaystheresultsindicating5-HT2ARproteinbandinscrambled-treatedneurons(lanes1–3)orin AAV9-shRNA–treatedneurons(lanes4–6).Densitometryanalysisindicateda decreaseinbandintensityforCOG-201treatedneurons(C).InpanelD,data fromlanes1–3and4–6werecombinedandtheresulteddataindicatedanoverall34%decreasein5-HT2Areceptorproteinintreatedneuronsversusscrambledcontrols(p-value = .0002).

(Figure2F)wasobservedbyfluorescencemicroscopy,asindicatedbyrobustGFPexpression.

Wenextdeterminedtheextentof5-HT2Areceptorknockdownby real-timeqPCRorWesternblotanalysis(Figure3).Inthisinvestigation,primarycorticalneuronsunderwenttreatmentwithshRNAtoassesstheknockdownofthe5-HT2Areceptorexpression,asillustratedin Figure3.NeuronstreatedwithCOG-201exhibitedasignificant38%reductioninHTR2AmRNAexpressionascomparedtothescrambledAAV9 shRNA-AAV9controls,afindingconfirmedbyreal-timeqPCRwithGAPDH asareference(p = 0.0007).ThisknockdownofHTR2AmRNAwasfurther substantiatedattheproteinlevelthroughWesternblotanalysis.After incubationwithanti-5HT2Areceptorantibody,theresultingcombined densitometryresultsrevealedacorresponding34%decreasein5HT2AreceptorproteinlevelsinneuronstreatedwithCOG-201,ascomparedtoscrambledcontrols(Figure3C and D),(p-value = 0.0002), thusconfirmingtheknockdownatbothtranscriptionalandtranslational levels.

Furtherconfirmationof5-HT2AreceptorknockdownbyCOG-201 wasobtainedbyimmunocytochemistry.Neuronstreatedwithscrambled AAV9-shRNAviralparticlesshowedstrongexpressionofthe5-HT2Areceptorprotein,asevidencedbytherobustredfluorescence(Figure4A and D).Incontrast,neuronstreatedwithCOG-201exhibitamarkeddecrease in5-HT2Areceptorexpression(Figure4E and H),indicatingsuccessfulreceptorknockdown.Collectively,theresultspresentedin Figures3 and 4 confirmthesuccessfultargetingandsubsequentknockdownof the5-HT2AreceptorbyCOG-201,establishingtherationaleforthenext phaseofthestudy,whereweaimedtoelucidatetheimplicationsof 5-HT2AreceptorknockdownonneuronalexcitabilityemployingMEA analysis.

Toaccomplishthis,primarycorticalneuronsweretreatedonday6 withCOG-201orthescrambledAAV9-shRNAversionandspontaneous electricalactivity(MEAmeasurements)wererecorded10dayslater. Severalparametersweremeasuredincluding(a)thenumberofspikes (Figure5A),whichisdefinedasthetotalcountofactionpotentials (spikes)recordedbytheMEAovera5-minuteperiod,whereeachspike isabriefelectricalimpulsethatrepresentsasingleneuronalfiringevent; (b)themeanfiringrate(Figure5B)definedastheaveragerateatwhich aneuronfiresactionpotentials(spikes)measuredinhertz(Hz);(c)the numberofbursts(Figure5C),definedasaclusterofactionpotentials (spikes)thatoccursinquicksuccession,followedbyaperiodofsilence; (d)thesynchronyindex(Figure5D),definedashowinsyncthefiringof differentneuronsorgroupsofneuronsiswithvaluescloserto1indicatingstrongsynchrony;(e)numberofnetworkbursts(Figure5E)representingcoordinatedactivityacrosstheneuralnetwork,thoughttobe crucialforvariousneuralprocesses,includinglearningandmemoryand areindicativeofthenetwork’sabilitytoengageincoordinatedprocessingandcommunication;andfinally,(f)thenumberofactiveelectrodes (Figure5F).Ahighernumberofactiveelectrodestypicallysuggestsa morewidespreadorsynchronizedactivityacrossthenetwork,indicating robustinterneuronalcommunicationandnetworkintegration.Tosummarizetheresultsin Figure5,weobservedasignificantdecreaseinthe

Figure4. TreatmentofmouseprimarycorticalneuronswithCOG-201leadstoknockdownofthe5-HT2Areceptor.Representativeimmunofluorescenceimagesinmouseneuronsfollowinga10-daytreatmentwitheitherscrambledAAV9shRNA-AAV9viralparticles(A–D)orCOG-201atMOIof3 × 105 (E–H).Green fluorescencerepresentsgreenfluorescenceproteinexpressiondetectedusingaGFPmonoclonalantibody(mouse,1:500)(B and F),whileredfluorescence isindicativeof5-HT2Areceptorproteinfollowingimmunocytochemistryusingananti-rabbit5-HT2Areceptorantibody(Immunostar,1:100).Panel Aand Ddisplayrobustexpressionofthe5-HT2Areceptorproteininneuronalcellsfollowingtreatmentwiththescrambledcontrol.Incontrast,asignificantreduction in5-HT2AfluorescenceintensitywasevidentfollowingtreatmentwithCOG-201(E and H).PanelsCandGrepresentHoechstnuclearlabelingwhilepanels DandHrepresentmergedimages.Allscalebarsrepresent50 μm.

