Waste-to-resource system design for low-carbon circular economy siming you - The latest ebook versio

Page 1


https://ebookmass.com/product/waste-to-resource-systemdesign-for-low-carbon-circular-economy-siming-you/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Circular

Economy: From Waste Reduction to Value Creation

Karen Delchet-Cochet

https://ebookmass.com/product/circular-economy-from-waste-reductionto-value-creation-karen-delchet-cochet/

ebookmass.com

Waste Valorisation: Waste Streams in a Circular Economy

Sze Ki Lin

https://ebookmass.com/product/waste-valorisation-waste-streams-in-acircular-economy-carol-sze-ki-lin/

ebookmass.com

System on Chip Interfaces for Low Power Design 1st Edition

Mishra

https://ebookmass.com/product/system-on-chip-interfaces-for-low-powerdesign-1st-edition-mishra/

ebookmass.com

Why Law Enforcement Organizations Fail: Mapping the Organizational Fault Lines in Policing, Second Edition

https://ebookmass.com/product/why-law-enforcement-organizations-failmapping-the-organizational-fault-lines-in-policing-second-edition/

ebookmass.com

Contention and Other Frontier Stories Hazel Rumney

https://ebookmass.com/product/contention-and-other-frontier-storieshazel-rumney/

ebookmass.com

Histologie : Zytologie, Histologie und mikroskopische Anatomie : das Lehrbuch 5. Auflage. Edition Deller

https://ebookmass.com/product/histologie-zytologie-histologie-undmikroskopische-anatomie-das-lehrbuch-5-auflage-edition-deller/

ebookmass.com

Mending the Baron's Sins: A Historical Regency Romance Novel Meghan Sloan

https://ebookmass.com/product/mending-the-barons-sins-a-historicalregency-romance-novel-meghan-sloan/

ebookmass.com

‘Stretching’ Exercises for Qualitative Researchers 4th Edition, (Ebook PDF)

https://ebookmass.com/product/stretching-exercises-for-qualitativeresearchers-4th-edition-ebook-pdf/

ebookmass.com

Popular Music, Critique and Manic Street Preachers 1st ed. Edition Mathijs Peters

https://ebookmass.com/product/popular-music-critique-and-manic-streetpreachers-1st-ed-edition-mathijs-peters/

ebookmass.com

Introducing .NET MAUI: Build and Deploy Cross-platform Applications Using C# and .NET Multi-platform App UI 1st Edition Shaun

https://ebookmass.com/product/introducing-net-maui-build-and-deploycross-platform-applications-using-c-and-net-multi-platform-app-ui-1stedition-shaun-lawrence/

ebookmass.com

WASTE-TO-RESOURCE SYSTEMDESIGNFOR LOW-CARBON CIRCULARECONOMY

Thispageintentionallyleftblank

WASTE-TO-RESOURCE SYSTEMDESIGNFOR

CIRCULARECONOMY

SIMINGYOU

JamesWattSchoolofEngineering,UniversityofGlasgow,Glasgow,UnitedKingdom

Elsevier Radarweg29,POBox211,1000AEAmsterdam,Netherlands TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright 2022ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyany means,electronicormechanical,includingphotocopying,recording,orany informationstorageandretrievalsystem,withoutpermissioninwritingfromthe publisher.Detailsonhowtoseekpermission,furtherinformationaboutthe Publisher’spermissionspoliciesandourarrangementswithorganizationssuchasthe CopyrightClearanceCenterandtheCopyrightLicensingAgency,canbefoundatour website: www.elsevier.com/permissions .

Thisbookandtheindividualcontributionscontainedinitareprotectedunder copyrightbythePublisher(otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthis fieldareconstantlychanging.Asnewresearch andexperiencebroadenourunderstanding,changesinresearchmethods, professionalpractices,ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceand knowledgeinevaluatingandusinganyinformation,methods,compounds,or experimentsdescribedherein.Inusingsuchinformationormethodstheyshouldbe mindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhomthey haveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,or editors,assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasa matterofproductsliability,negligenceorotherwise,orfromanyuseoroperationof anymethods,products,instructions,orideascontainedinthematerialherein.

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary

ISBN:978-0-12-822681-0

ForinformationonallElsevierpublicationsvisitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: SusanDennis

EditorialProjectManager: HilaryCarr

ProductionProjectManager: R.VijayBharath

CoverDesigner: ChristianJ.Bilbow

TypesetbyTNQTechnologies

Thispageintentionallyleftblank

Thewastechallenge

Abstract

Thischaptergivesanoverviewoftheoverallwastemanagement challengeandhighlightstheimportanceofsustainablewastemanagement.Itexplainstheexistingwastemanagementhierarchystrategyand therolesofwaste-to-resourcedevelopmentinmanagingthewastethat cannotbehandledbythe “reduce,reuse,andrecycle” (3R)methods.It alsointroducesthepotentialfactorsthatneedtobeconsidereduponthe designofwaste-to-resourcedevelopmentwithaspecialfocusonpublic engagement,economics,andenvironmentalimpacts.Finally,itpresents asummaryofthescopeandcontentarrangementofthebook.

Keywords: Climatechange;Sustainabledevelopmentgoals;Sustainable wastemanagement;Wastemanagementhierarchy;Waste-to-resource technologies;Wholesystemandsupplychaindesign.

1.Introduction

Sustainablewastemanagement(SWM)isaworldwidechallengeandiscallingforeffectiveactionsunderthesocioeconomic andenvironmentalpressuresofenormouswasteproduction.The ratesofmunicipalsolidwaste(MSW)generationindeveloped anddevelopingcountrieswerereportedtobe521.95 759.2kg perpersonperyear(kpc)and109.5 525.6kpc,respectively (Karaketal.,2012).About2.01billiontonnesofMSWaregeneratedannually,anditisestimatedthatatleast33%ofthegenerationarenotmanagedinanenvironmentallysafemanner(Kaza etal.,2018).Inviewofthecontinuouseconomicgrowthandpopulationexpansion,thewastegenerationwillkeepincreasingand itisexpectedthat2.2billiontonnesofMSWwillbegeneratedper annumby2025worldwide(Hoornweg&Bhada-Tata,2012).The increasingpile-upofwasteposearealisticthreattotheenvironment,ecosystems,andhumanwelfareifproperwastemanagementpracticesandfacilitiesarenotinplace.

