Immediate download Modern oxidation methods 1st edition jan-erling b?ckvall ebooks 2024

Page 1


ModernOxidationMethods1stEditionJanErlingB?Ckvall

https://ebookgate.com/product/modern-oxidationmethods-1st-edition-jan-erling-bckvall/

Download more ebook from https://ebookgate.com

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Modern Oxidation Methods 2nd Edition Jan-Erling

Backvall

https://ebookgate.com/product/modern-oxidation-methods-2ndedition-jan-erling-backvall/

Tradition Translaion and Trauma The Classic and the Modern 1st Edition Jan Parker

https://ebookgate.com/product/tradition-translaion-and-traumathe-classic-and-the-modern-1st-edition-jan-parker/

RNA Sequence Structure and Function Computational and Bioinformatic Methods 1st Edition Jan Gorodkin

https://ebookgate.com/product/rna-sequence-structure-andfunction-computational-and-bioinformatic-methods-1st-edition-jangorodkin/

Medical Image Processing Reconstruction and Restoration Concepts and Methods 1st Edition Jiri Jan

https://ebookgate.com/product/medical-image-processingreconstruction-and-restoration-concepts-and-methods-1st-editionjiri-jan/

Methods for Exodus Methods in Biblical Interpretation

1st Edition Thomas B. Dozeman Phd

https://ebookgate.com/product/methods-for-exodus-methods-inbiblical-interpretation-1st-edition-thomas-b-dozeman-phd/

Materials characterization modern methods and applications 1st Edition Ranganathan

https://ebookgate.com/product/materials-characterization-modernmethods-and-applications-1st-edition-ranganathan/

Regulatory B Cells Methods and Protocols 1st Edition

Gaetano Vitale

https://ebookgate.com/product/regulatory-b-cells-methods-andprotocols-1st-edition-gaetano-vitale/

Plant Gravitropism Methods and Protocols 1st Edition

Elison B Blancaflor

https://ebookgate.com/product/plant-gravitropism-methods-andprotocols-1st-edition-elison-b-blancaflor/

Lipid Oxidation Pathways Volume Two 1st Edition Afaf

Kamal-Eldin

https://ebookgate.com/product/lipid-oxidation-pathways-volumetwo-1st-edition-afaf-kamal-eldin/

RecentDevelopmentsintheOsmium-catalyzedDihydroxylation ofOlefins

1.1

Introduction

Theoxidativefunctionalizationofolefinsisofmajorimportanceforbothorganic synthesisandtheindustrialproductionofbulkandfinechemicals[1].Amongthe differentoxidationproductsofolefins,1,2-diolsareusedinawidevarietyofapplications.Ethylene-andpropylene-glycolareproducedonamulti-milliontonscaleper annum,duetotheirimportanceaspolyestermonomersandanti-freezeagents[2]. Anumberof1,2-diolssuchas2,3-dimethyl-2,3-butanediol,1,2-octanediol,1,2-hexanediol,1,2-pentanediol,1,2-and2,3-butanediolareofinterestinthefinechemical industry.Inaddition,chiral1,2-diolsareemployedasintermediatesforpharmaceuticalsandagrochemicals.Atpresent1,2-diolsaremanufacturedindustriallybyatwo stepsequenceconsistingofepoxidationofanolefinwithahydroperoxideoraperacidfollowedbyhydrolysisoftheresultingepoxide[3].Comparedwiththisprocess thedihydroxylationofC=Cdoublebondsconstitutesamoreatom-efficientand shorterrouteto1,2-diols.Ingeneralthedihydroxylationofolefinsiscatalyzedbyosmium,rutheniumormanganeseoxospecies.Theosmium-catalyzedvariantisthe mostreliableandefficientmethodforthesynthesisof cis-1,2-diols[4].Usingosmiumincatalyticamountstogetherwithasecondaryoxidantinstoichiometric amountsvariousolefins,includingmono-,di-,andtrisubstitutedunfunctionalized, aswellasmanyfunctionalizedolefins,canbeconvertedintothecorresponding diols.OsO4 asanelectrophilicreagentreactsonlyslowlywithelectron-deficientolefins,andthereforehigheramountsofcatalystandligandarenecessaryinthese cases.Recentstudieshaverevealedthatthesesubstratesreactmuchmoreefficiently whenthepHofthereactionmediumismaintainedontheacidicside[5].Here,citric acidappearstobesuperiorformaintainingthepHinthedesiredrange.Onthe otherhand,inanotherstudyitwasfoundthatprovidingaconstantpHvalueof12.0 leadstoimprovedreactionratesforinternalolefins[6].

SinceitsdiscoverybySharplessandcoworkers,catalyticasymmetricdihydroxylation(AD)hassignificantlyenhancedtheutilityofosmium-catalyzeddihydroxylation (Scheme1.1)[7].Numerousapplicationsinorganicsynthesishaveappearedinrecentyears[8].

ModernOxidationMethods. EditedbyJan-ErlingBäckvall

Copyright 2004WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim

ISBN:3-527-30642-0

Scheme1.1 Osmylationofolefins

Whiletheproblemofenantioselectivityhaslargelybeensolvedthroughextensive synthesisandscreeningofcinchonaalkaloidligandsbytheSharplessgroup,some featuresofthisgeneralmethodremainproblematicforlargerscaleapplications. Firstly,theuseoftheexpensiveosmiumcatalystmustbeminimizedandanefficient recyclingofthemetalshouldbedeveloped.Secondly,theappliedreoxidantsforOsVI speciesareexpensiveandleadtooverstoichiometricamountsofwaste.

Inthepastseveralreoxidationprocessesforosmium(VI) glycolatesorotherosmium(VI) specieshavebeendeveloped.Historically,chlorates[9]andhydrogenperoxide[10]werefirstappliedasstoichiometricoxidants,howeverinbothcasesthedihydroxylationoftenproceedswithlowchemoselectivity.Otherreoxidantsforosmium(VI) are tert-butylhydroperoxideinthepresenceofEt4NOH[11]andarangeof N-oxides,suchas N-methylmorpholine N-oxide(NMO)[12](theUpjohnprocess)and trimethylamine N-oxide.K3[Fe(CN)6]gaveasubstantialimprovementintheenantioselectivitiesinasymmetricdihydroxylationswhenitwasintroducedasareoxidantfor osmium(VI) speciesin1990[13].However,evenasearlyonas1975itwasalready beingdescribedasanoxidantforOs-catalyzedoxidationreactions[14].Todaythe“ADmix”,containingthecatalystprecursorK2[OsO2(OH)4],theco-oxidantK3[Fe(CN)6], thebaseK2CO3,andthechiralligand,iscommerciallyavailableandthedihydroxylationreactioniseasytocarryout.However,theproductionofoverstoichiometric amountsofwasteremainsasasignificantdisadvantageofthereactionprotocol.

Thischapterwillsummarizetherecentdevelopmentsintheareaofosmium-catalyzeddihydroxylations,whichbringthistransformationclosertoa“greenreaction”. Hence,specialemphasisisgiventotheuseofnewreoxidantsandrecyclingofthe osmiumcatalyst.

1.2

1.2.1 HydrogenPeroxide

EversincetheUpjohnprocedurewaspublishedin1976the N-methylmorpholine N-oxide-basedprocedurehasbecomeoneofthestandardmethodsforosmium-catalyzeddihydroxylations.However,intheasymmetricdihydroxylationNMOhasnot

beenfullyappreciatedsinceitwasdifficulttoobtainhigh ee withthisoxidant.Some yearsagoitwasdemonstratedthatNMOcouldbeemployedastheoxidantintheAD reactiontogivehigh ee inaqueous tert-BuOHwithslowadditionoftheolefin[15].

Inspiteofthefactthathydrogenperoxidewasoneofthefirststoichiometricoxidantstobeintroducedfortheosmium-catalyzeddihydroxylationitwasnotactually useduntilrecently.Whenusinghydrogenperoxideasthereoxidantfortransition metalcatalysts,veryoftenthereisthebigdisadvantagethatalargeexcessofH2O2 isrequired,implyingthattheunproductiveperoxidedecompositionisthemajor process.

RecentlyBäckvallandcoworkerswereabletoimprovetheH2O2 reoxidationprocesssignificantlybyusing N-methylmorpholinetogetherwithflavinasco-catalysts inthepresenceofhydrogenperoxide[16].ThusarenaissanceofbothNMOand H2O2 wasinduced.ThemechanismofthetriplecatalyticH2O2 oxidationisshown inScheme1.2.

Scheme1.2 Osmium-catalyzeddihydroxylationofolefinsusing H2O2 astheterminaloxidant

TheflavinhydroperoxidegeneratedfromflavinandH2O2 recyclesthe N-methylmorpholine(NMM)to N-methylmorpholine N-oxide(NMO),whichinturnreoxidizestheOsVI toOsVIII.Whiletheuseofhydrogenperoxideastheoxidantwithout theelectron-transfermediators(NMM,flavin)isinefficientandnonselective,various olefinswereoxidizedtodiolsingoodtoexcellentyieldsemployingthismildtriple catalyticsystem(Scheme1.3).

Scheme1.3 Osmium-catalyzeddihydroxylationof -methylstyrene usingH2O2

ByusingachiralSharplessligandhighenantioselectivitieswereobtained.Here, anincreaseintheadditiontimeforolefinandH2O2 canhaveapositiveeffectonthe enantioselectivity. 3 1.2EnvironmentallyFriendlyTerminalOxidants

4 1RecentDevelopmentsintheOsmium-catalyzedDihydroxylationofOlefins

Bäckvallandcoworkershaveshownthatothertertiaryaminescanassumetherole ofthe N-methylmorpholine.Theyreportedonthefirstexampleofanenantioselectivecatalyticredoxprocesswherethechiralligandhastwodifferentmodesofoperation:(1)toprovidestereocontrolintheadditionofthesubstrate,and(2)toberesponsibleforthereoxidationofthemetalthroughanoxidizedform[17].Theresultsobtainedwithhydroquinidine1,4-phthalazinediyldiether(DHQD)2PHALbothasan electron-transfermediatorandchiralligandintheosmium-catalyzeddihydroxylation arecomparabletothoseobtainedemployingNMMtogetherwith(DHQD)2PHAL. TheproposedcatalyticcycleforthereactionisdepictedinScheme1.4.

Theflavinisanefficientelectron-transfermediator,butratherunstable.Several transitionmetalcomplexes,forinstancevanadylacetylacetonate,canalsoactivatehydrogenperoxideandarecapableofreplacingtheflavininthedihydroxylationreaction[18].

MorerecentlyBäckvallandcoworkersdevelopedanovelandrobustsystemforosmium-catalyzedasymmetricdihydroxylationofolefinsbyH2O2 withmethyltrioxorhenium(MTO)astheelectrontransfermediator[19].Interestingly,hereMTOcatalyzesoxidationofthechiralligandtoitsmono-N-oxide,whichinturnreoxidizes OsVI toOsVIII.Thissystemgivesvicinaldiolsingoodyieldsandhighenantiomeric excessupto99%.

