Understanding pore space through log measurements k. meenakashi sundaram - Download the ebook now to

Page 1


https://ebookmass.com/product/understanding-pore-spacethrough-log-measurements-k-meenakashi-sundaram/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Electronic Measurements & Instrumentation K. Lal Kishore

https://ebookmass.com/product/electronic-measurements-instrumentationk-lal-kishore/

ebookmass.com

80th Conference on Glass Problems S. K. Sundaram

https://ebookmass.com/product/80th-conference-on-glass-problems-s-ksundaram/

ebookmass.com

Mechanical Measurements 6th Edition Thomas G. Beckwith

https://ebookmass.com/product/mechanical-measurements-6th-editionthomas-g-beckwith/

ebookmass.com

Designing and Implementing Cloud-Native Applications Using Microsoft Azure Cosmos DB: Study Companion for the DP-420 Exam 1st Edition Steve Flowers

https://ebookmass.com/product/designing-and-implementing-cloud-nativeapplications-using-microsoft-azure-cosmos-db-study-companion-for-thedp-420-exam-1st-edition-steve-flowers-2/

ebookmass.com

Elevate Your Team: Empower Your Team to Reach Their Full Potential and Build a Business That Builds Leaders Robert Glazer

https://ebookmass.com/product/elevate-your-team-empower-your-team-toreach-their-full-potential-and-build-a-business-that-builds-leadersrobert-glazer/

ebookmass.com

Cell biology : translational impact in cancer biology and bioinformatics 1st Edition Mitchell

https://ebookmass.com/product/cell-biology-translational-impact-incancer-biology-and-bioinformatics-1st-edition-mitchell/

ebookmass.com

Equality and Differentiation in Marketised Higher Education 1st ed. Edition Marion Bowl

https://ebookmass.com/product/equality-and-differentiation-inmarketised-higher-education-1st-ed-edition-marion-bowl/

ebookmass.com

The Oxford World History of Empire: Volume Two: The History of Empires (2021) Peter Fibiger Bang

https://ebookmass.com/product/the-oxford-world-history-of-empirevolume-two-the-history-of-empires-2021-peter-fibiger-bang/

ebookmass.com

Fundamentals

of Oncologic PET/CT 1st Edition Gary Ulaner

https://ebookmass.com/product/fundamentals-of-oncologic-pet-ct-1stedition-gary-ulaner/

ebookmass.com

Intergovernmental

https://ebookmass.com/product/intergovernmental-relations-in-dividedsocieties-fessha/

ebookmass.com

DEVELOPMENTSINPETROLEUM SCIENCE76

UnderstandingPoreSpacethrough LogMeasurements

Thispageintentionallyleftblank

DEVELOPMENTSINPETROLEUM SCIENCE76

UnderstandingPore SpacethroughLog Measurements

MentorPetrophysicistandConsultant,TataPetrodyneLtd

SoumyajitMukherjee

ProfessorofGeology,IndianInstituteofTechnologyBombay,India

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright © 2022ElsevierB.V.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyany means,electronicormechanical,includingphotocopying,recording,orany informationstorageandretrievalsystem,withoutpermissioninwritingfromthe Publisher.Detailsonhowtoseekpermission,furtherinformationaboutthePublisher’ s permissionspoliciesandourarrangementswithorganizationssuchastheCopyright ClearanceCenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions .

Thisbookandtheindividualcontributionscontainedinitareprotectedunder copyrightbythePublisher(otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthis fieldareconstantlychanging.Asnewresearchand experiencebroadenourunderstanding,changesinresearchmethods,professional practices,ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledge inevaluatingandusinganyinformation,methods,compounds,orexperiments describedherein.Inusingsuchinformationormethodstheyshouldbemindfulof theirownsafetyandthesafetyofothers,includingpartiesforwhomtheyhavea professionalresponsibility.

Tothefullestextentofthelaw,neitherthePublisher,northeauthors,contributors,or editors,assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasa matterofproductsliability,negligenceorotherwise,orfromanyuseoroperationof anymethods,products,instructions,orideascontainedinthematerialherein.

