Urban climate change and heat islands riccardo paolini - The full ebook version is ready for instant

Page 1


https://ebookmass.com/product/urban-climate-change-and-heat-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Urban Ecology and Global Climate Change Rahul Bhadouria

https://ebookmass.com/product/urban-ecology-and-global-climate-changerahul-bhadouria/

ebookmass.com

Less Heat, More Light: A Guided Tour of Weather, Climate, and Climate Change John D. Aber

https://ebookmass.com/product/less-heat-more-light-a-guided-tour-ofweather-climate-and-climate-change-john-d-aber/

ebookmass.com

Heat Exposure and Human Health in the Context of Climate Change Yuming Guo

https://ebookmass.com/product/heat-exposure-and-human-health-in-thecontext-of-climate-change-yuming-guo/

ebookmass.com

Communication in Our Lives 8th Edition

https://ebookmass.com/product/communication-in-our-lives-8th-edition/

ebookmass.com

ReFocus: The Films of William Wyler John Price (Editor)

https://ebookmass.com/product/refocus-the-films-of-william-wyler-johnprice-editor/

ebookmass.com

Quantitative Techniques in Management 5th Edition Dr. N. D. Vohra

https://ebookmass.com/product/quantitative-techniques-inmanagement-5th-edition-dr-n-d-vohra/

ebookmass.com

(eBook PDF) Workbook for Sectional Anatomy for Imaging Professionals 4th Edition

https://ebookmass.com/product/ebook-pdf-workbook-for-sectionalanatomy-for-imaging-professionals-4th-edition/

ebookmass.com

The Nation Form in the Global Age Irfan Ahmad

https://ebookmass.com/product/the-nation-form-in-the-global-age-irfanahmad/

ebookmass.com

Secrets in the Sand Carolyn Brown

https://ebookmass.com/product/secrets-in-the-sand-carolyn-brown-2/

ebookmass.com

Scramjet Propulsion 1st Edition

https://ebookmass.com/product/scramjet-propulsion-1st-edition-doramusielak/

ebookmass.com

UrbanClimateChange andHeatIslands

Thispageintentionallyleftblank

UrbanClimateChange andHeatIslands

Characterization,Impacts,and Mitigation

RICCARDOPAOLINI

SchoolofBuiltEnvironment,FacultyofArts,Designand Architecture,UniversityofNewSouthWales(UNSW), Sydney,NSW,Australia

MATTHAIOSSANTAMOURIS

SchoolofBuiltEnvironment,FacultyofArts,Designand Architecture,UniversityofNewSouthWales(UNSW), Sydney,NSW,Australia

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands

TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright©2023ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans, electronicormechanical,includingphotocopying,recording,oranyinformationstorageand retrievalsystem,withoutpermissioninwritingfromthepublisher.Detailsonhowtoseek permission,furtherinformationaboutthePublisher’spermissionspoliciesandour arrangementswithorganizationssuchastheCopyrightClearanceCenterandtheCopyright LicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions

Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyright bythePublisher(otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchand experiencebroadenourunderstanding,changesinresearchmethods,professionalpractices, ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgein evaluatingandusinganyinformation,methods,compounds,orexperimentsdescribed herein.Inusingsuchinformationormethodstheyshouldbemindfuloftheirownsafety andthesafetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,or editors,assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatter ofproductsliability,negligenceorotherwise,orfromanyuseoroperationofanymethods, products,instructions,orideascontainedinthematerialherein.

ISBN:978-0-12-818977-1

ForInformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: CandiceJanco

AcquisitionsEditor: JessicaMack

EditorialProjectManager: CatherineCostello

ProductionProjectManager: SruthiSatheesh

CoverDesigner: VictoriaPearson

TypesetbyMPSLimited,Chennai,India

1.Urbanclimatechange:reasons,magnitude,impact,and mitigation1

MatthaiosSantamouris

1.1 Introduction1

1.2 Whatiscausingurbanoverheating?7

1.3 Aboutthemagnitudeoftheurbanoverheating11

1.4 Abouttheimpactofurbanoverheating13

1.5 Mitigationofurbanoverheating18

1.5.1 Decreaseoftheabsorptionofsolarradiationintheurbanfabric18

1.5.2 Increaseoftheemissionofinfraredradiationbythe urbanstructures19

1.5.3 Increaseoftheventilativecoolingincities19

1.5.4 Decreaseoftheflowofadvectiveheat19

1.5.5 Increaseoftheevapotranspirationhearflux19

1.5.6 Decreaseoftheanthropogenicheatrelease20

1.5.7 Dissipationoftheexcessheattolow-temperature environmentalsinks21

1.6 Conclusion22 References23

2.Experimentalandmonitoringtechniquestomapand documenturbanclimatechange29

RiccardoPaolini

2.1 Introduction29

2.2 Measurementapproachesinurbanclimatology32

2.2.1 Networksofweatherstations continuousmonitoring32

2.2.2 Short-termterrestrialcampaigns46

2.2.3 Remotesensing56

2.3 Climateandnonclimatedatatosupporturbanheatmitigation: challengesandprospects59

2.3.1 Measurementofadvectiveflowsandcausesofurban overheating60

2.3.2 Measurementofparametersthatinfluencetheperformanceof urbanheatmitigationtechnologies60

2.3.3 Mappingofurbanpollutionandnoiselevels61

2.4 Conclusion61 References63

3.Synergiesandexacerbations effectsofwarmerweatherand climatechange73 HassanSaeedKhan,RiccardoPaoliniandMatthaiosSantamouris