Scheme1.4 Catalyticcyclefortheenantioselectivedihydroxylation ofolefinsusing(DHQD)2PHALforoxygentransferandasasource ofchirality

1.2.2

Hypochlorite

Apartfromoxygenandhydrogenperoxide,bleachisthesimplestandcheapestoxidantthatcanbeusedinindustrywithoutproblems.Inthepastthisoxidanthasonly beenappliedinthepresenceofosmiumcomplexesintwopatentsintheearly1970s fortheoxidationoffattyacids[20].In2003thefirstgeneraldihydroxylationprocedureofvariousolefinsinthepresenceofsodiumhypochloriteasthereoxidantwas describedbyus[21].Using -methylstyreneasamodelcompound,100%conversion and98%yieldofthedesired1,2-diolwereobtained(Scheme1.5).

Interestingly,theyieldof2-phenyl-1,2-propanediolafter1hwassignificantly higherusinghypochloritecomparedwithliteratureprotocolsusingNMO(90%)[22] orK3[Fe(CN)6](90%)atthistemperature.Theturnoverfrequencywas242h–1, whichisareasonablelevel[23].UndertheconditionsshowninScheme1.5anenantioselectivityofonly77% ee isobtained,while94% ee isreportedusingK3[Fe(CN)6] asthereoxidant.Thelowerenantioselectivitycanbeexplainedbysomeinvolvement oftheso-calledsecondcatalyticcyclewiththeintermediateOsVI glycolatebeingoxidizedtoanOsVIII speciespriortohydrolysis(Scheme1.6)[24].

Nevertheless,theenantioselectivitywasimprovedbyapplyingahigherligandconcentration.Inthepresenceof5mol%(DHQD)2PHALagoodenantioselectivityof 91% ee isobservedfor -methylstyrene.Using tert-butylmethyletherastheorganic co-solventinsteadof tert-butanol,99%yieldand89% ee withonly1mol% (DHQD)2PHALarereportedforthesamesubstrate.Thisincreaseinenantioselectivitycanbeexplainedbyanincreaseintheconcentrationofthechiralligandintheorganicphase.Increasingthepolarityofthewaterphasebyusinga10%aqueous NaClsolutionshowedasimilarpositiveeffect.Table1.1showstheresultsofthe asymmetricdihydroxylationofvariousolefinswithNaOClastheterminaloxidant.

DespitetheslowhydrolysisofthecorrespondingstericallyhinderedOsVI glycolate, trans-5-decenereactedfastwithoutanyproblems.Thisresultisespeciallyinterestingsinceitisnecessarytoaddstoichiometricamountsofhydrolysisaidstothedihydroxylationofmostinternalolefinsinthepresenceofotheroxidants.

Withthisprotocolaveryfast,easytoperform,andcheapprocedurefortheasymmetricdihydroxylationispresented.

Scheme1.5 Osmium-catalyzeddihydroxylationof -methylstyrene usingsodiumhypochlorite

Scheme1.6 Thetwocatalyticcyclesintheasymmetricdihydroxylation

Tab.1.1 AsymmetricdihydroxylationofdifferentolefinsusingNaOClasterminaloxidant a

a Reactionconditions:2mmololefin,0.4mol%K2[OsO2(OH)4],5mol%(DHQD)2PHAL,10mLH2O, 10mL tBuOH,1.5equiv.NaOCl,2equiv.K2CO3,0 C.

Tab.1.1 (continued)

b 5mol%(DHQD)2PYRinsteadof(DHQD)2PHAL.

OxygenorAir

InthepastithasbeendemonstratedbyseveralgroupsthatinthepresenceofOsO4 andoxygenmainlynon-selectiveoxidationreactionstakeplace[25].However,in 1999Kriefetal.publishedareactionsystemconsistingofoxygen,catalyticamounts ofOsO4 andselenidesfortheasymmetricdihydroxylationof -methylstyreneunder irradiationwithvisiblelightinthepresenceofasensitizer(Scheme1.7)[26].Here, theselenidesareoxidizedtotheiroxidesbysingletoxygenandtheseleneoxidesare abletore-oxidizeosmium(VI) toosmium(VIII).Thereactionworkswithsimilar yieldsand ee valuestothoseoftheSharpless-AD.Potassiumcarbonateisalsoused, butonlyonetenthoftheamountpresentintheAD-mix.Aircanbeusedinsteadof pureoxygen.

Scheme1.7 Osmium-catalyzeddihydroxylationusing 1O2 and benzylphenylselenide

Thereactionwasextendedtoawiderangeofaromaticandaliphaticolefins[27].It wasshownthatbothyieldandenantioselectivityareinfluencedbythepHofthereactionmedium.Theprocedurewasalsoappliedtopracticalsynthesesofnaturalproductderivatives[28].ThisversionoftheADreactionnotonlyusesamoreecological co-oxidant,italsorequiresmuchlessmatter:87mgofmatter(catalyst,ligand,base,

1RecentDevelopmentsintheOsmium-catalyzedDihydroxylationofOlefins

reoxidant)arerequiredtooxidize1mmolofthesameolefininsteadof1400mg whentheAD-mixisused.

Alsoin1999therewasthefirstpublicationontheuseofmolecularoxygenwithoutanyadditivetoreoxidizeosmium(VI) toosmium(VIII).Wereportedthattheosmium-catalyzeddihydroxylationofaliphaticandaromaticolefinsproceedsefficiently inthepresenceofdioxygenunderambientconditions[29].AsshowninTable1.2 thenewdihydroxylationprocedureconstitutesasignificantadvancementcompared withotherreoxidationprocedures.Here,thedihydroxylationof -methylstyreneis comparedusingdifferentstoichiometricoxidants.Theyieldofthe1,2-diolremains goodtoverygood(87–96%),independentoftheoxidantused.Thebestenantioselectivities(94–96% ee )areobtainedwithhydroquinidine1,4-phthalazinediyldiether [(DHQD)2PHAL]astheligandat0–12 C(Table1.2,entries1and3).

Thedihydroxylationprocesswithoxygenisclearlythemostecologicallyfavorable procedure(Table1.2,entry5),whentheproductionofwastefromastoichiometric reoxidantisconsidered.WiththeuseofK3[Fe(CN)6]asoxidantapproximately8.1kg ofironsaltsperkgofproductareformed.However,inthecaseoftheKrief(Table1.2,entry3)andBäckvallprocedures(Table1.2,entry4)aswellasinthepresenceofNaOCl(Table1.2,entry6)somebyproductsalsoariseduetotheuseofcocatalystsandco-oxidants.Itshouldbenotedthatonlysaltsandbyproductsformed

Tab.1.2 Comparisonofthedihydroxylationof -methylstyreneinthepresenceofdifferentoxidants

EntryOxidantYieldReactionconditionseeTONWaste(oxidant)Ref. (%)(%)(kg/kgdiol)

1K3[Fe(CN)6]900 C94 a 4508.1 c [7b]

K2[OsO2(OH)4] tBuOH/H2O

2NMO900 C33b 2250.88d [22]

OsO4

acetone/H2O

3PhSeCH2Ph/O2 8912 C96a 2220.16e [26a]

PhSeCH2Ph/air87K2[OsO2(OH)4]93a 480.16e [26a] tBuOH/H2O

4NMM/flavin/H2O2 93RT–460.33f [16a]

OsO4 acetone/H2O

5O2 9650 C80a 192–[29]

K2[OsO2(OH)4] tBuOH/aq.buffer

6NaOCl990 C91a 2470.58g [21]

K2[OsO2(OH)4] tBuOH/H2O

a Ligand:Hydroquinidine1,4-phthalazinediyldiether. b Hydroquinidine p-chlorobenzoate.

c K4[Fe(CN)6]. d N-Methylmorpholine(NMM). e PhSe(O)CH2Ph. f NMO/flavin-OOH. g NaCl.

fromtheoxidanthavebeenincludedinthecalculation.Otherwasteproductshave notbeenconsidered.NeverthelessthecalculationspresentedinTable1.2givea roughestimationoftheenvironmentalimpactofthereaction.

Sincetheuseofpuremolecularoxygenonalargerscalemightleadtosafetyproblemsitisevenmoreadvantageoustouseairastheoxidizingagent.Hence,allcurrentbulkoxidationprocesses,e.g.,theoxidationofBTX(benzene, toluene, xylene) aromaticsoralkanestogivecarboxylicacids,andtheconversionofethyleneinto ethyleneoxide,useairandnotpureoxygenastheoxidant[30].InTable1.3theresultsofthedihydroxylationof -methylstyreneasamodelcompoundusingairas thestoichiometricoxidantareshownincontrasttothatwithpureoxygen(Scheme 1.8;Table1.3)[31].

Thedihydroxylationof -methylstyreneinthepresenceof1barofpureoxygenproceedssmoothly(Table1.3,entries1–2),withthebestresultsbeingobtainedat pH10.4.Inthepresenceof0.5mol%K2[OsO2(OH)4]/1.5mol%DABCOor1.5mol% (DHQD)2PHALatpH10.4and50 Ctotalconversionwasachievedafter16hor20h dependingontheligand.Whilethetotalyieldandselectivityofthereactionareexcellent(97%and96%,respectively),thetotalturnoverfrequencyofthecatalystiscomparativelylow(TOF=10–12h–1).Inthepresenceofthechiralcinchonaligand

Tab.1.3 Dihydroxylationof -methylstyrenewithair a

EntryPressureCat.LigandL/Os[L]TimeYieldSelectivityee (bar)c (mol%)(mmolL–1)(h)(%)(%)(%)

11(pureO2)0.5DABCOd 3:13.0169797–21(pureO2)0.5(DHQD)2PHALe 3:13.020969680

310.5DABCO3.13.0242485–410.5DABCO3.13.0685883–550.1DABCO3:10.6244193–690.1DABCO3:10.6247692–7200.5(DHQD)2PHAL3:13.017969682 8200.1(DHQD)2PHAL3:10.624959562 9200.1(DHQD)2PHAL15:13.024959583 10b 200.1(DHQD)2PHAL3:11.524949467 11b 200.1(DHQD)2PHAL6:13.024949478 12b 200.1(DHQD)2PHAL15:17.524609582

a Reactionconditions:K2[OsO2(OH)4],50 C,2mmololefin,25mLbuffersolution(pH10.4),10mL tBuOH. b 10mmol olefin,50mLbuffersolution(pH10.4),20mL tBuOH. c Theautoclavewaspurgedwithairandthenpressurizedtothe givenvalue. d 1,4-Diazabicyclo[2.2.2.]octane. e Hydroquinidine1,4-phthalazinediyldiether.

Scheme1.8 Osmium-catalyzeddihydroxylationof -methylstyrene

(DHQD)2PHALan ee of80%isobserved.Sharplessetal.reportedanenantioselectivityof94%forthedihydroxylationof -methylstyrenewith(DHQD)2PHALasthe ligandusingK3[Fe(CN)6]asthereoxidantat0 C[32].Studiesoftheceiling ee at50 C (88% ee )showthatthemaindifferenceintheenantioselectivitystemsfromthe higherreactiontemperature.Usingairinsteadofpureoxygengasgaveonly24%of thecorrespondingdiolafter24h(TOF=1h–1 ;Table1.3,entry3).Althoughthereactionisslow,itisimportanttonotethatthecatalyststaysactive,asshownbythefact that58%oftheproductisobtainedafter68h(Table1.3,entry4).Interestinglythe chemoselectivityofthedihydroxylationdoesnotsignificantlydecreaseafteraprolongedreactiontime.At5–20barairpressuretheturnoverfrequencyofthecatalyst isimproved(Table1.3,entries5–11).