ISBN:978-0-444-64169-4 ISSN:0376-7361

ForinformationonallElsevierpublicationsvisitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: CandiceJanco

AcquisitionsEditor: JennetteMcClain

EditorialProjectManager: HowiMDeRamos

ProductionProjectManager: BharatwajVaratharajan

CoverDesigner: MilesHitchen

TypesetbyTNQTechnologies

Dedication

Thisbookisdedicatedtoallthosewho taught,mentored,andinspiredme.Also, tothosewhoworkedalongside,and learnedfromme,andalsochallengedme. Butaboveall,thisbookisdedicatedto thosewhomademebelievethatReachis alwaysfartherthanGrasp. KMS

IdedicatethisbooktoProf.Dr.Devang Khakhar(Ex-Director,Departmentof ChemicalEngineering,IITBombay). SM

Thispageintentionallyleftblank

Preface xvii

Acknowledgments xix

1.Poresandporespace

1.1Theporespaceofrocks 1

1.1.1Theporespaceofgranularrocks1

1.1.2Theporespaceofcarbonaterocks anexampleof theporosityclassification4

1.1.3Theporespaceofcoals4

1.1.4Porespaceofshalereservoirrocks6

1.1.5Theporespaceoftightsedimentaryrocks12

1.1.6Theporespaceofnonsedimentaryrocks13

1.2Classificationofporesbysize 13

1.3Poresandporethroats 14

1.4Logsandporespace 16

1.4.1Poreattributesusedinpetrophysicalmodelsofpore networks17

1.4.2Porethroatmodels18

1.4.3Apopularandsuccessfulmodelofporespace thecapillarytubebundleformodelingflowofan incompressiblefluidthroughporousrocks20

1.4.4Agenerictreatmentoftransportofanincompressible fluidthroughamediumsuchasaporousrock20

1.4.5Modelingtheorientationofporesinspace20

1.5Thefractalmodelofporespace 21

1.6Useoflogdata 22

1.6.1Understandingthedegreeofconnectivitybetween twoporesizeclassesusingNMRlogdata23

1.6.2Insightsfromhigh-resolutionresistivityimagingtool dataintotheporesizeheterogeneity24

26

28

2.Inversionoflogdatatothegrossattributesofpore space

2.1Estimationofthebulkporosityoflaminatedformations usingdeterministicapproach 31

2.1.1Computationofeffectiveporosityusingshallow resistivity,neutroncapturegammarayspectrometry, formationbulkdensity,andneutronporositydata32

2.1.2Computationofeffectiveporosityusingshallow resistivity,gammaray,formationbulkdensity,and neutronporositydata38

2.1.3Totalporosity40

2.1.4Thedifferentwaysclay/shaleismanifestwithin clasticrocks44

2.1.5TheThomas Stieberapproach45

2.2Stochasticinversionoflogdataforlaminatedformation 55

2.2.1Basicresponseequationsthatleadtotheforward model55

2.2.2Theforwardmodel65

2.2.3Essentialconstraints66

2.2.4Additionaloutputscomputed68

2.2.5Horizontalpermeabilityandverticalpermeability68

2.2.6Usageofhigh-resolutiondata69

2.3Evaluationofmicroporosity

2.4Evaluationofblocky(nonlaminated)reservoirs

3.Poreattributesofconventionalreservoirs

3.1Theporespaceofintergranularrocks 117

3.2Attributesofporespace 117

3.2.1Poreshape,poresize,andporethroatsize118

3.2.2Poresasthebuildingblocksofporespace118

3.2.3Geometryoftheporebody119

3.2.4Sizeofapore119

3.2.5Theconceptofporeclass120

3.2.6Surfaceareatovolumeratio120

3.2.7Thecharacteristiclengthscaleofporespace121

3.2.8Hydraulicradiusmeasureoftheporespace121

3.2.9Theporeshapefactor122

3.2.10T2 logmean122

3.3Distributionofincrementalporosityoverporeradius 124

3.3.1Computationof CP(r)usingNMRdata124

3.3.2Distributionofincrementalporosityoverpore throatradius125

3.3.3Ratioofporesizetoporethroatsize125

3.3.4Harddataonthedistributionofporethroatsize overincrementalporosity ðCPT ðR ÞÞ 127

3.3.5Obtaining CPT(R)frommercuryinjectiondata128

3.3.6Obtaining CPT(R)fromlogdata129

3.4Computationof CPT(R)fromtheNMRdata 131

3.4.1Thelinearconversionworkflow131

3.4.2Nonlinearconversionworkflow132

3.5PoreshapefactorthroughintegratingNMRandMICP (mercuryintrusiondata) 134

3.5.1Frequencydistributionofporeradius134

3.6Asimplevisualizationofconstrictionanditseffectonthe grosspermeabilityofporespace 135