Theclimatechangecrisisiscloselyassociatedwithwastegenerationmanagementinvariousaspects,i.e.,methaneemissions oforganicwasteland fill,emissionabatementviawastereuse, recycling,andreduction,renewableandlowcarbonresource

recoveryfromwaste,emissionsratedtothetransportationof waste,etc.(Ackerman,2000).Thecarbonsavingpotentialhas becomeoneofthemostsigni ficantfactorsthathasbeenconsidereduponthedesignofSWMapproaches.Ontheotherhand, climatechangecanalsoinfluencethepracticingandconsequencesofSWMwithchangesinglobaltemperature,annualprecipitation,andsealevelsrenderingconventionalwaste managementpracticeslesseffective.Forexample,theriseintemperaturemayincreasethe fireriskfromcombustiblewaste(e.g., composting)atopensites,morefrequentextremeweatherconditionsmayincreasethehealthandsafetyrisksofwasteoperators whoimplementwastemanagement,andtheriseinthesealevel posesariskofseawaterintrusiontocoastalland fillsandwashing away floatingwaste,leadingtomarinewaste(e.g.,plastics)pollution(Bebb&Kersey,2003).

SWMisessentialtoachievingtheUnitedNations ’ sustainable developmentgoals(SDGs)andiscloselyrelatedtosuchSDGsas DecentWorkandEconomicGrowth(SDG8),SustainableCities andCommunities(SDG11),andSustainableConsumptionand Production(SDG12)(Robertetal.,2005).Thisisreflectedbyits signi ficantsocioeconomicandenvironmentalconsequences. Wastemismanagementcancauseseriousenvironmentalissues suchasheavymetalpollutioninecosystems(e.g.,water,plants, andsoil)andmarineplasticpollutionvia fielddumping,and pollutant(e.g.,CO,CO2,SO,NO,particulatematters,etc.)emissionsviaopen fieldburning(Ferronato&Torretta,2019).Aslocal andglobalpopulationscontinuetoexpand,soaswilltherequirementsandstrainonwasteinfrastructure,meaningthecostsof wastemismanagementwillincrease.Itwaspredictedthatthe costsforSWMgloballywouldincreasefromUS$205.4billionper yeartoaroundUS$375.5billionin2025(Hoornweg&BhadaTata,2012).

Ahierarchicalstrategyhasbeenproposedandimplemented forpromotingSWM(See Fig.1.1).Onthetopofthehierarchy, the “reduce,reuse,andrecycle” (3R)methodsareregardedasa long-termstrategytoreducewastepollutiontowardthetransition fromatraditionallineareconomytoacircularone(Gengetal., 2019).Speci fically,the3Rstrategyservestoprotecttheenvironment,promotesustainabledevelopment,andimproveresource utilizationefficiency,andaimstoachieveaclosedresourceloop withinthecirculareconomymodelbylesseningthepressureon thestockofresources(Ioannidisetal.,2021).However,consideringthevariedcompositionandvalueofwasteaswellasthe

economicprofitabilityrequirementofwastemanagement,the3R strategyaloneisinsufficienttocurbtherapidwasteaccumulation anditsincreasingthreattotheenvironment,ecosystems,andsocieties,especiallygivenlimitedwastemanagementinfrastructure andlackofplansactuallyinplace.Complementarymeasuresare necessarytohandlethewastethatisnotcoveredbythe3Rstrategyandachieveresource(energyandchemicals)recoveryfrom wasteandend-of-lifedisposal.Thesemeasuresarelessfavored ascomparedto3Rinthewastemanagementhierarchybutare essentialcomponentsofthewholeSWMchain(Lombardietal., 2015).

Conventionalpracticesforhandlingwastethatisnotreduceable,reusable,orrecyclablerelyonland fillandincineration whicharestillplayingamajorroleinsomepartsoftheworld. Globally,around66.6%ofMSWwasdisposedofinopendumpsitesorland fills(Fischedicketal.,2014).AccordingtotheUKgovernmentstatistics,land fillsarethesecondmostusedwaste treatmentintheUnitedKingdom,with24.4%ofwastebeing disposedofbyland fillsin2016(DEFRA,2021).Landfillislosing itsappealduetoadverseenvironmentalimpacts.Forexample, inEuropeandtheUnitedStates,land fillsaccountfor20%of anthropogenicCH4 emissions,andarethesecondandthird largestCH4 emissionsources,respectively(Mønsteretal.,2019). Thisnumberis8%,alsononnegligible,fromaglobalperspective (Blancoetal.,2014).Theland fillleachatecontainingpollutants likeheavymetals,organic,xenobiotics,andinorganicposesa contaminationrisktothesoilandgroundwaterinnonsanitary land fillsanduncontrolleddumpsites(Negietal.,2020).Air

Figure1.1 IllustrationofthehierarchicalstrategyforSWM.

surroundingland fillsitescanaffectlocalcommunitiesasthe smellisunpleasantandthesoilintheareamaybesaturated withchemicalsorhazardoussubstances.TheEuropeanCommissionproposedtophaseoutland fillingby2025forrecyclablewaste (e.g.,plastics,paper,metals,glass,andbiowaste)innonhazardous wasteland fillsandreducetheland filledmunicipalwasteto10% orlessofthetotalamountofwastegeneratedby2035(EC,2018).