Fullconversionofa -methylstyreneisachievedatanairpressureof20barinthe presenceof0.1mol%ofosmium,whichcorrespondstoaturnoverfrequencyof 40h–1 (Table1.3,entries8–11).Thus,byincreasingtheairpressureto20bar,it waspossibletoreducetheamountofosmiumcatalystbyafactorof5.Adecreaseof theosmiumcatalyst and theligandleadstoadecreaseintheenantioselectivityoffrom 82%to62% ee.Thisiseasilyexplainedbythefactthattheligandconcentrationdeterminesthestereoselectivityofthedihydroxylationreaction(Table1.3,entries7and9).

Whilethereactionathighersubstrateconcentration(10mmolinsteadof2mmol) proceedsonlysluggishlyat1barevenwithpureoxygen,fullconversionisachieved after24hat20barofair(Table1.3,entries10and11,andTable1.4,entries17and 18).Inallexperimentsperformedunderairpressurethechemoselectivityofthedihydroxylationremainedexcellent(92–96%).

Table1.4showstheresultsoftheosmium-catalyzeddihydroxylationofvariousolefinswithair.

AsdepictedinTable1.4allolefinsgavethecorrespondingdiolsinmoderateto goodyields(48–89%).Applyingstandardreactionconditions,thebestyieldsofdiols wereobtainedwith1-octene(97%),1-phenyl-1-cyclohexene(88%), trans-5-decene (85%),allylphenylether(77%)andstyrene(76%).Theenantioselectivitiesvaried from53to98% ee dependingonthesubstrate.Itisimportanttonotethatthechemoselectivityofthereactiondecreasesunderstandardconditionsinthefollowingsubstrateorder: -methylstyrene=1-octene>1-phenyl-1-cyclohexene> trans-5-decene> n-C6F13CH=CH2 >allylphenylether>styrene>> trans-stilbene.Acorrelationbetweenthechemoselectivityofthereactionandthesensitivityoftheproduceddioltowardsfurtheroxidationisevident,withthemainsidereactionbeingtheoxidativecleavageoftheC=Cdoublebond.Aromaticdiolswithbenzylichydrogenatomsareespeciallysensitivetothisoxidationreaction.Thus,thedihydroxylationof trans-stilbene gavenohydrobenzoininthebiphasicmixturewater/tert-butanolatpH10.4,50 C and20barairpressure(Table1.4,entry9).Insteadofdihydroxylationahighlyselectivecleavageofstilbenetogivebenzaldehyde(84–87%yield)wasobserved.Interestingly,changingthesolventtoisobutylmethylketone(Table1.4,entry12)makesit possibletoobtainhydrobenzoininhighyield(89%)andenantioselectivity(98%)at pH10.4.

Themechanismofthedihydroxylationreactionwithoxygenorairispresumedto besimilartothecatalyticcyclepresentedbySharplessetal.fortheosmium-cata-

Tab.1.4 Dihydroxylationofvariousolefinswithair a

EntryOlefinCat.LigandL/Os[L]TimeYieldSelectivityee (mol%)(mmolL–1)(h)(%) b (%) b (%)

10.5(DHQD)2PHAL3:13.024424287

2

4

0.5(DHQD)2PHAL3:13.016666686

30.5(DHQD)2PHAL3:13.014767687

0.5(DHQD)2PHAL3:13.024888889

50.5(DHQD)2PHAL3:13.024636367

6

0.5(DHQD)2PHAL3:13.018686868

70.5(DHQD)2PHAL3:13.014676766

80.5(DHQD)2PHAL3:13.09777768

90.5–––240(84)0(84)–10 c 1.0DABCO3:11.5244(77)5(87)–

a Reactionconditions:K2[OsO2(OH)4],50 C,2mmololefin,20barair,pH=10.4,25mLbuffersolution,10mL tBuOH; entries9–12:15mLbuffersolution,20mL tBuOH,entries17–18:50mLbuffersolution,20mL tBuOH. b Valuesinparenthesesareforbenzaldehyde. c 1mmololefin. d pH=12. e Isobutylmethylketoneinsteadof tBuOH. f 10mmololefin. g Hydroquinidine2,5-diphenyl-4,6-pyrimidinediyldiether.

lyzeddihydroxylationwithK3[Fe(CN)6]asthereoxidant(Scheme1.9).Theaddition oftheolefintoaligatedOsVIII speciesproceedsmainlyintheorganicphase.DependingonthehydrolyticstabilityoftheresultingOsVI glycolatecomplex,therate determiningstepofthereactioniseitherhydrolysisoftheOsVI glycolateorthereoxidationofOsVI hydroxyspecies.Theremustbeaminorinvolvementofasecondcatalyticcycle,assuggestedforthedihydroxylationwithNMO.Suchasecondcycle wouldleadtosignificantlylowerenantioselectivities,astheattackofasecondolefin moleculeontheOsVIII glycolatewouldoccurintheabsenceofthechiralligand.The observedenantioselectivitiesforthedihydroxylationwithairareonlyslightlylower thanthedatapreviouslypublishedbytheSharplessgroup,despitethehigherreactiontemperature(50 Cvs.0 C).ThereforethedirectoxidationoftheOsVI glycolate toanOsVIII glycolatedoesnotrepresentamajorreactionpathway. 11 1.2EnvironmentallyFriendlyTerminalOxidants

1.3

SupportedOsmiumCatalyst

Hazardoustoxicityandhighcostsarethechiefdrawbackstoreactionsusingosmiumtetroxide.Besidesthedevelopmentofprocedureswherecatalyticamountsof osmiumtetroxidearejoinedwithastoichiometricallyusedsecondaryoxidantcontinuouslyregeneratingthetetroxide,thesedisadvantagescanbeovercomebythe useofstableandnonvolatileadductsofosmiumtetroxidewithheterogeneoussupports[33].Theyoffertheadvantagesofeasyandsafehandling,simpleseparation fromthereactionmedium,andthepossibilitytoreusetheexpensivetransitionmetal.Unfortunately,problemswiththestabilityofthepolymersupportandleaching ofthemetalgenerallyoccur.

InthiscontextCainelliandcoworkershadalreadyreported,in1989,thepreparationofpolymer-supportedcatalysts:here,OsO4 wasimmobilizedonseveralamine typepolymers[34].SuchcatalystshavestructuresofthetypeOsO4 Lwiththe N-groupofthepolymer(=L)beingcoordinatedtotheLewisacidicosmiumcenter. Baseduponthisconcept,acatalyticenantioselectivedihydroxylationwasestablished byusingpolymerscontainingcinchonaalkaloidderivatives[35].However,sincethe amineligandscoordinatetoosmiumunderequilibriumconditions,recoveryofthe osmiumusingpolymersupportedligandswasdifficult.Os-diolatehydrolysisseems torequiredetachmentfromthepolymericligand,andhencecausesleaching.

Scheme1.9 Proposedcatalyticcycleforthedihydroxylationofolefins withOsO4 andoxygenastheterminaloxidant

HerrmannandcoworkersreportedonthepreparationofimmobilizedOsO4 on poly(4-vinylpyridine)anditsuseinthedihydroxylationofalkenesbymeansofhydrogenperoxide[36].However,theproblemsofgradualpolymerdecompositionand osmiumleachingwerenotsolved.

AnewstrategywaspublishedbyKobayashiandcoworkersin1998:theyusedmicroencapsulatedosmiumtetroxide.Herethemetalisimmobilizedontoapolymer onthebasisofphysicalenvelopmentbythepolymerandonelectroninteractions betweenthe -electronsofthebenzeneringsofthepolystyrenebasedpolymerand avacantorbitaloftheLewisacid[37].Usingcyclohexeneasamodelcompoundit wasshownthatthismicroencapsulatedosmiumtetroxide(MCOsO4)canbeused asacatalystinthedihydroxylation,withNMOasthestoichiometricoxidant (Scheme1.10).

Scheme1.10 Dihydroxylationofcyclohexeneusingmicroencapsulated osmiumtetroxide(MCOsO4)

IncontrasttoothertypicalOsO4-catalyzeddihydroxylations,whereH2O-tBuOHis usedasthesolventsystem,thebestyieldswereobtainedinH2O/acetone/CH3CN. WhilethereactionwassuccessfullycarriedoutusingNMO,moderateyieldswere obtainedusingtrimethylamine N-oxide,andmuchloweryieldswereobservedusing hydrogenperoxideorpotassiumferricyanide.Thecatalystwasrecoveredquantitativelybysimplefiltrationandreusedseveraltimes.Theactivityoftherecoveredcatalystdidnotdecreaseevenafterthefifthuse.

Astudyoftherateofconversionofthestartingmaterialshowedthatthereaction proceedsfasterusingOsO4 thanusingthemicroencapsulatedcatalyst.ThisisascribedtotheslowerreoxidationofthemicroencapsulatedosmiumesterwithNMO, comparedwithsimpleOsO4.

Subsequentlyacryronitrile/butadiene/polystyrenepolymerwasusedasasupport basedonthesamemicroencapsulationtechniqueandseveralolefins,including cyclicandacyclic,terminal,mono-,di-,tri-,andtetrasubstituted,gavethecorrespondingdiolsinhighyields[38].When(DHQD)2PHALasachiralsourcewas addedtothereactionmixtureenantioselectivitiesupto95% ee wereobtained. However,thisreactionrequiresslowadditionoftheolefin.Afterrunninga 100mmolexperiment,morethan95%oftheABS-MCOsO4 andthechiralligand wererecovered.

RecentlyKobayashiandcoworkersreportedonanewtypeofmicroencapsulated osmiumtetroxideusingphenoxyethoxymethyl-polystyreneasthesupport[39].With thiscatalyst,asymmetricdihydroxylationofolefinshasbeensuccessfullyperformed using(DHQD)2PHALasachiralligandandK3[Fe(CN)6]asacooxidantinH2O/acetone(Scheme1.11).

Scheme1.11 Asymmetricdihydroxylationofolefinsusing PEM-MCOsO4

Inthisinstancethedihydroxylationdoesnotrequireslowadditionoftheolefin, andthecatalystcanberecoveredquantitativelybysimplefiltrationandreusedwithoutlossofactivity.

Jacobsandcoworkerspublishedacompletelydifferenttypeofheterogeneousosmiumcatalyst.Theirapproachisbasedontwodetailsfromthemechanismofthe cisdihydroxylation:(1)tetrasubstitutedolefinsaresmoothlyosmylatedtoanosmate(VI) ester,buttheseestersarenothydrolyzedundermildconditions,and(2)anOsVI monodiolatecomplexcanbereoxidizedto cis-dioxoOsVIII withoutreleaseofthediol; subsequentadditionofasecondolefinresultsinanOsbisdiolatecomplex.These twopropertiesmakeitpossibletoimmobilizeacatalyticallyactiveosmiumcompoundbytheadditionofOsO4 toatetrasubstitutedolefinthatiscovalentlylinkedto asilicasupport.Thetetrasubstituteddiolateesterwhichisformedatonesideofthe Osatomisstable,andkeepsthecatalystfixedonthesupportmaterial.Thecatalytic reactioncantakeplaceatthefreecoordinationsitesofOs(Scheme1.12)[40].