3.6.1Modelpredictionofpermeability141

3.6.2Timur Coatespermeabilitypredictorfromthe perspectiveofconstriction143

3.7Fractalattributesofporespace 144

3.7.1Thefractalmodeloftheporespace,basedona pore porethroatassemblagevisualizationofthe physicalporespace145

3.7.2Afractalmodeloftheporespace147

3.7.3Permeabilityfromtheperspectiveofthefractal modeloftheporespace148

3.7.4Cumulativeporevolume149

3.7.5Representativehydraulictortuosityandcumulated surfaceareatocumulatedvolumeofthecapillaries150

3.8Electricalformationfactorfromtheperspectiveofthe fractalmodeloftheporespace 155

4.Porespaceattributesofnonconventionalreservoirs

4.1CBMreservoirs 161

4.1.1Thecomponentsofthespaceoccupiedbyfluids incoals161

4.1.2Characterizationoftheporespaceofcoals cleats andfracturesthatarenotcleats162

4.1.3Characterizationoftheporespaceofcoalsusing NMRdata170

4.1.4Permeabilityofcoal measurement173

4.2Shalereservoirs 177

4.2.1Poresizeencounteredwithinshalereservoirs178

4.2.2Differentiationofporeclassesforshalereservoirs179

4.2.3MultidimensionalinversionofNMRechodata usingmaximumentropyprinciple183

4.2.4Presentationoftheresultsofinversion188

4.2.5Porositypartition188

4.2.6Themethodofdiffusionediting191

4.2.7ThemethodofLaplaceInversionwith regularization195

4.2.8D-T2 plots(morefamiliarlyknownas D-T2 maps) forwardmodels197

4.2.9D-T2 mapsandotherplotsrelatedtotheresults ofechodatainversion fieldexamples203

4.2.10Partitioningoftotalgasintofreeandadsorbed gascomponentsusingonlyNMRdata207

4.3Characterizationoffracturedreservoirs

5.Logmeasurementscommonlyusedforfinding thebulkporosityofconventionalreservoirs

5.1Porespaceattributesofconventionalreservoirs

5.2Measurementofbulkporosity

5.2.1Measurementofformationdensityforbulkporosity227

6.Logmeasurementsessentialforcharacterizingthe porespaceofunconventionalreservoirs

6.1Measurementoftotalporosityusingnuclearmagnetic resonance 345

6.1.1NMRtheory345

6.1.2Porespaceattributesandtherelaxationof transversemagnetization367

6.1.3Totalporosityandthebinporosities377

6.1.4Estimationoftotalporositydirectlyfromtheecho data379

6.1.5Obtainingtotalporosityusingtheformation densityandNMRdata380

6.2NMRandtheporosityofCBMreservoirs 381

6.2.1Coalpores381

6.2.2The T2 relaxationspectraofcoals382

6.2.3Totalporosityandgasvolume385

6.2.4Porosityavailablewithintherockforholding freegas385

6.2.5Cleatvolumeperunitrockvolume385

6.3Porosityofshalegas/shaleoilreservoirs 385

6.3.1Estimationofeffectiveporosity389

6.4Estimationofelementalconcentrationinrocks 390

6.4.1Neutroncapturegammaspectrometry390

6.4.2Inelasticgammaspectrometry395

6.4.3Computationoftheaveragedensityofsolidpartof theformation398

6.4.4Theacquisitionofinelasticandcapturegammaray spectra399

6.5CharacterizingtheporespaceofCBMreservoirsusing imagedata 403

6.5.1Cleat/fractureapertureandvolume,andmatrix porosityofCBMreservoirs403

6.6Characterizingtheporespaceofshalereservoirsusing imagedata 413

6.6.1Shalepores413

6.6.2Delineationoffractureswithinshalereservoirs usingimagedata414

6.6.3Boreholeelectricimagesanddistributionof organicmatter414

6.7Generationofhigh-resolutionelectricalimagesofthe boreholewall 415

6.7.1Sensors415

6.7.2Positionofeachsensorinspace416

6.7.3Dataacquisition417

6.7.4Processflowforcreatingboreholeimagesfrom thebuttoncurrentmaps418

7.Characterizingporesandgrainsusinglogs

7.1Porefacies

7.1.1Poresizedistribution447

7.1.2Poreshapesfromlogs455

8.Archie’scementationexponent

8.1Introduction

8.2PredictionofthevalueofArchiecementation exponent“m”usingeffectivemediumtheories 500