3.1 Urbanheatislandsandurbanoverheating73

3.1.1 Urbanoverheatingcauses74

3.1.2 Urbanoverheatingquantificationmethods75

3.2 Heatwaves75

3.2.1 Heatwavesidentificationmethods76

3.3 Thecombinedeffectofurbanoverheatingandheatwaveson humanhealth,economy,energy,andenvironment79

3.3.1 Mortalityandmorbidity79

3.3.2 Energy80

3.3.3 Environmentandtheeconomy80

3.4 UOinteractionwithheatwaves quantificationofenergybudget equation81

3.4.1 Alterationintheradiativeinputduringheatwaves81

3.4.2 Alterationinsensibleandlatentheatfluxesduringheatwaves82

3.4.3 Alterationinadvectiveheatfluxesduringheatwaves83

3.4.4 Alterationinanthropogenicheatfluxesduringheatwaves83

3.4.5 Alterationinheatstorageduringheatwaves84

3.4.6 UOresponsetoheatwavesinvariouscities84

3.4.7 Inconsistentresponseofurbanoverheatingto heatwaves importantfactors88

3.5 Synopticclimatology91

3.5.1 Classification92

3.5.2 Synoptic-scaleweatherconditionsandurbanoverheating94

3.6 AcasestudyfromSydney,Australia98

3.6.1 Interactionbetweenurbanoverheatingandheatwavesin Sydney104

3.6.2 Interactionbetweenurbanoverheatingandsynoptic-scale weatherconditionsinSydney105

3.7 Discussionandconclusion106 Nomenclature110 Supplementarymaterial111 References113

4.Multiscalemodelingtechniquestodocumenturban climatechange123

NeginNazarian,MathewLipsonandLeslieK.Norford

4.1 Introduction:whymodelurbanandintra-urbanclimatechange?123

4.2 Modelingtechniquestodocumenturbanandintraurbanclimate variabilityandchange126

4.2.1 Scalemodels126

4.2.2 Statisticalmethods127

4.2.3 Numericalmethods127

4.2.4 Summaryandreviewofmodelingtechniques141

4.3 Modelingurbanclimate’simpactonhumanlife141

4.3.1 Urbanclimateandclimatechangeinteraction144

4.3.2 Urbanventilation146

4.3.3 Thermalenvironmentandexposureinthebuiltenvironment148

4.4 Conclusions151 References152

5.Urbanoverheating energy,environmental,andheat-health implications165 MatthaiosSantamouris

5.1 Introduction165

5.2 Impactofurbanoverheatingonenergygenerationandenergy supplysystems166

5.2.1 Impactofurbanoverheatingontheenergyconsumptionof referencebuildings169

5.2.2 Impactofurbanoverheatingonthetemporalvariationof theenergyconsumptionofbuildings172

5.2.3 Impactofoverheatingontheenergyconsumptionofthe totalbuildingstockofacity174

5.2.4 Impactofthefutureoverheatingontheenergyconsumption ofbuildings175

5.2.5 Impactofoverheatingontheglobalelectricityconsumption ofacity,oracountry176

5.2.6 Impactofoverheatingonthepeakelectricitydemand178

5.2.7 Impactofoverheatingontheperformanceoftheelectricity productionanddistributionsystems180

5.3 Impactofurbanoverheatingofurbanvulnerability186

5.4 Impactofurbanoverheatingonairquality187

5.5 Impactofurbanoverheatingonhealth191

5.5.1 Impactofurbanoverheatingonheat-relatedmorbidity192

5.5.2 Impactofurbanoverheatingonheat-relatedmortality201

5.6 Conclusion212 References214

6.Fightingurbanclimatechange—stateoftheartof mitigationtechnologies227

JieFeng,ShamilaHaddad,KaiGao,SamiraGarshasbi,GiuliaUlpiani, MatthaiosSantamouris,GianlucaRanziandCarlosBartesaghi-Koc

6.1 Introduction227

6.2 Mitigatingtheurbanheatusingadvancedmaterialsforthe urbanfabric228

6.2.1 Introductiontomitigationmaterials228

6.2.2 Highreflectancewhitecoatings229

6.2.3 Coloredinfraredreflectivecoatings231

6.2.4 Reflectingmaterialsofhighthermalcapacity232

6.2.5 Temperature-sensitive/colorchangingmaterials233

6.2.6 Fluorescentmaterialsformitigation237

6.2.7 Photonicandmaterialsofdaytimeradiativecooling240

6.2.8 Coolingwithelastocaloricmaterials244

6.3 Usingtranspirationcoolingtomitigateurbanheat250

6.4 Mistcooling255

6.5 Urbangreenerytomitigatingtheurbanheat261

6.5.1 Progressonatmosphericheatmitigationwithgreen infrastructure263

6.6 Conclusions277 References278

7.Environmental,energy,andhealthimpactofurban mitigationtechnologies297 MatthaiosSantamouris