numberspikes,meanfiringrate,numberofbursts,andsynchronyindex butanincreaseinthenumberofnetworkburstsfollowingtreatmentwith COG-201innon-stimulatedneurons.Thesedatacouldbeinterpretedto suggestthatareductioninoverallexcitabilitysupportedtheactionsof COG-201onknockdownoftheexcitatory5-HT2Areceptor.Inaddition,the significantdecreaseinthenumberofburstsofisolatedneuronsandin thesynchronyindexsuggeststhatneuronswithareducedexpressionof 5-HT2Apresentwithalowerfrequencyofspontaneouselectricalactivity (from12to ∼6Hz).Ontheotherhand,asignificantincreaseinthenumber ofnetworkbursts,thatis,acoordinatedelectricalspikingwithingroups ofneurons,isindicativeofcollectivenetworkbehavior.Anincreaseinnetworkburstsamidstdecreasesinindividualspikes,meanfiringrate,and synchronysuggeststhatwhileoverallactivityandglobalbaselinecoordinationarereduced,theseeffectsmaybecompensatedbyincreasingthe instancesofglobalsynchronizationacrossneuronsforminganewnetwork(15).Thepresenceofdesynchronizednon-burstfiringandpartially synchronizedburstsindevelopingnetworksofcorticalneuronssupports thenotionofnetworkcompensationandadaptation(16),suggestinga Hebbianfield.Synchronizationofburstingneuronsisacriticalfactorin understandingnetworkbehavior,andithasbeenshownthatburstfiringcanpromotesynchronizationbetweeninterconnectedlociincentral nervoussystemnetworks(17).Insummary,theobservedchangesinmultielectrodearray(MEA)recordingsfollowingthetreatmentofprimary corticalmouseneuronswithCOG-201suggestacompensatorymechanism.Specifically,anincreaseinnetworkbursts,despitedecreasesinindividualspikes,meanfiringrate,andsynchrony,mayindicateenhanced globalsynchronizationwithinnewlyformingneuronalnetworks.Thiscontrastswiththespontaneousglobalsynchronizationobservedinallneuronstreatedwithscrambled-AAV9-shRNA,whichsuggeststheabsence ofdistinctneuronalnetworks.Thisadaptiveresponseatthenetwork levelmayhaveimplicationsforconditionssuchasanxietyandmemory impairments.

AnimportantcaveatofthecurrentstudyisconnectingtheMEAdata withtheunderlyingbehavioralobservationsofadecreaseinanxietyand improvementinmemory.Inthecurrentstudy,wefocusedoncortical neurons;however,importantneuralnetworksimplicatedinmemoryand anxietyarefoundinthehippocampusandothersubcorticalareasincludingtheinterpeduncularnucleus(IPN).Previously,weidentifiedageneralpatternofguideRNAexpressionintheCA2/CA3regionsofthehippocampusinmicetreatedwithCRISPR/Cas9(10).Additionally,therewas

anoticeablereductionin5-HT2Areceptorexpression,particularlyinthe apicaldendritesofglutamatergicneurons.Previousresearchhasdocumentedthepresenceof5-HT2AreceptormRNAintheCA3regionofthe hippocampus(18, 19).Asthe5HT-2Areceptorisexcitatory,itsdownregulationintheapicaldendritesmayenhancememorybyinfluencinghippocampalneuronaloscillatoryrhythms(20, 21).Inthecontextofthecurrentstudy,projectionstotheapicaldendritesofCA3pyramidalneurons couldoriginatefromthecortex,particularlytheentorhinalcortex,which isessentialforsensoryintegrationandmemoryformation.Intermsof howourmolecularfindingscouldconnectbehaviorallytoenhancedmemory,itisessentialtoconsiderthebroaderneuralcircuitsinvolved.Thehippocampusplaysacriticalroleinmemoryformationandanxietyregulation.Previousstudies,includingourown,haveshownthattheCA2/CA3 regionsofthehippocampusarevitalfortheseprocesses.Ourfindings havedemonstratedareductionin5-HT2Areceptorexpressionintheapicaldendritesofglutamatergicneurons.The5-HT2Areceptorisknown tobeexcitatory,anditsdownregulationcanmodulatehippocampalneuronaloscillatoryrhythms,whicharecrucialformemoryconsolidation.The CA3region,inparticular,receivesprojectionsfromtheentorhinalcortex,whichisessentialforsensoryintegrationandmemoryformation. Thefindingsofreduced5-HT2Areceptorexpressionsuggestapotentialmechanismwherealteredserotonergicsignalinginthehippocampuscaninfluencecorticalinputs,therebyenhancingmemoryfunctions. Thisalignswiththeobservedbehavioralimprovementsinthecurrent study.