8.3ApproachesusedinmodellingArchie’s m parameter GeneralRemarks

8.4Theapproachforcomputing“m”usingsingle-frequency dielectricdataandusingArchie’sequation 501

8.5Theapproachforcomputing“m”usingmultifrequency dielectricdataandusingArchie’sequation 501

8.6Theapproachforcomputing“m”fromgrainattributes obtainedthroughmultifrequencydielectricdatainversion 503

8.6.1InversionofArchie“m”fromsingle-frequency dielectricdata503

8.6.2InversionofArchie“m”frommultifrequency dielectricdata511

8.6.3Workflowforthegenerationofthedispersion modelofdielectricpermittivity ε 522

8.6.4Thedispersionmodelforrockconductivity524

8.6.5Applicabilityofthemodeltoclayeyrocks527

8.6.6Theroleofcontributiontocomplexpermittivity, comingfromunconnectedpores528

8.6.7ApproachestoestimationofArchie“m”basedon differentialeffectivemediumtheory530 Appendix1 551 Appendix2 differentialeffectivemediumtheoryforaligned inclusionscase 556

Appendix3 559

Approachestomodel“m”:incaseofShalyrocksusingthe Bergmanspectraldensityrepresentationoftheeffective permittivityofabinarymixture 564 Appendix4 581

AnapproachtoArchie“m”throughNMRdataanalysis 589 PercolationtheoriesandArchie“m”factor 592

Appendix5:logarithmicmixinglawforeffectivepermittivityofa mixture 594

Approachestoestimate“m”throughfractalmodelofpore space 602

9.Permeabilityofunimodalporesystem

9.1Introduction 613

9.2Responseoflocalpressurefield,localfluidvelocityfield, andaveragefluidvelocityfieldtochangesindriving pressure 614

9.3Asimplemodelofporespacepresented 616

9.4Flowthroughacapillary 617

9.4.1Howporespaceattributesinfluencepermeability620

9.5Surfacearea,or,representativeporedimensionorcharacteristiclengthscaledrivenapproachestopermeability 621

9.5.1The“bundleofcapillarytubes”modelofpore space621

9.5.2Forwardmodelofpermeabilityintermsofpore spaceattributes626

9.5.3Thestreamtubemodelofflowthroughaporous mediumwhosegrain-andpore-arrangementofa macrolevelvolumesegment,isisotropic,and thus,macroscopicpermeabilityfieldisascalar628

9.6Depictionofporespaceinthemodel 628

9.6.1Streamtubes628

9.7Elementalstreamtube 629

9.8Integralrepresentationofmacroscopicpermeability (orsimply“permeability”),andtheconceptof microscopicpermeabilitydensityorlocalpermeability density 630

9.9Integralrepresentationofpermeability 631

9.10Averagepermeabilityfield ks ,alsoreferredto,asthe “effectivepermeabilityfactor” 631

9.11Integralrepresentationofaveragepermeabilityfield (effectivepermeabilityfactor) ks andrelationbetween permeability k andeffectivepermeabilityfactor ks 632

9.12Theelementalstreamtubepermeabilityfactorfield 633

9.12.1Explicitrepresentationofpermeabilityfactorof astreamline(elementalstreamtube)intermsof someofitsattributes634

9.12.2Decompositionofpermeabilityintomacroscopic porespaceattributes,namely,hydraulictortuosity, hydraulicconstrictionfactor,andhydraulicpore radius636

9.13Insightsfromthesimplestpossibleporespacemodeland theroleplayedby“hydraulicradius”inpermeability modeling derivationofageneralizedKozeny-Carman equation 638

9.14Conceptofhydraulicradius 638

9.14.1Howmicroscopicstreamlineattributesand macroscopicporespaceattributesarerelated inaporousmedium640

9.14.2HydraulicConstrictionfactor(C s )ofconnected porespace,whichisthemacroscopic counterpartofstreamlineattribute C ðS Þ 640

9.15GeneralizedKozeny-Carmanequation 641

9.15.1ConventionalformofKozeny-Carmanequation predictingpermeability643

9.15.2Wellknownequationsforpermeabilityprediction fromlogmeasurements.Theequationsdiscussed belowareforwaterwetrockonly646