Waste-to-energytechnologiesplayacriticalroleindiverting wastefromdirectland fill.AccordingtotheInternationalEnergy Agency,waste-to-energysystemsareoneofthepromisingsolutionstowardalowcarbonfutureviathedecarbonizationofenergyproductionwhichisthedominantcontributorto greenhousegasemissions(IEA,2013).Wasteincinerationisbeing widelyemployedinbothdevelopedanddevelopingcountries. Thereareabout1179MSWincinerationplantsaroundtheworld withatotalcapacityover700,000tonnesperdayandmostofthe plantsareintheEuropeanUnion,theUnitedStates,andEastAsia (Luetal.,2017).Incineratorsusingenergyrecoverytechniques havebeenusedinSWMdevelopmenttohelprecoverelectricity and/orheatfromwastewhilesimultaneouslyreducingthemass andvolumeofwastesenttoland fills.Sometypicaladvantages oftheincinerationtechnologiesincludetheeffectivereduction ofwastevolume(by90%)andmass(by75%),eliminationofpathogens, flexibilityinfeedstockselection,andenergyproduction (Lino&Ismail,2018).Theirdisadvantagesincludehighcapital andoperationalcosts,significantpollutantemissions,and requiringmandatorytreatmentof fluegas(Gabbaretal.,2018). Additionally,thereexistswidespreadnegativepublicperception aboutitsemissionsofpollutantssuchasdioxincarcinogen,which needstobeabatedtoenhancethepublicacceptanceofthetechnology(Makarichietal.,2018).

Alternativewaste-to-energytechnologieshavebeendevelopedtoachievelowerpollutantemissionsortoimprovetheenergyrecoveryfromsomespecifictypesofwaste.Forexample, gasi ficationisathermochemicalprocesswherecarbonaceous wastematerialsareconvertedintosynthesisgasorsyngas(a mixtureofH2,CO,andCH4 mainly)underanoxygen-de ficient condition.Thesyngascanbefurthercombustedtogenerate heatorelectricityorupgradedtoproducevalue-addedchemicals (e.g.,purehydrogen).AnaerobicdigestionisabiochemicalprocesswhereorganicwasteisdecomposedtoproduceCH4,CO2, anddigestateundertheeffectofanaerobicmicroorganisms.As comparedtogasification,anaerobicdigestionislessenergyintensivebutsuffersfromtheweaknessoflowproductivity.

Recentdevelopmenthasbeenfocusedonconvertingwasteinto value-addedchemicalsforapplicationsintheindustrialortransportationsectors,suchasbiohydrogen,biomethane,bioethanol, biodiesel,biochar,etc.(bio-isusedtoindicatethechemicalsare producedfromwastebiomass).Asigni ficantamountofthese chemicalshavebeenproducedoutofconventionalfossilfuel basedchemicalprocesses.Displacingthechemicalswiththe onesderivedfromwastebiomasswillleadtocarbonabatement andfacilitatethedevelopmentofthecirculareconomyconcept. Ingeneral,theefficienciesofthewaste-to-resource(resource denotesenergyandchemicals)technologiesdependonthetypes ofwastefeedstock,processconditions,andselectionoftechnologicalroutes.Thevarietyoftechnologiesthatrecovervaluableresourcesfromwasteareexpectedtoplayanincreasingly importantroleinalleviatingthechallengesofSWMandclimate change.

Thedesignofwaste-to-resourcesystemsneedstoconsidera varietyoffactorsbeyondthetechnology,andalsoimportantly itsrelationshipwiththe3Rstrategy.Specifically,thewaste-toresourceapproachneedstoworkintandemwiththe3Rstrategy, whichneedstobefurthersupportedbyeducationalinitiativesto enhancepublicawarenessfortacklingthechallenges.Meanwhile,reduced,reused,recycled,andrecoveredresourcesthat preciselymatchthesocioeconomic,energy,andenvironmental demandsofend-userswillacceleratetheuptakeofsuchinitiativesandleadtohigherpublicengagement.Successfuladdition ofthewaste-to-resourcetechnologiesasatierinthe3Rhierarchy isdependentonunderstandingoflocalcontext.Thiswillunderpinthedevelopmentofacomprehensiveandsystematichierarchicalwastemanagementroadmapthatclearlyde finesthe relativerolesandeffectsofthemeasuresandincludesthesteps ormilestonesneededtoachievewastepollutionreduction.

Thesuccessofsuchahierarchicalstrategyiscontingentupon theparticipationandcooperationofallthestakeholders(i.e.,policymakers,investors,andconsumers)alongtheSWMchainaswell aseffectivepolicysupport.Thismeansthatthedesignofwaste-toresourcesystemsneedstobegaugedinrelationtosocioeconomic andenvironmentalimpactsthataresomeofthemostsignificant indicesforevaluatingthefeasibilityofthesystems.Theimplementationofawaste-to-resourcesystemissubjecttoitssocialacceptabilityandbenefits,whichisdirectlyreflectedbyitsabilitytocreate jobsandaffectincome,andindirectlybyitseffectsonequalityand welfaredevelopmentoflocalcommunities.Theenvironmental impactsarelinkedtothesystem’sabilitytotacklethecrisesof fossilfueldepletionandglobalclimatechange,aswellasits

complicationwiththedevelopmentofassociatedecosystems.The economicfeasibilityofwaste-to-resourcedevelopmentcritically determinesitssustainabilityanddependson(alsoaffects)the formulationofgovernmentalsubsidies.Althoughthedifferent stakeholdershavedifferentpreferencesontheimpacts,itisimportanttoconsiderallthethreeimpactsduringthedecisionmakingprocessforoptimalplanning.

Thedesignofthesupplychainandlogisticsofwastemanagementalsocriticallydeterminesthefeasibilityandimpactsof waste-to-resourcesystemsduetothegeographicaldistribution ofwasteandconsumerzones,weathervariability,andthepotentialseasonalityofwastefeedstocks(Chaplin-Krameretal.,2017; Fieldetal.,2018).Ithasbeenshownthatthewastecollection andtransportationprocessaccountsforthesignificanteconomic factorforwaste-to-energydevelopment(Ascheretal.,2020). Moreover,thevariedcompositionsandphysicochemicalpropertiesofwasteimplythecomplexityofsystemdesign.Ontheone hand,forthesametypeofwaste,therearedifferenttechnologies availableforprocessingandsubsequentproductupgrading, dependingonthetypesoftargetedend-products(e.g.,electricity, heat,liquidtransportfuel,biochar,etc.).Ontheotherhand,for thesametypeofend-product,multipletechnologiesandwaste feedstocksareavailableuponthedesignofthesystem.Hence, therearevastpossibilitiesofwaste-to-resourcesystemconfigurationsintermsofthechoicesofwastefeedstocktypes,processing technologies,andend-producttypes.Thisaddsacomplicationof spatialandtemporaldimensionstotheassessmentofthepotentialofbioresources(definedastheresourcesrecoveredfrom wastebiomassinthisbook),andtransportationnetworkand modes,distance,andintermodal-transportationbecomesimportantparametersuponthesupplychainandlogisticsdesign.

