J. Walraven · fib Model Code for Concrete Structures 2010: mastering challenges and encountering new ones
– During the work on fib MC 2010, a number of areas were found where consistent information was lacking, or no mature ideas had been developed at all. – The exercise of writing a new Model Code made sure that structural engineering is an area that is still showing significant evolution. References
Fig. 8. Part of a demountable office building in Delft, The Netherlands
Fig. 9. Priority of dismantlement for optimum flexibility
such concretes would erroneously give preference to the conventional material.
3.10 Dismantlement The chapter entitled “Dismantlement” in fib MC 2010 is relatively short. It marks the end of service life of a concrete structure and for that reason alone its implementation is justified in a document that tends to stimulate design for service life. The chapter could just as well have been called “Demolition”, but the term “Dismantlement” was preferred since it suggests a controlled process, which encourages designers to think about the end of service life right from an early stage of design. It is hoped that this might inspire the development of concepts for demountable and adaptable structures (Figs. 8 and 9). For further development, cooperation between structural engineers and architects might be fruitful.
4
1. Model Code 2010, vols. 1 & 2, final draft, fib – Bulletins 65 & 55, fib, Lausanne, www.fib-international.org 2. Walraven, J. C., Bigaj, A. J., The 2010 fib Model Code for Concrete Structures: a new approach to structural engineering. Structural Concrete, Vol. 12, Nr. 3, pp. 139–147. 3. Muttoni, A., Fernández Ruiz, M., The levels-of-approximation approach in MC 2010: application to punching shear provisions. Structural Concrete 13 (2012), No. 1, pp. 32–41. 4. Fennis, S.: Design of Ecological Concrete by Particle Packing Optimization. PhD thesis, Delft University of Technology, 2011. 5. Bazant, Z. P., Hubler, M. H., Yu, Q.: Pervasiveness of Excessive Segmental Bridge Deflections: Wake-Up Call for Creep. ACI Structural Journal, Nov–Dec 2011, pp. 766–774. 6. Schiessl, P.: Influence of cracks on the durability of reinforced and prestressed concrete members. Deutscher Ausschuss für Stahlbeton, No. 370, Beuth Verlag, Berlin, 1986 (in German). 7. Leonhardt, F., Walther, R.: Shear tests on simply supported reinforced concrete beams with and without shear reinforcement for the determination of the shear resistance and the upper limit of the shear stress. Deutscher Ausschuss für Stahlbeton, No. 151, Ernst & Sohn, Berlin, 1962 (in German). 8. Discussion of the paper by Kani, G. N. J.: The Riddle of Shear Failure and Its Solution. Journal of the ACI, Dec 1964, pp. 1587–1637 9. Kani, M. W., Huggins, M. W., Wittkopp, R. R.: Kani on Shear in Reinforced Concrete. University of Toronto, Department of Civil Engineering, 1979, 225 pp. 10. Ockleston, A. J.: Load tests on a three-storey reinforced concrete building in Johannesburg. The Structural Engineer, vol. 33, 1955, pp. 304–322. 11. Long, A. E., Basheer, P. A. M., Taylor, S. E., Rankin, B., Kirkpatrick, J.: Sustainable Bridge Construction Through Innovative Advances. Proc. of ICE Bridge Engineering, vol. 161, No. 4, Dec 2008, pp. 183–188. 12. Tailor, S. E., Rankin, B., Cleland, D. J., Kirkpatrick, J.: Serviceability of Bridge Deck Slabs with Arching Action. ACI Journal, Jan-Feb 2007, pp. 39–48. 13. Yang, Y.: Mechanical properties of steel fibre reinforced concrete tested by statically determinate round panel tests. Internal report, TU Delft, Section of Concrete Structures, 2008. 14. Voo, Y. L., Foster, S. J.: Characteristics of ultra-high performance ductile concrete and its impact on sustainable construction. IES Journal, Part A, Civil & Structural Engineering, vol. 3, No. 3, Aug 2010, pp. 168–187.
Conclusions
– fib MC 2010 offers modernized design recommendations for many aspects of the design and analysis of concrete structures. – fib MC 2010 not only treats aspects of design and analysis, but also offers a more general philosophy, based on service life design.
Joost Walraven Delft University of Technology Faculty of Civil Engineering Section GCT PO Box 5048 2600 GA Delft, The Netherlands j.c.walraven@tudelft.nl
Structural Concrete 14 (2013), No. 1
9