
https://ebookmass.com/product/waste-to-resource-systemdesign-for-low-carbon-circular-economy-siming-you/

Instant digital products (PDF, ePub, MOBI) ready for you
Download now and discover formats that fit your needs...
Circular
Economy: From Waste Reduction to Value Creation
Karen Delchet-Cochet
https://ebookmass.com/product/circular-economy-from-waste-reductionto-value-creation-karen-delchet-cochet/
ebookmass.com
Waste Valorisation: Waste Streams in a Circular Economy
Carol
Sze Ki Lin
https://ebookmass.com/product/waste-valorisation-waste-streams-in-acircular-economy-carol-sze-ki-lin/
ebookmass.com
System on Chip Interfaces for Low Power Design 1st Edition
Mishra
https://ebookmass.com/product/system-on-chip-interfaces-for-low-powerdesign-1st-edition-mishra/
ebookmass.com
Why Law Enforcement Organizations Fail: Mapping the Organizational Fault Lines in Policing, Second Edition
https://ebookmass.com/product/why-law-enforcement-organizations-failmapping-the-organizational-fault-lines-in-policing-second-edition/
ebookmass.com




Contention and Other Frontier Stories Hazel Rumney
https://ebookmass.com/product/contention-and-other-frontier-storieshazel-rumney/
ebookmass.com
Histologie : Zytologie, Histologie und mikroskopische Anatomie : das Lehrbuch 5. Auflage. Edition Deller
https://ebookmass.com/product/histologie-zytologie-histologie-undmikroskopische-anatomie-das-lehrbuch-5-auflage-edition-deller/
ebookmass.com
Mending the Baron's Sins: A Historical Regency Romance Novel Meghan Sloan
https://ebookmass.com/product/mending-the-barons-sins-a-historicalregency-romance-novel-meghan-sloan/
ebookmass.com
‘Stretching’ Exercises for Qualitative Researchers 4th Edition, (Ebook PDF)
https://ebookmass.com/product/stretching-exercises-for-qualitativeresearchers-4th-edition-ebook-pdf/
ebookmass.com
Popular Music, Critique and Manic Street Preachers 1st ed. Edition Mathijs Peters
https://ebookmass.com/product/popular-music-critique-and-manic-streetpreachers-1st-ed-edition-mathijs-peters/
ebookmass.com





Introducing .NET MAUI: Build and Deploy Cross-platform Applications Using C# and .NET Multi-platform App UI 1st Edition Shaun
Lawrence
https://ebookmass.com/product/introducing-net-maui-build-and-deploycross-platform-applications-using-c-and-net-multi-platform-app-ui-1stedition-shaun-lawrence/
ebookmass.com


WASTE-TO-RESOURCE SYSTEMDESIGNFOR LOW-CARBON CIRCULARECONOMY
Thispageintentionallyleftblank
WASTE-TO-RESOURCE SYSTEMDESIGNFOR
CIRCULARECONOMY
SIMINGYOU
JamesWattSchoolofEngineering,UniversityofGlasgow,Glasgow,UnitedKingdom
Elsevier Radarweg29,POBox211,1000AEAmsterdam,Netherlands TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates
Copyright 2022ElsevierInc.Allrightsreserved.
Nopartofthispublicationmaybereproducedortransmittedinanyformorbyany means,electronicormechanical,includingphotocopying,recording,orany informationstorageandretrievalsystem,withoutpermissioninwritingfromthe publisher.Detailsonhowtoseekpermission,furtherinformationaboutthe Publisher’spermissionspoliciesandourarrangementswithorganizationssuchasthe CopyrightClearanceCenterandtheCopyrightLicensingAgency,canbefoundatour website: www.elsevier.com/permissions .
Thisbookandtheindividualcontributionscontainedinitareprotectedunder copyrightbythePublisher(otherthanasmaybenotedherein).