Wehavealsopreviouslydemonstratedadecreasein5-HT2AreceptordensityintheIPN(10),anareaimplicatedasamajorconnectomefor stress-mediatedpathways(22).Serotonergiccorticalneuronsareknown toconnecttotheIPNviathehabenulapathway(23, 24).Therefore,the downregulationofthe5-HT2AreceptorinIPNneurons,alongwithacorrespondingdecreaseinelectricalexcitability,couldleadtoareduction inanxiety-relatedbehaviors.Togetherwiththeeffectsofthesecorticalprojections,however,wecannotexcludeapossiblemodulatoryrole of5-HT2Areceptorsexpressedonlocalintrahippocampalinterneurons thatregulatethefiringofpyramidalhippocampalsubfieldneurons,a rolenotspecificallyaddressedinthecurrentstudy.Previousstudieshave demonstratedthat5-HT2AreceptorsonGABAergicinterneuronsstimulateGABArelease,andtherebyhaveanimportantroleinregulatingnetworkactivityandneuraloscillationsintheamygdalaandhippocampal region(25–27).

Figure5. Invitro exposureofprimarymousecorticalneuronswithAAV9-mHTR2A-shRNAleadstoadecreaseinspontaneouselectricalactivity.MEAanalysiswasperformedinmousecorticalneuronsfollowingtreatmentwitheitherCOG-201(redbars,labeled“shRNA”)orascrambledshRNAversion(black bars,labeled“Scram”)ataMOIof2 × 105 .Neuronsweretreatedatday6andMEAanalyseswereperformedonday16.(A–F)QuantificationofMEAanalysisshowingthenumberofspikesover5minutes(A),meanfiringrate(B),thenumberofbursts(C),thesynchronyindex(D),whichindicatesaunitless measureofsynchronybetween0and1.Valuescloserto1indicatehighersynchrony,thenumberofnetworkburstsdefinedasaclusterofspikesacross allelectrodes(E),thesynchronyindex,whichindicatesaunitlessmeasureofsynchronybetween0and1(valuescloserto1indicatehighersynchrony), andthenumberofactiveelectrodes(F).Exposureofneuronsto2 × 105 MOIledtoasignificantdecreaseinthenumberofspikes(50%decreasecomparedtoscrambledcontrols, p-value = .002)(A),themeanfiringrate(50%decrease, p-value = .002)(B),inthenumberofbursts(27%decrease, p-value= .015),(C),andadecreaseinthesynchronyindex(38%decreasecomparedtovehiclecontrols, p-value = .005)(D).Anincreaseinthenumberofnetwork burstswasobserved(20%increase, p-value = .04)(E).Forthenumberofactiveelectrodes,therewasnosignificantdifferencebetweenthetwogroups (F), p-value = .09.Datarepresent N of6forallparameters, ±S.E.M.

Conclusions

OurstudyprovidescompellingevidencethatCOG-201invivoimproves memorycomparedtovehiclecontrolthroughapotentialcombinedactionofimprovingretentionandloweringanxiety.Invitro,COG-201led toasignificantknockdownofthe5-HT2AreceptoratbothmRNAand proteinlevelsinprimarymousecorticalneurons,asconfirmedbyrealtimeqPCR,Westernblotanalysis,andimmunocytochemistry.Thereductioninreceptorexpressioncorrelatedwithadecreaseinneuronalexcitability,asindicatedbyMEAassessmentsofelectricalactivity.Specifically,asignificantreductioninspikes,meanfiringrate,andsynchrony index,coupledwithanincreaseinnetworkbursts,impliesthatCOG-201 inducesareductioninoverallexcitability.However,theincreasednum-

berofnetworkburstsalsosuggestsacompensatorymechanismwithin theneuralnetwork,thatpotentiallyenhancesglobalsynchronization. Ourinterpretationisthattheincreasednetworkburstsinneuronswith reduced5-HT2Aexpressionatbaseline,isindicativeofanewlyformed neuronalnetworkthathasthepotentialofalsoincreasinglong-termpotentiation.Whilethishypothesiscanonlybeconfirmedbyfurtherexperiments,forexample,applyingelectricalstimulitoinvitroneurons,thus mimickingtheinvivoeffectsoftheintegrationofsensoryinformation. Nonetheless,thesefindingsarealignedwithpreviousbehavioralobservationsofreducedanxietyandimprovedmemoryfollowingCOG-201administrationandunderlinethepotentialofCOG-201asaneffectivetherapeuticagent(10).Byelucidatingsomeofthefunctionalconsequences

