Graphiticcarbonnitride:Anuprising carbonaceousmaterial
JomonJoya,b,S.Anasa,c,andSabuThomasa,d
aSchoolofChemicalSciences,MahatmaGandhiUniversity,Kottayam,Kerala,India bSchoolofEnergyMaterials,MahatmaGandhiUniversity,Kottayam,Kerala,India cAdvancedMolecularMaterialsResearchCentre,MahatmaGandhiUniversity,Kottayam, Kerala,India dInternationalandInterUniversityCentreforNanoscienceandNanotechnology, MahatmaGandhiUniversity,Kottayam,Kerala,India
1.1Introduction
Graphiticcarbonnitride,representedasg-C3N4,isoneoftheearliestpolymersknown, consistingprimarilyofcarbonandnitrogenandhavingthegeneralformula(C3N3H)n (Aiwuetal.,2017).Chemistryofgraphiticcarbonnitrideoffersdifferentmethodstomodify itsreactivitywithoutchangingtheoverallcomposition.Historyofcarbonnitrideanditsprecursorsbeginsin1834withitssynthesisbyBerzelius(Thomasetal.,2008)andsoonitwas named“melon”byLiebig(Gmelin,1835; X.Wangetal.,2012).Franklindescribedthestructureofthiscompoundin1922(Franklin,1922).Itisapolyconjugatedsemiconductormaterial withalayeredgraphiticstructuremadeupofcarbonandnitrogenatoms(Patnaiketal.,2016). Thefullypolymerizedformofg-C3N4 hasaC:Nratioof0.75,whichisimpossibletoobtainin practice.Asaresult,dependingonthesynthesistechnique,thesubstancenormallycontains 1%–2%hydrogen(Wu&Huo,2020; S.Zhang,Li,etal.,2020).Researchonthesecompounds blossomedin1990sduetoatheoreticalpredictionthatsp3-bondedC3N4 phasecouldhave exceptionallyhighhardnessvaluesascomparedwithdiamond(A.Y.Liu&Cohen,1989). Thermaldecompositionofnitrogen-richprecursorsiscommonlyusedintheproductionof bulkg-C3N4 toincorporate s-triazinerings.However,differentapproacheshavebeen adoptedbytheresearchersforthedevelopmentofgraphiticcarbonnitride(Mohamed etal.,2019; Nasiretal.,2019; Y.Zhang,Gao,&Chen,2019; D.Zhangetal.,2018).
Atambienttemperatures,g-C3N4 isconsideredtobethemoststableallotrope.Eachlayer ofgraphiticcarbonnitrideismadeupoftri-s-triazineunitsconnectedbyplanaramino
1 Synthesis,Characterization,andApplicationsofGraphiticCarbonNitride
Copyright # 2023ElsevierInc.Allrightsreserved. https://doi.org/10.1016/B978-0-12-823038-1.00001-5
2 1.Graphiticcarbonnitride:Anuprisingcarbonaceousmaterial
groupsandthevanderWaalsforcelinksthestackinglayers(covalentC Nbonds)together (Ouetal.,2017).Thepolymer’stri-s-triazineringstructureensuresexceptionalthermalstability(600°Cinair)andexhibitsbetterchemicalstabilityunderalkalineandacidicenvironments( J € urgensetal.,2003).Theperformanceofg-C3N4 canbegreatlyimprovedbythe introductionoffunctionalgroupsoratomsinthematrixorsurfaceofthecarbonnitride.Protonationanddoping(boron,fluorine,andsulfur)arethegeneralmethodsadoptedtocontrol theperformanceofgraphiticcarbonnitrideandexpandedapplications(Katsumataetal., 2020; Niuetal.,2014).Therefore,polymericsemiconductorg-C3N4 hasevolvedintoanew classofnontoxic,metal-free,earth-abundant,visiblelight-drivenpolymericsemiconductors. Asaresultofitspotentialapplicationsinenergystorageandconversion,watersplitting,waterpurification,analyticalchemistry,andashumidityandgassensors,thismaterialhasreceivedalotofinterestinrecentyears(Ronoetal.,2020).
1.2Structuresofgraphiticcarbonnitride
Carbonnitrideexhibitsvariousnaturallyoccurringhypotheticalphases,includingcubic, pseudo-cubic,andgraphiticstructures.Underambientconditions,g-C3N4 isbelievedtobe themoststableoftheseallotropes.g-C3N4 hasalayeredtwo-dimensional(2D)structurethat canbethoughtofasanitrogenheteroatom-substitutedgraphiteframeworkmadeupof pi-conjugatedgraphiticplanesgeneratedbysp2 hybridizationofcarbonandnitrogenatoms (Naserietal.,2017).
Thestructuralisomersofg-C3N4 canbeproducedusingtherightprecursorsandcondensationprocedures(S.Zhang,Gu,etal.,2019).Thefirststructuralisomerconsistsofaperiodic patternofsinglecarbonvacanciesincondensed s-triazineunits(ringofC3N3).Theotheris madeupofcondensedtri-s-triazine(C6N7 tri-ring)subunitsjoinedbyplanartertiaryamino groups,withlargerperiodicvacancieswithinthelattice(Krokeetal.,2002). Chapter2 titled “Synthesis,StructureandPropertiesofGraphiticCarbonNitride,”summarizestheelectronic bandstructure,latticestructure,andchemicalenvironmentofthegraphiticcarbonnitride material.Thischapteralsodiscussesdifferentsynthesisroutesfortheproductionofgraphitic carbonnitride.Structuresof s-triazineandtri-s-triazineunitsareshownin Fig.1.1 (Deifallah
FIG.1.1 s-Triazine(left)andtri-s-triazineastectonsofg-C3N4 FromWang,X.,Blechert,S.,&Antonietti,M.(2012). Polymericgraphiticcarbonnitrideforheterogeneousphotocatalysis. ACSCatalysis, 2(8),1596–1606. https://doi.org/10.1021/ cs300240x
etal.,2008; Dongetal.,2014; Finaetal.,2015; Rahmanetal.,2018; S.P.Sunetal.,2018; S.Sun& Liang,2017).