Tounderstandthepotentialcontributionofwaste-to-resource toourenvironment,society,andecosystems,itisessentialto developasystematicdatabaseabouttheeconomicandenvironmentalimpactsofwaste-to-resourcedevelopmentunderafeasible rangeofwaste-to-resourcesystemandsupplychainconfigurations.Moreover,optimalconfigurationsneedtobeidentified andcombinedwithdecisionsupporttools,toallowthepolicymakerstomakeinformeddecisionsaboutwaste-to-resourceactionplans.Consideringthevariouspossibilitiesoftechnology andprocessalternatives,superstructureoptimizationbasedon, e.g.,mixed-integerprogrammingtechniquesservesasanappropriateapproachforoptimaltechnologyandprocessselection byallowingsystematicgenerationandautomaticevaluationof

designcandidatesbasedonprocesseconomicsandenvironmental sustainability(Gong&You,2015).Amultiobjectiveoptimization frameworkcanbeformedbyintegratingcost-benefitanalysis (CBA)andlifecycleassessment(LCA)intothesuperstructure optimization.

Thisbookwillintroducethefundamentals,development,and applicationsofvarioustypesofwaste-to-resourcetechnologies thatareexpectedtoplayamajorroleindevelopingSWMpracticesinthefuture.Thisbookwillfocusontwomajoranalysis anddesignmethodsofwaste-to-resourcedevelopment,i.e.CBA andenvironmentalLCAandassemblesomebasicdatasetsfor carryingoutbaselineanalysis.ExamplesofLCAandCBAstudies andresultswillbesummarizedtoillustratetheimpactsof differentconfigurationsofwaste-to-resourcedevelopments.We willalsointroducethemultiobjectiveoptimizationmethodin termsofitsapplicationinthedesigningandplanningofSWM systemsintheend.Thisbookwillserveasastartingpointfor youtoconductwaste-to-resourcedesignwiththeavailabilityof theoriesandbaselinedatasets.

References

Ackerman,F.(2000).Wastemanagementandclimatechange. Local Environment,5(2),223 229.

Ascher,S.,Li,W.,&You,S.(2020).Lifecycleassessmentandnetpresentworth analysisofacommunity-basedfoodwastetreatmentsystem. Bioresource Technology,305,123076. Bebb,J.,&Kersey,J.(2003). Potentialimpactsofclimatechangeonwaste management.UK:EnvironmentAgencyBristol. Blanco,G.,Gerlagh,R.,Suh,S.,Barrett,J.,deConinck,H.C.,Morejon,C.F.D., Mathur,R.,Nakicenovic,N.,Ahenkorah,A.O.,&Pan,J.(2014). Drivers, trendsandmitigation.

Chaplin-Kramer,R.,Sim,S.,Hamel,P.,Bryant,B.,Noe,R.,Mueller,C., Rigarlsford,G.,Kulak,M.,Kowal,V.,&Sharp,R.(2017).Lifecycleassessment needspredictivespatialmodellingforbiodiversityandecosystemservices. NatureCommunications,8(1),1 8.

DEFRA.(2021). UKstatisticsonwaste https://assets.publishing.service.gov.uk/ government/uploads/system/uploads/attachment_data/file/874265/UK_ Statistics_on_Waste_statistical_notice_March_2020_accessible_FINAL_rev_v0. 5.pdf

EC.(2018). CircularEconomy:NewruleswillmakeEUtheglobalfront-runnerin wastemanagementandrecycling https://ec.europa.eu/commission/ presscorner/detail/en/IP_18_3846

Ferronato,N.,&Torretta,V.(2019).Wastemismanagementindeveloping countries:Areviewofglobalissues. InternationalJournalofEnvironmental ResearchandPublicHealth,16(6),1060.

Field,J.L.,Evans,S.G.,Marx,E.,Easter,M.,Adler,P.R.,Dinh,T.,Willson,B.,& Paustian,K.(2018).High-resolutiontechno ecologicalmodellingofa

bioenergylandscapetoidentifyclimatemitigationopportunitiesincellulosic ethanolproduction. NatureEnergy,3(3),211 219.

Fischedick,M.,Roy,J.,Acquaye,A.,Allwood,J.,Ceron,J.-P.,Geng,Y., Kheshgi,H.,Lanza,A.,Perczyk,D.,&Price,L.(2014). Industryin:Climate change2014:Mitigationofclimatechange.ContributionofworkinggroupIII tothe fifthassessmentreportoftheintergovernmentalpanelonclimate change.TechnicalReport.

Gabbar,H.A.,Aboughaly,M.,&Ayoub,N.(2018).ComparativestudyofMSW heattreatmentprocessesandelectricitygeneration. JournaloftheEnergy Institute,91(4),481 488.

Geng,Y.,Sarkis,J.,&Bleischwitz,R.(2019). Howtoglobalizethecircular economy.NaturePublishingGroup.

Gong,J.,&You,F.(2015).Sustainabledesignandsynthesisofenergysystems. CurrentOpinioninChemicalEngineering,10,77 86. Hoornweg,D.,&Bhada-Tata,P.(2012). Whatawaste:Aglobalreviewofsolid wastemanagement. IEA.(2013). WastetoenergysummaryandconclusionsfromtheIEAbioenergy ExCo71workshop. https://www.ieabioenergy.com/wp-content/uploads/ 2014/03/ExCo71-Waste-to-Energy-Summary-and-Conclusions-28.03.14.pdf.

