Tensors for data processing. theory, methods, and applications yipeng liu - Own the ebook now with a

Page 1


https://ebookmass.com/product/tensors-for-data-processingtheory-methods-and-applications-yipeng-liu/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Tensors for Data Processing 1st Edition Yipeng Liu

https://ebookmass.com/product/tensors-for-data-processing-1st-editionyipeng-liu/

ebookmass.com

Spatial analysis using big data: methods and urban applications Yamagata

https://ebookmass.com/product/spatial-analysis-using-big-data-methodsand-urban-applications-yamagata/

ebookmass.com

Magnetic Communications: Theory and Techniques Liu

https://ebookmass.com/product/magnetic-communications-theory-andtechniques-liu/

ebookmass.com

Beautiful Broken Vows: A Small town, Enemies to lovers, Marriage of Convenience (Nakiki Island) Sj Cavaletti

https://ebookmass.com/product/beautiful-broken-vows-a-small-townenemies-to-lovers-marriage-of-convenience-nakiki-island-sj-cavaletti/

ebookmass.com

Sabotage (Shadows of Fire Book 1) Sherrilyn Kenyon

https://ebookmass.com/product/sabotage-shadows-of-firebook-1-sherrilyn-kenyon/

ebookmass.com

Microsoft Visual C# Step by Step 10th Edition John Sharp

https://ebookmass.com/product/microsoft-visual-c-step-by-step-10thedition-john-sharp/

ebookmass.com

Aerial Play: Drone Medium, Mobility, Communication, and Culture 1st Edition Julia M. Hildebrand

https://ebookmass.com/product/aerial-play-drone-medium-mobilitycommunication-and-culture-1st-edition-julia-m-hildebrand/

ebookmass.com

The Perfect Heart (Unspoken Secrets Series, #1) Lexy Timms

https://ebookmass.com/product/the-perfect-heart-unspoken-secretsseries-1-lexy-timms/

ebookmass.com

eTextbook 978-0393922097 Worlds Together, Worlds Apart: A History of the World: From 1000 CE to the Present (Fourth Edition) (Vol. 2)

https://ebookmass.com/product/etextbook-978-0393922097-worldstogether-worlds-apart-a-history-of-the-world-from-1000-ce-to-thepresent-fourth-edition-vol-2/

ebookmass.com

https://ebookmass.com/product/confrontation-in-academiccommunication-1st-ed-edition-irena-vassileva/

ebookmass.com

Tensorsfor DataProcessing

Tensorsfor DataProcessing Theory,Methods,andApplications

SchoolofInformationandCommunicationEngineering

UniversityofElectronicScienceandTechnology ofChina(UESTC) Chengdu,China

AcademicPressisanimprintofElsevier 125LondonWall,LondonEC2Y5AS,UnitedKingdom 525BStreet,Suite1650,SanDiego,CA92101,UnitedStates 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom

Copyright©2022ElsevierInc.Allrightsreserved.

MATLAB® isatrademarkofTheMathWorks,Inc.andisusedwithpermission. TheMathWorksdoesnotwarranttheaccuracyofthetextorexercisesinthisbook. Thisbook’suseordiscussionofMATLAB® softwareorrelatedproductsdoesnotconstitute endorsementorsponsorshipbyTheMathWorksofaparticularpedagogicalapproachorparticularuse oftheMATLAB® software.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronic ormechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem, withoutpermissioninwritingfromthepublisher.Detailsonhowtoseekpermission,further informationaboutthePublisher’spermissionspoliciesandourarrangementswithorganizationssuch astheCopyrightClearanceCenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions

Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythe Publisher(otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperience broadenourunderstanding,changesinresearchmethods,professionalpractices,ormedicaltreatment maybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluating andusinganyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuch informationormethodstheyshouldbemindfuloftheirownsafetyandthesafetyofothers,including partiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assume anyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability, negligenceorotherwise,orfromanyuseoroperationofanymethods,products,instructions,orideas containedinthematerialherein.