7.1 Introduction297

7.2 Theimpactofincreasedurbanalbedoonurbantemperature, energyconsumption,andhealth298

7.2.1 Theimpactofincreasedurbanalbedoonambienturban temperature300

7.2.2 Theimpactofincreasedurbanalbedoonheat-relatedmortality305

7.2.3 Theimpactofincreasedurbanalbedoonenergyconsumption andelectricitygeneration309

7.3 Theimpactofincreasedgreeninfrastructureonurbantemperature andhealth310

7.3.1 Introduction310

7.3.2 Dataandcharacteristics311

7.3.3 Theimpactofincreasedgreeninfrastructureonambient temperature mitigationpotential311

7.3.4 Impactofincreasedgreeninfrastructureonheat-related mortality323

7.3.5 Impactofgreeninfrastructureonheat-relatedmorbidity325

7.3.6 Impactofincreasedgreeninfrastructureonurban pollutionlevels325

7.4 Conclusion327 References328

Thispageintentionallyleftblank

Listofcontributors

CarlosBartesaghi-Koc

SchoolofArchitectureandBuiltEnvironment,ECMS,TheUniversityofAdelaide, Adelaide,SA,Australia

JieFeng

SchoolofBuiltEnvironment,FacultyofArts,DesignandArchitecture,Universityof NewSouthWales(UNSW),Sydney,NSW,Australia

KaiGao

SchoolofBuiltEnvironment,FacultyofArts,DesignandArchitecture,Universityof NewSouthWales(UNSW),Sydney,NSW,Australia

SamiraGarshasbi

SchoolofBuiltEnvironment,FacultyofArts,DesignandArchitecture,Universityof NewSouthWales(UNSW),Sydney,NSW,Australia

ShamilaHaddad

SchoolofBuiltEnvironment,FacultyofArts,DesignandArchitecture,Universityof NewSouthWales(UNSW),Sydney,NSW,Australia

HassanSaeedKhan

SchoolofBuiltEnvironment,FacultyofArts,DesignandArchitectureUniversityof NewSouthWales(UNSW),Sydney,NSW,A ustralia;Data-61,TheCommonwealth ScientificandIndustrialResearchOrganization(CSIRO),Kensington,Perth,WA, Australia

MathewLipson

ARCCentreofExcellenceforClimateExtreme,Sydney,NSW,Australia

NeginNazarian

SchoolofBuiltEnvironment,FacultyofArts,DesignandArchitecture,Universityof NewSouthWales(UNSW),Sydney,NSW,Australia;CityFuturesResearchCentre, UniversityofNewSouthWales(UNSW),Sydney,NSW,Australia;ARCCentreof ExcellenceforClimateExtreme,Sydney,NSW,Australia

LeslieK.Norford

DepartmentofArchitecture,Massach usettsInstituteofTechnology,MA, UnitedStates

RiccardoPaolini

SchoolofBuiltEnvironment,FacultyofArts,DesignandArchitecture,Universityof NewSouthWales(UNSW),Sydney,NSW,Australia

GianlucaRanzi

SchoolofCivilEngineering,TheUniversityofSydney,Sydney,NSW,Australia

MatthaiosSantamouris

SchoolofBuiltEnvironment,FacultyofArts,DesignandArchitecture,Universityof NewSouthWales(UNSW),Sydney,NSW,Australia

GiuliaUlpiani

SchoolofBuiltEnvironment,FacultyofArts,DesignandArchitecture,Universityof NewSouthWales(UNSW),Sydney,NSW,Australia

CHAPTER1

Urbanclimatechange:reasons, magnitude,impact,and mitigation

SchoolofBuiltEnvironment,FacultyofArts,DesignandArchitecture,UniversityofNewSouthWales (UNSW),Sydney,NSW,Australia

1.1Introduction

Citiesincreasetheirboundariesandpopulation.Whiletheurbanpopulationin1960wascloseto1billion,reaching3.33billionin2007,itgrew to4.1billionby2017,representingalmost55%oftheworldpopulation (Ritchie&Roser,2018).Futureprojectionsshowthatby2050urban populationmayreach7billionpeople.Anincreaseintheurbanpopulationisassociatedwithaspectaculargrowthofthesizeofmegacities,cities hostingmorethan10millionpopulation.Whilein1990,only10cities presentedatotalpopulationabove10million,thenumberincreasedto 28millionin2014and33millionin2017(Young,2019).