9.16FromKozeny-Carmanequation,toVanBaaren’s equation 663

9.17TheRGPZequation

10.Permeabilityandelectricalconductivityofrocks hostingmultimodalporesystemsandfractures

10.1Poresizenomenclature

10.1.1Micropores,mesopores,andmacropores737

10.2PoreclassificationusingNMR T2 distribution 738

10.2.1RelationbetweenporesizesandNMR T2: thefastdiffusionlimit738

10.2.2Limitsofvalidityofa T2 threshold-basedporosity partition742

10.2.3Model-basedporositypartitionforthecaseof rockshavingintragranularporosity742

10.2.4Casewherevugsarenotsparselydistributed intherock746

10.3Poreclassificationusingwellboreimages 747

10.3.1Preconditioningofdata747

10.3.2Dippicking747

10.3.3Closingthedatagap747

10.3.4Extractionoffracturesegments753

10.3.5Matrixextraction758

10.3.6Theproblemofcomputingtheporevolume contributionofheterogeneities761

10.3.7Anefficientmethodologyforextracting heterogeneities762

Appendix1 770

10.4Porositypartitionusingacousticlogs 772

10.4.1Challengesofporositypartitionusingacoustic logs772

10.4.2Aworkflowofporositypartitionusingacoustic logs773

Appendix2 778

10.5Electricalconductivityofanunfracturedcomposite hostingdualporosity 788

Modeling s2 forfullywatersaturatedcomponent2case789

Evaluationof s theelectricalconductivityofacomposite hostingdualporosity792 Caseofpartialsaturation793

10.6Permeabilityofanunfracturedcompositehostingdual porosity 794 Baserockpermeability794 Permeabilityofthecompositerock796

10.7Electricalconductivityoffracturedrocks 798 Partialsaturationcase799

10.8Thevariablecementationexponentmethodofcomputing watersaturation 801 Caseofconnectedporespacehavingtortuosityunity801 Porevolumes801

RationalebehindEquation(10.89)802 LevelbylevelevaluationoftheArchiecementation exponentoftheformation804 Discussion804 Computationofwatersaturation807

Preface

Thisbookexplainshowlogmeasurementsexplainporespace.Theideaisto familiarizeindustrypersons,studentsofgeophysics,petrophysics,andpetroleumengineering,whostudywellloggingatthegraduatelevel,andthose embarkingonresearchintopicsrelatedtopetrophysics.Westartfromthe basicconceptsthatleadtomodelsfortheimportantmicroscopicand macroscopicporespaceattributes.Thisbook,whilehavingthisstatedgoal,is alsoaimedatresearchers,withtwoobjectives:(i)tomakeitlesstimeconsumingforaresearchertoimbibepublishedmaterials;(ii)tofamiliarize theresearcherwiththeprinciplesbehindsomeoftheinstrumentationinvolved indataacquisitionandprocessing.Thefocusthroughoutthisbookhasbeento restricttotheimportanttechniques,andkeepthediscussiongeneric.Itis assumedthatareaderhasabackgroundofclassicalphysics,quantummechanics,vectoranalysisincludingvectorcalculus,andabasicknowledgeof tensors.Itispresumedthatthereaderhassomegroundinginthenuclear magneticresonance basedtechniquesforelicitingporespaceattributes. Basicknowledgeofnuclearphysicsisalsoassumed.Familiaritywiththe techniquesofmorphologicalimageprocessing,effectivemediumtheories,and logdatainversionforformationattributescanbehelpfulinfollowingsomeof thechapterswithease.

Thelistofbooksgivenbelowisrecommendedforappreciatingsomeofthe topicscoveredinthisbook.

Coates,G.R.,Xiao,L.Z.,Prammer,M.G.,2000.NMRLoggingPrinciplesand Applications,GulfPublishingCompany,Houston.

Dunn,K.-J.,Bergman,D.J.,LaTorraca,G.A.(ed.),2002.NuclearMagnetic Resonance:PetrophysicalandLoggingApplications,PergamonPress,New York.

Ellis,D.V.,Singer,J.M.,2008,WellLoggingforEarthScientists,seconded, Springer.

Griffiths,D.J.,2013,IntroductiontoElectrodynamics,fourthed,Pearson.

Tuck,C.C,1999,EffectivemediumTheory:PrinciplesandApplications, ClarendonPress.