Thedihydroxylationofmonosubstitutedanddisubstitutedaliphaticolefinsand cyclicolefinswassuccessfullyperformedusingthisheterogeneouscatalystand

Scheme1.12 ImmobilizationofOsinatertiarydiolatecomplex,and proposedcatalyticcyclefor cis-dihydroxylation

NMOasthecooxidant.Withrespecttotheolefin,0.25mol%Oswasneededandthe excellentchemoselectivityofthehomogeneousreactionwithNMOispreserved. However,somewhatincreasedreactiontimesarerequired.Thedevelopmentofan asymmetricvariantofthisprocessbyadditionofthetypicalchiralalkaloidligandsof theasymmetricdihydroxylationshouldbedifficultsincethereactionsperformed withtheseheterogeneouscatalystsaretakingplaceintheso-calledsecondcycle. Withalkaloidligandshigh ee valuesareonlyachievedindihydroxylationsoccurring inthefirstcycle.However,recentfindingsbythegroupsofSharplessandAdolfsson showthatevensecond-cycledihydroxylationsmaygivesubstantial ee results[41]. Althoughthisprocessmustbeoptimized,furtherdevelopmentoftheconceptofan enantioselectivesecond-cycleprocessoffersaperspectiveforafutureheterogeneous asymmetriccatalyst.

Choudaryandhisgroupreported,in2001,onthedesignofanion-exchangetechniqueforthedevelopmentofrecoverableandreusableosmiumcatalystsimmobilizedonlayereddoublehydroxides(LDH),modifiedsilica,andorganicresinfor asymmetricdihydroxylation[42].Anactivityprofileofthedihydroxylationof transstilbenewithvariousexchanger/OsO4 catalystsrevealedthatLDH/OsO4 displaysthe highestactivityandthattheheterogenizedcatalystsingeneralhavehigherreactivity thanK2[OsO2(OH)4].When trans-stilbenewasaddedtoamixtureofLDH/OsO4 , (DHQD)2PHALasthechiralligand(1mol%each),andNMOinH2O/tBuOH,the desireddiolisobtainedin96%yieldwith99% ee.Similarly,excellent ee resultsare obtainedwithresin/OsO4 andSiO2/OsO4 inthesamereaction.Alloftheprepared catalystsarerecoveredquantitativelybysimplefiltrationandreusedforfivecycles withconsistentactivity.Withthisprocedure,variousolefinsrangingfrommono-to trisubstitutedandfromactivatedtonon-activatedaretransformedintotheirdiols.In mostcases,thedesireddiolsareformedinhigheryields,albeitwithalmostsimilar ee valuesasreportedinhomogeneoussystems.Slowadditionoftheolefintothereactionmixtureiswarrantedtoachievehigher ee.ThisLDH/OsO4 systempresented byChoudaryandcoworkersissuperiorintermsofactivity,enantioselectivityand scopeofthereactionincomparisonwiththatofKobayashi.

AlthoughtheLDH/OsO4 showsexcellentactivitywithNMO,itisdeactivated whenK3[Fe(CN)6]ormolecularoxygenisusedastheco-oxidant[43].ThisdeactivationisattributedtothedisplacementofOsO42– bythecompetinganions,whichincludeferricyanide,ferrocyanide,andphosphateions(fromtheaqueousbuffersolution).Tosolvethisproblemresin/OsO4 andSiO2/OsO4 weredesignedandprepared bytheion-exchangeprocessonthequaternaryammonium-anchoredresinandsilica,respectively,astheseion-exchangersareexpectedtopreferbivalentanions ratherthantrivalentanions.Thesenewheterogeneouscatalystsshowconsistentperformanceinthedihydroxylationof -methylstyreneforanumberofrecyclesusing NMO,K3[Fe(CN)6]orO2 asreoxidant.Theresin/OsO4 catalyst,however,displays higheractivitythantheSiO2/OsO4 catalyst.InthepresenceofSharplessligandsvariousolefinswereoxidizedwithhighenantioselectivityusingtheseheterogeneous systems.Verygood ee resultswereobtainedwitheachofthethreeco-oxidants.Equimolarratiosofligandtoosmiumaresufficienttoachieveexcellent ee results.Thisis incontrasttothehomogeneousreactioninwhicha2–3molarexcessoftheexpen-

sivechiralligandtoosmiumisusuallyemployed.Thesestudiesindicatethatthe bindingabilityoftheseheterogeneousosmiumcatalystswiththechiralligandis greaterthanthehomogeneousanalogue.

Incidentally,thisformsthefirstreportofaheterogeneousosmium-catalyst mediatedADreactionofolefinsusingmolecularoxygenastheco-oxidant.Under identicalconditions,theturnovernumbersoftheheterogeneouscatalystarealmost similartothehomogeneoussystem.

Furthermore,Choudaryandcoworkerspresentedaprocedurefortheapplication ofaheterogeneouscatalyticsystemfortheADreactionincombinationwithhydrogenperoxideasco-oxidant[44].HereatriplecatalyticsystemcomposedofNMM andtwoheterogeneouscatalystswasdesigned.AtitaniumsilicaliteactsastheelectrontransfermediatortoperformoxidationofNMMthatisusedincatalytic amountswithhydrogenperoxidetoprovide insitu NMOcontinuouslyforADofolefins,whichiscatalyzedbyanotherheterogeneouscatalyst,silicagel-supportedcinchonaalkaloid[SGS-(DHQD)2PHAL]-OsO4 .Goodyieldswereobservedforvariousolefins.Againverygood ee resultshavebeenachievedwithanequimolarratioofligand toosmium,butslowadditionofolefinandH2O2 isnecessary.Unfortunately,recoveryandreuseoftheSGS-(DHQD)2PHAL-OsO4/TS-1revealedthatabout30%ofthe osmiumhadleachedduringthereaction.Thisamounthastobereplenishedineach additionalrun.

1.4

IonicLiquids

Recentlyionicliquidshavebecomepopularasnewsolventsinorganicsynthesis[45, 46].Theycandissolveawiderangeoforganometalliccompoundsandaremiscible withorganiccompounds.Theyarehighlypolarbutnon-coordinating.Ingeneral ionicliquidsexhibitexcellentchemicalandthermalstabilityalongwitheaseofreuse.Itispossibletovarytheirmiscibilitywithwaterandorganicsolventssimplyby changingthecounteranion.Advantageouslytheyhaveessentiallynegligiblevapor pressure.

In2002olefindihydroxylationbyrecoverableandreusableOsO4 inionicliquids waspublishedforthefirsttime[47].YanadaandcoworkersdescribedtheimmobilizationofOsO4 in1-ethyl-3-methylimidazoliumtetrafluoroborate[47a].Theychose 1,1-diphenylethyleneasamodelcompoundandfoundthattheuseof5mol%OsO4 in[emim]BF4 ,1.2equiv.ofNMO H2O,androomtemperaturewerethebestreactionconditionsforgoodyield.After18h100%ofthecorrespondingdiolwasobtained.OsO4-catalyzedreactionswithotherco-oxidantssuchashydrogenperoxide, sodiumpercarbonate,and tert-butylhydroperoxidegavepoorresults.WithanhydrousNMOonly6%diolwasfound.Afterthereactionthe1,2-diolcanbeextracted withethylacetateandtheionicliquidcontainingthecatalystcanbereusedfor furthercatalyticoxidationreaction.Itwasshownthateveninthefifthruntheobtainedyielddidnotchange.ThisnewmethodusingimmobilizedOsO4 inanionic liquidwasappliedtoseveralsubstrates,includingmono-,di-,andtrisubstitutedali-

phaticolefins,aswellastoaromaticolefins.Inallcases,thedesireddiolswereobtainedinhighyields.

ThegroupworkingwithYaodevelopedaslightlydifferentprocedure.Theyused [bmim]PF6 (bmim=1-n-butyl-3-methylimidazol)/water/tBuOH(1:1:2)asthesolventsystemandNMO(1.2equiv.)asthereoxidantfortheosmiumcatalyst[47b]. Here2mol%osmiumareneededforefficientdihydroxylationofvariousolefins. Afterthereaction,allvolatileswereremovedunderreducedpressureandtheproductwasextractedfromtheionicliquidlayerusingether.Theionicliquidlayercontainingthecatalystcanbeusedseveraltimeswithonlyaslightdropincatalystactivity.Inordertopreventosmiumleaching,1.2equiv.ofDMAPrelativetoOsO4 have tobeaddedtothereactionmixture.ThisamineformsstablecomplexeswithOsO4 , andthisstrongbindingtoapolaramineenhancesitspartitioninginthemorepolar ionicliquidlayer.Recently,SongandcoworkersreportedontheOs-catalyzeddihydroxylationusingNMOinmixturesofionicliquids(1-butyl-3-methylimidazolium hexafluorophosphateorhexafluoroantimonate)withacetone/H2O[48].Theyused 1,4-bis(9-O-quininyl)phthalazine[(QN)2PHAL]asthechiralligand.(QN)2PHALwill beconvertedintoanewligandbearinghighlypolarresidues(fourhydroxygroups inthe10,11-positionsofthequinineparts)duringADreactionsofolefins.Theuse of(QN)2PHALinsteadof(DHQD)2PHALaffordedthesameyieldsand ee results and,moreover,resultedindrasticimprovementinrecyclabilityofbothcatalytic components.InanotherrecentreportBrancoandcoworkersdescribedthe K2OsO2(OH)4/K3Fe(CN)6/(DHQD)2PHALor(DHQD)2PYRsystemfortheasymmetricdihydroxylationusingtwodifferentionicliquids[49].Bothofthesystems used,[bmim][PF6]/waterand[bmim][PF6]/water/tert-butanol(bmim=1-n-butyl-3methylimidazol),areeffectiveforaconsiderablenumberofruns(e.g.,run1,88%, ee 90%;run9,83%, ee 89%).Onlyafter11or12cycleswasasignificantdropinthe chemicalyieldandopticalpurityobserved.

Insummary,ithasbeendemonstratedthattheapplicationofanionicliquidprovidesasimpleapproachtotheimmobilizationofanosmiumcatalystforolefindihydroxylation.ItisimportanttonotethatthevolatilityandtoxicityofOsO4 aregreatly suppressedwhenionicliquidsareused.

References

[1] M.Beller,C.Bolm, TransitionMetals forOrganicSynthesis,Wiley-VCH,Weinheim, 1998

[2] Worldwideproductioncapacitiesfor ethyleneglycolin1995:9.7million tonsperannum;worldwideproduction of1,2-propyleneglycolin1994:1.1milliontonsperannum;K.Weissermel, H.J.Arpe, IndustrielleOrganischeChemie,5thedn.,Wiley-VCH,Weinheim, 1998,p.167andp.302.

[3] (a) H.H.Szmant, OrganicBuilding

BlocksoftheChemicalIndustry,Wiley, NewYork, 1989,p.347;(b) G.Pohl, H.Gaube in Ullmann’sEncyclopediaof IndustrialChemistry,Vol.A1,VCH, Weinheim, 1985,p.305.