Apartfromtheurbanpopulationincrease,thedensityofcitiesinthe developedworldhassurgedtounprecedentedlevels.CitieslikeMumbai andKolkata,India,andKarachi,Pakistanhavetremendouspopulation densitiesaround77,000,62,000,and50,000peoplepersquaremile, respectively.Urbanpopulationdensitieshavealsoincreasedindeveloped countrieswithoutreachingtheaforementioneddensityfigures.Forexample,populationdensitiesinTokyomegacity,JapanandAthens,Greece, arecloseto12,300and14,000peoplepersquaremile,respectively,while thedensityinSydney,Australiaisnotexceeding1100peoplepermile. Suchatremendousincreaseoftheabsolutepopulationfiguresanddensitiesareaseriouschallengeaffectingthelocalclimate,useofresources, diseasecontrolandhealthservices,educationandemploymentopportunities,networks,infrastructures,andfacilities.Poverty,unemployment, andlackofpropersheltersobligealmost1billionpeopletoliveininformalurbansettlementsorslumsincompletelyunacceptablehygienicand

climaticconditions(UnitedNationsHumanSettlementsProgramme UN-HABITAT,2019).Unfortunately,futurepredictionsshowadramaticgrowthoftheslumspopulation,anditispredictedthatby2050it willreachabout3billion,ormorethan30%oftheworldpopulation,by themiddleofthecurrentcentury(UnitedNationsDepartmentof EconomicandSocialAffairs,2017).

Apartfromthetremendousincreaseoftheurbanpopulationand urbandensities,severalotherissuesinfluencethemagnitudeofurbantemperatures.Designandconstructionpracticesincitiesfavorhighlyabsorbingandsuperwarmmaterialsforbuildingsandopenspaceslikeconcrete andasphalt.Thegrowthinurbanizationisreflectedalsointheworldproductionofcement,whichhasincreasedfromalmost3700Mtin2010to 4100Mtin2018(InternationalEnergyAgency,2019).Inparallel,the worlddemandforasphalthasrisenfrom103.3millionmetrictonsin 2005to119.5millionmetrictonsby2015(Statista,2016).Highlyabsorbingmaterialsusedintheoutdoorskinofbuildingsandopenurbanplaces reachveryhighsurfacetemperaturesduringthesummer,transferringthe absorbedandstoredheattotheambientaircontributingenormouslyto urbanoverheating.

Theincreaseoftheurbanpopulationandimprovementofthequality oflifeofthemid-classpopulation combinedwithanincreasingeconomiccapacityofhouseholds hasresultedinadramaticgrowthofthe numberofindividualcars,increasingtheanthropogenicheatreleasedin cities.Itisexpectedthatthetotalcarsaleswillincreasefrom70million peryearin2010toabout125million/yearin2025(Boutonetal.,2015). Abouthalfofthecarsareboughtincities,whilefutureprojectionsshow thatthefleetsize,1.2billioncars,maybedoubledby2030(Bouton etal.,2015).Carsreleaseheatandpollutionincities,increasingtheurban ambienttemperatureandobviouslycausingtrafficcongestion,whichin severalcountriescostabout2% 4%ofthenationalGrossDomestic Product(GDP)(Boutonetal.,2015).

Globalclimatechangeincreasesthemagnitudeoftheambienttemperatureandthefrequencyofextremeheatevents(IPCC,2000).Becauseof theimportantsynergiesbetweentheglobalandlocalclimatechange, higherambienttemperaturesintensifythemagnitudeoftheregionaloverheating(IPCC,2000),whileincreasingthedemandforbuildingcooling andraisingthereleaseofanthropogenicheatfromtheairconditioners. Futureprojectionsoutlineaconsiderableincreaseinthecoolingdegree daysinalmosteverypartoftheplanet(Warrenetal.,2006). Fig.1.1

Figure1.1 Currentandfuturecoolingdegreedaysforthemajorareasoftheplanet andfordifferentclimaticscenarios.(1)Baseline.(2)Increasebetween0Kand1K.(3) Increasebetween1Kand2K.(4)Increasebetween2Kand3K.(5)Increasebetween 3Kand4K,and6K.(6)Increasebetween4Kand5K(Santamouris,2016a,b).

presentsthepredictedcoolingdegreedaysforthemajorpartsofthe planet,consideringanincreaseintheambienttemperaturebetween0and 5K(Santamouris,2016a,b;Warrenetal.,2006).Asshown,forspecific regionslikeSouth-EasternAsia,theexpectedincreaseofthecooling degreedaysandcoolingenergydemandisextremelyhigh.

Regionalclimatechangedependshighlyonthesocioeconomicpathwaysfollowedindevelopedanddevelopingcountries.Futureeconomic growthmaydefinethelevelsofthefuturegreenhouseemissionsandthus theneedforadaptationandmitigation.Predictionsofthefutureeconomic growthandtheworldGDPdependonthespecificassumptionsofthe modelsandpresentahighuncertainty.Existingpredictionsfor2050differ substantiallyintermsofthepredictedaverageGDPpercapita. Fig.1.2 presentstheresultsof19publishedmodels(Santamouris,2016a,b).Asshown, theaverageGDPpercapitamayvarybetween7200and26,400US$of 1990.However,acommondenominatorofallscenariosistheserious amplificationoftheeconomicdifferencesbetweenthevariousgeographic partsoftheworld(Fig.1.3).TheusedGDPpredictiondataaretakenfrom theMassachusettsInstituteofTechnologyemissionscenario(MIT,2021).