1.3Morphologiesofgraphiticcarbonnitride
Nanosheets,nanowires,nanotubes,quantumdots,andthree-dimensional(3D)g-C3N4 are allexamplesofvariousformsgraphiticcarbonnitride.The3Dstructureofbulkg-C3N4 is comparabletothatofgraphite.Thepyrolysisprocessisusedfortheproductionofbulk g-C3N4 fromnitrogen-richprecursorslikedicyandiamide,melamine,urea,orthiourea.Bulk g-C3N4,ontheotherhand,hascertaindrawbackssuchasalowspecificsurfaceareadueto layerstackingduringpolycondensation,alowquantumyieldduetorestrictedelectronic transition,andahighrecombinationrateofphotogeneratedelectronsandholes.Therefore researchersprefertotransformbulkg-C3N4 intovariousnanostructureswhicharediscussed inthefollowingsections.
1.3.1Graphiticcarbonnitride2Dnanosheets
Thebulkstructureofg-C3N4 islayeredandplanar,withweakvanderWaalsforcesofattractionbetweenthelayers(Xiaoruietal.,2015).Graphiticcarbonnitridenanosheetscanbe preparedfrombulkmaterialsbytheseparationoflayers(Fig.1.2).Thiscouldbeachievedby providingsufficientenergyforbreakingthevanderWaalsforcesofattractionbetweenthe layersofg-C3N4 inasuitablesolvent(Yeetal.,2015).Differenttechniquesareusedforthe preparationofnanosheetsfrombulkmaterial(Challagullaetal.,2019; Fanetal.,2017; R.Li,Ren,etal.,2019; Talapanenietal.,2017; Xuetal.,2013).
1.3.2Graphiticcarbonnitridenanotubes
Graphiticcarbonnitridenanotubesaregenerallypreparedbyaneffectiveapproach termedaschemicalvapordeposition(CVD),eventhoughthistechniqueneedscomplex andexpensiveequipment.Graphiticcarbonnitridenanotubesexhibiteduniqueproperties
FIG.1.2 Aschematicrepresentationofthesynthesisoftheg-C3N4 nanosheets. FromFan,C.,Miao,J.,Xu,G.,Liu,J., Lv,J.,&Wu,Y.(2017).Graphiticcarbonnitridenanosheetsobtainedbyliquidstrippingasefficientphotocatalystsundervisible light. RSCAdvances, 7(59),37185–37193. https://doi.org/10.1039/c7ra05732f.
1.Graphiticcarbonnitride:Anuprisingcarbonaceousmaterial
FIG.1.3 (A)SEMimagesoftheg-C3N4 nanotubes,(B)TEMimagesoftheg-C3N4 nanotubes,and(C)magnified TEMimageoftheg-C3N4 nanotubes. FromMo,Z.,Xu,H.,Chen,Z.,She,X.,Song,Y.,Yan,P.,Xu,L.,Lei,Y.,Yuan,S.,& Li,H.(2018).Self-assembledsynthesisofdefect-engineeredgraphiticcarbonnitridenanotubesforefficientconversionofsolar energy. AppliedCatalysisB:Environmental, 225,154–161. https://doi.org/10.1016/j.apcatb.2017.11.041
suchasincreasedvisible-lightabsorption,alargespecificsurfacearea,rapidelectrontransport,andadecreasedrateofphotogeneratedelectron-holepairrecombination(Heetal., 2016).Soft,hard,andself-templatingmethodsaregenerallyusedforthepreparationof g-C3N4 nanotubes(Fig.1.3)(Moetal.,2018).Silicahasbeenextensivelyemployedasatemplateduetoitslesstoxicnatureandnormallyremovedafterwardsbytheutilizationofammoniumbifluoride(NH4HF2)orhydrogenfluoride(HF).Inthesoft-templatingtechniquefor thesynthesisofgraphiticcarbonnitridenanotubes,surfactantslikeTritonX-100andpluronic P123areutilizedassofttemplates(Y.Wangetal.,2010).Graphiticcarbonnitrideprecursors likedicyandiamideandmelaminearemixedandpolymerizedalongwiththetemplateto produceag-C3N4 materialwithappropriatestructure(S.Liuetal.,2017).
1.3.3Graphiticcarbonnitridenanowires
Duetotheirhighsurfacearea-to-volumeratio,whichincreasesthenumberofreaction sites,one-dimensionalg-C3N4 nanowireshaverecentlyattractedalotofscientificattention. Ohetal.produceda3Dcompositeconsistingofg-C3N4 nanowiresimpregnatedwith mesoporouscarbonspheres(Ohetal.,2018).Duetoitslargersurfacearea,theresultingcompositehashigherelectrochemicalcharacteristicswhencomparedtographeneandcarbon nanotubes.Thereforetheseactivatedcarbonmaterialsareutilizedaselectricaldoublelayer capacitors.Tangandcoworkers(Tangetal.,2019)developedaflexiblecompositematerial consistingofg-C3N4 nanowires(Fig.1.4).
Graphiticcarbonnitridenanowireswerepreparedbypolycondensationofthemixtureof melamineandcyanuricacidprecursorat500°Cfor2hby Xieetal.(2016).Undervisible-light irradiation,thenanowiresdisplayedimprovedphotocatalyticdegradationofmethyleneblue owingtotheincreasednumberreactionssitesinthenanostructuredmaterial.