Notices
Knowledgeandbestpracticeinthis fieldareconstantlychanging.Asnewresearch andexperiencebroadenourunderstanding,changesinresearchmethods, professionalpractices,ormedicaltreatmentmaybecomenecessary.
Practitionersandresearchersmustalwaysrelyontheirownexperienceand knowledgeinevaluatingandusinganyinformation,methods,compounds,or experimentsdescribedherein.Inusingsuchinformationormethodstheyshouldbe mindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhomthey haveaprofessionalresponsibility.
Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,or editors,assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasa matterofproductsliability,negligenceorotherwise,orfromanyuseoroperationof anymethods,products,instructions,orideascontainedinthematerialherein.
LibraryofCongressCataloging-in-PublicationData
AcatalogrecordforthisbookisavailablefromtheLibraryofCongress
BritishLibraryCataloguing-in-PublicationData
AcataloguerecordforthisbookisavailablefromtheBritishLibrary
ISBN:978-0-12-822681-0
ForinformationonallElsevierpublicationsvisitourwebsiteat https://www.elsevier.com/books-and-journals
Publisher: SusanDennis
EditorialProjectManager: HilaryCarr
ProductionProjectManager: R.VijayBharath
CoverDesigner: ChristianJ.Bilbow
TypesetbyTNQTechnologies
Thispageintentionallyleftblank
Thewastechallenge
Abstract
Thischaptergivesanoverviewoftheoverallwastemanagement challengeandhighlightstheimportanceofsustainablewastemanagement.Itexplainstheexistingwastemanagementhierarchystrategyand therolesofwaste-to-resourcedevelopmentinmanagingthewastethat cannotbehandledbythe “reduce,reuse,andrecycle” (3R)methods.It alsointroducesthepotentialfactorsthatneedtobeconsidereduponthe designofwaste-to-resourcedevelopmentwithaspecialfocusonpublic engagement,economics,andenvironmentalimpacts.Finally,itpresents asummaryofthescopeandcontentarrangementofthebook.
Keywords: Climatechange;Sustainabledevelopmentgoals;Sustainable wastemanagement;Wastemanagementhierarchy;Waste-to-resource technologies;Wholesystemandsupplychaindesign.
1.Introduction
Sustainablewastemanagement(SWM)isaworldwidechallengeandiscallingforeffectiveactionsunderthesocioeconomic andenvironmentalpressuresofenormouswasteproduction.The ratesofmunicipalsolidwaste(MSW)generationindeveloped anddevelopingcountrieswerereportedtobe521.95 759.2kg perpersonperyear(kpc)and109.5 525.6kpc,respectively (Karaketal.,2012).About2.01billiontonnesofMSWaregeneratedannually,anditisestimatedthatatleast33%ofthegenerationarenotmanagedinanenvironmentallysafemanner(Kaza etal.,2018).Inviewofthecontinuouseconomicgrowthandpopulationexpansion,thewastegenerationwillkeepincreasingand itisexpectedthat2.2billiontonnesofMSWwillbegeneratedper annumby2025worldwide(Hoornweg&Bhada-Tata,2012).The increasingpile-upofwasteposearealisticthreattotheenvironment,ecosystems,andhumanwelfareifproperwastemanagementpracticesandfacilitiesarenotinplace.
Theclimatechangecrisisiscloselyassociatedwithwastegenerationmanagementinvariousaspects,i.e.,methaneemissions oforganicwasteland fill,emissionabatementviawastereuse, recycling,andreduction,renewableandlowcarbonresource
recoveryfromwaste,emissionsratedtothetransportationof waste,etc.(Ackerman,2000).Thecarbonsavingpotentialhas becomeoneofthemostsigni ficantfactorsthathasbeenconsidereduponthedesignofSWMapproaches.Ontheotherhand, climatechangecanalsoinfluencethepracticingandconsequencesofSWMwithchangesinglobaltemperature,annualprecipitation,andsealevelsrenderingconventionalwaste managementpracticeslesseffective.Forexample,theriseintemperaturemayincreasethe fireriskfromcombustiblewaste(e.g., composting)atopensites,morefrequentextremeweatherconditionsmayincreasethehealthandsafetyrisksofwasteoperators whoimplementwastemanagement,andtheriseinthesealevel posesariskofseawaterintrusiontocoastalland fillsandwashing away floatingwaste,leadingtomarinewaste(e.g.,plastics)pollution(Bebb&Kersey,2003).