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary

ISBN:978-0-12-824447-0

ForinformationonallAcademicPresspublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: MaraConner

AcquisitionsEditor: TimPitts

EditorialProjectManager: CharlotteRowley

ProductionProjectManager: PremKumarKaliamoorthi

Designer: MilesHitchen

TypesetbyVTeX

Listofcontributors .............................................xiii Preface......................................................xix

CHAPTER1Tensordecompositions:computations, applications,andchallenges .................... 1 YingyueBi,YingcongLu,ZhenLong,CeZhu,and YipengLiu

1.1 Introduction ......................................1

1.1.1Whatisatensor?............................1

1.1.2Whydoweneedtensors?. ....................2

1.2 Tensoroperations .................................3

1.2.1Tensornotations............................3

1.2.2Matrixoperators ............................4

1.2.3Tensortransformations.......................6

1.2.4Tensorproducts .............................7

1.2.5Structuraltensors............................11

1.2.6Summary..................................13

1.3 Tensordecompositions .............................13

1.3.1Tuckerdecomposition ........................13

1.3.2Canonicalpolyadicdecomposition ...............14

1.3.3Blocktermdecomposition. ....................16

1.3.4Tensorsingularvaluedecomposition.. ...........18

1.3.5Tensornetwork.............................19

1.4 Tensorprocessingtechniques .........................24

1.5 Challenges. ......................................25 References. ......................................26

CHAPTER2Transform-basedtensorsingularvalue decompositioninmultidimensionalimagerecovery 31 Tai-XiangJiang,MichaelK.Ng,andXi-LeZhao

2.1 Introduction ......................................32

2.2 Recentadvancesofthetensorsingularvaluedecomposition..34

2.2.1Preliminariesandbasictensornotations...........34

2.2.2Thet-SVDframework........................35

2.2.3Tensornuclearnormandtensorrecovery ..........38

2.2.4Extensions.................................41

2.2.5Summary..................................44

2.3 Transform-basedt-SVD.............................44

2.3.1Linearinvertibletransform-basedt-SVD ..........45

2.3.2Beyondinvertibilityanddataadaptivity ...........47

2.4 Numericalexperiments .............................49

2.4.1Exampleswithinthet-SVDframework...........49

2.4.2Examplesofthetransform-basedt-SVD..........51

2.5 Conclusionsandnewguidelines... ....................53 References. ......................................55

CHAPTER3Partensor 61

ParisA.Karakasis,ChristosKolomvakis,GeorgeLourakis, GeorgeLykoudis,IoannisMariosPapagiannakos, IoannaSiaminou,ChristosTsalidis,and AthanasiosP.Liavas

3.1 Introduction ......................................62

3.1.1Relatedwork...............................62 3.1.2Notation..................................63

3.2 Tensordecomposition. .............................64

3.2.1Matrixleast-squaresproblems ..................65

3.2.2Alternatingoptimizationfortensordecomposition...69

3.3 Tensordecompositionwithmissingelements.. ...........70

3.3.1Matrixleast-squareswithmissingelements ........71

3.3.2Tensordecompositionwithmissingelements:the unconstrainedcase ...........................74

3.3.3Tensordecompositionwithmissingelements:the nonnegativecase ............................75

3.3.4Alternatingoptimizationfortensordecomposition withmissingelements........................75

3.4 Distributedmemoryimplementations...................75

3.4.1SomeMPIpreliminaries......................75

3.4.2Variablepartitioninganddataallocation ...........77

3.4.3Tensordecomposition ........................79

3.4.4Tensordecompositionwithmissingelements .......81

3.4.5Someimplementationdetails...................82

3.5 Numericalexperiments .............................83

3.5.1Tensordecomposition ........................83

3.5.2Tensordecompositionwithmissingelements .......84

3.6 Conclusion ......................................87 Acknowledgment ..................................88 References. ......................................88 CHAPTER4ARiemannianapproachtolow-ranktensor

4.1 Introduction ......................................91

4.2 AbriefintroductiontoRiemannianoptimization ..........93

4.2.1Riemannianmanifolds ........................94

4.2.2Riemannianquotientmanifolds .................95

4.3 RiemannianTuckermanifoldgeometry .................97

4.3.1Riemannianmetricandquotientmanifoldstructure..97

4.3.2Characterizationoftheinducedspaces. ...........100

4.3.3Linearprojectors ............................102

4.3.4Retraction.................................103

4.3.5Vectortransport.............................104

4.3.6Computationalcost ..........................104

4.4 Algorithmsfortensorlearningproblems................104

4.4.1Tensorcompletion...........................105

4.4.2Generaltensorlearning... ....................106

4.5 Experiments .....................................107

4.5.1Choiceofmetric............................108

4.5.2Low-ranktensorcompletion...................109

4.5.3Low-ranktensorregression....................113

4.5.4Multilinearmultitasklearning ..................115

4.6 Conclusion ......................................116 References. ......................................117

CHAPTER5Generalizedthresholdingforlow-ranktensor

recovery:approachesbasedonmodeland learning 121

FeiWen,ZhonghaoZhang,andYipengLiu

5.1 Introduction ......................................121

5.2 Tensorsingularvaluethresholding. ....................123

5.2.1Proximityoperatorandgeneralizedthresholding....123

5.2.2Tensorsingularvaluedecomposition.. ...........126

5.2.3Generalizedmatrixsingularvaluethresholding.....128

5.2.4Generalizedtensorsingularvaluethresholding ......129

5.3 Thresholdingbasedlow-ranktensorrecovery.............131

5.3.1Thresholdingalgorithmsforlow-ranktensorrecovery132

5.3.2Generalizedthresholdingalgorithmsforlow-rank tensorrecovery.............................134