1.3.4Graphiticcarbonnitridequantumdots
Brightfluorescence,betterchemicalstability,largespecificsurfacearea,andbiocompatibilityaresomeofthepropertiesexhibitedbygraphiticcarbonnitridequantumdots
FIG.1.4 FESEMimagesofg-C3N4 (A)andGCNW(B). FromTang,Z.,Zhang,X.,Duan,L.,Wu,A.,&Lu,W.(2019). Three-dimensionalcarbonnitridenanowirescaffoldforflexiblesupercapacitors. NanoscaleResearchLetters, 14 https://doi. org/10.1186/s11671-019-2932-z
(g-CNQDs)(H.Liuetal.,2019).Becauseoftheircapacitytofluoresce,thermalstability, nontoxicnature,water-solubility,andbiocompatibility,g-CNQDscanbeemployedasfluorescentprobesforenvironmentalandbiologicaldetection(Linetal.,2019).Hurandcolleaguesusedasimplehydrothermalproceduretomakebiocompatibleandfunctionalized graphiticcarbonnitridequantumdotsutilizingphenylboronicacid(g-CNQDs/PBA)which isusedasaglucose-detectingfluorescentmaterial.Schematicrepresentationofthestrategy forthepreparationofg-CNQDs/PBAandtheirglucosesensingpropertiesareshownin Fig. 1.5 (Ngoetal.,2019).
1.3.53Dgraphiticcarbonnitride
Amacroporous3Dg-C3N4 waspreparedusingmelaminespongeasatemplatebyYang andcoworkers(Liangetal.,2015).Theyadoptedone-steppolymerizationofmelamine spongesoakedinureaandresultantproductwasdirectlycutintodifferent3Dshapes containingg-C3N4.Photocatalytichydrogenproductionwasimprovedinmacroscopic3D g-C3N4.Severalhardandsofttemplateshavebeenutilizedforthefabricationof3D mesoporousg-C3N4 structures.Wangetal.usedsilicaastemplateforthefabricationof mesoporous3Dg-C3N4 andthepreparedmaterialoutperformedbulkg-C3N4 in photocatalytichydrogenevolution.3Dg-C3N4 withcolossalphotocatalytichydrogenevolutionwaspreparedbyZhang’sgroup(Luoetal.,2018),whichwas29.5timesmoreefficient thanpristineg-C3N4.Qianetal.adoptedasimpleball-millingapproachusingNaCltomake porous3Dg-C3N4 (Qianetal.,2019)(Fig.1.6).
1.Graphiticcarbonnitride:Anuprisingcarbonaceousmaterial
FIG.1.5 Schematicillustrationofthestrategyforthepreparationofg-CNQDs/PBAandtheirglucosesensing properties. FromNgo,Y.L.T.,Choi,W.M.,Chung,J.S.,&Hur,S.H.(2019).Highlybiocompatiblephenylboronicacidfunctionalizedgraphiticcarbonnitridequantumdotsfortheselectiveglucosesensor. SensorsandActuators,B:Chemical, 282,36–44. https://doi.org/10.1016/j.snb.2018.11.031
FIG.1.6 Schematicillustrationofthesynthesis procedureofporousg-C3N4. FromQian,X., Meng,X.,Sun,J.,Jiang,L.,Wang,Y.,Zhang,J., Hu,X.,Shalom,M.,&Zhu,J.(2019).Salt-assistedsynthesisof3Dporousg-C3N4asabifunctionalphoto-and electrocatalyst. ACSAppliedMaterialsandInterfaces, 11(30),27226–27232. https://doi.org/10.1021/ acsami.9b08651.
1.4Modificationsofgraphiticcarbonnitride
Researchershaveusedavarietyofstrategiestoenhancethepropertiesofgraphiticcarbon nitride,includingthecouplingwithcarbonaceousmaterials,doping,fabricationof heterojunctions,andtheintroductionofdefects,togeneratealternativemorphologieswith improvedproperties.Inthissection,variousmodificationapproachesarediscussedindetail.
1.4.1Constructionofheterojunctions
Oneofthemostimportantprerequisiteconditionsforimprovedperformanceofg-C3N4 is tominimizeproblemssuchaslowlightabsorptionbehaviorandpoorseparationof photogeneratedcharges.Theheterojunctioninterfaceisoneofthemostimportantprerequisiteconditionsforimprovedperformanceofg-C3N4.Withaheterojunction,theenergyofthe bandgapcanbegreatlylowered,resultingingreaterlightabsorptionandchargetransfer. TypeIheterojunction,typeIIheterojunction,p-nheterojunction,Schottkyjunction,and Z-schemeheterojunctionaredifferentheterojunctionsconstructedsofar(Yijieetal.,2019). Chapter3 titled“EngineeringofHeterojunctionPhotocatalyst,”givesafantasticexplanation ofheterojunctionstrategywhichhasbecomeveryimportantformaximizingtheperformance ofg-C3N4 photocatalyst. Fig.1.7 showsthebandstructureofseveraltypesofheterojunctions inphotocatalytichybridnanocomposites.