of5-HT2Areceptorknockdown,thisstudyprovidesacriticallinkbetweenmolecularchangesandtheresultantalterationsinneuralcircuitry thatunderpintheobservedbehavioraloutcomes.FutureresearchiswarrantedtoexploretheprecisemechanismsbywhichCOG-201modulates networkbehaviorandtoassesstheimpactofthesefindingsontherapeuticstrategiesfordisordersincludingMCIthatischaracterizedbyanxietyandmemoryimpairments.However,thecurrentstudyutilizingmice toassesstheefficacyofCOG-201isnotwithoutits’limitations.While theseanimalmodelsareinformative,therearesignificantphysiological andgeneticdifferencesbetweenrodentsandhumansthatmayaffectthe translatabilityofthesefindingstohumantherapeutics.Inthiscontext, theintranasaldeliveryofshRNA(COG-201)inanimalmodelsmaynotdirectlytranslatetohumansduetodifferencesinnasalanatomyandabsorptionefficiency.Moreresearchisneededtodeterminewhetherthis deliverymethodisviableforhumanpatients.Therefore,conductingstudiesinlargeranimalmodelsthataremorephysiologicallysimilartohumans(e.g.,non-humanprimates)couldprovidebetterinsightsintothe potentialtranslationalimpactofCOG-201.

Inconclusion,ifCOG-201proveseffectiveinhumans,itcouldoffera newtreatmentoptionforpatientswithconditionslikeMCI,whichoften involveanxietyandmemoryproblems.Thiswouldbeparticularlybeneficialgiventhelimitedtreatmentoptionscurrentlyavailable.

DeclarationofInterests

J.L.M.,B.J.L.andD.R.areco-foundersofCognigenics,membersofitsscientificadvisoryboard,andholdequityinthecompany.T.T.R.isapart-time consultantservingasDirectorofPreclinicalResearchatCognigenicsand inadditiontoreceivingasalary,ownssharesofthecompany’scommon stockandoptionsforcommonshares.F.M.isapart-timeconsultantservingasChiefScienceOfficeratCognigenics,Inc.,andisamemberofits scientificadvisoryboard.

AuthorContributions

T.T.R.,D.R.,andF.M.designedresearch,analyzedandinterpreteddata andwrotethemanuscript.Allotherauthorsreviewedtheresultsandapprovedthefinalversionofthemanuscript.Allexperimentswerecarried outindependentlybycontractresearchorganizations.

FundingStatement

Thisresearchreceivednospecificgrantfromanyfundingagencyinthe public,commercial,ornot-for-profitsectors.

GenerativeArtificialIntelligenceStatement

Generativeartificialintelligencewasnotusedtowritethemanuscript, butinsteadwasusedasafinaltooltoimproveahuman-generatedtext.

Acknowledgments

WethankourresearchpartnersatNeurofitandCreativeBiolabsfortheir insightfulsuggestionsandexperimentalexpertise.

References

1.SachdevPS,LipnickiDM,KochanNA,CrawfordJD,ThalamuthuA,AndrewsG,etal.The prevalenceofmildcognitiveimpairmentindiversegeographicalandethnocultural regions:theCOSMICcollaboration.PLoSOne.2015;10(11):e0142388.DOI: 10.1371/ journal.pone.0142388.PMID:26539987;PMCID: PMC4634954

2.ChenC,HuZ,JiangZ,ZhouF.Prevalenceofanxietyinpatientswithmildcognitive impairment:asystematicreviewandmeta-analysis.JAffectDisord.2018;236:211–21.DOI: 10.1016/j.jad.2018.04.110.PMID:29747139

3.FireA,XuS,MontgomeryMK,KostasSA,DriverSE,MelloCC.Potentandspecific geneticinterferencebydouble-strandedRNAinCaenorhabditiselegans.Nature. 1998;391(6669):806–11.DOI: 10.1038/35888.PMID:9486653

4.HolmA,HansenSN,KlitgaardH,KauppinenS.ClinicaladvancesofRNAtherapeutics fortreatmentofneurologicalandneuromusculardiseases.RNABiol.2022;19(1):594–608.DOI: 10.1080/15476286.2022.2066334.PMID:35482908;PMCID: PMC9067473

5.WeisstaubNV,ZhouM,LiraA,LambeE,Gonzalez-MaesoJ,HornungJP,etal.Cortical5-HT2Areceptorsignalingmodulatesanxiety-likebehaviorsinmice.Science. 2006;313(5786):536–40.DOI: 10.1126/science.1123432.PMID:16873667

6.CeladaP,PuigMV,Martín-RuizR,CasanovasJM,ArtigasF.Controloftheserotonergicsystembythemedialprefrontalcortex:potentialroleintheetiologyof PTSDanddepressivedisorders.NeurotoxRes.2002;4(5-6):409–19.DOI: 10.1080/ 10298420290030550.PMID:12754155