5.4 Generalizedthresholdingalgorithmswithlearning .........136

5.4.1Deepunrolling. .............................137

5.4.2Deepplug-and-play ..........................140

5.5 Numericalexamples...............................141

5.6 Conclusion ......................................145 References. ......................................147

CHAPTER6Tensorprincipalcomponentanalysis ............. 153 PanZhou,CanyiLu,andZhouchenLin

6.1 Introduction ......................................153

6.2 Notationsandpreliminaries..........................155

6.2.1Notations..................................156

6.2.2DiscreteFouriertransform.....................157

6.2.3T-product .................................159

6.2.4Summary..................................160

6.3 TensorPCAforGaussian-noisydata...................161

6.3.1Tensorrankandtensornuclearnorm.. ...........161

6.3.2AnalysisoftensorPCAonGaussian-noisydata.....165 6.3.3Summary..................................166

6.4 TensorPCAforsparselycorrupteddata.................166 6.4.1RobusttensorPCA..........................167

6.4.4Summary..................................191

6.5 TensorPCAforoutlier-corrupteddata ..................191

6.5.1OutlierrobusttensorPCA. ....................192

6.5.2ThefastOR-TPCAalgorithm..................196

6.6 OthertensorPCAmethods ...........................207

6.7 Futurework......................................208 6.8 Summary........................................208 References. ......................................209

CHAPTER7Tensorsfordeeplearningtheory

215 YoavLevine,NoamWies,OrSharir,NadavCohen,and AmnonShashua

7.1 Introduction ......................................215

7.2 Boundingafunction’sexpressivityviatensorization ........217

7.2.1Ameasureofcapacityformodelinginput dependencies.. .............................218

7.2.2Boundingcorrelationswithtensormatricizationranks220

7.3 Acasestudy:self-attentionnetworks ...................223

7.3.1Theself-attentionmechanism ..................223

7.3.2Self-attentionarchitectureexpressivityquestions....227

7.3.3Resultsontheoperationofself-attention ..........230

7.3.4Boundingtheseparationrankofself-attention ......235

7.4 Convolutionalandrecurrentnetworks ..................242

7.4.1Theoperationofconvolutionalandrecurrentnetworks243

7.4.2Addressedarchitectureexpressivityquestions ......243

7.5 Conclusion ......................................245 References. ......................................245 CHAPTER8Tensornetworkalgorithmsforimageclassification 249 CongChen,KimBatselier,andNgaiWong

8.1 Introduction ......................................249

8.2 Background ......................................251

8.2.1Tensorbasics...............................251

8.2.2Tensordecompositions... ....................253

8.2.3Supportvectormachines.. ....................256

8.2.4Logisticregression..........................257

8.3 Tensorialextensionsofsupportvectormachine ...........258

8.3.1Supervisedtensorlearning. ....................258

8.3.2Supporttensormachines.. ....................260

8.3.3Higher-ranksupporttensormachines.. ...........263

8.3.4SupportTuckermachines.. ....................265

8.3.5Supporttensortrainmachines ..................269

8.3.6Kernelizedsupporttensortrainmachines ..........275

8.4 Tensorialextensionoflogisticregression................284

8.4.1Rank-1logisticregression. ....................285

8.4.2Logistictensorregression.....................286

8.5 Conclusion ......................................288 References. ......................................289

CHAPTER9High-performancetensordecompositionsfor compressingandacceleratingdeepneural networks ....................................... 293 Xiao-YangLiu,YimingFang,LiuqingYang,ZechuLi,and AnwarWalid

9.1 Introductionandmotivation ..........................294

9.2 Deepneuralnetworks. .............................295

9.2.1Notations..................................295

9.2.2Linearlayer... .............................295

9.2.3Fullyconnectedneuralnetworks ................298

9.2.4Convolutionalneuralnetworks ..................300

9.2.5Backpropagation ............................303

9.3 Tensornetworksandtheirdecompositions ...............305

9.3.1Tensornetworks............................305

9.3.2CPtensordecomposition.. ....................308

9.3.3Tuckerdecomposition ........................310

9.3.4HierarchicalTuckerdecomposition... ...........313

9.3.5Tensortrainandtensorringdecomposition ........315

9.3.6Transform-basedtensordecomposition ...........318

9.4 Compressingdeepneuralnetworks ....................321

9.4.1Compressingfullyconnectedlayers... ...........321

9.4.2CompressingtheconvolutionallayerviaCP decomposition. .............................322