[4] Reviews:(a) M.Schröder Chem.Rev 1980, 80,187;(b) H.C.Kolb,M.S. VanNieuwenhze,K.B.Sharpless, Chem.Rev. 1994, 94,2483;(c) M.Beller,K.B.Sharpless inB.Cornils, W.A.Herrmann(Eds.), AppliedHomogeneousCatalysis,VCH,Weinheim, 1996,

1RecentDevelopmentsintheOsmium-catalyzedDihydroxylationofOlefins

p.1009;(d) H.C.Kolb,K.B.Sharpless inM.Beller,C.Bolm(Eds.), TransitionMetalsforOrganicSynthesis Vol.2, VCH-Wiley,Weinheim, 1998,p.219; (e) I.E.Marko,J.S.Svendsen in E.N.Jacobsen,A.Pfaltz,H.Yamamoto (Eds.), ComprehensiveAsymmetricCatalysisII,Springer,Berlin, 1999,p.713.

[5] P.Dupau,R.Epple,A.A.Thomas, V.V.Fokin,K.B.Sharpless Adv. Synth.Catal. 2002, 344,421.

[6] G.M.Mehltretter,C.Döbler,U. Sundermeier,M.Beller Tetrahedron Lett. 2000, 41,8083.

[7] (a) S.G.Hentges,K.B.Sharpless J.Am.Chem.Soc 1980, 192,4263; (b) K.B.Sharpless,W.Amberg, Y.L.Bennani,G.A.Crispino,J.Hartung,K.-S.Jeong,H.-L.Kwong, K.Morikawa,Z.-M.Whang,D.Xu, X.-L.Zhang J.Org.Chem. 1992, 57, 2768.

[8] (a) Z.-M.Whang,H.C.Kolb, K.B.Sharpless J.Org.Chem. 1994, 59, 5104;(b) F.G.Fang,S.Xie,M.W.Lowery J.Org.Chem. 1994, 59,6142; (c) D.P.Curran,S.-B.Ko J Org. Chem. 1994, 59,6139;(d) E.J.Corey, A.Guzman-Perez,M.C.Noe J.Am. Chem.Soc 1994, 116, 12109;(e) E.J. Corey,A.Guzman-Perez,M.C.Noe J.Am.Chem.Soc 1995, 117,10805; (f) M.Nambu,J.D.White Chem. Commmun. 1996,1619;(g) E.J.Corey, M.C.Noe,A.Y.Ting TetrahedronLett. 1996, 37,1735;(h) G.Li,H.-T.Chang, K.B.Sharpless Angew.Chem.,Int.Ed. Engl. 1996, 35,451;(i) K.Mori,H.Takikawa,Y.Nishimura,H.Horikiri LiebigsAnn./Recueil 1997,327; (j) B.M.Trost,T.L.Calkins,C.G.Bochet Angew.Chem.,Int.Ed.Engl. 1997, 36,2632;(k) S.C.Sinha,A.Sinha, S.C.Sinha,E.Keinan J Am.Chem. Soc. 1998, 120,4017;(l) A.J.Fisher, F.Kerrigan Synth.Commun. 1998, 28, 2959;(m) J.M.Harris,M.D.Keranen,G.A.O’Doherty J.Org.Chem. 1999, 64,2982;(n) H.Takahata, M.Kubota,N.Ikota J.Org. Chem. 1999, 64,8594;(o) M.Quitschalle, M.Kalesse TetrahedronLett. 1999, 40, 7765;(p) F.J.Aladro,F.M.Guerra, F.J.Moreno-Dorado,J.M.Busta-

mante,Z.D.Jorge,G.M.Massanet TetrahedronLett. 2000, 41,3209; (q) J.Liang,E.D.Moher,R.E.Moore, D.W.Hoard J.Org.Chem. 2000, 65, 3143;(r) X.D.Zhou,F.Cai,W.S.Zhou TetrahedronLett. 2001, 42,2537; (s) D.P.G.Hamon,K.L.Tuck,H.S. Christie Tetrahedron 2001, 57,9499; (t) B.M.Choudary,N.S.Chowdari, K.Jyothi,N.S.Kumar,M.L.Kantam Chem.Commun. 2002,586;(u) P.Y. Hayes,W.Kitching J.Am.Chem.Soc. 2002, 124,9718;(v) S.Chandrasekhar, T.Ramachandar,M.V.Reddy Synthesis 2002,1867;(w) P.R.Andreana,J.S. McLellan,Y.C.Chen,P.G.Wang Org. Lett. 2002, 4,3875.

[9] K.A.Hofmann Chem.Ber. 1912, 45, 3329.

[10] (a) N.A.Milas,S.Sussmann J.Am. Chem.Soc. 1936, 58,1302;(b) N.A.Milas,J.-H.Trepagnier,J.T.Nolan,M.I. Iliopulos J.Am.Chem.Soc. 1959, 81, 4730.

[11] K.B.Sharpless,K.Akashi J.Am. Chem.Soc. 1976, 98,1986.

[12] (a) W.P.Schneider,A.V.McIntosh, (Upjohn)US-2.769.824(1956) Chem. Abstr 1957, 51,8822e;(b) V.VanRheenen,R.C.Kelly,D.Y.Cha Tetrahedron Lett. 1976, 17,1973;(c) R.Ray,D.S. Matteson TetrahedronLett 1980, 21, 449.

[13] M.Minamoto,K.Yamamoto,J.Tsuji J.Org.Chem. 1990, 55,766.

[14] M.P.Singh,H.S.Singh,A.K.Arya, A.K.Singh,A.K.Sisodia IndianJ. Chem. 1975, 13,112.

[15] L.Ahlgren,L.Sutin Org.ProcessRes. Dev 1997, 1,425.

[16] (a) K.Bergstad,S.Y.Jonsson,J.-E. Bäckvall J.Am.Chem.Soc. 1999, 121, 10424;(b) S.Y.Jonsson,K.Färnegardh,J.-E.Bäckvall J.Am.Chem. Soc. 2001, 123,1365.

[17] S.Y.Jonsson,H.Adolfsson,J.-E. Bäckvall Org.Lett. 2001, 3,3463.

[18] A.H.Ell,S.Y.Jonsson,A.Börje, H.Adolfsson,J.-E.Bäckvall TetrahedronLett. 2001, 42,2569.

[19] S.Y.Jonsson,H.Adolfsson,J.-E. Bäckvall Chem.Eur.J. 2003, 9,2783.

[20] (a) R.W.Cummins, FMC-Corporation NewYork,US-Patent3488394, 1970 ;

(b) R.W.Cummins, FMC-Corporation NewYork,US-Patent3846478, 1974

[21] G.M.Mehltretter,S.Bhor,M.Klawonn,C.Döbler,U.Sundermeier, M.Eckert,H.-C.Militzer,M.Beller Synthesis 2003, 2,295.

[22] E.N.Jacobsen,I.Marko,W.S.Mungall,G.Schröder,K.B.Sharpless J.Am.Chem Soc. 1988, 110,1968.

[23] M.Beller,A.Zapf,W.Mägerlein Chem.Eng.Technol. 2001, 24,575.

[24] J.S.M.Wai,I.Markó,J.S.Svendsen, M.G.Finn,E.N.Jacobsen,K.B. Sharpless J. Am.Chem.Soc. 1989, 111, 1123.

[25] (a) J.F.Cairns,H.L.Roberts,J.Chem. Soc.C 1968,640;(b) CelaneseCorp., GB-1,028,940(1966), Chem.Abstr. 1966, 65,3064f.;(c) R.S.Myers,R.C. Michaelson,R.G.Austin, (Exxon Corp.)US-4496779(1984), Chem.Abstr. 1984, 101,P191362k.

[26] (a) A.Krief,C.Colaux-Castillo TetrahedronLett. 1999, 40,4189;(b) A.Krief, C.Delmotte,C.Colaux-Castillo Pure Appl.Chem. 2000, 72,1709.

[27] (a) A.Krief,C.Colaux-Castillo, Synlett 2001,501; A.Krief,C.Colaux-Castillo PureAppl.Chem. 2002, 74,107.

[28] A.Krief,A.Destree,V.Durisotti, N.Moreau,C.Smal,C.Colaux-Castillo Chem Commun 2002,558.

[29] C.Döbler,G.Mehltretter,M.Beller Angew.Chem.,Int.Ed.Engl. 1999, 38, 3026;(b) C.Döbler,G.Mehltretter, U.Sundermeier,M.Beller J.Am. Chem.Soc. 2000, 122,10289–10297.

[30] K.Weissermel,H.-J.Arpe Industrielle OrganischeChemie,5thedn.,WileyVCH,Weinheim, 1998

[31] C.Döbler,G.Mehltretter,U.Sundermeier,M.Beller J.Organomet. Chem. 2001, 621,70.

[32] Y.L.Bennani,K.P.M.Vanhessche, K.B.Sharpless TetrahedronAsymmetry 1994, 5,1473.

[33] A.Severeyns,D.E.DeVos,P.A.Jacobs Top.Catal. 2002, 19,125.

[34] C.Cainelli,M.Contento,F.Manescalchi,L.Plessi Synthesis 1989,45.

[35] (a) B.M.Kim,K.B.Sharpless TetrahedronLett. 1990, 31,3003;(b) B.B.Lohray,A.Thomas,P.Chittari,J.R. Ahuja,P.K.Dhal TetrahedronLett.

1992, 33,5453;(c) H.Han,K.D.Janda J.Am.Chem.Soc. 1996, 118,7632; (d) D.J.Gravert,K.D.Janda Chem. Rev 1997, 97,489;(e) C.Bolm,A.Gerlach Angew.Chem.,Int.Ed. Engl. 1997, 36,741;(f) C.Bolm,A.Gerlach Eur. J.Org.Chem 1998,21;(g) P.Salvadori,D.Pini,A.Petri Synlett 1999, 1181;(h) A.Petri,D.Pini,S.Rapaccini,P.Salvadori Chirality 1999, 11, 745;(i) A.Mandoli,D.Pini,A.Agostini,P.Salvadori Tetrahedron:Asymmetry 2000, 11,4039;(j) C.Bolm, A.Maischak Synlett 2001,93;(k) I.Motorina,C.M.Crudden Org.Lett. 2001, 3,2325;(l) H.M.Lee,S.-W.Kim, T.Hyeon,B.M.Kim Tetrahedron:Asymmetry 2001, 12,1537;(m) Y.-Q.Kuang, S.-Y.Zhang,R.Jiang,L.-L.Wie TetrahedronLett. 2002, 43,3669.

[36] (a) W.A.Herrmann,G.Weichselbaumer EP0593425B1, 1994 ;(b) W.A. Herrmann,R.M.Kratzer,J.Blümel, H.B.Friedrich,R.W.Fischer,D.C. Apperley,J.Mink,O.Berkesi J.Mol. Catal.A 1997, 120,197.

[37] S.Nagayama,M.Endo,S.Kobayashi J.Org.Chem. 1998, 63,609.

[38] S.Kobayashi,M.Endo,S.Nagayama J.Am.Chem.Soc. 1999, 121,11229.

[39] S.Kobayashi,T.Ishida,R.Akiyama Org.Lett. 2001, 3,2649.