SWMisessentialtoachievingtheUnitedNations ’ sustainable developmentgoals(SDGs)andiscloselyrelatedtosuchSDGsas DecentWorkandEconomicGrowth(SDG8),SustainableCities andCommunities(SDG11),andSustainableConsumptionand Production(SDG12)(Robertetal.,2005).Thisisreflectedbyits signi ficantsocioeconomicandenvironmentalconsequences. Wastemismanagementcancauseseriousenvironmentalissues suchasheavymetalpollutioninecosystems(e.g.,water,plants, andsoil)andmarineplasticpollutionvia fielddumping,and pollutant(e.g.,CO,CO2,SO,NO,particulatematters,etc.)emissionsviaopen fieldburning(Ferronato&Torretta,2019).Aslocal andglobalpopulationscontinuetoexpand,soaswilltherequirementsandstrainonwasteinfrastructure,meaningthecostsof wastemismanagementwillincrease.Itwaspredictedthatthe costsforSWMgloballywouldincreasefromUS$205.4billionper yeartoaroundUS$375.5billionin2025(Hoornweg&BhadaTata,2012).
Ahierarchicalstrategyhasbeenproposedandimplemented forpromotingSWM(See Fig.1.1).Onthetopofthehierarchy, the “reduce,reuse,andrecycle” (3R)methodsareregardedasa long-termstrategytoreducewastepollutiontowardthetransition fromatraditionallineareconomytoacircularone(Gengetal., 2019).Speci fically,the3Rstrategyservestoprotecttheenvironment,promotesustainabledevelopment,andimproveresource utilizationefficiency,andaimstoachieveaclosedresourceloop withinthecirculareconomymodelbylesseningthepressureon thestockofresources(Ioannidisetal.,2021).However,consideringthevariedcompositionandvalueofwasteaswellasthe

economicprofitabilityrequirementofwastemanagement,the3R strategyaloneisinsufficienttocurbtherapidwasteaccumulation anditsincreasingthreattotheenvironment,ecosystems,andsocieties,especiallygivenlimitedwastemanagementinfrastructure andlackofplansactuallyinplace.Complementarymeasuresare necessarytohandlethewastethatisnotcoveredbythe3Rstrategyandachieveresource(energyandchemicals)recoveryfrom wasteandend-of-lifedisposal.Thesemeasuresarelessfavored ascomparedto3Rinthewastemanagementhierarchybutare essentialcomponentsofthewholeSWMchain(Lombardietal., 2015).
Conventionalpracticesforhandlingwastethatisnotreduceable,reusable,orrecyclablerelyonland fillandincineration whicharestillplayingamajorroleinsomepartsoftheworld. Globally,around66.6%ofMSWwasdisposedofinopendumpsitesorland fills(Fischedicketal.,2014).AccordingtotheUKgovernmentstatistics,land fillsarethesecondmostusedwaste treatmentintheUnitedKingdom,with24.4%ofwastebeing disposedofbyland fillsin2016(DEFRA,2021).Landfillislosing itsappealduetoadverseenvironmentalimpacts.Forexample, inEuropeandtheUnitedStates,land fillsaccountfor20%of anthropogenicCH4 emissions,andarethesecondandthird largestCH4 emissionsources,respectively(Mønsteretal.,2019). Thisnumberis8%,alsononnegligible,fromaglobalperspective (Blancoetal.,2014).Theland fillleachatecontainingpollutants likeheavymetals,organic,xenobiotics,andinorganicposesa contaminationrisktothesoilandgroundwaterinnonsanitary land fillsanduncontrolleddumpsites(Negietal.,2020).Air
surroundingland fillsitescanaffectlocalcommunitiesasthe smellisunpleasantandthesoilintheareamaybesaturated withchemicalsorhazardoussubstances.TheEuropeanCommissionproposedtophaseoutland fillingby2025forrecyclablewaste (e.g.,plastics,paper,metals,glass,andbiowaste)innonhazardous wasteland fillsandreducetheland filledmunicipalwasteto10% orlessofthetotalamountofwastegeneratedby2035(EC,2018).