9.4.3CompressingtheconvolutionallayerviaTucker decomposition. .............................325

9.4.4CompressingtheconvolutionallayerviaTT/TR decompositions .............................327

9.4.5Compressingneuralnetworksviatransform-based decomposition. .............................330

9.5 Experimentsandfuturedirections. ....................333

9.5.1PerformanceevaluationsusingtheMNISTdataset...333

9.5.2PerformanceevaluationsusingtheCIFAR10dataset.336

9.5.3Futureresearchdirections.....................337 References. ......................................338

CHAPTER10Coupledtensordecompositionsfordatafusion 341 ChristosChatzichristos,SimonVanEyndhoven, EleftheriosKofidis,andSabineVanHuffel

10.1 Introduction ......................................341 10.2 Whatisdatafusion?...............................342

10.2.1Contextanddefinition

10.2.2Challengesofdatafusion..

10.2.3Typesoffusionanddatafusionstrategies

10.3.3Coupledtensordecompositions

10.4 Applicationsoftensor-baseddatafusion................355 10.4.1Biomedicalapplications.......................355 10.4.2Imagefusion...............................357 10.5 FusionofEEGandfMRI:acasestudy..................358

10.6 Datafusiondemos.................................361

Conclusionandprospects

TatsuyaYokota,CesarF.Caiafa,andQibinZhao

11.1 Low-levelvisionandsignalreconstruction

11.1.1Observationmodels ..........................372

11.1.2Inverseproblems............................374

11.2 Methodsusingrawtensorstructure

Methodsusingtensorization ..........................409

11.4 Examplesoflow-levelvisionapplications...............415

11.4.1Imageinpaintingwithrawtensorstructure .........415

11.4.2Imageinpaintingusingtensorization.. ...........416

11.4.3Denoising,deblurring,andsuperresolution ........417

11.5 Remarks........................................419 Acknowledgments .................................420 References. ......................................420

CHAPTER12Tensorsforneuroimaging

....................... 427

AybükeErolandBorbálaHunyadi

12.1 Introduction ......................................427

12.2 Neuroimagingmodalities ............................429

12.3 Multidimensionalityofthebrain.. ....................431

12.4 Tensordecompositionstructures.. ....................433

12.4.1Productoperationsfortensors ..................434

12.4.2Canonicalpolyadicdecomposition ...............435

12.4.3Tuckerdecomposition ........................435

12.4.4Blocktermdecomposition. ....................437

12.5 Applicationsoftensorsinneuroimaging ................437

12.5.1Fillinginmissingdata ........................438

12.5.2Denoising,artifactremoval,anddimensionality reduction ..................................441

12.5.3Segmentation...............................444

12.5.4Registrationandlongitudinalanalysis. ...........445

12.5.5Sourceseparation ...........................447

12.5.6Activityrecognitionandsourcelocalization ........451

12.5.7Connectivityanalysis .........................456

12.5.8Regression.................................462

12.5.9Featureextractionandclassification... ...........463

12.5.10Summaryandpracticalconsiderations. ...........468

12.6 Futurechallenges ..................................471

12.7 Conclusion ......................................472 References. ......................................473

CHAPTER13Tensorrepresentationforremotesensingimages 483

YangXu,FeiYe,BoRen,LiangfuLu,XudongCui, JocelynChanussot,andZebinWu

13.1 Introduction ......................................483

13.2 Opticalremotesensing:HSIandMSIfusion.............488

13.2.1Tensornotationsandpreliminaries...............488

13.2.2Nonlocalpatchtensorsparserepresentationfor HSI-MSIfusion.............................488

13.2.3High-ordercoupledtensorringrepresentationfor HSI-MSIfusion.............................496

13.2.4JointtensorfactorizationforHSI-MSIfusion.......504

13.3 Polarimetricsyntheticapertureradar:featureextraction.....517

13.3.1BriefdescriptionofPolSARdata................518

13.3.2Thetensorialembeddingframework.. ...........519

13.3.3Experimentandanalysis.. ....................522 References. ......................................532

CHAPTER14Structuredtensortraindecompositionforspeeding

upkernel-basedlearning ........................ 537 YassineZniyed,OuafaeKarmouda,RémyBoyer, JérémieBoulanger,AndréL.F.deAlmeida,and GérardFavier