7.CohenH.Anxiolyticeffectandmemoryimprovementinratsbyantisense oligodeoxynucleotideto5-hydroxytryptamine-2Aprecursorprotein.DepressAnxiety. 2005;22(2):84–93.DOI: 10.1002/da.20087.PMID:16149040

8.JaggarM,WeisstaubN,GingrichJA,VaidyaVA.5-HT2A receptordeficiencyaltersthe metabolicandtranscriptional,butnotthebehavioral,consequencesofchronicunpre-

dictablestress.NeurobiolStress.2017;7:89–102.DOI: 10.1016/j.ynstr.2017.06.001 PMID:28626787;PMCID: PMC5470573

9.NaghdiN,HarooniHE.Theeffectofintrahippocampalinjectionsofritanserin (5HT2A/2Cantagonist)andgranisetron(5HT3antagonist)onlearningasassessed inthespatialversionofthewatermaze.BehavBrainRes.2005;157(2):205–10.DOI: 10.1016/j.bbr.2004.06.024.PMID:15639171

10.RohnTT,RadinD,BrandmeyerT,SeidlerPG,LinderBJ,LytleT,etal.Intranasaldelivery ofshRNAtoknockdownthe5HT-2Areceptorenhancesmemoryandalleviatesanxiety. Translationalpsychiatry.2024;14(1):154.DOI: 10.1038/s41398-024-02879-y.PMID: 38509093;PMCID: PMC10954635

11.RohnTT,RadinD,BrandmeyerT,LinderBJ,AndriambelosonE,WagnerS, etal.GeneticmodulationoftheHTR2Agenereducesanxiety-relatedbehaviorinmice.PNASNexus.2023;2(6):pgad170.DOI: 10.1093/pnasnexus/pgad170 PMID:37346271;PMCID: PMC10281383

12.KimJE,ChaeS,KimS,JungYJ,KangMG,HeoW,etal.Cerebellar5HT-2Areceptormediatesstress-inducedonsetofdystonia.SciAdv.2021;7(10):eabb5735.DOI: 10.1126/sciadv.abb5735.PMID:33658190;PMCID: PMC7929497

13.KomlósiG,MolnárG,RózsaM,OláhS,BarzóP,TamásG.Fluoxetine(prozac)and serotoninactonexcitatorysynaptictransmissiontosuppresssinglelayer2/3pyramidalneuron-triggeredcellassembliesinthehumanprefrontalcortex.JNeurosci. 2012;32(46):16369–78.DOI: 10.1523/JNEUROSCI.2618-12.2012.PMID:23152619; PMCID: PMC3752144

14.BrillJ,ShaoZ,PucheAC,WachowiakM,ShipleyMT.Serotoninincreasessynapticactivityinolfactorybulbglomeruli.JNeurophysiol.2016;115(3):1208–19.DOI: 10.1152/jn. 00847.2015.PMID:26655822;PMCID: PMC4808087

15.TajimaS,MitaT,BakkumDJ,TakahashiH,ToyoizumiT.Locallyembeddedpresagesof globalnetworkbursts.ProcNatlAcadSciUSA.2017;114(36):9517–22.DOI: 10.1073/ pnas.1705981114.PMID:28827362;PMCID: PMC5594667

16.MaedaE,RobinsonHP,KawanaA.Themechanismsofgenerationandpropagation ofsynchronizedburstingindevelopingnetworksofcorticalneurons.JNeurosci. 1995;15(10):6834–45.DOI: 10.1523/JNEUROSCI.15-10-06834.1995.PMID:7472441; PMCID: PMC6578010

17.JiangH,FangD,KongLY,JinZR,CaiJ,KangXJ,etal.Sensitizationofneuronsin thecentralnucleusoftheamygdalaviathedecreasedGABAergicinhibitioncontributestothedevelopmentofneuropathicpain-relatedanxiety-likebehaviorsinrats. MolBrain.2014;7:72.DOI: 10.1186/s13041-014-0072-z.PMID:25277376;PMCID: PMC4201706

18.LüttgenM,OveOgrenS,MeisterB.Chemicalidentityof5-HT2Areceptorimmunoreactiveneuronsoftheratseptalcomplexanddorsalhippocampus.BrainRes. 2004;1010(1-2):156–65.DOI: 10.1016/j.brainres.2004.03.016.PMID:15126129

19.ChenH,ZhangL,RubinowDR,ChuangDM.Chronicbuspironetreatmentdifferentially regulates5-HT1Aand5-HT2AreceptormRNAandbindingsitesinvariousregions oftherathippocampus.BrainResMolBrainRes.1995;32(2):348–53.DOI: 10.1016/ 0169-328x(95)00098-d.PMID:7500848

20.VertesRP.Hippocampalthetarhythm:atagforshort-termmemory.Hippocampus. 2005;15(7):923–35.DOI: 10.1002/hipo.20118.PMID:16149083

21.BerensSC,HornerAJ.Thetarhythm:temporalglueforepisodicmemory.CurrBiol. 2017;27(20):R1110–2.DOI: 10.1016/j.cub.2017.08.048.PMID:29065291