Ioannidis,A.,Chalvatzis,K.J.,Leonidou,L.C.,&Feng,Z.(2021). Applyingthe reduce,reuse,andrecycleprincipleinthehospitalitysector:Itsantecedents andperformanceimplications.BusinessStrategyandtheEnvironment. Karak,T.,Bhagat,R.M.,&Bhattacharyya,P.(2012).Municipalsolidwaste generation,composition,andmanagement:Theworldscenario. Critical ReviewsinEnvironmentalScienceandTechnology,42(15),1509 1630.

Kaza,S.,Yao,L.,Bhada-Tata,P.,&VanWoerden,F.(2018). Whatawaste2.0:A globalsnapshotofsolidwastemanagementto2050.WorldBankPublications. Lino,F.A.M.,&Ismail,K.A.R.(2018).Evaluationofthetreatmentofmunicipal solidwasteasrenewableenergyresourceinCampinas,Brazil. Sustainable EnergyTechnologiesandAssessments,29,19 25.

Lombardi,L.,Carnevale,E.,&Corti,A.(2015).Areviewoftechnologiesand performancesofthermaltreatmentsystemsforenergyrecoveryfromwaste. WasteManagement,37,26 44.

Lu,J.-W.,Zhang,S.,Hai,J.,&Lei,M.(2017).Statusandperspectivesof municipalsolidwasteincinerationinChina:Acomparisonwithdeveloped regions. WasteManagement,69,170 186.

Makarichi,L.,Jutidamrongphan,W.,&Techato,K.(2018).Theevolutionof waste-to-energyincineration:Areview. RenewableandSustainableEnergy Reviews,91,812 821.

Mønster,J.,Kjeldsen,P.,&Scheutz,C.(2019).Methodologiesformeasuring fugitivemethaneemissionsfromlandfills Areview. WasteManagement,87, 835 859.

Negi,P.,Mor,S.,&Ravindra,K.(2020).Impactoflandfillleachateonthe groundwaterqualityinthreecitiesofNorthIndiaandhealthrisk assessment. Environment,DevelopmentandSustainability,22(2),1455 1474. Robert,K.W.,Parris,T.M.,&Leiserowitz,A.A.(2005).Whatissustainable development?Goals,indicators,values,andpractice. Environment:Science andPolicyforSustainableDevelopment,47(3),8 21.

Waste

Abstract

Thischapterintroducestheclassificationofwaste(i.e.,industrial waste,nuclearwaste,agriculturalwasteandmunicipalsolidwaste)and theirgenerationcharacteristicsandstatistics.Itfocusesonagricultural wasteandmunicipalsolidwasteastheyaremorerelevanttowaste-toresourcedevelopment.Itexplainsthedefinitionsofthecompositions (i.e.,ultimateandproximate)andheatingvaluesofwasteandthe propertiesoftypicalagriculturalandmunicipalsolidwastearesummarized.Thischapterconcludeswithhighlightingtheimportanceof waste-to-resourcedevelopmentandemphasizingthatruralwaste managementneedstobepaidspecialattention.

Keywords: Agriculturalwaste;Composition;Heatingvalue;Municipal solidwaste;Ruralwastemanagement;Waste-to-resource.

1.Introduction

AccordingtotheEuropeanCommissionWasteFramework Directive,wasteisdefinedasanysubstanceorobjectwhichthe holderdiscardsorintendsorisrequiredtodiscard(EC,2008).There existdifferentwasteclassificationsbasedonvariouscriteriasuchas sources,state,biodegradability,etc.Thischapterconsidersthe source-basedclassificationthatcategorizeswasteintofourtypes, i.e.,industrial,agricultural,municipal,andnuclear.TypicalindustrialwasteincludesMSWincinerationash,ironandsteelmaking slags,cementdust,petroleumspentcatalyst,etc.MSWincinerationash(flyashandbottomash)isthesolidresidueofthecombustionprocessingofMSWthatservestoreducethemassandvolume ofMSWwhilerecoveringenergy.Flyash(w3 5wt.%ofrawMSW) referstothepulverized fineparticlescapturedby filtrationdevices postanincinerationreactor,whilebottomash(w20 25wt.%of solidresidue)normallyconsistsofslagrecoveredfromthebase ofincinerationfurnace.InChina,around15milliontonnesofbottomashareproducedinMSWincinerationplantseachyear(Hu etal.,2021).17.6milliontonnesofbottomashareproduced eachyearintheEuropeanUnion,Norway,andSwitzerland

(Blasenbaueretal.,2020).Someoftheindustrialwastecontains considerableheavymetalsandposeariskofenvironmentalpollutionifnotdisposedofproperly.Forexample,wastebatteries containNi,Cd,andAg,whileelectronicwastecontainsSn,Au, Ag,Ni,andZn,theirimproperdisposalwillleadtothepollution ofsoilandsurfaceand/orgroundwater(Pantetal.,2012).

Nuclearorradioactivewasteisreferredtoasanymaterialthat iseitherradioactiveorcontaminatedbyradioactivityabovethe thresholdsde finedinassociatedlegislation(IAEA,2009).Typical sourcesofnuclearwasteincludenuclearpowerstations,hospitals,sciencelaboratories,etc.,inavarietyofphysicalandchemicalforms(e.g.,aqueouswaste,solidwaste,liquidorganicwaste, wetsolidwaste,andbiologicalandmedicalwaste)(SljivicIvanovi c&Smiciklas,2020).Therulesandmethodsofindustrial andnuclearwastemanagementaretypicallydifferentfromthat ofagriculturalandMSWmanagementswiththenecessityof ensuringhighsocioenvironmentalsecurity.Agriculturaland municipalsolidwaste,ontheotherhand,refertotheonesfrom whichbioenergyorvalue-addedchemicalscouldbederived, willbethefocusofthisbook,duetotheirgreatpotentialoffacilitatingrenewableenergyandresourcegeneration.