14.1 Introduction ......................................538

14.2 Notationsandalgebraicbackground ....................540

14.3 Standardtensordecompositions... ....................541

14.3.1Tuckerdecomposition ........................542

14.3.2HOSVD..................................542

14.3.3TensornetworksandTTdecomposition ...........543

14.4 Dimensionalityreductionbasedonatrainoflow-ordertensors545

14.4.1TD-trainmodel:equivalencebetweenahigh-orderTD andatrainoflow-orderTDs...................546

14.5 Tensortrainalgorithm..............................548

14.5.1DescriptionoftheTT-HSVDalgorithm...........548

14.5.2Comparisonofthesequentialandthehierarchical schemes ...................................549

14.6 Kernel-basedclassificationofhigh-ordertensors..........551

14.6.1FormulationofSVMs........................552

14.6.2PolynomialandEuclideantensor-basedkernel ......553

14.6.3KernelonaGrassmannmanifold................553

14.6.4Thefastkernelsubspaceestimationbasedontensor traindecomposition(FAKSETT)method ..........554

14.7 Experiments .....................................555

14.7.1Datasets...................................555

14.7.2Classificationperformance. ....................557

14.8 Conclusion ......................................558 References. ......................................560

Listofcontributors

KimBatselier

DelftCenterforSystemsandControl,DelftUniversityofTechnology,Delft, TheNetherlands

YingyueBi

SchoolofInformationandCommunicationEngineering,UniversityofElectronic ScienceandTechnologyofChina(UESTC),Chengdu,China

JérémieBoulanger

CRIStAL,UniversitédeLille,Villeneuved’Ascq,France

RémyBoyer

CRIStAL,UniversitédeLille,Villeneuved’Ascq,France

CesarF.Caiafa

InstitutoArgentinodeRadioastronomía–CCTLaPlata,CONICET/CIC-PBA/ UNLP,VillaElisa,Argentina

RIKENCenterforAdvancedIntelligenceProject,Tokyo,Japan

JocelynChanussot

LJK,CNRS,GrenobleINP,Inria,UniversitéGrenoble,Alpes,Grenoble,France

ChristosChatzichristos

KULeuven,DepartmentofElectricalEngineering(ESAT),STADIUSCenterfor DynamicalSystems,SignalProcessingandDataAnalytics,Leuven,Belgium

CongChen

DepartmentofElectricalandElectronicEngineering,TheUniversityofHong Kong,PokfulamRoad,HongKong

NadavCohen

SchoolofComputerScience,HebrewUniversityofJerusalem,Jerusalem,Israel

XudongCui

SchoolofMathematics,TianjinUniversity,Tianjin,China

AndréL.F.deAlmeida

DepartmentofTeleinformaticsEngineering,FederalUniversityofFortaleza, Fortaleza,Brazil

AybükeErol

CircuitsandSystems,DepartmentofMicroelectronics,DelftUniversityof Technology,Delft,TheNetherlands

YimingFang

DepartmentofComputerScience,ColumbiaUniversity,NewYork,NY, UnitedStates

GérardFavier

LaboratoireI3S,UniversitéCôted’Azur,CNRS,SophiaAntipolis,France

BorbálaHunyadi

CircuitsandSystems,DepartmentofMicroelectronics,DelftUniversityof Technology,Delft,TheNetherlands

PratikJawanpuria

Microsoft,Hyderabad,India

Tai-XiangJiang

SchoolofEconomicInformationEngineering,SouthwesternUniversityof FinanceandEconomics,Chengdu,Sichuan,China

ParisA.Karakasis

SchoolofElectricalandComputerEngineering,TechnicalUniversityofCrete, Chania,Greece

OuafaeKarmouda

CRIStAL,UniversitédeLille,Villeneuved’Ascq,France

HiroyukiKasai

WasedaUniversity,Tokyo,Japan

EleftheriosKofidis

Dept.ofStatisticsandInsuranceScience,UniversityofPiraeus,Piraeus,Greece

ChristosKolomvakis

SchoolofElectricalandComputerEngineering,TechnicalUniversityofCrete, Chania,Greece

YoavLevine

SchoolofComputerScience,HebrewUniversityofJerusalem,Jerusalem,Israel

ZechuLi

DepartmentofComputerScience,ColumbiaUniversity,NewYork,NY, UnitedStates

AthanasiosP.Liavas

SchoolofElectricalandComputerEngineering,TechnicalUniversityofCrete, Chania,Greece