[40] A.Severeyns,D.E.DeVos,L.Fiermans,F.Verpoort,P.J.Grobet,P.A. Jacobs Angew.Chem. 2001, 113,606. [41] (a) M.A.Andersson,R.Epple,V.V.Fokin,K.B.Sharpless Angew.Chem. 2002, 114,490;(b) H.Adolfsson, F.Stalfors presentedatthe221st NationalAm.Chem.Soc.Meeting 2001

[42] B.M.Choudary,N.S.Chowdari, M.L.Kantam,K.V.Raghavan J.Am. Chem.Soc 2001, 123,9220.

[43] B.M.Choudary,N.S.Chowdari, K.Jyothi,M.L.Kantam J.Am.Chem. Soc. 2002, 124,5341.

[44] B.M.Choudary,N.S.Chowdari, K.Jyothi,S.Madhi,M.L.Kantam Adv.Synth.Catal 2002, 344,503.

[45] Reviews:(a) T.Welton Chem.Rev. 1999, 99,2071;(b) P.Wasserscheid, W.Keim Angew.Chem.,Int.Ed.Engl. 2000, 39,3772;(c) R.Sheldon Chem.

Commun 2001,2399;(d) S.T.Handy Chem.Eur.J 2003, 9,2938.

[46] (a) J.L.Reynolds,K.R.Erdner,P.B. Jones Org.Lett. 2002, 4,917;(b) I.A. Ansari,R.Gree Org.Lett. 2002, 4, 1507;(c) K.G.Mayo,E.H.Nearhoof, J.J.Kiddle Org.Lett. 2002, 4,567; (d) T.Fukuyama,M.Shinmen,S.Nishitani,M.Sato,I.Ryu Org.Lett. 2002, 4,1691;(e) D.Semeril,H.OlivierBourbigou,C.Bruneau,P.H.Dixneuf Chem.Commun 2002,146;

(f) C.S.Consorti,G.Ebeling,J.Dupont TetrahedronLett. 2002, 43 753; (g) S.J.Nara,J.R.Harjani,M.M.Salunkhe TetrahedronLett. 2002, 43, 2979.

[47] (a) R.Yanada,Y.Takemoto Tetrahedron Lett. 2002, 43,6849;(b) Q.Yao Org. Lett. 2002, 4,2197.

[48] C.E.Song,D.Jung,E.J.Roh,S.Lee, D.Y.Chi Chem.Commun 2002,3038.

[49] L.C.Branco,C.A.M.Afonso Chem. Commun 2002,3036.

TransitionMetal-catalyzedEpoxidationofAlkenes

2.1 Introduction

Theformationofepoxidesviametal-catalyzedoxidationofalkenesrepresentsthe mostelegantandenvironmentallyfriendlyroutefortheproductionofthiscompoundclass[1,2].Thisisofparticularimportance,consideringthattheconservation andmanagementofresourcesshouldbethemainfocusofinterestwhennovelchemicalprocessesaredeveloped.Thus,theinnovationandimprovementofcatalytic epoxidationmethodswheremolecularoxygenorhydrogenperoxideareemployedas terminaloxidantsishighlydesirable.However,oneoftoday’sindustrialroutesfor theformationofsimpleepoxides(e.g.,propyleneoxide)isthe chlorohydrin process, wherealkenesarereactedwithchlorineinthepresenceofsodiumhydroxide (Scheme2.1)[3].Atpresentthisprocessproduces2.01tonNaCland0.102ton 1,2-dichloropropaneasbyproductspertonofpropyleneoxide.Thesesignificant amountsofwastearecertainlynotacceptableinthelongrun,andeffortsaimedat replacingsuchchemicalplantswith“greener”epoxidationprocessesareunderway. Whenitcomestotheproductionoffinechemicals,non-catalyzedprocesseswithtraditionaloxidants(e.g.,peroxyaceticacidand meta-chloroperoxybenzoicacid)areoftenused.Inthesecases,however,transitionmetal-basedsystemsusinghydrogen peroxideastheterminaloxidantdemonstrateseveraladvantages.Thescopeandfocusofthischapterwillbetohighlightsomenovelapproachestotransitionmetal-catalyzedformationofepoxidesbymeansofalkeneoxidationusingenvironmentally benignoxidants.

ModernOxidationMethods. EditedbyJan-ErlingBäckvall

Copyright 2004WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim

ISBN:3-527-30642-0

Scheme2.1

ChoiceofOxidantforSelectiveEpoxidation

Thereareseveralterminaloxidantsavailableforthetransitionmetal-catalyzed epoxidationofalkenes(Table2.1).Typicaloxidantscompatiblewithamajorityof metal-basedepoxidationsystemsarevariousalkylhydroperoxides,hypochloriteor iodosylbenzene.Aproblemassociatedwiththeseoxidantsistheirlowactiveoxygen content(Table2.1).Consideringthenatureofthewasteproduced,therearefurther drawbacksusingtheseoxidants.Hence,fromanenvironmentalandeconomical pointofview,molecularoxygenshouldbethepreferredoxidant,consideringits highactiveoxygencontentandthatnowasteproductsoronlywaterisformed. Oneofthemajorlimitations,however,usingmolecularoxygenastheterminaloxidantfortheformationofepoxidesisthepoorproductselectivityobtainedinthese processes[4].Incombinationwiththelimitednumberofcatalystsavailablefordirectactivationofmolecularoxygen,thiseffectivelyrestrictstheuseofthisoxidant. Ontheotherhand,hydrogenperoxidedisplaysmuchbetterpropertiesastheterminaloxidant.TheactiveoxygencontentofH2O2 isaboutashighasfortypicalapplicationsofmolecularoxygeninepoxidations(sinceareductorisrequiredinalmostallcases),andthewasteproducedbyemployingthisoxidantisplainwater. Asinthecaseofmolecularoxygen,theepoxideselectivityusingH2O2 cansometimesberelativelypoor,althoughrecentdevelopmentshaveledtotransitionmetalbasedprotocolswhereexcellentreactivityandepoxideselectivitycanbeobtained [5].Thevariousoxidationsystemsavailablefortheselectiveepoxidationofalkenes usingtransitionmetalcatalystsandhydrogenperoxidewillbecoveredinthefollowingsections.

Tab.2.1 Oxidantsusedintransitionmetal-catalyzedepoxidations,andtheiractiveoxygencontent

OxidantActiveoxygencontentWasteproduct (wt.%)

Oxygen(O2)100NothingorH2O Oxygen(O2)/reductor50H2O H2O2 47H2O NaOCl21.6NaCl CH3CO3H21.1CH3CO2H tBuOOH(TBHP)17.8 tBuOH

KHSO5 10.5KHSO4 BTSP a 9hexamethyldisiloxane PhIO7.3PhI a Bistrimethylsilylperoxide.

EpoxidationsofAlkenesCatalyzedbyEarlyTransitionMetals

High-valentearlytransitionmetalssuchastitanium(IV) andvanadium(V) have beenshowntoefficientlycatalyzetheepoxidationofalkenes.Thepreferredoxidants usingthesecatalystsarevariousalkylhydroperoxides,typically tert-butylhydroperoxide(TBHP)orethylbenzenehydroperoxide(EBHP).OneoftheroutesfortheindustrialproductionofpropyleneoxideisbasedonaheterogeneousTiIV/SiO2 catalyst, whichemploysEBHPastheterminaloxidant[6].

TheSharpless-Katsukiasymmetricepoxidation(AE)protocolfortheenantioselectiveformationofepoxidesfromallylicalcoholswasamilestoneinasymmetriccatalysis[7].ThisclassicalasymmetrictransformationusesTBHPastheterminaloxidant,andthereactionhasbeenwidelyusedinvarioussyntheticapplications.There areseveralexcellentreviewscoveringthescopeandutilityoftheAEreaction[8].On theotherhand,theuseofhydrogenperoxideasoxidantincombinationwithearly transitionmetalcatalysts(TiandV)isratherlimited.Thereasonforthepoorreactivitycanbetracedtothesevereinhibitionofthemetalcomplexesbystronglycoordinatingligandssuchasalcoholsandinparticularwater.Thedevelopmentoftheheterogeneoustitanium(IV)-silicatecatalyst(TS-1)bychemistsatEnichemrepresented abreakthroughforreactionsperformedwithhydrogenperoxide[9].Thishydrophobicmolecularsievedemonstratedexcellentproperties(i.e.,highcatalyticactivityand selectivity)fortheepoxidationofsmalllinearalkenesinmethanol.Thesubstrates areadsorbedintothemicroporesoftheTS-1catalyst,whichefficientlypreventsthe inhibitionbywaterasobservedusingtheTiIV/SiO2 catalyst.Aftertheepoxidationreaction,theTS-1catalystcaneasilybeseparatedandreused.Toextendthescopeof thisepoxidationmethodandtherebyallowfortheoxidationofawiderrangeofsubstrates,severaldifferenttitaniumcontainingsilicatezeoliteshavebeenprepared. Consequently,thescopehasbeenimprovedsomewhatbutthebestepoxidationresultsusingtitaniumsilicatesascatalystsareobtainedwithsmaller,non-branched substrates.

2.4

MolybdenumandTungsten-catalyzedEpoxidations

Epoxidationsystemsbasedonmolybdenumandtungstencatalystshavebeenstudiedextensivelyformorethan40years.Thetypicalcatalysts,MoVI-oxoorWVI-oxo speciesdo,however,behavequitedifferentlydependingonwhetheranionicorneutralcomplexesareemployed.Whereastheformercatalysts,especiallytheuseof tungstatesunderphase-transferconditions,areabletoefficientlyactivateaqueous hydrogenperoxidefortheformationofepoxides,neutralmolybdenumortungsten complexesgivealowerselectivitywithhydrogenperoxide.Abetterselectivitywith thelattercatalystsisoftenachievedusingorganichydroperoxides(e.g., tert-butylhydroperoxide)asterminaloxidants[10,11].

2.4.1

HomogeneousCatalysts–HydrogenPeroxideastheTerminalOxidant

PayneandWilliamsreportedin1959ontheselectiveepoxidationofmaleic,fumaric andcrotonicacidsusingacatalyticamountofsodiumtungstate(2mol%)incombinationwithaqueoushydrogenperoxideastheterminaloxidant[12].ThekeytosuccesswascarefulcontrolofthepH(4–5.5)inthereactionmedia.Theseelectron-deficientsubstrateswerenotoriouslydifficulttooxidizeselectivelyusingthestandard techniques(peroxyacidreagents)availableatthetime.Previousattemptstousesodiumtungstateandhydrogenperoxideledtotheisolationofthecorrespondingdiols duetorapidhydrolysisoftheintermediateepoxides.Significantimprovementsto thiscatalyticsystemwereintroducedbyVenturelloandcoworkers[13,14].They foundthattheadditionofphosphoricacidandtheintroductionofquaternaryammoniumsaltsasPTC-reagentsconsiderablyincreasedthescopeofthereaction.The activetungstatecatalystsareoftengenerated insitu,althoughcatalyticallyactiveperoxo-complexessuchas(n-hexyl4N)3{PO4[W(O)(O2)2]4}havebeenisolatedandcharacterized(Scheme2.2)[15].