Figure1.2 PredictedglobalGDPpercapitain2050bythevariousemissionscenarios(inUS$1990). FromSantamouris,M.,2016a.Coolingthebuildings past,present andfuture.EnergyandBuildings,128,617 638. https://doi.org/10.1016/j. enbuild.2016.07.034 .Santamouris,M.,2016b.Innovatingtozerothebuildingsectorin Europe:mminimisingtheenergyconsumption,eradicationoftheenergypovertyand mitigatingthelocalclimatechange.SolarEnergy,128,61 94. https://doi.org/10.1016/j. solener.2016.01.021.

PredictionshaveshownthattheGDPinthelessdevelopingcountriesmay bealmost85%lowerthanthatofthedevelopedones.Giventhatmostof thefuturemegacitiesarelocatedinthe developingcountries,wheremostof thefutureurbanpopulationisexpected,loweconomicdevelopmentwill affectthequalityofthecities,theirinfrastructure,theenergyconsumption, andtherelatedenvironmentalpoliciesandveryprobablywillresultinaseriousincreaseoftheurbanoverheating.

Overpopulationandeconomicgrowthdrivethefuturedevelopment ofresidentialandcommercialbuildings.Whilein2010,thetotalfloor areaofresidentialbuildingsintheworldvariedbetween140billion squaremetersand190billionsquaremeters(GlobalEnergyAssessment WritingTeam,2012;Urge-Vorsatzetal.,2013),itisexpectedtoincrease upto180 290billionsquaremetersby2030and190 379billion squaremetersby2050.Inparallel,thetotalareaofthecommercialbuildingsisexpectedtoriseby2050between25billionsquaremetersand 30billionsquaremeterscomparedto21 24billionsquaremetersin

per Capita, (2010 $)

Figure1.3 PredictedgrowthoftheGDPpercapitabetween2010and2050forall majorareasoftheworld(inUS$2010).Eachboxplotcomprisesalldatafromall majorzonesoftheworld. FromSantamouris,M.,2016a.Coolingthebuildings past, presentandfuture.EnergyandBuildings,128,617 638. https://doi.org/10.1016/j. enbuild.2016.07.034 .Santamouris,M.,2016b.Innovatingtozerothebuildingsectorin Europe:mminimisingtheenergyconsumption,eradicationoftheenergypovertyand mitigatingthelocalclimatechange.SolarEnergy,128,61 94. https://doi.org/10.1016/j. solener.2016.01.021.

2010(John,2014;Urge-Vorsatzetal.,2013).Suchamassiveincreaseof thetotalbuildingsurfaceisexpectedtohaveasignificantimpactontheir energyconsumptionandthereleasedanthropogenicheatandalsoonthe overallconstructionactivitiesandmaterialuse.Atthesametime,itisevidentthatitwillseriouslyintensifythemagnitudeofthelocaloverheating.

Thefutureenergyconsumptionofbuildingsmaybepredictedconsideringalldriversaffectingtheirenergydemandatagloballevel.Thelevels offutureenergyconsumptiondetermineatlargethemagnitudeofthe greenhousegasemissionsandtheevolutionofglobalclimatechange, whilethereleaseoftheadditionalanthropogenicheatintheurbanenvironmentmayseriouslyintensifythelevelsoflocaloverheating.Numerous predictionmodelsconsideringmostoftheabovedriversaredeveloped aroundthefuturebuildingenergyconsumption. Fig.1.4 presentsthepredictedfutureenergydemandoftheresidentialsectorascalculatedby

Figure1.4 Predictedfutureresidentialcoolingenergyconsumptionbythevariousexistingmodels.Thebluezone(leftpartofthefigure)isfor2030,thegreen(middlepartof thefigure)for2050,andthered(rightpart),for2100. FromSantamouris,M.,2016a. Coolingthebuildings past,presentandfuture.EnergyandBuildings,128,617 638. Santamouris,M.,2016b.InnovatingtozerothebuildingsectorinEurope:mminimising theenergyconsumption,eradicationoftheenergypovertyandmitigatingthelocalclimatechange.SolarEnergy,128,61 94. https://doi.org/10.1016/j.solener.2016.01.021 .

severalmodels(McNeil&Letschert,2008;Scottetal.,2008).Asshown, averysubstantialincreaseincoolingenergyconsumptionisforeseenfor thenext20 30years.ItisimportantthatthehighestenergyconsumptionisexpectedinAsiaticcountriesandinparticularinChinaandIndia, wherethemostseriousurbanproblemsareexpected.

Globalclimatechange,anincreaseintheurbanpopulation,higher urbandensities,asignificantincreaseinthenumberofbuildings,andthe expectedtremendousenergyconsumptionofthebuildingsectorarefactorsthatmayseriouslyintensifythemagnitudeofurbanoverheating.