Thispageintentionallyleftblank

Acknowledgments

KMSandSMthanktheElsevierteam(AmyShapiro,HowellAngeloM.De Ramos,proofreaders)foroutstandingsupport.CPDAgrant(IITBombay) providedinfrastructuretoSM.

Thispageintentionallyleftblank

Chapter1

Poresandporespace

1.1Theporespaceofrocks

1.1.1Theporespaceofgranularrocks

Inorganicgranularrocksareformedduetothecompactionandlithificationof sedimentwhosegrainsareclastic(e.g., MukherjeeandKumar2018)and alsoincludeooliticrocks(e.g., DasguptaandMukherjee2020).Organic granularrocksareformedduetothecompactionandlithificationofgrains composedoftheskeletalremains,fecalfragments,radiolarii,algalfragments andcoralfragments,andotherremnantsconnectedwithmarinefloraand fauna.

Thesedimentarygrainsgivingrisetoinorganicgranularrocksdonothave internalvoidspaces.Ontheotherhand,thegrainsofthesedimentwhichgives risetoorganicgranularrockscanhaveinternalvoidspace.Thereasonforthis isthefactthatagrain,inthecontextoforganicgranularrocks,canitselfbean aggregateofsmallerunits,e.g.,fecalfragments.Itcanalsohavedissolution porespace,as,forexample,inthecasewhereagrainisaskeletalfragmentor aggregatesofskeletalfragments.

Rockssuchasbound-stonescanhaveporespace,whichisintra-aswell asinterfragmentary.Theterm‘fragment’herewouldrefertoaunitofthe bound-stone,whichistheresultofthebindingofthesefragments.

Porespaceisdefinedbyporesthataretheelementaryunits,whose aggregateistheporespace.Usually,sedimentswhichcompactandlithifyinto granularrockshaveasizedistributionoftheirgrains.Asaresult,wehavea grainsizedistributionandcorrespondingly,aporesizedistribution.

Oftenthegrainsizecanbedividedintotwoclasses.Thesizeclassofthe lowerrange,say < 40microns,overlapswithwhatisgenerallyreferredtoas ‘matrix.’Whenthelargergrainsfloatwithinthematrix,theydonotcontribute totheporespace.Suchrockswherethematrixgrainsaretheframeworkgrains arecalledasmud-supportedrocks.Theoppositeisthecasewherethelarger grainscomprisetheframeworkandthematrixisdistributedaspartings,or lenses,orasapore-fillingcoatingoftheframeworkgrains.Suchrocksare calledasgrain-supportedrocks.

Itisnotunusualtofindrocks,whicharepartlygrainsupportedandpartly mudsupported.Thesearetexturallyimmaturerocksfoundincertain depositionalsettingssuchasinfans.

Ingeneral,thenatureofthedistributionofthegrainsizeofarockdefines itstexturalmaturity.Besidestheintergranularandintragranularporespace, microporesariseinsideovergrowthsorcement(Fig.1.1). Fig.1.1 showsthe typicalporetypesthatarisewithinsandstones.

Onefurthercategoryofporespaceexists thedissolutionporespace.It arisesduetothedissolutionofgrainsduringneogenesisordiagenesis. Examplesofthisaremoldicporosity,vugularporosity,solutionchannels,and leachedzones.Thephenomenonofgrain-dissolutiondilatestheoriginalpores, andporesoccludedbyneogeneticcalciteprecipitation,bysubsequentdissolutionthatspreadsaspatches.Thesecanbedescribedasleached-poreporosity patches.Dissolutionporespacealsoarisesduetothepressuresolutionphenomenongivingrisetostylo-lamination.Thestylo-laminationsareanastomosedandalsoareassociatedwithtensiongashes, whicharisefromthe necessityofstress-release.Theporefabricencounteredisoftentheresult ofmultiplecyclesofporositycreationanddestructioninthecourseof cementation,neogenesis,anddiagenesis.

