Fibonacci y el número áureo en el Prisma Combinatorio

Page 1

FIBONACCI Y EL NUMERO AUREO EN EL PRISMA COMBINATORIO ∆𝒌

∆𝟎

(𝒇𝒌𝒏−𝟐 + 𝒇𝒌𝒏−𝟏 ) + 𝒇𝒌−𝟏 = 𝒇𝒌𝒏 𝒏 ф𝒌𝒏 =

𝒏+𝒌−𝟏−𝒊 𝒏−𝟏−𝒊 )( ) 𝒌 𝒊 (𝒏−𝟐)/𝟐 𝒏+𝒌−𝟐−𝒊 𝒏−𝟐−𝒊 ∑𝒊=𝟎 ( )( ) 𝒊 𝒌 (𝒏−𝟐)/𝟐

𝒇𝒌𝒏 𝒇𝒌𝒏−𝟏

=

∑𝒊=𝟎

𝝓𝒌 = 𝒍𝒊𝒎 𝒏→∞

(

𝒇𝒌𝒏+𝟏 𝒇𝒌𝒏

=𝝓

𝒙

𝑭𝒌 (𝒙) = (𝟏−𝒙−𝒙𝟐 )𝒌+𝟏 𝒇𝒌𝒏 =

𝟏 √𝟓

∑𝒏𝒊=𝟏 𝒇𝒌−𝟏 (𝝓𝒏−𝒊+𝟏 − 𝝋𝒏−𝒊+𝟏 ) 𝒊

(𝒇𝟎𝒏−𝟐 + 𝒇𝟎𝒏−𝟏 ) = 𝒇𝟎𝒏 𝒏−𝟏−𝒊 ) 𝒊 (𝒏−𝟐)/𝟐 𝒏−𝟐−𝒊 ∑𝒊=𝟎 ( ) 𝒊 (𝒏−𝟐)/𝟐

𝒇𝟎

ф𝟎𝒏 = 𝒇𝟎 𝒏 = 𝒏−𝟏

𝝓 = 𝒍𝒊𝒎

∑𝒊=𝟎

(

𝒇𝟎𝒏+𝟏

𝟎 𝒏→∞ 𝒇𝒏

𝒙

𝑭𝟎 (𝒙) = 𝟏−𝒙−𝒙𝟐 𝒇𝟎𝒏 =

𝟏 √𝟓

(𝝓𝒏 − 𝝋𝒏 )

Enrique R. Acosta R. 2019


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Fibonacci y el número áureo en el Prisma Combinatorio by enrique acosta - Issuu