Higherurbantemperatureshaveaseriousimpactontheenergyconsumptionofbuildings,indoorandoutdoorthermalcomfort,theconcentrationofharmfulpollutants,heat-relatedmortalityandmorbidity,

sustainabilityandsurvivabilitylevelsoflow-incomehouseholds,while seriouslyaffectingtheglobaleconomyandwell-beingofcities (Santamouris,2020).Thepreciseimpactofurbanoverheatingiswell quantifiedandisanalyzedandpresentedintherestofthebook.

Tofacetheproblemandcounterbalancetheimpactoflocaloverheating, propermitigation,andadaptationtechnologies,measuresandpolicieshaveto bedevelopedandimplemented.Intherecentyears,seriousresearchhasbeen carriedoutaimingtocounterbalancetheimpactofregionalclimatechange whilenumerouslargescaleprojectsareundertakentoemployandimplement advancedmitigationtechnologiesandmeasures(Akbarietal.,2016). Monitoringresultsobtainedfromahighnumberofmitigationprojectshave shownthattheuseofthecurrentlyavailablemitigationtechnologiescontributesseriouslytodecreasethepeakambienturbantemperatureupto2.5° C 3°C,improvecomfortlevels,decreaseheat-relatedmorbidityandmortality, reducetheconcentrationofharmfulpollutants,andimprovethelivingconditionsindeprivedurbanareas(Santamourisetal.,2017).

Thisbookaimstopresentandanalyzethecausesofurbanoverheating, thefuturechallengesconcerningthelocalclimatechange,demonstrate thelatestdevelopmentsoftheexperimentalandmonitoringtechnologies toquantifythecharacteristicsandthemagnitudeofthelocaloverheating, identifyandquantifytheimpactofoverheatingonenergy,health,environmentalqualityandeconomy,andfinallypresenttherecentachievementsinthefieldofurbanmitigationandadaptationtechnologies.

1.2Whatiscausingurbanoverheating?

Thethermalbalanceinthebuiltenvironmentisdefinedasthesumofthe heatgains,heatstorage,andheatlosses.Asurbanareascomparedtothe surroundingruralorsuburbanenvironmentpresenthigherthermalgains andlessthermallosses,theirthermalbalanceismorepositive,andcities presentahigherambienttemperaturecomparedtotheirsurroundings. Thisdynamicsiswellknownastheurbanheatislandphenomenon (Fig.1.5),whichprobablyisthemostdocumentedphenomenonofclimatechange(Akbarietal.,1992).

Citiesreceiveandabsorbsolarradiation.Theexactamountofabsorbed radiationdependsonthesolarabsorbanceofthematerialsandotherurban structures,whichisasurfaceproperty.Mostmaterialsused,likeconcreteand asphalt,presentahighsolarabsorbance(i.e.,theratioofabsorbedtoincident solarradiation).Theabsorbedenergyisstoredintothemassofthematerials,

Sketch of an Urban Heat-Island Profile

Figure1.5 Sketchofatypicalheatislandurbanprofile. FromTaha,H.,Akbari,H., Sailor,D.,Ritschard,R.,1992.Causesandeffectsofheatislands:sensitivitytosurface parametersandanthropogenicheating.

increasingtheirtemperature,anditis releasedintotheatmosphereintheform ofconvectiveheatandinfraredradiation. Inparallel,materialsabsorbinfrared radiationemittedbytheatmosphereandtheothersurfacesinthebuiltenvironment.Convectivelossesorgainsbetweentheurbansurfacesandtheambientairdependmainlyonthecorrespondingtemperaturedifferenceandthe windspeedandturbulence.Anthropogenicheataddedtotheatmosphereas releasedbycars,industry,powerplants,andtheenergysystemsofbuildings increasestheenergyfluxesinthebuilt environment.Heattransferbyadvection incitiesaffectsinapositiveornegativewaytheenergybudgetasafunctionof thetemperaturedifferencebetweentheambientandtheadvectedair.Finally, latentheatreleasedthroughtheevaporationofwaterbyurbanvegetationand watersurfaceshelpstodecreasetheambienttemperature.

Thustheenergybalanceofthesurface ambientairsystemcanbe writtenas:

whereQr isthesumofthenetradiativeflux,QT isthereleasedanthropogenicheat,QE isthesumofthesensibleheat,QL isthelatentheat,Qs isthestoredenergy,whileQA isthenetenergytransferredtoorfromthe urbansystemthroughadvectionundertheformofsensibleorlatentheat. Theadvectivetermcanbeignoredincentralurbanareassurroundedby analmostuniformbuildingdensity.Still,itmaybeimportedintothe boundariesbetweentheurbanandtheruralenvironment.