Thepropertyandgenerationofwastevaryconsiderablyacross differenttypesofwasteandareimportantfactorsaffectingthe designandimplementationofwastemanagementpractices. Differenttypesofwastecoulddiffersignificantlyintheircompositions,makingsometechnologiesapreferredoptionuponapreliminarydesign.Forexample,biochemicaltechnologiessuchas anaerobicdigestion(i.e.,thebiologicaldecompositionoforganic materialintomainly “biogas” whosemainconstituentsare methane(50 70wt.%)andcarbondioxide(30 50wt.%))isadesirableoptionfortreatingorganicwastesuchasfoodwastefeatured byahighmoisturecontent(Ascheretal.,2020).Thelocalityand availabilityofwastegenerationisalsolinkedtodemandsidemanagement,makingcertaintechnologiesapreferredoptionbecause theirproductionmatcheswellwiththedemandoflocalcustomers. Forexample,toutilizethepalmoilmills’ solid(emptyfruitbunch) andliquid(palmoilmilleffluent)waste,gasificationandanaerobic digestionwereapplied,respectively,togenerateelectricitytosustaintheoperationofthemills(Azizetal.,2017).Actually,thetypes andavailabilityofwasteoftencomesasthe firstsetofparameters orconditionsforselectingwastemanagementtechnologiesand designingassociatedimplementationandoperationplans.

2.Agriculturalwaste

Agriculturalwasteistheunwantedwastediscardedintheprocessofagriculturalactivitiesandsometypicalexamplesof

agriculturalwasteareagriculturalproductprocessingwaste(e.g., cropstalks),plantwaste,livestockandpoultrymanure,rural householdwaste,silageplastics,fertilizer,pesticides,herbicides, wastesfromfarms,poultryhousesandslaughterhouses,etc. (Ramírez-Garcíaetal.,2019).Itisanimportantconstituentof biomassresourceandisfeaturedbywideavailability,largequantity,andbiodegradability.

Thegenerationofagriculturalwasteexperiencedsignificant increasebecauseoftheexpansionofagriculturalproduction thathasbeentripledduringthepast50years(Duque-Acevedo etal.,2020).Theannuallignocellulosicbiomassgeneratedby theprimaryagriculturalsectorwasestimatedtobeabout200 billiontonnesworldwide(Renetal.,2009).Beingtwoofthelargest developingcountriesandagrarianeconomies,ChinaandIndia haveabundantagriculturalwasteforrenewablegeneration. Chinahadatotalagriculturalwasteof1.75 109 tonnesin 2013,consistingof9.93 108 tonnes(56.82%)ofcropstraw, 4.52 108 tonnes(25.85%)oflivestockandpoultrymanure,and 3.03 108 tonnes(17.33%)offorestresidues(Daietal.,2018). ForIndia,thebiogaspotentialfromagriculturalwasteviaanaerobicdigestionwaspredictedtobe65billionm3/yearin2015(Mittaletal.,2019).

TheagriculturesectorisasignificantcontributorforGHG emissions,consistingofemissionsfromagriculturalsoils,livestock,stationarycombustionsources,andoff-roadmachinery. Forexample,thissectoraccountsfor10%oftotalEU-28emissions(440MtCO2-eq.),ofwhich38%isaboutCH4 emissions fromentericfermentationfromcattleand31%isaboutdirect N2Oemissionsfromagriculturalsoilsandfertilizeuse(Juvyns etal.,2019).Thesectoraccountedfor10%ofUKGHGemissions in2018,with56%and31%beingCH4 andN2Oemissions,respectively(DECC,2015).Duetodecreasesinanimalnumbersanduse ofsyntheticfertilizers,GHGemissionsfromUKagriculture decreasedby16%between1990and2018.Agricultureisresponsiblefor9%oftotalUnitedStatesGHGemissions,with81%, 11%,and6%beingCO2,CH4,andN2O,respectively(EPA,2016).

Thesignificantcarbonfootprintoftheagriculturesectorcalls formoresustainabledevelopmentandeffectiveutilizationofagriculturalwastefordecarburization.

Thereisalonghistorythatagriculturalwasteisusedasan importantsourceofenergyandchemicals.Thebenefitsofagriculturalwasteutilizationarenotonlycontingentuponthetypes ofwastebutalsothemeansofutilization.Inappropriateutilizationofagriculturalwastesuchasburninginstoveshasbeena majorcauseofpersonalexposuretoPM2.5.InChina,40%of cropstrawwasburnedin-fieldandcontributesto1.036million

tonnesofPM2.5 emissionseveryyear(Clareetal.,2015; Zhang etal.,2016).Approximately75%ofagriculturalbiomassisdiscarded,directlyburntinthe field,orusedbyfarmersforhouseholdcooking,whichcausestheproblemsoflow-efficiency utilization(10%)andwastingvaluablebiomassresources,and airpollution(e.g.,N2O,SO2,CH4,andPM2.5)(Huangetal., 2019).Alternatively,beingthemostreadilyavailableorganic waste,agriculturalwastecanbeconvertedtovalue-addedproducts(e.g.,biohydrogenandbiomethane)insuchprocessesas anaerobicdigestion,fermentation,andgasi fication,whichserve asenvironmentallyfriendlywaysofagriculturalwasteutilization.

3.Municipalsolidwaste

MSWisdefinedasthewastegeneratedfromhouseholdsand anyotherwastewithsimilarcompositionsandpropertiesto householdwasteaccordingtoMunicipalSolidWasteRules 2000(Thomas&Soren,2020).SustainableMSWmanagementbecomesincreasinglyimportantduetocontinuousrisinginitsgenerationworldwideastheresultofpopulationexpansion,rapid urbanization,andacceleratedeconomicgrowth.TheWorld BankpredictedthattheglobalMSWgenerationwouldreach2.2 billiontonnesperyearby2025and3.4billiontonnesperyear by2050(Kazaetal.,2018; TheWorldBank,2017).InChina,the yieldofMSWincreasedatanannualrateof8% 10%,andthetotalvolumeofMSWgeneratedhadincreasedfrom31.3million tonnesin1980to203.6milliontonnesin2016,whichwasexpectedtoreach480milliontonnesby2030(Huetal.,2015).The MSWgenerationinSwitzerlandincreasedby215%between 1990and2017(Magazzinoetal.,2020).ThetotalurbanMSWgenerationinIndiawouldbe165,230,and436milliontonnesby 2030,2041,and2050,respectively(Sharma&Jain,2019).Effective MSWmanagementiscriticaltotheachievementofSustainable CitiesandCommunitiesaspartoftheUnitedNationsSDGs.