Inrecentwork,Noyoriandcoworkersestablishedconditionsfortheselective epoxidationofaliphaticterminalalkeneseitherintoluene,orusingacompletelysolvent-freereactionsetup[16,17].Oneofthedisadvantageswiththeprevioussystems wastheuseofchlorinatedsolvents.TheconditionsestablishedbyNoyori,however, providedanoverall“greener”epoxidationprocesssincethereactionswereperformedefficientlyinnon-chlorinatedsolvents.Inthisreaction,sodiumtungstate (2mol%),(aminomethyl)phosphonicacidandmethyltri-n-octylammoniumbisulfate (1mol%ofeach)wereemployedascatalystsfortheepoxidationusingaqueoushydrogenperoxide(30%)astheterminaloxidant.Theepoxidationofvariousterminal alkenesusingtheabove-mentionedconditions(90 C,nosolventadded)gavehigh yieldsforanumberofsubstrates(Table2.2).Thework-upprocedurewasexceptionallysimple,sincetheproductepoxidescouldbedistilleddirectlyfromthereaction mixture.Theuseofappropriateadditivesturnedouttobecrucialtoasuccessfuloutcomeoftheseepoxide-formingreactions.

Whenthe(aminomethyl)phosphonicacidwasreplacedbyotherphosphonicacids orsimplybyphosphoricacid,significantlylowerconversionswereobtained.The natureofthephase-transferreagentwasfurtherestablishedasanimportantpara-

Scheme2.2 TheVenturello(n-hexyl4N)3{PO4[W(O)(O2)2]4}catalyst

Tab.2.2 EpoxidationofterminalalkenesusingtheNoyorisystem

EntryAlkeneTime(h)Conversion(%)Yield(%)

11-octene28986 21-decene29493

3 a 1-decene49999

4 a allyloctylether28164

5 a styrene3702

a 20mmolalkenein4mLtoluene.

meter.Theuseofammoniumbisulfate(HSO4 – )wassuperiortothecorresponding chlorideorhydroxidesalts.Thesize,andhencethelipophilicityoftheammonium ionwasimportant,sincetetra-n-butyl-ortetra-n-hexylammoniumbisulfatewereinferiortophase-transferagentscontaininglargeralkylgroups.Theepoxidationsystemwaslaterextendedtoencompassothersubstrates,suchassimplealkeneswith differentsubstitutionpatterns,andtoalkenescontainingvariousfunctionalities(alcohols,ethers,ketonesandesters).

AmajorlimitationofthismethodisthelowpHunderwhichthereactionsareperformed.Thisledtosubstantiallyloweryieldsinreactionswithsubstrateprogenitors ofacidsensitiveepoxides,wherecompetingring-openingprocesseseffectivelyreducedtheusefulnessoftheprotocol.Asanexample,theoxidationofstyreneledto 70%conversionafter3hat70 C,althoughtheobservedyieldforstyreneoxidewas only2%(Table2.2,entry5).

TheepoxidationmethoddevelopedbyNoyori,hassubsequentlybeenappliedto thedirectformationofdicarboxylicacidsfromalkenes[18].Cyclohexenewasoxidizedtoadipicacidin93%yieldusingthetungstate,ammoniumbisulfatesystem and4equiv.ofhydrogenperoxide.Theselectivityproblemassociatedwiththe NoyoriprotocolwastoacertaindegreecircumventedbytheimprovementsintroducedbyJacobsandcoworkers[19].Tothestandardcatalyticmixturewereaddedadditionalamountsof(aminomethyl)phosphonicacidandNa2WO4 andthepHofthe reactionmediawasadjustedto4.2–5withaqueousNaOH.Thesechangesallowed fortheformationofepoxidesfrom -pinene,1-phenyl-1-cyclohexene,andindene,in highconversionsandgoodselectivity(Scheme2.3).

Anotherhighlyefficienttungsten-basedsystemfortheepoxidationofalkeneswas recentlyintroducedbyMizunoandcoworkers[20].Thetetrabutylammoniumsaltof aKeggin-typesilicodecatungstate[ -SiW10O34(H2O)2]4– (Scheme2.4)wasfoundto catalyzetheepoxidationofvariousalkenesubstratesusingaqueoushydrogenperoxideastheterminaloxidant.Thecharacteristicsofthissystemareveryhighepoxide selectivity(99%)andexcellentefficiencyintheuseoftheterminaloxidant(99%). Terminal-aswellasdi-andtri-substitutedalkeneswereallepoxidizedinhighyields

withinreasonablyshortreactiontimesusing0.16mol%catalyst(1.6mol%intungsten,Scheme2.4).TheX-raystructureofthecatalystprecursorrevealed10tungsten atomsconnectedtoacentralSiO4 unit. Insitu infraredspectroscopyofthereaction mixtureduringtheepoxidationreactionindicatedhighstructuralstabilityofthecatalyst.Furthermore,itwasdemonstratedthatthecatalystcanberecoveredandreused upto5timeswithoutlossofactivityorselectivity(epoxidationofcyclooctene).Interestingly,theoftenencounteredproblemwithhydrogenperoxidedecompositionwas negligibleusingthiscatalyst.Theefficientuseofhydrogenperoxide(99%)combinedwiththehighselectivityandproductivityinpropyleneepoxidationopensup industrialapplications.

Theuseofmolybdenumcatalystsincombinationwithhydrogenperoxideisnot ascommonasfortungstencatalysts.Thereare,however,anumberofexamples wheremolybdateshavebeenemployedfortheactivationofhydrogenperoxide. Acatalyticamountofsodiummolybdateincombinationwithmono-dentateligands (e.g.,hexa-alkylphosphorustriamidesorpyridine-N-oxides),andsulfuricacidallowedfortheepoxidationofsimplelinearorcyclicalkenes[21].Theselectivityobtainedusingthismethodwasquitelow,andsignificantamountsofdiolswere formed,eventhoughhighlyconcentratedhydrogenperoxide(>70%)wasemployed.

Morerecently,Sundermeyerandcoworkersreportedontheuseoflong-chain trialkylamineoxides,trialkylphosphaneoxidesortrialkylarsaneoxidesasmono-den-

Scheme2.3
Scheme2.4

tateligandsforneutralmolybdenumperoxocomplexes[22].Thesecompoundswere employedascatalystsfortheepoxidationof1-octeneandcyclooctenewithaqueous hydrogenperoxide(30%),underbiphasicconditions(CHCl3).Theepoxideproducts wereobtainedinhighyieldswithgoodselectivity.Thehighselectivityachievedusing thismethodwasascribedtothehighsolubilityoftheproductintheorganicphase, thusprotectingtheepoxidefromhydrolysis.Thisprotocolhasnotbeenemployed fortheformationofhydrolyticallysensitiveepoxidesandthegeneralityofthe methodcanthusbequestioned.

2.4.2

HeterogeneousCatalysts

Oneproblemassociatedwiththeabovedescribedperoxotungstatecatalyzedepoxidationsystem,istheseparationofthecatalystafterthecompletedreaction.Toovercomethisobstacle,effortstoprepareheterogeneoustungstatecatalystshavebeen conducted.DeVosandcoworkersemployedW-catalystsderivedfromsodiumtungstateandlayereddoublehydroxides(LDH–coprecipitatedMgCl2,AlCl 3 andNaOH) fortheepoxidationofsimplealkenesandallylalcoholswithaqueoushydrogenperoxide[23].Theyfoundthatdependingonthenatureofthecatalyst(eitherhydrophilicorhydrophobiccatalystswereused),differentreactivitiesandselectivitieswere obtainedfornon-polarandpolaralkenes,respectively.ThehydrophilicLDH-WO4 catalystwasparticularlyeffectivefortheepoxidationofallylandhomo-allylalcohols, whereasthehydrophobiccatalyst(containing p-toluensulfonate)showedbetterreactivitywithnon-functionalizedsubstrates.

Gelbardandcoworkershavereportedontheimmobilizationoftungsten-catalysts usingpolymer-supportedphosphineoxide,phosphonamide,phosphoramideand phosphotriamideligands[24].Employingtheseheterogeneouscatalyststogether withhydrogenperoxidefortheepoxidationofcyclohexeneresultedinmoderateto goodconversionofthesubstrate,althoughinmostcaseslowepoxideselectivitywas observed.AsignificantlymoreselectiveheterogeneouscatalystwasobtainedbyJacobsandcoworkersupontreatmentofthemacroreticularion-exchangeresinAmberliteIRA-900withanammoniumsaltoftheVenturelloanion{PO4[WO(O2)2]4}3– [25]. Thecatalystformedwasusedfortheepoxidationofanumberofterpenes,andhigh yieldsandgoodselectivityofthecorrespondingepoxideswereachieved.

Inadifferentstrategy,siliceousmesoporousMCM-41basedcatalystswereprepared.Quaternaryammoniumsaltsandalkylphosphoramides,respectively,were graftedontoMCM-41andthematerialobtainedwastreatedwithtungsticacidfor thepreparationofheterogeneoustungstatecatalysts.Thecatalystswereemployedin theepoxidationofsimplecyclicalkeneswithaqueoushydrogenperoxide(35%)as theterminaloxidant,howeverconversionandselectivityfortheepoxideformedwas ratherlow.Inthecaseofcyclohexene,theselectivitycouldbeimprovedbytheadditionofpyridine.Thelowtungstenleaching(<2%)iscertainlyadvantageoususing thesecatalysts.

Aparticularlyinterestingsystemfortheepoxidationofpropylenetopropylene oxide,workingunderpseudo-heterogeneousconditions,wasreportedbyZuweiand 27 2.4MolybdenumandTungsten-catalyzedEpoxidations

coworkers[26].Thecatalyst,whichwasbasedontheVenturelloanioncombined withlong-chainalkylpyridiniumcations,showeduniquesolubilityproperties.Inthe presenceofhydrogenperoxidethecatalystwasfullysolubleinthesolvent,a4:3 mixtureoftolueneandtributylphosphate,butwhennomoreoxidantremained,the tungstencatalystprecipitatedandcouldsimplyberemovedfromthereactionmixture(Scheme2.5).Furthermore,thisepoxidationsystemwascombinedwiththe 2-ethylanthraquinone(EAQ)/2-ethylanthrahydroquinone(EAHQ)processforhydrogenperoxideformation(Scheme2.6),andgoodconversionandselectivitywereobtainedforpropyleneoxideinthreeconsecutivecycles.Thecatalystwasrecoveredby centrifugationinbetweeneverycycle,anduseddirectlyinthenextreaction.

Historically,theinterestinusingmanganesecomplexesascatalystsfortheepoxidationofalkenescomesfrombiologicallyrelevantoxidativemanganeseporphyrins. Theterminaloxidantscompatiblewithmanganeseporphyrinswereinitiallyrestrictedtoiodosylbenzene,sodiumhypochlorite,alkylperoxidesandhydroperoxides,

2.5
Manganese-catalyzedEpoxidations
Scheme2.6
Scheme2.5

N-oxides,KHSO5 andoxaziridines.Molecularoxygencanalsobeusedinthepresenceofanelectronsource.Theuseofhydrogenperoxideoftenresultsinoxidative decompositionofthecatalystduetothepotencyofthisoxidant.However,theintroductionofchlorinatedporphyrins(1) (Scheme2.7)allowedforhydrogenperoxideto beusedastheterminaloxidant[27].Thesecatalysts,discoveredbyMansuyandcoworkers,weredemonstratedtoresistdecomposition,andwhenusedtogetherwith imidazoleorimidazoliumcarboxylatesasadditives,efficientepoxidationofalkenes wereachieved(Table2.3,entries1and2).