Usually,theabsorbedsolarradiationisthetermpresentingthehighest magnitude,andthatcontributesmoretoincreasetheurbantemperature. Thusadecreaseinthesolarabsorbanceorincreaseofthesolarreflectance oftheurbansurfacesiscrucialtominimizethereleaseofthesensibleheat totheatmosphereanddecreasetheambienttemperature.Theinfrared radiationemittedbytheurbanstructurescontributeshighlytolowerthe ambienttemperature,especiallyduringthenighttime.Theemissivecapacity,thatis,theemissivityoftheurbanmaterialsandstructures,highly determinesthemagnitudeoftheemittedradiation.However,asthespectralemissivityisequaltothespectralabsorptivityofthematerials,high emissivityvaluesmayresultinincreasedabsorptionoftheemittedatmosphericradiation.Especiallyinurbanzoneswithahighcontentofwater vapororatmosphericpollution,themagnitudeoftheincomingatmosphericradiationmaybequitehigh.Materialspresentingahighspectral emissivityintheso-calledatmosphericwindow,thatis,between8and 13micrometers,presentanadditionaladvantageastheatmosphericradiationatthesewavelengthsisminimum.Latentheatreleasedbyurbanvegetationandwatersurfacesisconsiderablyreducedincitiescomparedto theruralareasasaresultofthelimitedgreenandwaterzones.Anincrease oftheevapotranspirationalfluxcontributesconsiderablytodecreasethe ambienttemperatureandrisethewatercontentintheatmosphere.

Advectiongainsorlossescanbeadeterminantofheatfluxincities.In coastalzones,theimpactofseabreezehelpstoreducethelevelsofthe ambienttemperatureconsiderablyandfightoverheating,especiallyduring theafternoonhours.Inparallel,urbanzoneslocatedclosetohotandarid zoneslikethedesertorotherheatsources,likepowerplantsorlargephotovoltaicplants,mayhaveaverynegativeimpactashotorwarmairmay betransferredtothecity.

Anthropogenicheatreleasedintheurbanambientairvariesasafunctionofthespecificcharacteristicsofthecityandtherelativeanthropogenicactivitiesliketransport,industry,energysystemsofthebuildings, etc.Althoughtheaverageanthropogenicheatfluxissmallcomparedto

thesummertimemid-daysolarradiation,wasteheatfromurbananthropogenicactivitiesmayplayanimportantroleintheformationandmagnitudeoftheheatislandphenomenon.Manyexperimentalandmodeling studieshavedocumentedthatwasteheat,mainlyfromurbanenergy, transportationsystems,andpowergeneration,contributestoincreased heatislandintensities(Khan&Simpson,2001;Sailor&Lu,2004).A methodologytoestimatethemagnitudeoftheanthropogenicheatgeneratedincitiesisproposedin SailorandLu(2004).

Manystudieshavebeenperformedtocalculatetheanthropogenic heatfluxinurbanareas,andavaluecloseto100W/m2 issuggestedasan average(Grimmond,1992;Kłysik,1996).However,muchhighervalues havebeenreportedforvariouscities.Inthepast,itwasestimatedthatthe anthropogenicheatindowntownManhattanwascloseto198W/m2 (Couttsetal.,2007),whilethemaximumfluxincentralLondonwas closeto234W/m2,withanaveragevaluecloseto100W/m2 (Harrison etal.,1984).AnanalysisoftheanthropogenicheatreleasedinUScities reportsanaveragefluxbetween20and40W/m2 forthesummerand between70and210W/m2 forthewinterperiod,consideringtheupper valueasanextreme(Hosler&Landsberg,1997).InMoscow,Budapest, Reykjavik,andBerlin,theaverageanthropogenicheatfluxisestimated closeto127,43,35,and21W/m2,respectively,whileforMontrealand Vancouver,itis99and26W/m2 (Steinecke,1999;Tahaetal.,1992).

Morerecentstudiesshowthattheanthropogenicheatfluxintheurban areainTokyoexceeds400W/m2 inthedaytime,whilethemaximum valueiscloseto1590W/m2 inwinter(Ichinoseetal.,1999).Another analysisoftheanthropogenicheatdistributionforcentralBeijingshows thatat0800a.m.localtime,itrangesbetween40and220W/m2 insummerand60toW/m2 inwinter(Chenetal.,2007).Finally,estimations forToulouse,France,showedthatanthropogenicheatflowsarearound 15W/m2 duringsummerand70W/m2 duringthewinterwithpeaksof 120W/m2 (Pigeonetal.,2007).

Anthropogenicheatcanbeanimportantcontributortothethermal environmentsofcities.Numericalsimulationsoftheurbantemperature regimehaveshownthatanthropogenicheatmayincreaseurbantemperaturesbyupto3°C(Narumietal.,2003).UsingamesoscalemodelcalculatedthattheadditionofanthropogenicheatinOsakaincreasestheurban temperaturetoabout1°C.DetailedsimulationsfortheTokyoarea, reportedin KondoandKikegawa(2003),showthatanthropogenicheatingintheOtemachiarearesultedinatemperatureincreaseofabout1°C.

In Ichinoseetal.(1999),itisestimatedthatthetemperatureincreasein thesameareaofTokyoduringthesummerperiodwasaround1.5°Cat 10p.m.,whilemuchhigherdifferenceshavebeencalculatedforsurface energybalancecomponents.