Waste-to-energytechnologiesplayacriticalroleindiverting wastefromdirectland fill.AccordingtotheInternationalEnergy Agency,waste-to-energysystemsareoneofthepromisingsolutionstowardalowcarbonfutureviathedecarbonizationofenergyproductionwhichisthedominantcontributorto greenhousegasemissions(IEA,2013).Wasteincinerationisbeing widelyemployedinbothdevelopedanddevelopingcountries. Thereareabout1179MSWincinerationplantsaroundtheworld withatotalcapacityover700,000tonnesperdayandmostofthe plantsareintheEuropeanUnion,theUnitedStates,andEastAsia (Luetal.,2017).Incineratorsusingenergyrecoverytechniques havebeenusedinSWMdevelopmenttohelprecoverelectricity and/orheatfromwastewhilesimultaneouslyreducingthemass andvolumeofwastesenttoland fills.Sometypicaladvantages oftheincinerationtechnologiesincludetheeffectivereduction ofwastevolume(by90%)andmass(by75%),eliminationofpathogens, flexibilityinfeedstockselection,andenergyproduction (Lino&Ismail,2018).Theirdisadvantagesincludehighcapital andoperationalcosts,significantpollutantemissions,and requiringmandatorytreatmentof fluegas(Gabbaretal.,2018). Additionally,thereexistswidespreadnegativepublicperception aboutitsemissionsofpollutantssuchasdioxincarcinogen,which needstobeabatedtoenhancethepublicacceptanceofthetechnology(Makarichietal.,2018).
Alternativewaste-to-energytechnologieshavebeendevelopedtoachievelowerpollutantemissionsortoimprovetheenergyrecoveryfromsomespecifictypesofwaste.Forexample, gasi ficationisathermochemicalprocesswherecarbonaceous wastematerialsareconvertedintosynthesisgasorsyngas(a mixtureofH2,CO,andCH4 mainly)underanoxygen-de ficient condition.Thesyngascanbefurthercombustedtogenerate heatorelectricityorupgradedtoproducevalue-addedchemicals (e.g.,purehydrogen).AnaerobicdigestionisabiochemicalprocesswhereorganicwasteisdecomposedtoproduceCH4,CO2, anddigestateundertheeffectofanaerobicmicroorganisms.As comparedtogasification,anaerobicdigestionislessenergyintensivebutsuffersfromtheweaknessoflowproductivity.
Recentdevelopmenthasbeenfocusedonconvertingwasteinto value-addedchemicalsforapplicationsintheindustrialortransportationsectors,suchasbiohydrogen,biomethane,bioethanol, biodiesel,biochar,etc.(bio-isusedtoindicatethechemicalsare producedfromwastebiomass).Asigni ficantamountofthese chemicalshavebeenproducedoutofconventionalfossilfuel basedchemicalprocesses.Displacingthechemicalswiththe onesderivedfromwastebiomasswillleadtocarbonabatement andfacilitatethedevelopmentofthecirculareconomyconcept. Ingeneral,theefficienciesofthewaste-to-resource(resource denotesenergyandchemicals)technologiesdependonthetypes ofwastefeedstock,processconditions,andselectionoftechnologicalroutes.Thevarietyoftechnologiesthatrecovervaluableresourcesfromwasteareexpectedtoplayanincreasingly importantroleinalleviatingthechallengesofSWMandclimate change.