Tab.2.3 Manganese-porphyrincatalyzedepoxidationof cis-cycloocteneusingaqueousH2O2 (30%)

EntryCatalystAdditiveTemp.( C)Time(min)Yield(%)

1 1 2.5mol%imidazole(0.6equiv.)204590

2 1 0.5mol% N-hexyl-imidazole(0.5mol%)015100 benzoicacid(0.5mol%)

3 2 0.1mol%–03100

Theobservationthatimidazolesandcarboxylicacidssignificantlyimprovedthe epoxidationreactionledtothedevelopmentofMn-porphyrincomplexescontaining thesegroupscovalentlylinkedtotheporphyrinplatformasattachedpendantarms (2)[28].Whenthesecatalystswereemployedintheepoxidationofsimplealkenes withhydrogenperoxide,enhancedoxidationratesincombinationwithperfectproductselectivitywasobtained(Table2.3,entry3).Incontrasttoepoxidationscatalyzed byothermetals,theMn-porphyrinsystemyieldsproductswithscrambledstereochemistry.Forexample,theepoxidationof cis-stilbeneusingMn(TPP)Cl(TPP= tetraphenylporphyrin)andiodosylbenzene,generated cis- and trans-stilbeneoxidein aratioof35:65.Thelowstereospecificitywasimprovedusingheterocyclicadditives, suchaspyridinesorimidazoles.Theepoxidationsystemusinghydrogenperoxideas theterminaloxidant,wasreportedtobestereospecificfor cis-alkenes,whereas transalkenesarepoorsubstrateswiththesecatalysts.

Abreakthroughformanganeseepoxidationcatalystscameatthebeginningofthe 1990swhenthegroupsofJacobsenandKatsukisimultaneouslydiscoveredthat

Scheme2.7

chiralMn-salencomplexes(3)catalyzedtheenantioselectiveformationofepoxides [29–31].Thediscoverythatsimplenon-chiralMn-salencomplexescouldbeusedas catalystsforalkeneepoxidationhadalreadybeenestablishedabout5yearsearlier, andthetypicalterminaloxidantsusedwiththesecatalystscloselyresemblethoseof theporphyrinsystems[32].Incontrasttothetitanium-catalyzedasymmetricepoxidationdiscoveredbySharpless,theMn-salensystemdoesnotrequirepre-coordinationofthealkenesubstratetothecatalyst,henceunfunctionalizedalkenescouldefficientlyandselectivelybeoxidized.Theenantioselectivitywasshowntobehighly sensitivetowardsthesubstitutionpatternofthealkenesubstrate.Excellentselectivity(>90%ee)wasobtainedforaryl-oralkynyl-substitutedterminal-, cis-di-substituted-andtri-substitutedalkenes,whereas trans-di-substitutedalkeneswereepoxidizedwithlowratesandlowee(<40%).ThetypicaloxidantusedinMn-salenasymmetricepoxidationsisNaOCl,however,recentworkbythegroupsofBerkesseland Katsukihaveopenedupthepossibilityofhydrogenperoxidebeingemployed[33,34]. Berkesselfoundthatimidazoleadditiveswerecrucialfortheformationoftheactive oxo-manganeseintermediates,andanMn-catalyst(4)basedonasalenligandincorporatingapendantimidazolewasusedfortheasymmetricepoxidationusingaqueousH2O2.Yieldsandenantioselectivitydidnot,however,reachthelevelsobtained whenotheroxidantswereused.IntheworkofKatsuki,imidazolewaspresentasan additiveinthereactionmixturecontainingastericallyhinderedMn-salencatalyst (5)(Scheme2.8).Inthisway,highenantioselectivitycouldbeobtained,althoughthe catalyticactivitywasnotaseffective,andtheepoxideswereformedinlowyields.

Considerablybettereevaluesandyieldswereobtainedwhenammoniumacetate (20mol%)wasusedasanadditivewiththeJacobsen-catalyst(3)[35].AmajorproblemwiththeuseofhydrogenperoxideintheMn-salencatalyzedreactionsisassociatedwithcatalystdeactivationduetothepresenceofwater.Anhydroushydrogen peroxide,eitherintheformoftheurea/H2O2 adductorinthetriphenylphosphine oxide/H2O2 adduct,havebeenemployedtocircumventthisproblem[36,37]. AlthoughepoxideyieldandenantioselectivityareintherangeofwhatcanbeobtainedusingNaOCl,thecatalystloadingissignificantlyhigher,andtheremovalof ureaorPh3POconstituteanadditionalproblem.

Apartfromporphyrinandsalencatalysts,manganesecomplexesof N-alkylated 1,4,7-triazacyclononane(e.g.,TMTACN, 6)havebeenfoundtocatalyzetheepoxida-

Another random document with no related content on Scribd:

damaged disk or other medium, a computer virus, or computer codes that damage or cannot be read by your equipment.

1.F.2. LIMITED WARRANTY, DISCLAIMER OF DAMAGES - Except for the “Right of Replacement or Refund” described in paragraph 1.F.3, the Project Gutenberg Literary Archive Foundation, the owner of the Project Gutenberg™ trademark, and any other party distributing a Project Gutenberg™ electronic work under this agreement, disclaim all liability to you for damages, costs and expenses, including legal fees. YOU AGREE THAT YOU HAVE NO REMEDIES FOR NEGLIGENCE, STRICT LIABILITY, BREACH OF WARRANTY OR BREACH OF CONTRACT EXCEPT THOSE PROVIDED IN PARAGRAPH

1.F.3. YOU AGREE THAT THE FOUNDATION, THE TRADEMARK OWNER, AND ANY DISTRIBUTOR UNDER THIS AGREEMENT WILL NOT BE LIABLE TO YOU FOR ACTUAL, DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE OR INCIDENTAL DAMAGES EVEN IF YOU GIVE NOTICE OF THE POSSIBILITY OF SUCH DAMAGE.

1.F.3. LIMITED RIGHT OF REPLACEMENT OR REFUND - If you discover a defect in this electronic work within 90 days of receiving it, you can receive a refund of the money (if any) you paid for it by sending a written explanation to the person you received the work from. If you received the work on a physical medium, you must return the medium with your written explanation. The person or entity that provided you with the defective work may elect to provide a replacement copy in lieu of a refund. If you received the work electronically, the person or entity providing it to you may choose to give you a second opportunity to receive the work electronically in lieu of a refund. If the second copy is also defective, you may demand a refund in writing without further opportunities to fix the problem.

1.F.4. Except for the limited right of replacement or refund set forth in paragraph 1.F.3, this work is provided to you ‘AS-IS’, WITH NO OTHER WARRANTIES OF ANY KIND, EXPRESS OR IMPLIED,

INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PURPOSE.

1.F.5. Some states do not allow disclaimers of certain implied warranties or the exclusion or limitation of certain types of damages. If any disclaimer or limitation set forth in this agreement violates the law of the state applicable to this agreement, the agreement shall be interpreted to make the maximum disclaimer or limitation permitted by the applicable state law. The invalidity or unenforceability of any provision of this agreement shall not void the remaining provisions.

1.F.6. INDEMNITY - You agree to indemnify and hold the Foundation, the trademark owner, any agent or employee of the Foundation, anyone providing copies of Project Gutenberg™ electronic works in accordance with this agreement, and any volunteers associated with the production, promotion and distribution of Project Gutenberg™ electronic works, harmless from all liability, costs and expenses, including legal fees, that arise directly or indirectly from any of the following which you do or cause to occur: (a) distribution of this or any Project Gutenberg™ work, (b) alteration, modification, or additions or deletions to any Project Gutenberg™ work, and (c) any Defect you cause.

Section 2. Information about the Mission of Project Gutenberg™

Project Gutenberg™ is synonymous with the free distribution of electronic works in formats readable by the widest variety of computers including obsolete, old, middle-aged and new computers. It exists because of the efforts of hundreds of volunteers and donations from people in all walks of life.

Volunteers and financial support to provide volunteers with the assistance they need are critical to reaching Project Gutenberg™’s goals and ensuring that the Project Gutenberg™ collection will

remain freely available for generations to come. In 2001, the Project Gutenberg Literary Archive Foundation was created to provide a secure and permanent future for Project Gutenberg™ and future generations. To learn more about the Project Gutenberg Literary Archive Foundation and how your efforts and donations can help, see Sections 3 and 4 and the Foundation information page at www.gutenberg.org.

Section 3. Information about the Project Gutenberg Literary Archive Foundation

The Project Gutenberg Literary Archive Foundation is a non-profit 501(c)(3) educational corporation organized under the laws of the state of Mississippi and granted tax exempt status by the Internal Revenue Service. The Foundation’s EIN or federal tax identification number is 64-6221541. Contributions to the Project Gutenberg Literary Archive Foundation are tax deductible to the full extent permitted by U.S. federal laws and your state’s laws.

The Foundation’s business office is located at 809 North 1500 West, Salt Lake City, UT 84116, (801) 596-1887. Email contact links and up to date contact information can be found at the Foundation’s website and official page at www.gutenberg.org/contact

Section 4. Information about Donations to the Project Gutenberg Literary Archive Foundation

Project Gutenberg™ depends upon and cannot survive without widespread public support and donations to carry out its mission of increasing the number of public domain and licensed works that can be freely distributed in machine-readable form accessible by the widest array of equipment including outdated equipment. Many

small donations ($1 to $5,000) are particularly important to maintaining tax exempt status with the IRS.

The Foundation is committed to complying with the laws regulating charities and charitable donations in all 50 states of the United States. Compliance requirements are not uniform and it takes a considerable effort, much paperwork and many fees to meet and keep up with these requirements. We do not solicit donations in locations where we have not received written confirmation of compliance. To SEND DONATIONS or determine the status of compliance for any particular state visit www.gutenberg.org/donate.

While we cannot and do not solicit contributions from states where we have not met the solicitation requirements, we know of no prohibition against accepting unsolicited donations from donors in such states who approach us with offers to donate.

International donations are gratefully accepted, but we cannot make any statements concerning tax treatment of donations received from outside the United States. U.S. laws alone swamp our small staff.

Please check the Project Gutenberg web pages for current donation methods and addresses. Donations are accepted in a number of other ways including checks, online payments and credit card donations. To donate, please visit: www.gutenberg.org/donate.

Section 5. General Information About Project Gutenberg™ electronic works

Professor Michael S. Hart was the originator of the Project Gutenberg™ concept of a library of electronic works that could be freely shared with anyone. For forty years, he produced and distributed Project Gutenberg™ eBooks with only a loose network of volunteer support.

Project Gutenberg™ eBooks are often created from several printed editions, all of which are confirmed as not protected by copyright in the U.S. unless a copyright notice is included. Thus, we do not necessarily keep eBooks in compliance with any particular paper edition.

Most people start at our website which has the main PG search facility: www.gutenberg.org.

This website includes information about Project Gutenberg™, including how to make donations to the Project Gutenberg Literary Archive Foundation, how to help produce our new eBooks, and how to subscribe to our email newsletter to hear about new eBooks.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.