ZhouchenLin

KeyLab.ofMachinePerception,SchoolofEECS,PekingUniversity,Beijing, China

Xiao-YangLiu

DepartmentofComputerScienceandEngineering,ShanghaiJiaoTong University,Shanghai,China

DepartmentofElectricalEngineering,ColumbiaUniversity,NewYork,NY, UnitedStates

YipengLiu

SchoolofInformationandCommunicationEngineering,UniversityofElectronic ScienceandTechnologyofChina(UESTC),Chengdu,China

ZhenLong

SchoolofInformationandCommunicationEngineering,UniversityofElectronic ScienceandTechnologyofChina(UESTC),Chengdu,China

GeorgeLourakis

Neurocom,S.A,Athens,Greece

CanyiLu

CarnegieMellonUniversity,Pittsburgh,PA,UnitedStates

LiangfuLu

SchoolofMathematics,TianjinUniversity,Tianjin,China

YingcongLu

SchoolofInformationandCommunicationEngineering,UniversityofElectronic ScienceandTechnologyofChina(UESTC),Chengdu,China

GeorgeLykoudis

Neurocom,S.A,Athens,Greece

BamdevMishra

Microsoft,Hyderabad,India

MichaelK.Ng

DepartmentofMathematics,TheUniversityofHongKong,Pokfulam, HongKong

IoannisMariosPapagiannakos

SchoolofElectricalandComputerEngineering,TechnicalUniversityofCrete, Chania,Greece

BoRen

KeyLaboratoryofIntelligentPerceptionandImageUnderstandingofMinistryof EducationofChina,XidianUniversity,Xi’an,China

OrSharir

SchoolofComputerScience,HebrewUniversityofJerusalem,Jerusalem,Israel

AmnonShashua

SchoolofComputerScience,HebrewUniversityofJerusalem,Jerusalem,Israel

IoannaSiaminou

SchoolofElectricalandComputerEngineering,TechnicalUniversityofCrete, Chania,Greece

ChristosTsalidis

Neurocom,S.A,Athens,Greece

SimonVanEyndhoven

KULeuven,DepartmentofElectricalEngineering(ESAT),STADIUSCenterfor DynamicalSystems,SignalProcessingandDataAnalytics,Leuven,Belgium icometrix,Leuven,Belgium

SabineVanHuffel

KULeuven,DepartmentofElectricalEngineering(ESAT),STADIUSCenterfor DynamicalSystems,SignalProcessingandDataAnalytics,Leuven,Belgium

AnwarWalid

NokiaBellLabs,MurrayHill,NJ,UnitedStates

FeiWen

DepartmentofElectronicEngineering,ShanghaiJiaoTongUniversity,Shanghai, China

NoamWies

SchoolofComputerScience,HebrewUniversityofJerusalem,Jerusalem,Israel

NgaiWong

DepartmentofElectricalandElectronicEngineering,TheUniversityofHong Kong,PokfulamRoad,HongKong

ZebinWu

SchoolofComputerScienceandEngineering,NanjingUniversityofScience andTechnology,Nanjing,China

YangXu

SchoolofComputerScienceandEngineering,NanjingUniversityofScience andTechnology,Nanjing,China

LiuqingYang

DepartmentofComputerScience,ColumbiaUniversity,NewYork,NY, UnitedStates

FeiYe

SchoolofComputerScienceandEngineering,NanjingUniversityofScience andTechnology,Nanjing,China

TatsuyaYokota

NagoyaInstituteofTechnology,Aichi,Japan

RIKENCenterforAdvancedIntelligenceProject,Tokyo,Japan

ZhonghaoZhang

SchoolofInformationandCommunicationEngineering,UniversityofElectronic ScienceandTechnologyofChina(UESTC),Chengdu,China

QibinZhao

RIKENCenterforAdvancedIntelligenceProject,Tokyo,Japan GuangdongUniversityofTechnology,Guangzhou,China

Xi-LeZhao

SchoolofMathematicalSciences/ResearchCenterforImageandVision Computing,UniversityofElectronicScienceandTechnologyofChina,Chengdu, Sichuan,China

PanZhou

SEAAILab,Singapore,Singapore

CeZhu

SchoolofInformationandCommunicationEngineering,UniversityofElectronic ScienceandTechnologyofChina(UESTC),Chengdu,China

YassineZniyed

UniversitédeToulon,Aix-MarseilleUniversité,CNRS,LIS,Toulon,France

Preface

Thisbookprovidesanoverviewoftensorsfordataprocessing,coveringcomputing theories,processingmethods,andengineeringapplications.Thetensorextensions ofaseriesofclassicalmultidimensionaldataprocessingtechniquesarediscussed inthisbook.Manythanksgotoallthecontributors.Studentscanreadthisbookto getanoverallunderstanding,researcherscanupdatetheirknowledgeontherecent researchadvancesinthefield,andengineerscanrefertoimplementationsonvarious applications.