Thedesignofwaste-to-resourcesystemsneedstoconsidera varietyoffactorsbeyondthetechnology,andalsoimportantly itsrelationshipwiththe3Rstrategy.Specifically,thewaste-toresourceapproachneedstoworkintandemwiththe3Rstrategy, whichneedstobefurthersupportedbyeducationalinitiativesto enhancepublicawarenessfortacklingthechallenges.Meanwhile,reduced,reused,recycled,andrecoveredresourcesthat preciselymatchthesocioeconomic,energy,andenvironmental demandsofend-userswillacceleratetheuptakeofsuchinitiativesandleadtohigherpublicengagement.Successfuladdition ofthewaste-to-resourcetechnologiesasatierinthe3Rhierarchy isdependentonunderstandingoflocalcontext.Thiswillunderpinthedevelopmentofacomprehensiveandsystematichierarchicalwastemanagementroadmapthatclearlyde finesthe relativerolesandeffectsofthemeasuresandincludesthesteps ormilestonesneededtoachievewastepollutionreduction.
Thesuccessofsuchahierarchicalstrategyiscontingentupon theparticipationandcooperationofallthestakeholders(i.e.,policymakers,investors,andconsumers)alongtheSWMchainaswell aseffectivepolicysupport.Thismeansthatthedesignofwaste-toresourcesystemsneedstobegaugedinrelationtosocioeconomic andenvironmentalimpactsthataresomeofthemostsignificant indicesforevaluatingthefeasibilityofthesystems.Theimplementationofawaste-to-resourcesystemissubjecttoitssocialacceptabilityandbenefits,whichisdirectlyreflectedbyitsabilitytocreate jobsandaffectincome,andindirectlybyitseffectsonequalityand welfaredevelopmentoflocalcommunities.Theenvironmental impactsarelinkedtothesystem’sabilitytotacklethecrisesof fossilfueldepletionandglobalclimatechange,aswellasits
complicationwiththedevelopmentofassociatedecosystems.The economicfeasibilityofwaste-to-resourcedevelopmentcritically determinesitssustainabilityanddependson(alsoaffects)the formulationofgovernmentalsubsidies.Althoughthedifferent stakeholdershavedifferentpreferencesontheimpacts,itisimportanttoconsiderallthethreeimpactsduringthedecisionmakingprocessforoptimalplanning.
Thedesignofthesupplychainandlogisticsofwastemanagementalsocriticallydeterminesthefeasibilityandimpactsof waste-to-resourcesystemsduetothegeographicaldistribution ofwasteandconsumerzones,weathervariability,andthepotentialseasonalityofwastefeedstocks(Chaplin-Krameretal.,2017; Fieldetal.,2018).Ithasbeenshownthatthewastecollection andtransportationprocessaccountsforthesignificanteconomic factorforwaste-to-energydevelopment(Ascheretal.,2020). Moreover,thevariedcompositionsandphysicochemicalpropertiesofwasteimplythecomplexityofsystemdesign.Ontheone hand,forthesametypeofwaste,therearedifferenttechnologies availableforprocessingandsubsequentproductupgrading, dependingonthetypesoftargetedend-products(e.g.,electricity, heat,liquidtransportfuel,biochar,etc.).Ontheotherhand,for thesametypeofend-product,multipletechnologiesandwaste feedstocksareavailableuponthedesignofthesystem.Hence, therearevastpossibilitiesofwaste-to-resourcesystemconfigurationsintermsofthechoicesofwastefeedstocktypes,processing technologies,andend-producttypes.Thisaddsacomplicationof spatialandtemporaldimensionstotheassessmentofthepotentialofbioresources(definedastheresourcesrecoveredfrom wastebiomassinthisbook),andtransportationnetworkand modes,distance,andintermodal-transportationbecomesimportantparametersuponthesupplychainandlogisticsdesign.