1.4.2Couplingwithcarbonaceousmaterials
Carbonaceousmaterialshavebeenusedwithg-C3N4 toboostitsoptoelectronicperformancebecausethesematerialshaveappealingqualitiessuchaschemicalandthermalstabilities,highsurfacearea,safefortheenvironment,andhighconductivity.Toimproveits photocatalyticactivity,graphiticcarbonnitridecanbecombinedwithcarbonaceousmaterials withhighercarboncontent,suchasorderedmesoporouscarbon,multiwalledcarbon nanotubes,fullerene,andgraphene,aswellaspolymerssuchasPANI,C-PDA,7,7,8,8tetracyanoquinodimethane(TCNQ,P3HT).Thephotocatalyticactivitycanbesignificantly improvedbythecombinationofg-C 3N 4 withthesecarbonnanostructures.Thisisdueto theexceptionalfeaturesofnanostructuredca rbon,whichincludealargenumberofactive adsorptionsites,improvedvisible-lightabsorptionthroughsensitization,andgood electron-holeseparation.Theelectronicintegrationofgraphiticcarbonnitridewithother carbonaceousmaterialinthelatticethathave unpairedelectronsconsiderablyimproves delocalizationandhencethepotentialapplications. Yuetal.(2014) usedthecalcination approachtofabricategraphene-modifiedporousg-C3 N 4 (porousg-C 3N 4 /graphene)compositesthatdemonstratedefficientphotocatalyticactivitywhenexposedtovisiblelight. Withouttheuseofatemplate,thesamplebecomesporousduetoammoniagasbubblescreatedduringcalcination.Theporousnatureofthecompositeenhancesmaterial’sopticalabsorption.Usingcyanamideandmultiwalle dcarbonnanotubesprecursors,Wangand coworkers(Gongetal.,2014 )createdag-C3 N4 /carbonnanotubecomposite.Thepresence ofhighlyconductingCNTsprovidedsynergisticbenefitstothecomposite,anditsinherent electricalconductivitywasattributedtotheirexistence.Compositescontainingahigh

FIG.1.7 Bandstructureofvarioustypesofheterojunctionsinaphotocatalytichybridnanocomposite:(A)Type Iheterojunction,(B)typeIIheterojunction,(C)p-njunction,(D)Schottkyjunction,(E)Z-schemeheterojunction(withoutanelectronmediator),and(F)indirectZ-scheme(withanelectronmediator).A,D,andEF representelectronacceptor,electrondonor,andFermilevel,respectively. FromYijie,R.,Deqian,Z.,&Wee-Jun,O.(2019).Interfacial engineeringofgraphiticcarbonnitride(g-C3N4)-basedmetalsulfideheterojunctionphotocatalystsforenergyconversion: Areview. ChineseJournalofCatalysis,289–319. https://doi.org/10.1016/s1872-2067(19)63293-6
amountofg-C3 N 4 hadbetteroptoelectronicactivity,whereasthosecontainingahigher proportionofCNTswerebetteratoxygenreduc tion.Aporouscarbon/carbonnitridecompositewaspreparedbyLi’sgroup( Y.Li,Meng,etal.,2019 ).Thepreparedcomposite exhibitedenhancedphotocatalyticdegradationofmethyleneblue(MB)owingtothesynergisticeffectsofbothcarbonandcarbonnitride,suchasenhancedadsorptionandbetter lightabsorptionefficiency.
FullerenemodifiedC3N4 (C60/C3N4)compositeswerefabricatedbyZhouandcoworkers usingsimpleadsorptionapproach(Chaietal.,2014).Undervisible-lightirradiation,thecompositesdisplayedexcellentphotocatalyticactivityduetotheinteractionbetweenC3N4 and C60 (Fig.1.8).
1.4.3Doping
Dopingofgraphiticcarbonnitrideisanothermodificationmethodadoptedtoenhanceits photo-electronicproperties.Boron,cobalt,sulfur,etc.,wereusedforthedopingofg-C3N4
FIG.1.8 Mechanismfortheenhanced photocatalyticactivityoftheC60/C3N4 composite. FromChai,B.,Liao,X.,Song,F.,&Zhou,H.(2014).FullerenemodifiedC3N4compositeswithenhanced photocatalyticactivityundervisiblelightirradiation. DaltonTransactions, 43(3),982–989. https://doi.org/10. 1039/c3dt52454j.
andtheheteroatomscanbeaccommodatedinthecavitiesoflayeredgraphiticcarbonnitride, allowingtheupshiftingofconductionbandwithoutinterferingwithvisible-lightabsorption (Shengetal.,2011).Yangandcoworkers(Kamaletal.,2019)preparedboron-dopedg-C3N4 andusedthepreparedboron-dopedg-C3N4 tomakeaNiFe2O4-basedcomposite.B-CN/ NiFe2O4 compositedisplayedexcellentphotocatalyticeffectformethyleneblue degradation.Cobalt-dopedg-C3N4 isutilizedasaheterogeneouscatalystby L.Wangetal. (2019) totriggerthephotocatalyticeffectofperoxymonosulfateforthedegradationoforganic pollutants.Gaoandcoworkersusedtrithiocyanuricacidasaprecursortomakeanitrogendeficientandsulfur-dopedg-C3N4 photocatalystwithporousstructure.Thepreparedmaterialexhibitedexcellentvisible-lightphotocatalyticactivityforH2 production. Yanetal.(2010) studiedthephotodegradationofmethylorangeandrhodamineBusingboron-dopedg-C3N4 andalsoexaminedthephotodegradationofmethylorangeandrhodamineBwithpristine g-C3N4.Theyprovedthatboron-dopedg-C3N4 displayedabetterphotodegradationeffect thanpristineg-C3N4. Chapter13 titled“Dopingofgraphiticcarbonnitridefor photocatalysis,”discussesthedopingofdifferentheteroatoms(metal,nonmetal,andrare earthmetaldopingandco-doping)withtheirphotocatalysismechanism.