22.SherafatY,BautistaM,FowlerJP,ChenE,AhmedA,FowlerCD.Theinterpeduncularventralhippocampuspathwaymediatesactivestresscopingandnaturalreward.eNeuro.2020;7(6):ENEURO.0191-20.2020.DOI: 10.1523/ENEURO.0191-20. 2020.PMID:33139320;PMCID: PMC7688303

23.OkamotoH,AgetsumaM,AizawaH.Geneticdissectionofthezebrafishhabenula,a possibleswitchingboardforselectionofbehavioralstrategytocopewithfearandanxiety.DevNeurobiol.2012;72(3):386–94.DOI: 10.1002/dneu.20913.PMID:21567982

24.Stephenson-JonesM,FlorosO,RobertsonB,GrillnerS.Evolutionaryconservationofthehabenularnucleiandtheircircuitrycontrollingthedopamineand5hydroxytryptophan(5-HT)systems.ProcNatlAcadSciUSA.2012;109(3):E164–73. DOI: 10.1073/pnas.1119348109.PMID:22203996;PMCID: PMC3271889

25.BombardiC,DiGiovanniG.Functionalanatomyof5-HT2Areceptorsintheamygdalaandhippocampalcomplex:relevancetomemoryfunctions.ExpBrainRes. 2013;230(4):427–39.DOI: 10.1007/s00221-013-3512-6.PMID:23591691

26.WyskielDR,AndradeR.SerotoninexciteshippocampalCA1GABAergicinterneuronsatthestratumradiatum-stratumlacunosummoleculareborder.Hippocampus.2016;26(9):1107–14.DOI: 10.1002/hipo.22611.PMID:27328460;PMCID: PMC4996712

27.ZhangG,StackmanRWJr.Theroleofserotonin5-HT2Areceptorsinmemory andcognition.FrontPharmacol.2015;6:225.DOI: 10.3389/fphar.2015.00225.PMID: 26500553;PMCID: PMC4594018

Publisher’snote: GenomicPressmaintainsapositionofimpartialityandneutralityregardingterritorialassertionsrepresentedinpublishedmaterialsandaffiliationsofinstitutionalnature.Assuch,wewillusetheaffiliationsprovidedbytheauthors,withouteditingthem.Suchusesimplyreflectswhattheauthorssubmitted tousanditdoesnotindicatethatGenomicPresssupportsanytypeofterritorial assertions.

OpenAccess. ThisarticleislicensedtoGenomicPressundertheCreativeCommonsAttribution-NonCommercial-NoDerivatives4.0InternationalLicense(CCBY-NC-ND4.0).Thelicensemandates:(1)Attribution:Credit mustbegiventotheoriginalwork,withalinktothelicenseandnotification ofanychanges.Theacknowledgmentshouldnotimplylicensorendorsement.

(2)NonCommercial:Thematerialcannotbeusedforcommercialpurposes.(3) NoDerivatives:Modifiedversionsoftheworkcannotbedistributed.(4)Noadditional legalortechnologicalrestrictionsmaybeappliedbeyondthosestipulatedinthelicense.Publicdomainmaterialsorthosecoveredbystatutoryexceptionsareexempt fromtheseterms.Thislicensedoesnotcoverallpotentialrights,suchaspublicity

orprivacyrights,whichmayrestrictmaterialuse.Third-partycontentinthisarticle fallsunderthearticle’sCreativeCommonslicenseunlessotherwisestated.Ifuseexceedsthelicensescopeorstatutoryregulation,permissionmustbeobtainedfrom thecopyrightholder.Forcompletelicensedetails,visit https://creativecommons. org/licenses/by-nc-nd/4.0/.Thelicenseisprovidedwithoutwarranties.

BREVIA

Rethinkingtheconnectionbetweenbipolardisorderandepilepsyfrom geneticperspectives

©TheAuthor(s),2024.ThisarticleisunderexclusiveandpermanentlicensetoGenomicPress

GenomicPsychiatry January2025;1(1):94–95;doi: https://doi.org/10.61373/gp024l.0061

Epilepsyandbipolardisorder(BD)exhibit considerablebiochemicalandgenetic overlap.Ourstudyunveiledasignificant geneticcorrelation(rg = 0.154, P = 9.24 × 10–6 )betweenBD-Iandepilepsy,indicatinga meaningfulcausaleffectofepilepsyonBD-I (P = 0.0079,bxy = 0.1721,SE = 0.0648). Additionally,weidentified1.3kshared geneticvariantsand6significantloci, demonstratingsubstantialpolygenicoverlap. Notably,thers9639379variantwithinthe SP4geneexhibitedstrongassociationswith bothBD-Iandepilepsy,implicatingSP4inthe etiologyofbothdisorders.