Tounderstandthepotentialcontributionofwaste-to-resource toourenvironment,society,andecosystems,itisessentialto developasystematicdatabaseabouttheeconomicandenvironmentalimpactsofwaste-to-resourcedevelopmentunderafeasible rangeofwaste-to-resourcesystemandsupplychainconfigurations.Moreover,optimalconfigurationsneedtobeidentified andcombinedwithdecisionsupporttools,toallowthepolicymakerstomakeinformeddecisionsaboutwaste-to-resourceactionplans.Consideringthevariouspossibilitiesoftechnology andprocessalternatives,superstructureoptimizationbasedon, e.g.,mixed-integerprogrammingtechniquesservesasanappropriateapproachforoptimaltechnologyandprocessselection byallowingsystematicgenerationandautomaticevaluationof
designcandidatesbasedonprocesseconomicsandenvironmental sustainability(Gong&You,2015).Amultiobjectiveoptimization frameworkcanbeformedbyintegratingcost-benefitanalysis (CBA)andlifecycleassessment(LCA)intothesuperstructure optimization.
Thisbookwillintroducethefundamentals,development,and applicationsofvarioustypesofwaste-to-resourcetechnologies thatareexpectedtoplayamajorroleindevelopingSWMpracticesinthefuture.Thisbookwillfocusontwomajoranalysis anddesignmethodsofwaste-to-resourcedevelopment,i.e.CBA andenvironmentalLCAandassemblesomebasicdatasetsfor carryingoutbaselineanalysis.ExamplesofLCAandCBAstudies andresultswillbesummarizedtoillustratetheimpactsof differentconfigurationsofwaste-to-resourcedevelopments.We willalsointroducethemultiobjectiveoptimizationmethodin termsofitsapplicationinthedesigningandplanningofSWM systemsintheend.Thisbookwillserveasastartingpointfor youtoconductwaste-to-resourcedesignwiththeavailabilityof theoriesandbaselinedatasets.
References
Ackerman,F.(2000).Wastemanagementandclimatechange. Local Environment,5(2),223 229.
Ascher,S.,Li,W.,&You,S.(2020).Lifecycleassessmentandnetpresentworth analysisofacommunity-basedfoodwastetreatmentsystem. Bioresource Technology,305,123076. Bebb,J.,&Kersey,J.(2003). Potentialimpactsofclimatechangeonwaste management.UK:EnvironmentAgencyBristol. Blanco,G.,Gerlagh,R.,Suh,S.,Barrett,J.,deConinck,H.C.,Morejon,C.F.D., Mathur,R.,Nakicenovic,N.,Ahenkorah,A.O.,&Pan,J.(2014). Drivers, trendsandmitigation.
Chaplin-Kramer,R.,Sim,S.,Hamel,P.,Bryant,B.,Noe,R.,Mueller,C., Rigarlsford,G.,Kulak,M.,Kowal,V.,&Sharp,R.(2017).Lifecycleassessment needspredictivespatialmodellingforbiodiversityandecosystemservices. NatureCommunications,8(1),1 8.
DEFRA.(2021). UKstatisticsonwaste https://assets.publishing.service.gov.uk/ government/uploads/system/uploads/attachment_data/file/874265/UK_ Statistics_on_Waste_statistical_notice_March_2020_accessible_FINAL_rev_v0. 5.pdf
EC.(2018). CircularEconomy:NewruleswillmakeEUtheglobalfront-runnerin wastemanagementandrecycling https://ec.europa.eu/commission/ presscorner/detail/en/IP_18_3846
Ferronato,N.,&Torretta,V.(2019).Wastemismanagementindeveloping countries:Areviewofglobalissues. InternationalJournalofEnvironmental ResearchandPublicHealth,16(6),1060.