TheMSWgenerationiscloselyconnectedwiththestandardof livingasindicatedbyvarioussocioeconomicanddevelopment indices.GrossDomesticProduct(GDP)andtheHumanDevelopmentIndex(HDI)werefoundtobetwoofthemostinfluential factorsaffectingthegenerationratesof13solidwastestreams of10Europeancountries,withwasteelectronicandelectric equipmentbeingmostsignificantlyinfluenced(Namlis&Komilis,2019).AstudyontheseasonalityofMSWcompositionsfor fourEasternEuropeancities(i.e.,Georgia(Kutaisi),Lithuania (Kaunas),Russia(St.Petersburg),andUkraine(Boryspil))showed thateconomicdevelopmentandclimateconditionsaffectedthe MSWgenerationstatisticssigni ficantly,withthemedianMSW generationraterangingfrom18.7to38.3kg/capita/month

(Denafasetal.,2014).FordevelopingcountrieslikeChina,economicandurban(i.e.,urbanpopulation)developmentarethe majorfactorsinfluencingMSWgeneration(Liu&Wu,2010).

4.Properties

Thecompositionandphysicochemicalpropertiesofwasteare themostimportantfactorsthataffectthedesignandimplementationofwaste-to-resourcemethods.Propertiesthatare commonlyconsideredupontheselectionandidentificationof wasteincludeultimatecomposition,proximatecomposition, andheatingvalue.Theyareoftenusedastheinputparameters intheprocessmodelingandestimationofenergyandmass flows ofrelevantwaste-to-resourcetechnologiesandsystems,which servesasthebasisfortheevaluationoftheirtechno-economic feasibilityandenvironmentalimpacts.

Theultimatecompositionisaboutthecontentsofcarbon(C), oxygen(O),hydrogen(H),nitrogen(N),andsulfur(S)aswellas moisture(MC)andash(ASH)inwaste,basedonwhichachemicalformulaofwastecouldbeobtained.Theproximatecompositionaccountsforsuchgrosscomponentsas fixedcarbon(FC), volatilematter(VM),ash(ASH),andmoisture(MC).Thecompositionsofwastearemeasuredbasedondifferentmassbasis.For example,thecompositiononthedrybasisreferstothepercentagecontentsofthedifferentcomponentsofthewastethathas beendried(i.e.,withoutconsideringthemoisturecontent),while theoneonthedryandashfreebasisreferstothepercentage contentsofthewastewithoutconsideringthecontentsofmoistureandash.Theas-receivedbasisisbasedontheconsideration ofrawwaste.

Theheatingvalueofwasteisanindicatoroftheenergycontent ofwastethatwillbetransformedintoheatuponitsfullcombustion.Itisacriticalparameterdefiningtheenergypotentialof waste-to-energygeneration.Duetothepresenceofmoisturecontent,twodifferentheatingvalues,i.e.,higherheatingvalue(HHV) andlowerheatingvalue(LHV),havebeendefined.Theformer referstotheenergycontentcoveringthelatentheatofvaporizationofwater,whilethelatterdoesnottakethelatentheatinto consideration.Theheatingvaluesofwastearecloselyassociated withthecompositionsofwaste.Empiricalrelationshipshave beendevelopedtopredictHHVbasedonthecompositionof waste.Forexample, Parikhetal.(2005) derivedthecorrelation betweenHHVandproximatecompositionas(Parikhetal.,2005)

whereFC ¼ 1.0% 91.5%,VM ¼ 0.92% 90.6%,andASH ¼ 0.12% 77.7%inwt.%onadrybasis.Separately,thecorrelationbetweenHHVandultimatecompositionwasderivedas ( Channiwala&Parikh,2002 )

HHV ¼ 0.3491C þ 1.1783H þ 0.1005S 0.1034O 0.0151N 0.0211ASH(2.2)

where0% C 92.25%,0.43% H 25.15%,0% O 50.00%, 0% N 5.60%,0% S 94.08%,0% ASH 71.4%,4.745MJ/ kg HHV 55.345MJ/kg.C,H,O,N,S,andASHrepresentsthe carbon,hydrogen,oxygen,nitrogen,sulfur,andashcontents, respectively,expressedinmasspercentagesonadrybasis.

Table2.1 liststhephysicochemicalpropertiesofsomecommontypesofagriculturalwaste.Itisshownthatthecompositions varysigni ficantlyacrossthedifferenttypesofagriculturalwaste,

Table2.1CompositionsandHHVofselectedagriculturalwaste.

Ricestraw44.26.248.40.88.2075.6013.762.4414.99 Worasuwannarak etal.(2007), Younasetal.(2017)

Ricehusk47.46.745.10.810.5065.5014.609.4015.70 Wangetal.(2014), Worasuwannarak etal.(2007)

Cottonstalk47.096.1737.559.145.1475.1619.703.4217.81 Liuetal.(2019)

Cornstover51.895.4541.480.847.364.518.89.417.1 Wangetal.(2011)

Wheatstraw49.07.0143.20.705.7077.607.209.5015.10 Grecoetal.(2018), Szamosietal. (2017), Yuetal. (2016)

Peanutshell50.646.8641.321.181.4770.0323.185.3220.61 Fermanellietal.(2020)

Cattlemanure49.386.4639.793.3310.915.23.270.73.9 Wangetal.(2011) adaf:dryandash-freebasis. bar:as-receivedbasis.

suggestingtheimportanceofthefeedstockselectionforimproved energyorchemicalrecovery.Thesulfurcontentofagricultural wasteislowandthusnotshownin Table2.1,suggestingthe reducedemissionofsulfur-relatedpollutantsascomparedtofossilfueluponthermochemicalreactions.