1.4.4Introductionofdefects
Theintroductionofdefects(imperfections)intog-C3N4 haspiquedscientists’curiosity sincetheseimperfectionshavetheabilitytoalterthematerial’sstructureaswellasitselectronicbandgapenergy(Xiongetal.,2018).Thermaltreatmentofbulkg-C3N4 resultedinthe generationofnanosheetswithstructuralimperfections(Niuetal.,2018).Duringhydrogen evolution,theresultingnanosheetsdisplayedexcellentlightabsorptionandphotocatalytic efficacy.Thermaltreatmentmayenhancethebreakageofforcesofattractionbetweenthe layersofg-C3N4 andalsoinduceporeformation,resultinginthegenerationofnanosheets withporousstructure.Thermaltreatmentalsogeneratesmyriadofimperfectionsonthe designedelectronicstructureofnanosheets,whichincreasethematerial’slightabsorption efficiency.Defectsingeneralcanaltertheelectronicbandstructureandmorphologyofamaterial.Finally,thecombinedimpactsofthechangedmorphologyandimprovedelectrical bandstructureresultedinasuperiorphotocatalyst.Wangandcoworkersusedahightemperaturetreatmentaswellastwo-stepthermalexfoliationprocedurestocreatedefect
engineeringalteringatomic-layeredg-C3N4 nanosheets( J.Zhang,Chen,etal.,2020).Theintroductionofcyanogengroupsandnitrogenvacanciesintotheg-C3N4 structureresultedin anupshiftoftheVBpotentialandtheformationofmid-gapstates,therebysuppressingthe quantumsizeeffectofatomic-layeredg-C3N4.Asaresult,thevisible-lightresponseimproves whileelectronandholerecombinationdecreases.
1.5Applicationsofgraphiticcarbonnitride
Atunablenarrowbandgap,sustainability,electron-richproperties,andbiodegradability arejustafewoftheremarkablepropertiesofg-C3N4.Graphiticcarbonnitridehasbeenused inavarietyoffields,includingphotocatalysis,energystorage,sensing,analyticalchemistry, andbiomedicalfields,duetoitsuniqueproperties(Fig.1.9).Ofthe14chaptersofthisbook6 exclusivelydealswithvariousapplicationsofgraphiticcarbonnitridesuchasphotocatalytic watersplittingandreductionofcarbondioxide(Chapter6),photocatalyticpollutantdegradationandbacterialdisinfection(Chapter7),sensors(Chapter9),solarcells(Chapter10),analyticalchemistry(Chapter11),andbiomedicalfield(Chapter14).
1.6Challenges
Theexceptionalqualitiesofg-C3N4,suchasatinybandgap,2Dstructureoftri-s-triazine units,andexcellentchemicalandthermalstabilitiesmakethesematerialssuitableforavarietyofapplications.However,bulkg-C3N4 hasalimitednumberofsurfaceactivesites, whichenhancesthechancesofsurfaceorvolumerecombination.Thesedifficultiescould beovercomebyapplyingvarioussyntheticmethodologiestorationallydesignanddevelop itstextureandframework.Traditionalstrategiessuchasnanoarchitecturedesign,surface defects,thermalexfoliation,elementaldoping,andsupramolecularpreorganizationalmost meetsomeoftherequirements,suchasimprovedlightharvestingandreducedchargecarrier recombination,buttheyfallshortofmeetingallofthem.Althoughdopingandsurface vacanciescanlowerthebandgapandimprovevisible-lightabsorption,theymaynotprovide enoughredoxabilitytoovercomeathermodynamicbarrierintargetreactions.Toimprove theatomeconomyandhencelowerthecostofmaterialdevelopment,theyieldofg-C3N4
FIG.1.9 Differentapplicationsofgraphiticcarbonnitride. NoPermissionRequired.
Photo catalysis
Sensors
Fuel Cells
Biomedical Applications
Solar Cells
Heterogeneous Catalysis
Metal Nitride Synthesis g-C3N4 Applications
CO2 Reduction
fromitsprecursorsshouldbeincreased.Toimprovethelong-termuseofg-C3N4,itsphoto stabilityneedstobefurtherinvestigated.Furthermore,thereisstilladearthofunderstanding ofthechargetransferprocessincompositesintheliterature.
1.7Conclusions
Graphiticcarbonnitride(g-C3N4)exhibitedexcellentpropertiessuchasadjustable bandgap,goodchemicalandthermalstability,andappealingelectroniccharacteristics.To increasethesurfaceareaandhenceintroducemoreactivesitesforreactionsandhighquantumconfinement,bulkg-C3N4 hasbeenconvertedintonanotubes,nanosheets,nanorods, quantumdots,andnanowires.Exfoliation,doping,andamalgamationofg-C3N4 withother materialstoformcompositescanimprovethematerial’soptoelectroniccapabilities,andcompositescanhavesynergisticproperties.Thisbookcoverssynthesis,structure,properties,and applicationsofg-C3N4 inwiderangeoffieldsincludingbiosensing,photocatalysis,energy, analyticalchemistry,andbiomedicalapplications.Thisbookwillbebeneficialtomaterialscientistsandnanotechnologistslookingfornewmaterialsforavarietyofapplicationssuchas energy,sensing,photocatalysis,biomedical,andanalyticalapplications.
References
Aiwu,W.,Chundong,W.,Li,F.,Winnie,W.-N.,&Yucheng,L.(2017).Recentadvancesofgraphiticcarbonnitridebasedstructuresandapplicationsincatalyst,sensing,imaging,andLEDs. Nano-MicroLetters https://doi.org/ 10.1007/s40820-017-0148-2
Chai,B.,Liao,X.,Song,F.,&Zhou,H.(2014).FullerenemodifiedC3N4compositeswithenhancedphotocatalytic activityundervisiblelightirradiation. DaltonTransactions, 43(3),982–989. https://doi.org/10.1039/c3dt52454j Challagulla,S.,Payra,S.,Chakraborty,C.,&Roy,S.(2019).Determinationofbandedgesandtheirinfluenceson photocatalyticreductionofnitrobenzenebybulkandexfoliatedg-C3N4. PhysicalChemistryChemicalPhysics, 21(6),3174–3183. https://doi.org/10.1039/c8cp06855k.