Thefirstchapterisanintroductiontotensordecomposition.Inthefollowing,the bookprovidesvariantsoftensordecompositionswiththeirefficientandeffectivesolutions,includingsomeparallelalgorithms,Riemannianalgorithms,andgeneralized thresholdingalgorithms.Sometensor-basedmachinelearningmethodsaresummarizedindetail,includingtensorcompletion,tensorprincipalcomponentanalysis, supporttensormachine,tensor-basedkernellearning,tensor-baseddeeplearning,etc. Todemonstratethattensorscaneffectivelyandsystematicallyenhanceperformance inpracticalengineeringproblems,thisbookgivesimplementaldetailsofmanyapplications,suchassignalrecovery,recommendersystems,climateforecasting,image clustering,imageclassification,networkcompression,datafusion,imageenhancement,neuroimaging,andremotesensing.

Isincerelyhopethisbookcanservetointroducetensorstomoredatascientists andengineers.Asanaturalrepresentationofmultidimensionaldata,tensorscanbe usedtosubstantiallyavoidtheinformationlossinmatrixrepresentationsofmultiway data,andtensoroperatorscanmodelmoreconnectionsthantheirmatrixcounterparts. Therelatedadvancesinappliedmathematicsallowustomovefrommatricestotensorsfordataprocessing.Thisbookispromisingtomotivatenoveltensortheoriesand newdataprocessingmethods,andtostimulatethedevelopmentofawiderangeof practicalapplications.

Chengdu,China Aug.10,2021

YipengLiu

YingyueBi,YingcongLu,ZhenLong,CeZhu,andYipengLiu SchoolofInformationandCommunicationEngineering,UniversityofElectronicScienceand TechnologyofChina(UESTC),Chengdu,China

CONTENTS

1.1 Introduction

1.1.1

1.1.2

1.2

1.3

1.3.1

1.3.2

1.3.3

1.3.4

1.1 Introduction

1.1.1 Whatisatensor?

Thetensorcanbeseenasahigher-ordergeneralizationofvectorandmatrix,which normallyhasthreeormoremodes(ways)[1].Forexample,acolorimageisathirdordertensor.Ithastwospatialmodesandonechannelmode.Similarly,acolorvideo isafourth-ordertensor;itsextramodedenotestime.

TensorsforDataProcessing. https://doi.org/10.1016/B978-0-12-824447-0.00007-8

2CHAPTER1 TDs:computations,applications,andchallenges

Asspecialformsoftensors,vector a ∈ RI isafirst-ordertensorwhose i -th entry(scalar)is ai andmatrix A ∈ RI ×J isasecond-ordertensorwhose (i,j)thelementis ai,j .Ageneral N -th-ordertensorcanbemathematicallydenotedas A ∈ RI1 ×I2 ×···×IN andits (i1 ,i2 , ,iN )-thentryis ai1 ,i2 , ,iN .Forexample,athirdordertensor A ∈ RI1 ×I2 ×I3 isillustratedinFig. 1.1.

FIGURE1.1

Athird-ordertensor A ∈ RI1 ×I2 ×I3

1.1.2 Whydoweneedtensors?

Tensorsplayimportantrolesinanumberofapplications,suchassignalprocessing, machinelearning,biomedicalengineering,neuroscience,computervision,communication,psychometrics,andchemometrics.Theycanprovideaconcisemathematical frameworkforformulatingandsolvingproblemsinthosefields.

Hereareafewcasesinvolvingtensorframeworks:

•Manyspatial-temporalsignalsinspeechandimageprocessingaremultidimensional.Tensorfactorization-basedtechniquescaneffectivelyextractfeaturesfor enhancement,classification,regression,etc.Forexample,nonnegativecanonical polyadic(CP)decompositioncanbeusedforspeechsignalseparationwherethe firsttwocomponentsofCPdecompositionrepresentfrequencyandtimestructure ofthesignalandthelastcomponentisthecoefficientmatrix[2].

•Thefluorescenceexcitation–emissiondata,commonlyusedinchemistry,medicine, andfoodscience,hasseveralchemicalcomponentswithdifferentconcentrations. Itcanbedenotedasathird-ordertensor;itsthreemodesrepresentsample,excitation,andemission.TakingadvantageofCPdecomposition,thetensorcanbe factorizedintothreefactormatrices:relativeexcitationspectralmatrix,relative emissionspectralmatrix,andrelativeconcentrationmatrix.Inthisway,tensor decompositioncanbeappliedtoanalyzethecomponentsandcorrespondingconcentrationsineachsample[3].