TypicalMSWcomponentsincludefoodwaste,gardenwaste, plasticwaste,paper,cardboard,woodwaste,sludge,etc.,whose compositionsandphysicochemicalpropertiesvaryconsiderably asshownin Table2.2.Thewidevariationsinthecomponents ofMSWmakessegregationanimportantsteppriortotheireffectivetreatment.However,wastesegregationcouldbeastepincurringsignificantenergyandcosts,renderingthewholewaste managementprocesseconomicallyinfeasible.Itisworthnoting thatevenwithinasingleMSWcategory,e.g.,foodwaste,thephysicochemicalpropertiescouldchangesignificantlydependingon thespecificcontentsofthewaste,e.g.,carbohydrate,protein, fats,andbones.Basedonsuchinformationastheproximate

(2017), Gutierrez-Gomez etal.(2021)

adaf:dryandash-freebasis. bar:as-receivedbasis. cDrybasis. dDryandash-freebasis.

Table2.2PropertiesoftypicalMSW.

andultimatecompositions,heatingvalues,etc.,MSWcouldbe alsoclassi fiedintovegetables,starchfood,orangepeel,wood waste,printingpaper,cellulose,PVC,PET,PE/PP,PS,andrubber, topromotecomparableandconsistentresearchtowardwaste-toenergydevelopment(Zhouetal.,2015).

5.Waste-to-resource

AsmentionedinChapter1,SWMisacomplex,interdisciplinary,andsystemicprojectwhichneedstobesupportedby thecoherentandconsistenteffortsofallstakeholders.Ahierarchicalmethodisnecessaryforwastemanagementconsidering thedifferenceinthesocioeconomicandenvironmentalvalues ofdifferenttypesofwasteandthevariationsinassociatedtechnologyavailability.Inadditiontotheprioritized3Rstrategy, waste-to-resourcedevelopmentplaysanimportantroleforsustainablymanagingthewastethatcouldnotbehandledbythe 3Rstrategy.

Conventionally,land fillandincinerationhavebeenadopted asthemainapproachesforwastedisposal.Typicaldisadvantages ofland fillincludetheformationofgasandliquidphasecontaminantsleadingtoairandgroundwaterpollution,takingupof additionallandresource,andrisksofinfectionand firehazards. Inparticular,land fill-basedwastemanagementemitsmassive amountofmethane(CH4)whoseglobalwarmingpotentialis25 timesthatofcarbondioxide(CO2)overa100-yearperiod.IncinerationcouldrecoverenergyfromMSWintheformofelectricity and/orheatwhileeffectivelyreducingthemassandvolumeof MSWtowardultimatedisposal.However,someofthemajorchallengesassociatedwithincinerationincludetheenvironmentally friendlydisposalofincinerationash,airpollutant(e.g.,NOx and dioxin)reduction,andhighoff-gas flowratesrequiringsignificant cleaningeffort.

Advancedtechnologiesareavailabletoconvertwasteintoenergyandchemicals,withthepotentialtoachievehigher efficiencyand flexibilityandtobettercatertothedemandsof end-users.Basedonthemainproductsgenerated,someofthe relativelymature(technologyreadinesslevel >5)technologies canbeclassi fiedaswaste-to-energy,waste-to-biohydrogen, waste-to-biomethane,waste-to-biodiesel,waste-to-bioethanol, andwaste-to-biochar,respectively,whichwillbethefocusof thesubsequentchaptersofthisbook.Thesetechnologiesare receivingincreasingattentionfrombothacademicsandindustry fortheirgreatpotentialtoreplacetheconventionalmethodsfor alleviatingthecurrentdilemmaofglobalwastemanagement.

6.Ruralwastemanagement

Ruralareasaccountforlargesourcesofwastegeneration; however,wastemanagementinruralareashasreceivedmuch lessattentionascomparedtotheirurbancounterpartsthat havedevelopedrelativelymaturewastemanagementrulesand chains.ArecentstudyfromRomaniashowedthatruralcommunitiescouldcontribute85.51%ofplasticsintowaterbodiesdueto frequent flash floods(Mihai,2021).Hence,thewastegeneration andassociatedenvironmentalpollutioninruralareasispredisposedtobemadeinanuncontrolledmanner,withwideecological,healthandsocioeconomicimplications.Unfortunately, knowledgeofeffectivewastemanagementinruralareasof,especially,LMICsislimited,whichrendersexistingmeasuresineffectiveanddiscouragessustainableeffort.

Wastemanagementpracticesarefurthercomplicatedbysocioeconomic,environmental,andgeographicalfactors.Forexample, sparselypopulatedremoteruralareasareusuallythemostneglected bywastemanagementservicesandmighthavebeeninaposition facingvariousotherchallenges,suchaspoorelectrifi cation, householdairpollution,andfarmlandcontamination.Meanwhile,thedemands(intermsofenergyandchemicals)mayvary considerablyacrossdifferentcommunities,callingfora fl exibility intechnologyandsystemdesigning.Thesefactorssuggestthat wastemanagementinruralareas(1)willbecountry-speci fi c,if notvillage-speci fi c,(2)willrequiresystematicdatasetstodevelop avarietyofsolutionsfor fl exibledeployment,and(3)willbe lesspossibletorelyonexistinglarge-scale,centralizedwaste treatmentfacilities,makingsmall-scale,decentralizeddevelopmentthatoffersawiderangeofproductpossibilitiesapotentially betteroption.

References

Ascher,S.,Li,W.,&You,S.(2020).Lifecycleassessmentandnetpresentworth analysisofacommunity-basedfoodwastetreatmentsystem. Bioresource Technology,305,123076.

Aziz,M.,Kurniawan,T.,Oda,T.,&Kashiwagi,T.(2017).Advancedpower generationusingbiomasswastesfrompalmoilmills. AppliedThermal Engineering,114,1378 1386.

Baawain,M.,Al-Mamun,A.,Omidvarborna,H.,&Al-Amri,W.(2017).Ultimate compositionanalysisofmunicipalsolidwasteinMuscat. JournalofCleaner Production,148,355 362. https://doi.org/10.1016/j.jclepro.2017.02.013 Blasenbauer,D.,Huber,F.,Lederer,J.,Quina,M.J.,Blanc-Biscarat,D., Bogush,A.,Bontempi,E.,Blondeau,J.,Chimenos,J.M.,&Dahlbo,H.(2020). Legalsituationandcurrentpracticeofwasteincinerationbottomash utilisationinEurope. WasteManagement,102,868 883.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.