1.3Aboutthemagnitudeoftheurbanoverheating

Urbanoverheatingisexperimentallydocumentedinmorethan450large citiesintheworld.Whiletheexistingknowledgeonthemagnitudeof urbanoverheatingisquiterich,itisovershadowedbytheproblem’ saccuracyandrepresentativenessoftheresultsandinconsistenciesoftheexperimentaldataandtheoreticalconclusions(Stewart&Oke,2012).Thereare threemainmonitoringtechniquesemployedtomeasurethemagnitudeof urbanoverheating:(1)Thosebasedontheuseofmobiletraverses.(2) Thoseusingstandardfixedobservationstations.(3)Thoseusingnonstandardobservationstations(Santamouris,2015).Inparallel,measurements varyasafunctionofthenumberofmeasuringstationsused,theduration ofdatacollection,thereportingformat,andthecriteriatoselectthereferencestation(Stewart,2011).

Studiesbasedonmobiletraversesandnonstandardmeasuringstations areusuallybasedondatacollectedforarelativelyshortperiod,andthe reportedmagnitudeofurbanoverheatingisusuallythemaximumorthe averagemaximumvaluemeasuredduringtheexperimentalperiod.When standardmeasuringstationsareused,datamaybeavailableforseveral years,whileeithertheannualaverage,theannualaveragemaximum,or theannualabsolutemaximumarereportedasthemagnitudeofurban overheating.

Ananalysisofthespecificlevelsofurbanoverheatingin100Asianand Australiancitiesisgivenin Santamouris(2015).Inparallel,asimilaranalysisfor110Europeancitiesisreportedin Santamouris(2015).AsitconcernstheAustralianandAsiancities,whenmobiletraversesareused,the magnitudeoftheurbanoverheatingvariesbetween0.4°Cand11.0°C (Santamouris,2015),whiletheaverageintensityiscloseto4.1°C.For about23%and58%oftheexaminedcities,themagnitudewasbelow 2°Cand4°C,respectively,while27%ofthecitiespresentedanoverheatingintensityhigherthan5°C.Whennonstandardmeteorologicalstations areused,theoverheatingmagnitudeisfoundtovarybetween1.5°Cand 10.7°C,withanaveragevaluecloseto5°C.Almost42%ofthecitiespresentedanoverheatingintensityhigherthan5°C(Santamouris,2015).

Whenmeasurementsarebasedonmultiyeardatacollectedbystandard meteorologicalstations,theannualaverage,annualmaximumaverage, andannualabsolutemaximumintensityoftheoverheatingisreportedas themagnitudeofurbanoverheating. Figs.1.6and1.7 reportthemagnitudeoftheannualaverageandabsolutemaximumannualoverheating magnitude(Santamouris,2015).Thereportedaverageintensityofthe annualmean,meanmaximum,andabsolutemaximumoverheatingintensityis1.0°C,3.1°C,and6.2°C,respectively.Itischaracteristicthatfor about20%ofthecities,theannualabsolutemaximumintensityofoverheatingexceeded8°C(Santamouris,2015).

InEurope,whenstandardmeteorologicalstationsareused,thecorrespondingaverageannual,averagemaximum,andannualabsolutemaximumintensityoftheurbanoverheatingis1.1°C,2.6°C,and6.2°C, respectively.Inparallel,theaveragemaximummagnitudeoftheoverheatingwhenmobiletraversesareusedisfoundcloseto6°C (Santamouris,2016a,b).

Figure1.6 Reportedintensityoftheannualaverageurbanheatislandforstudies basedonstandardmeasuringequipment. FromSantamouris,M.,2015.Analyzingthe heatislandmagnitudeandcharacteristicsinonehundredAsianandAustraliancities andregions.ScienceoftheTotalEnvironment,512 513,582 598. https://doi.org/ 10.1016/j.scitotenv.2015.01.060 .

Figure1.7 Reportedintensityofthemax maxurbanheatislandforstudiesbased onstandardmeasuringequipment. FromSantamouris,M.,2015.Analyzingtheheat islandmagnitudeandcharacteristicsinonehundredAsianandAustraliancitiesand regions.ScienceoftheTotalEnvironment,512 513,582 598. https://doi.org/10.1016/j. scitotenv.2015.01.060 .

Itisevidentthattheintensityofurbanoverheatingisquitehigh,especiallyduringthesummerperiod,andonaverage,mayexceed5°C.Such atemperatureincreasehasasevereimpactontheenergydemandfor coolingpurposes,whileitincreasestheconcentrationofharmfulpollutantsandraisesthelevelsofheat-relatedmortalityandmorbidity.

1.4Abouttheimpactofurbanoverheating

Importantresearchworkhasbeencarriedoutintherecentyearsaiming toquantifytheimpactofurbanoverheatingonenergy,peakelectricity demand,pollutionlevels,heat-relatedmortalityandmorbidity,aswellas onurbansustainabilityandeconomy.

Inparticular,theimpactofhigherambienttemperatureontheenergy systemsiswellquantifiedanddocumented.Asdescribedin Santamouris (2020),urbanoverheatingaffectsboththeenergydemandandsupplysectorsadversely.Asitconcernstheenergyconsumptionofbuildings,overheatingraisesthecoolingenergyconsumptionincities.Itisreportedthat

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.