Bythesametoken,thevolumeoftheintergranularporespacepostlithificationisoftenreducedowingtotheocclusionofporesduetoovergrowths,secondarycementation,grainalteration,andauthigenesis,during diagenesis.Dolomitization,whichisaspecialcaseofgrainalteration,results intheincreaseinthesizeofthecalcitegrainswithoutanysignificantalteration ofthemorphologyofthegrain-to-graincontacts.Thisusuallyresultsinthe

FIGURE1.1 Idealizedrepresentationofdifferentporetypessuchasintergranular,dissolution, fracture,andmicropores,thatcanarisewithinsandstones. Adaptedfrom Pittman(1979). 2 UnderstandingPoreSpacethroughLogMeasurements

enhancementoftheporevolume.Inthecasesmentionedabove,secondary cementation,spardepositioninlimestones,authigenesisofclaymineralson thegrainsurfaces,andstructuresthatstraddletheporebodyreducethepore volume.Examplefortheformeristheauthigenesisand/orgenerationof montomorilloniteasgraincoats/alterationoffinemicagrainswhichwere originallypartofthematrix,andtheauthigenesisofchloriteoritsgenesisas thealterationproductofmaficminerals.Anexampleofthelatteristhe authigenesisofilliteasthreadlikestructureswhichstraddlethepore-body space.

Theporespacethatisintimatelyconnectedwithgraincontactsisthe gatewaythatconnectstwocontiguouspores.Secondarycementationand authigenesis,whichoccurduringdiagenesis,oftenconstrictthisimportant connectingporevolume(theconnectingporevolumeiscalledasporethroat). Thisinturnhampersthedegreeofconnectivityoftheporesforfluidtransport andtherebyhinderstheporespacetotransportfluid.Thequantitativemeasure oftheabilityoffluidflowiscalledaspermeability.Thus,diageneticprocesses asmentionedabovereducepermeability.

Mud-supportedrocksfallintoaclassbythemselves.Mud-supported rockshaveclay-sizeandsilt-sizeparticles.Theporeswithinthemudare largelyflatpores.Theporestructurecomplicateswhenamud-supportedrock hostscarbonaceousmatterincludingbitumenandkerogen.Bitumenhosts poresysteminsomecasesbutpostitsformation.Kerogen,however,hosts multi-nanometer-sizedpores.Theporespacewithinkerogeniscalledas ‘kerogenporespace.’Kerogenfloatsinsidetheclaymatrix,inamudsupportedrockcontainingcarbonaceousorganicmatter.Kerogenporesare alsocommonlyreferredtoasorganicpores.Inamud-supportedrockhosting organicmatter,wehaveinorganicpores,whichareporespresentwithinthe matrixnotoccupiedbyorganicmatterandkerogenporeswithintheorganic matter,inadditiontoporeswithinbitumen,ifpresent.Additionally, submicron-sizedinter-kerogenporesarisingwithintheintersticesbetween microvolumesofkerogenmaterialcanalsoexist.Kerogenporeshost adsorbedmethane.

1.1.1.1Porespaceofsomegranularrocksnotfallingwithinthe abovecategories

1.1.1.1.1Intercrystallineporespace

Cementationduringneogenesisanddiagenesisofcarbonaterockscanresult insignificantporevolumeoccupiedbycalcitecrystals.Thesecrystal assemblagessometimeshostsubmicrontonanometer-sizedpores,whichare knownasintercrystallinepores.Suchporescanalsodevelopduringthe postdepositionaldolomitizationprocessinthecaseofsomecarbonates. Intercrystallineporesareflatandhaveaverylowdegreeofconnectedness.

4 UnderstandingPoreSpacethroughLogMeasurements

1.1.2Theporespaceofcarbonaterocks anexampleofthe porosityclassification

Thedifferentvarietiesofporespacediscussedaboveareexemplifiedin carbonaterocks.ChoquetteandPrayclassification(ChoquetteandPray1970) isuseful(Fig.1.2).

Appearanceofdifferentporetypesincarbonatesisgivenat Fig.1.3 asan example.

1.1.3Theporespaceofcoals

Coalsaremadeupofmaceralsandfinelydistributedsiltandclay,madeupof inorganicmineralsincludingcalciteinsomecases,inadditiontoclayandiron

FIGURE1.2 ChoquetteandPrayclassificationoflimestoneporosity. Reproducedfrom ChoquetteandPray(1970)

FIGURE1.3 Panel(A)isanexampleofanintergrainporosity.Panel(B)isanexampleofmoldic porosity.Panel(C)representsintragrain-dissolutionporosity.Panel(D)isanexampleofintrafossil porosity.Panel(E)presentsmicropores-hostedporosity.Panel(F)showsintergrain,graindissolutionporosity.Panel(G)isanexampleofvuggyporosity.Panel(H)isanexampleofa stylolitehostingsomeporosity.Panel(I)presentsporosityarisingfromamicrofracture.Allthe panelsareSEMphotographs. Reproducedfrom Luetal.(2021).

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.