Epilepsyandbipolardisorder(BD)ormania arepostulatedtoshareacommonbiologicalunderpinning.Alteredintracellularcalcium ionconcentration([Ca2+ ])isaconsistentbiochemicalfindinginBDandepilepsy(1, 2). Certainantiepilepticdrugsactasmoodstabilizersbyinhibitingcalciumcurrentsandare

effectiveintreatingpatientswithepilepsyas wellaspatientswithBD.Thesefindingsimply apotentiallinkbetweenmoodpolarity(particularlymania)andseizures.Asbothepilepsyand BDhavewell-describedgeneticsubstrates,in thisanalysisweascertainedsharedgeneticunderpinningsandcausaleffectsandunveiledsix independentgenomiclocisignificantlylinkedto BDandepilepsy.

Utilizinggenome-wideassociationstudy (GWAS)datafromEuropeanpopulations,comprising26,352epilepsycasesand774,517controls(3),aswellas25,060BDtypeI(BD-I)cases and307,499controls(4),weobservedasignificantpositivegeneticcorrelation(rg = 0.154, P = 9.24 × 10–6 )betweenBD-Iandepilepsy. Furthermore,weindicatedameaningfulcausal effectofepilepsyonBD-I(P = 0.0079, bxy = 0.1721,SE = 0.0648).

OurMiXeRanalysisidentifiedapproximately 7.8KvariantsinfluencingBD-Iand3.0Kimpact-

ingepilepsy,with1.3Kvariantsimplicatedin bothconditions(Figure1A).Weunveiledsix independentgenomicloci(r2 < 0.2)significantlylinkedtoBD-IandepilepsyusingConjunctionalFalseDiscoveryRate(conjFDR)analysis(conjFDR < 0.05, Figure1B),amongwhich fourlociexhibitedconsistentalleliceffectdirectionbetweenBD-Iandepilepsy,whilethe remainingtwolocishowedoppositedirection. Moreover,wefoundthatfiveofthesixriskloci showedexpressionquantitativetraitlociassociationsincortextissuesorspecificcelltypes (P < 1.00 × 10–5 ,SupplementalTableS1). Wefocusedonrs9639379intheSP4gene, findingstrongassociationswithbothriskofBDI(oddsratio(OR) = 1.0638, P = 1.41 × 10–6 ) andepilepsy(OR = 1.0437, P = 2.31 × 10–5 ) (conjFDR = 1.24 × 10–2 , Figure1C).ThestabilityofSP4proteinwasmodulatedbyneuronal activity,withlithiumdemonstratingtheabilitytostabilizeSP4levels,therebysuggesting

Figure1. (A)VennplotshowsthenumberofspecificandsharedcausalvariantsbetweenBD-Iandepilepsy.Thegeneticcorrelationof rg wasestimatedbyLinkageDisequilibriumScore Regression(LDSC).(B)ManhattanplotofconjFDRresult.LeadSingleNucleotidePolymorphisms(SNPs)ineachindependentrisklociwiththesamedirectionofalleliceffectsbetween BD-Iandepilepsyaremarkedinred,andleadSNPsineachindependentrisklociwithoppositedirectionofalleliceffectsbetweenBD-Iandepilepsyare markedinblack.(C)LocusZoom plotsshowthegeneticassociationswithBD-IandepilepsyintheSP4locus.Physicalmapsblowtheplotsdepictknowngeneswithintheregion,andtheLinkageDisequilibrium(LD)is definedbasedontheSNPrs9639379.

Received:9June2024.Revised:14August2024and2September2024and17September2024and18September2024.Accepted:18September2024. Publishedonline:30September2024.

therapeuticbenefitsinmooddisordermanagement(5).Whilethedirectassociationbetween SP4andepilepsyremainsunclear,theinvolvementofSP4inthetranscriptionalregulationof neuronalenergymetabolismsuggestedaplausiblelinktoepilepticseizures(6).

Thisstudyprovidesanovelrethinkingofthe connectionbetweenepilepsyandBD,whichis inlinewiththefactthatmoodstabilizersare effectiveinthetreatmentofbothillnesses.Althoughtherelationshipbetweensharedrisk genesandmoodstabilizersisstillunclear,their potentialinvolvementindrug-mediatedneurobiologicalmechanismsisworthfurtherinvestigation.Limitationsincludethefocuson Europeanpopulations,whichmayconstrainthe generalizabilityofthefindings,andthereliance onpublicGWASdatawithoutsex-specificinformationrestrictingusfromconductingagenderbasedanalysis.

AuthorContributions

MLoversawtheproject,conceivedanddesigned thestudyandJHHperformedtheprimary analysisanddraftedthefirstversionofthe manuscript.Allauthorsrevisedthemanuscript criticallyandapprovedthefinalversion.

ConflictsofInterest

Nonedeclared.

Funding

ThisworkwassupportedbygrantsfromSpring CityPlan:theHigh-levelTalentPromotionand TrainingProjectofKunming(2022SCP001).ML

wassupportedbytheYunnanRevitalizationTalentSupportProgramYunlingScholarProject.