Deifallah,M.,McMillan,P.F.,&Cora ` ,F.(2008).Electronicandstructuralpropertiesoftwo-dimensionalcarbonnitridegraphenes. JournalofPhysicalChemistryC, 112(14),5447–5453. https://doi.org/10.1021/jp711483t. Dong,G.,Zhang,Y.,Pan,Q.,&Qiu,J.(2014).Afantasticgraphiticcarbonnitride(g-C3N4)material:Electronicstructure,photocatalyticandphotoelectronicproperties. JournalofPhotochemistryandPhotobiologyC:PhotochemistryReviews, 20(1),33–50. https://doi.org/10.1016/j.jphotochemrev.2014.04.002.
Fan,C.,Miao,J.,Xu,G.,Liu,J.,Lv,J.,&Wu,Y.(2017).Graphiticcarbonnitridenanosheetsobtainedbyliquidstrippingasefficientphotocatalystsundervisiblelight. RSCAdvances, 7(59),37185–37193. https://doi.org/10.1039/ c7ra05732f
Fina,F.,Callear,S.K.,Carins,G.M.,&Irvine,J.T.S.(2015).Structuralinvestigationofgraphiticcarbonnitridevia XRDandneutrondiffraction. ChemistryofMaterials, 27(7),2612–2618. https://doi.org/10.1021/acs. chemmater.5b00411
Franklin,E.C.(1922).Theammonocarbonicacids. JournaloftheAmericanChemicalSociety, 44(3),486–509. https://doi. org/10.1021/ja01424a007
Gmelin,L.(1835).UebereinigeVerbindungendesMelon’s. AnnalenderPharmacie, 15(3),252–258. https://doi.org/ 10.1002/jlac.18350150306
Gong,Y.,Wang,J.,Wei,Z.,Zhang,P.,Li,H.,&Wang,Y.(2014).Combinationofcarbonnitrideandcarbonnanotubes: Synergisticcatalystsforenergyconversion. ChemSusChem, 7(8),2303–2309. https://doi.org/10.1002/ cssc.201402078
1.Graphiticcarbonnitride:Anuprisingcarbonaceousmaterial
He,F.,Chen,G.,Miao,J.,Wang,Z.,Su,D.,Liu,S.,Cai,W.,Zhang,L.,Hao,S.,&Liu,B.(2016).Sulfur-mediatedselftemplatingsynthesisoftaperedC-PAN/g-C3N4compositenanotubestowardefficientphotocatalyticH2evolution. ACSEnergyLetters, 1(5),969–975. https://doi.org/10.1021/acsenergylett.6b00398
J € urgens,B.,Irran,E.,Senker,J.,Kroll,P.,M € uller,H.,&Schnick,W.(2003).Melem(2,5,8-triamino-tri-s-triazine),an importantintermediateduringcondensationofmelamineringstographiticcarbonnitride:Synthesis,structure determinationbyx-raypowderdiffractometry,solid-stateNMR,andtheoreticalstudies. JournaloftheAmerican ChemicalSociety, 125(34),10288–10300. https://doi.org/10.1021/ja0357689.
Kamal,S.,Balu,S.,Palanisamy,S.,Uma,K.,Velusamy,V.,&Yang,T.C.K.(2019).SynthesisofborondopedC3N4/ NiFe2O4nanocomposite:Anenhancedvisiblelightphotocatalystforthedegradationofmethyleneblue. Resultsin Physics, 12,1238–1244. https://doi.org/10.1016/j.rinp.2019.01.004.
Katsumata,H.,Sakakibara,K.,Tateishi,I.,Furukawa,M.,&Kaneco,S.(2020).Structurallymodifiedgraphiticcarbon nitridewithhighlyphotocatalyticactivityinthepresenceofvisiblelight. CatalysisToday, 352,47–53. https://doi. org/10.1016/j.cattod.2019.12.007.
Kroke,E.,Schwarz,M.,Horath-Bordon,E.,Kroll,P.,Noll,B.,&Norman,A.D.(2002).Tri-s-triazinederivatives.PartI. Fromtrichloro-tri-s-triazinetographiticC3N4structures. NewJournalofChemistry, 26(5),508–512. https://doi. org/10.1039/b111062b
Li,Y.,Meng,M.,Ji,C.,Teng,S.,Gao,L.,Qu,R.,Yang,Z.,Sun,C.,&Zhang,Y.(2019).Soft-templatesynthesisofhybrid carbonandcarbonnitridecompositeswithenhancedphotocatalyticactivityforthedegradationofmethyleneblue undervisiblelight. EnvironmentalProgress&SustainableEnergy, 38(5). https://doi.org/10.1002/ep.13186
Li,R.,Ren,Y.,Zhao,P.,Wang,J.,Liu,J.,&Zhang,Y.(2019).Graphiticcarbonnitride(g-C3N4)nanosheets functionalizedcompositemembranewithself-cleaningandantibacterialperformance. JournalofHazardousMaterials, 365,606–614. https://doi.org/10.1016/j.jhazmat.2018.11.033
Liang,Q.,Li,Z.,Yu,X.,Huang,Z.H.,Kang,F.,&Yang,Q.H.(2015).Macroscopic3Dporousgraphiticcarbonnitride monolithforenhancedphotocatalytichydrogenevolution. AdvancedMaterials, 27(31),4634–4639. https://doi. org/10.1002/adma.201502057
Lin,X.,Liu,C.,Wang,J.,Yang,S.,Shi,J.,&Hong,Y.(2019).Graphiticcarbonnitridequantumdotsandnitrogendopedcarbonquantumdotsco-decoratedwithBiVO4microspheres:Aternaryheterostructurephotocatalyst forwaterpurification. SeparationandPurificationTechnology, 226,117–127. https://doi.org/10.1016/j. seppur.2019.05.093
Liu,S.,Chen,F.,Li,S.,Peng,X.,&Xiong,Y.(2017).EnhancedphotocatalyticconversionofgreenhousegasCO2into solarfuelsoverg-C3N4nanotubeswithdecoratedtransparentZIF-8nanoclusters. AppliedCatalysisB:Environmental, 211,1–10. https://doi.org/10.1016/j.apcatb.2017.04.009
Liu,A.Y.,&Cohen,M.L.(1989).Predictionofnewlowcompressibilitysolids. Science, 245(4920),841–842. https:// doi.org/10.1126/science.245.4920.841.