Field,J.L.,Evans,S.G.,Marx,E.,Easter,M.,Adler,P.R.,Dinh,T.,Willson,B.,& Paustian,K.(2018).High-resolutiontechno ecologicalmodellingofa
bioenergylandscapetoidentifyclimatemitigationopportunitiesincellulosic ethanolproduction. NatureEnergy,3(3),211 219.
Fischedick,M.,Roy,J.,Acquaye,A.,Allwood,J.,Ceron,J.-P.,Geng,Y., Kheshgi,H.,Lanza,A.,Perczyk,D.,&Price,L.(2014). Industryin:Climate change2014:Mitigationofclimatechange.ContributionofworkinggroupIII tothe fifthassessmentreportoftheintergovernmentalpanelonclimate change.TechnicalReport.
Gabbar,H.A.,Aboughaly,M.,&Ayoub,N.(2018).ComparativestudyofMSW heattreatmentprocessesandelectricitygeneration. JournaloftheEnergy Institute,91(4),481 488.
Geng,Y.,Sarkis,J.,&Bleischwitz,R.(2019). Howtoglobalizethecircular economy.NaturePublishingGroup.
Gong,J.,&You,F.(2015).Sustainabledesignandsynthesisofenergysystems. CurrentOpinioninChemicalEngineering,10,77 86. Hoornweg,D.,&Bhada-Tata,P.(2012). Whatawaste:Aglobalreviewofsolid wastemanagement. IEA.(2013). WastetoenergysummaryandconclusionsfromtheIEAbioenergy ExCo71workshop. https://www.ieabioenergy.com/wp-content/uploads/ 2014/03/ExCo71-Waste-to-Energy-Summary-and-Conclusions-28.03.14.pdf.
Ioannidis,A.,Chalvatzis,K.J.,Leonidou,L.C.,&Feng,Z.(2021). Applyingthe reduce,reuse,andrecycleprincipleinthehospitalitysector:Itsantecedents andperformanceimplications.BusinessStrategyandtheEnvironment. Karak,T.,Bhagat,R.M.,&Bhattacharyya,P.(2012).Municipalsolidwaste generation,composition,andmanagement:Theworldscenario. Critical ReviewsinEnvironmentalScienceandTechnology,42(15),1509 1630.
Kaza,S.,Yao,L.,Bhada-Tata,P.,&VanWoerden,F.(2018). Whatawaste2.0:A globalsnapshotofsolidwastemanagementto2050.WorldBankPublications. Lino,F.A.M.,&Ismail,K.A.R.(2018).Evaluationofthetreatmentofmunicipal solidwasteasrenewableenergyresourceinCampinas,Brazil. Sustainable EnergyTechnologiesandAssessments,29,19 25.
Lombardi,L.,Carnevale,E.,&Corti,A.(2015).Areviewoftechnologiesand performancesofthermaltreatmentsystemsforenergyrecoveryfromwaste. WasteManagement,37,26 44.
Lu,J.-W.,Zhang,S.,Hai,J.,&Lei,M.(2017).Statusandperspectivesof municipalsolidwasteincinerationinChina:Acomparisonwithdeveloped regions. WasteManagement,69,170 186.
Makarichi,L.,Jutidamrongphan,W.,&Techato,K.(2018).Theevolutionof waste-to-energyincineration:Areview. RenewableandSustainableEnergy Reviews,91,812 821.
Mønster,J.,Kjeldsen,P.,&Scheutz,C.(2019).Methodologiesformeasuring fugitivemethaneemissionsfromlandfills Areview. WasteManagement,87, 835 859.
Negi,P.,Mor,S.,&Ravindra,K.(2020).Impactoflandfillleachateonthe groundwaterqualityinthreecitiesofNorthIndiaandhealthrisk assessment. Environment,DevelopmentandSustainability,22(2),1455 1474. Robert,K.W.,Parris,T.M.,&Leiserowitz,A.A.(2005).Whatissustainable development?Goals,indicators,values,andpractice. Environment:Science andPolicyforSustainableDevelopment,47(3),8 21.