Jin-HuaHuo1 , 2 ,andMingLi1 , 2 , 3

1 KeyLaboratoryofGeneticEvolutionandAnimal Models,KunmingInstituteofZoology,Chinese AcademyofSciences,Kunming,Yunnan650201,China

2 YunnanKeyLaboratoryofAnimalModelsandHuman DiseaseMechanisms,KunmingInstituteofZoology, ChineseAcademyofSciences,Kunming,Yunnan 650201,China

3 KIZ-CUHKJointLaboratoryofBioresourcesand MolecularResearchinCommonDiseases,Kunming InstituteofZoology,ChineseAcademyofSciences, Kunming,Yunnan650201,China

e-mail: limingkiz@mail.kiz.ac.cn

1.HarrisonPJ,HallN,MouldA,Al-JuffaliN,TunbridgeEM.MolPsychiatry.2019;26(8):4106–16. DOI: 10.1038/s41380-019-0622-y.PMID:31801967; PMCID: PMC8550977

2.MulaM,MarottaAE,MonacoF.ExpertRevNeurother.2010;10(1):13–23.DOI: 10.1586/ern.09.139 PMID:20021317

3.SongM,LiuJ,YangY,LvL,LiW,LuoXJ.Front Neurosci.2021;15:722592.DOI: 10.3389/fnins.2021. 722592.PMID:34456681;PMCID: PMC8397525

4.MullinsN,ForstnerAJ,O’ConnellKS,CoombesB,ColemanJRI,QiaoZ,etal.NatGenet.2021;53(6):817–29. DOI: 10.1038/s41588-021-00857-4.PMID:34002096; PMCID: PMC8192451

5.NairB,JoharK,PriyaA,Wong-RileyMT.BiochimBiophys Acta.2016;1863(1):1–9.DOI: 10.1016/j.bbamcr.2015. 10.005.PMID:26469128;PMCID: PMC4658289

6.JoharK,PriyaA,DharS,LiuQ,Wong-RileyMT.J Neurochem.2013;127(4):496–508.DOI: 10.1111/jnc. 12433.PMID:24032355;PMCID: PMC3820366

Publisher’snote: GenomicPressmaintainsaposition ofimpartialityandneutralityregardingterritorialassertionsrepresentedinpublishedmaterialsandaffiliationsofinstitutionalnature.Assuch,wewilluse theaffiliationsprovidedbytheauthors,withouteditingthem.Suchusesimplyreflectswhattheauthors submittedtousanditdoesnotindicatethatGenomic Presssupportsanytypeofterritorialassertions.

OpenAccess. Thisarticleislicensedto GenomicPressundertheCreativeCommonsAttribution-NonCommercial-NoDerivatives4.0 InternationalLicense(CCBY-NC-ND4.0).Thelicense mandates:(1)Attribution:Creditmustbegiventothe originalwork,withalinktothelicenseandnotificationofanychanges.Theacknowledgmentshould notimplylicensorendorsement.(2)NonCommercial: Thematerialcannotbeusedforcommercialpurposes. (3)NoDerivatives:Modifiedversionsoftheworkcannotbedistributed.(4)Noadditionallegalortechnologicalrestrictionsmaybeappliedbeyondthose stipulatedinthelicense.Publicdomainmaterialsor thosecoveredbystatutoryexceptionsareexemptfrom theseterms.Thislicensedoesnotcoverallpotential rights,suchaspublicityorprivacyrights,whichmay restrictmaterialuse.Third-partycontentinthisarticle fallsunderthearticle’sCreativeCommonslicenseunlessotherwisestated.Ifuseexceedsthelicensescope orstatutoryregulation,permissionmustbeobtained fromthecopyrightholder.Forcompletelicensedetails,visit https://creativecommons.org/licenses/bync-nd/4.0/.Thelicenseisprovidedwithoutwarranties.

Genomic Press: Where groundbreaking research nds its voice. We publish innovative scienti c work across disciplines, connecting brilliant minds worldwide. Our global reach maximizes impact. Submit your article and join the scienti c vanguard shaping tomorrow's discoveries.

Our mission: Transforming scienti c publishing through author- focused suppor t and global dissemination.

Our fair-cost pl atform delivers rapid, rigorous review and uses contemporary tools to amplify research visibility worldwide.

We welcome scientists across disciplines, providing emerging research unprecedented exposure. Our three journals now feature over 100 published papers with extraordinary global reach.

Our innovative distribution strategy has generated 2,500 news stories in 21 l anguages worldwide. Through strategic partnerships with respected science communication pl atforms like EurekAler t! (AA AS) and targeted social media campaigns, we have created unprecedented visibility for our authors' work, connecting cutting-edge research directly with global audiences.

Brain Medicine

Welcome to the future of scienti c publishing!

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.