Liu,H.,Wang,X.,Wang,H.,&Nie,R.(2019).Synthesisandbiomedicalapplicationsofgraphiticcarbonnitridequantumdots. JournalofMaterialsChemistryB, 7(36),5432–5448. https://doi.org/10.1039/c9tb01410a.
Luo,B.,Song,R.,Geng,J.,Jing,D.,&Zhang,Y.(2018).Facilepreparationwithhighyieldofa3Dporousgraphitic carbonnitridefordramaticallyenhancedphotocatalyticH2evolutionundervisiblelight. AppliedCatalysisB:Environmental, 238,294–301. https://doi.org/10.1016/j.apcatb.2018.07.039.
Mo,Z.,Xu,H.,Chen,Z.,She,X.,Song,Y.,Yan,P.,Xu,L.,Lei,Y.,Yuan,S.,&Li,H.(2018).Self-assembledsynthesisof defect-engineeredgraphiticcarbonnitridenanotubesforefficientconversionofsolarenergy. AppliedCatalysisB: Environmental, 225,154–161. https://doi.org/10.1016/j.apcatb.2017.11.041
Mohamed,M.A.,Zain,M.F.M.,Minggu,L.J.,Kassim,M.B.,Jaafar,J.,SaidinaAmin,N.A.,MohdHir,Z.A.,& Rosmi,M.S.(2019).Enhancementofvisiblelightphotocatalytichydrogenevolutionbybio-mimeticC-dopedgraphiticcarbonnitride. InternationalJournalofHydrogenEnergy, 44(26),13098–13105. https://doi.org/10.1016/j. ijhydene.2019.02.243
Naseri,A.,Samadi,M.,Pourjavadi,A.,Moshfegh,A.Z.,&Ramakrishna,S.(2017).Graphiticcarbonnitride(g-C3N4)basedphotocatalystsforsolarhydrogengeneration:Recentadvancesandfuturedevelopmentdirections. Journal ofMaterialsChemistryA, 5(45),23406–23433. https://doi.org/10.1039/c7ta05131j
Nasir,M.S.,Yang,G.,Ayub,I.,Wang,S.,Wang,L.,Wang,X.,Yan,W.,Peng,S.,&Ramakarishna,S.(2019).Recent developmentingraphiticcarbonnitridebasedphotocatalysisforhydrogengeneration. AppliedCatalysisB:Environmental, 257 https://doi.org/10.1016/j.apcatb.2019.117855
Ngo,Y.L.T.,Choi,W.M.,Chung,J.S.,&Hur,S.H.(2019).Highlybiocompatiblephenylboronicacid-functionalized graphiticcarbonnitridequantumdotsfortheselectiveglucosesensor. SensorsandActuators,B:Chemical, 282, 36–44. https://doi.org/10.1016/j.snb.2018.11.031
Niu,P.,Qiao,M.,Li,Y.,Huang,L.,&Zhai,T.(2018).Distinctivedefectsengineeringingraphiticcarbonnitridefor greatlyextendedvisiblelightphotocatalytichydrogenevolution. NanoEnergy, 44,73–81. https://doi.org/ 10.1016/j.nanoen.2017.11.059
Niu,P.,Yin,L.C.,Yang,Y.Q.,Liu,G.,&Cheng,H.M.(2014).Increasingthevisiblelightabsorptionofgraphitic carbonnitride(Melon)photocatalystsbyhomogeneousself-modificationwithnitrogenvacancies. AdvancedMaterials, 26(47),8046–8052. https://doi.org/10.1002/adma.201404057
Oh,T.,Kim,M.,Choi,J.,&Kim,J.(2018).Designofgraphiticcarbonnitridenanowireswithcapturedmesoporous carbonspheresforEDLCelectrodematerials. Ionics, 24(12),3957–3965. https://doi.org/10.1007/s11581-018-25440.
Ou,H.,Lin,L.,Zheng,Y.,Yang,P.,Fang,Y.,&Wang,X.(2017).Tri-s-triazine-basedcrystallinecarbonnitride nanosheetsforanimprovedhydrogenevolution. AdvancedMaterials, 29(22). https://doi.org/10.1002/ adma.201700008.
Patnaik,S.,Martha,S.,&Parida,K.M.(2016).Anoverviewofthestructural,texturalandmorphologicalmodulations ofg-C3N4towardsphotocatalytichydrogenproduction. RSCAdvances, 6(52),46929–46951. https://doi.org/ 10.1039/c5ra26702a.