•Socialdataoftenhavemultidimensionalstructures,whichcanbeexploitedby tensor-basedtechniquesfordatamining.Forexample,thethreemodesofchat dataareuser,keyword,andtime.Tensoranalysiscanrevealthecommunication patternsandthehiddenstructuresinsocialnetworks,andthiscanbenefittasks likerecommendersystems[4].

1.2 Tensoroperations

Inthissection,wefirstintroducetensornotations,i.e.,fibersandslices,andthen demonstratehowtorepresenttensorsinagraphicalway.Beforewediscusstensor operations,severalmatrixoperationsarereviewed.

1.2.1 Tensornotations

Subtensors,suchasfibersandslices,canbeformedfromtheoriginaltensor.Afiber isdefinedbyfixingalltheindicesbutoneandasliceisdefinedbyfixingallbut twoindices.Forathird-ordertensor AI1 ×I2 ×I3 ,itsmode-1,mode-2,andmode-3 fibersaredenotedby A(:,i2 ,i3 ), A(i1 , :,i3 ),and A(i1 ,i2 , :),where i1 = 1, ··· ,I1 , i2 = 1, ··· ,I2 and i3 = 1, ··· ,I3 ,whichareillustratedinFig. 1.2.Itshorizontal slices A(i1 , :, :),i1 = 1, ··· ,I1 ,lateralslices A(:,i2 , :),i2 = 1, ··· ,I2 ,andfrontal slices A(:, :,i3 ),i3 = 1, ··· ,I3 ,areshowninFig. 1.3.Foreaseofdenotation,we refertothefrontalsliceof A as A(·) insomeformulas.

FIGURE1.2

Theillustrationofmode-1fibers A(:,i2 ,i3 ),mode-2fibers A(i1 , :,i3 ),andmode-3fibers A(i1 ,i2 , :) with i1 = 1, ,I1 , i2 = 1, ,I2 and i3 = 1, ,I3 .

Otherthantheaforementionednotations,thereisanotherwaytodenotetensors andtheiroperations[5].Takingadvantageofgraphicalrepresentations,tensorscan bedenotedbynodesandedgesinastraightforwardway.Graphicalrepresentations forscalars,vectors,matrices,andtensorsareshowninFig. 1.4.Thenumbernextto theedgerepresentstheindicesofthecorrespondingmode.

FIGURE1.3

Theillustrationofhorizontalslices A(i1 , :, :)i1 = 1, ··· ,I1 ,lateralslices A(:,i2 , :) i2 = 1, ··· ,I2 ,andfrontalslices A(:, :,i3 )i3 = 1, ··· ,I3

FIGURE1.4

Graphicalrepresentationsofscalar,vector,matrixandtensor.

1.2.2 Matrixoperators

Definition1.2.1. (Matrixtrace[6])Thetraceofmatrix A ∈ RI ×I isobtainedby summingallthediagonalentriesof A,i.e.,tr(A) = I i =1 ai,i .

Definition1.2.2. ( p -norm[6])Formatrix A ∈ RI ×J ,its p -normisdefinedas

Definition1.2.3. (Matrixnuclearnorm[7])Thenuclearnormofmatrix A isdenoted as A ∗ = i σi (A),where σi (A) isthe i -thlargestsingularvalueof A

Definition1.2.4. (Hadamardproduct[8])TheHadamardproductformatrices A ∈ RM ×N and B ∈ RM ×N isdefinedas A B ∈ RM ×N with

Definition1.2.5. (Kroneckerproduct[9])TheKroneckerproductofmatrices A

RMP ×NQ ,whichcanbewrittenmathematicallyas

BasedontheKroneckerproduct,alotofusefulpropertiescanbederived.Given matrices A, B, C, D,wehave (A ⊗ B)(C ⊗ D) = AC ⊗ BD

where AT and A† representthetransposeandMoore–Penroseinverseofmatrix A.

Definition1.2.6. (Khatri–Raoproduct[10])TheKhatri–Raoproductofmatrices A ∈ RM ×N and B ∈ RL×N isdefinedas

SimilartotheKroneckerproduct,theKhatri–Raoproductalsohassomeconvenientproperties,suchas

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Tensors for data processing. theory, methods, and applications yipeng liu - Own the ebook now with a by Education Libraries - Issuu