Qian,X.,Meng,X.,Sun,J.,Jiang,L.,Wang,Y.,Zhang,J.,Hu,X.,Shalom,M.,&Zhu,J.(2019).Salt-assistedsynthesisof 3Dporousg-C3N4asabifunctionalphoto-andelectrocatalyst. ACSAppliedMaterialsandInterfaces, 11(30), 27226–27232. https://doi.org/10.1021/acsami.9b08651
Rahman,M.Z.,Davey,K.,&Mullins,C.B.(2018).Tuningtheintrinsicpropertiesofcarbonnitrideforhighquantum yieldphotocatalytichydrogenproduction. AdvancedScience, 5(10). https://doi.org/10.1002/advs.201800820
Rono,N.,Kibet,J.K.,Martincigh,B.S.,&Nyamori,V.O.(2020).Areviewofthecurrentstatusofgraphiticcarbon nitride. CriticalReviewsinSolidStateandMaterialsSciences https://doi.org/10.1080/10408436.2019.1709414
Sheng,Z.H.,Shao,L.,Chen,J.J.,Bao,W.J.,Wang,F.B.,&Xia,X.H.(2011).Catalyst-freesynthesisofnitrogen-doped grapheneviathermalannealinggraphiteoxidewithmelamineanditsexcellentelectrocatalysis. ACSNano, 5(6), 4350–4358. https://doi.org/10.1021/nn103584t
Sun,S.P.,Gu,S.,Sun,J.H.,Xia,F.F.,&Chen,G.H.(2018).Firstprinciplesinvestigationoftheelectronicpropertiesof graphiticcarbonnitridewithdifferentbuildingblockandsheetstaggeredarrangement. JournalofAlloysandCompounds, 735,131–139. https://doi.org/10.1016/j.jallcom.2017.11.061
Sun,S.,&Liang,S.(2017).Recentadvancesinfunctionalmesoporousgraphiticcarbonnitride(mpg-C3N4)polymers. Nanoscale, 9(30),10544–10578. https://doi.org/10.1039/c7nr03656f
Talapaneni,S.N.,Lee,J.H.,Je,S.H.,Buyukcakir,O.,Kwon,T.W.,Polychronopoulou,K.,Choi,J.W.,&Coskun,A. (2017).Chemicalblowingapproachforultramicroporouscarbonnitrideframeworksandtheirapplicationsingas andenergystorage. AdvancedFunctionalMaterials, 27(1). https://doi.org/10.1002/adfm.201604658.
Tang,Z.,Zhang,X.,Duan,L.,Wu,A.,&Lu,W.(2019).Three-dimensionalcarbonnitridenanowirescaffoldforflexiblesupercapacitors. NanoscaleResearchLetters, 14. https://doi.org/10.1186/s11671-019-2932-z.
Thomas,A.,Fischer,A.,Goettmann,F.,Antonietti,M.,Muller,J.O.,Schlogl,R.,&Carlsson,J.M.(2008).Graphitic carbonnitridematerials:Variationofstructureandmorphologyandtheiruseasmetal-freecatalysts. Journalof MaterialsChemistry, 18(41),4893–4908. https://doi.org/10.1039/b800274f.
Wang,X.,Blechert,S.,&Antonietti,M.(2012).Polymericgraphiticcarbonnitrideforheterogeneousphotocatalysis. ACSCatalysis, 2(8),1596–1606. https://doi.org/10.1021/cs300240x.
Wang,L.,Guo,X.,Chen,Y.,Ai,S.,&Ding,H.(2019).Cobalt-dopedg-C3N4asaheterogeneouscatalystforphotoassistedactivationofperoxymonosulfateforthedegradationoforganiccontaminants. AppliedSurfaceScience, 467–468,954–962. https://doi.org/10.1016/j.apsusc.2018.10.262
Wang,Y.,Wang,X.,Antonietti,M.,&Zhang,Y.(2010).Facileone-potsynthesisofnanoporouscarbonnitridesolids byusingsofttemplates. ChemSusChem, 3(4),435–439. https://doi.org/10.1002/cssc.200900284 Wu,H.,&Huo,Y.(2020).OnestepsynthesisofefficientphotocatalystsbyTCAPdopedg-C3N4forenhancedvisiblelightphotocatalyticactivity. NewJournalofChemistry, 44(3),1127–1137. https://doi.org/10.1039/c9nj05270d Xiaorui,D.,Guojun,Z.,Zhonghao,W.,&Xiaolai,W.(2015).Ascalablechemicalroutetosolubleacidifiedgraphitic carbonnitride:Anidealprecursorforisolatedultrathing-C3N4nanosheets. Nanoscale,8701–8706. https://doi. org/10.1039/C5NR00665A
Xie,M.,Wei,W.,Jiang,Z.,Xu,Y.,&Xie,J.(2016).Carbonnitridenanowires/nanofibers:Anoveltemplate-freesynthesisfromacyanuricchloride-melamineprecursortowardsenhancedadsorptionandvisible-lightphotocatalytic performance. CeramicsInternational, 42(3),4158–4170. https://doi.org/10.1016/j.ceramint.2015.11.089
Xiong,J.,Di,J.,Xia,J.,Zhu,W.,&Li,H.(2018).Surfacedefectengineeringin2Dnanomaterialsforphotocatalysis. AdvancedFunctionalMaterials, 28(39). https://doi.org/10.1002/adfm.201801983
1.Graphiticcarbonnitride:Anuprisingcarbonaceousmaterial
Xu,J.,Zhang,L.,Shi,R.,&Zhu,Y.(2013).Chemicalexfoliationofgraphiticcarbonnitrideforefficientheterogeneous photocatalysis. JournalofMaterialsChemistryA, 1(46),14766–14772. https://doi.org/10.1039/c3ta13188b
Yan,S.C.,Li,Z.S.,&Zou,Z.G.(2010).PhotodegradationofrhodamineBandmethylorangeoverboron-doped g-C3N4undervisiblelightirradiation. Langmuir, 26(6),3894–3901. https://doi.org/10.1021/la904023j
Ye,S.,Wang,R.,Wu,M.Z.,&Yuan,Y.P.(2015).Areviewong-C3N4forphotocatalyticwatersplittingandCO2 reduction.In Vol.358 Appliedsurfacescience (pp.15–27).ElsevierB.V. https://doi.org/10.1016/j. apsusc.2015.08.173.
Yijie,R.,Deqian,Z.,&Wee-Jun,O.(2019).Interfacialengineeringofgraphiticcarbonnitride(g-C3N4)-basedmetal sulfideheterojunctionphotocatalystsforenergyconversion:Areview. ChineseJournalofCatalysis,289–319. https://doi.org/10.1016/s1872-2067(19)63293-6.
Yu,Q.,Guo,S.,Li,X.,&Zhang,M.(2014).Templatefreefabricationofporousg-C3N4graphenehybridwithenhancedphotocatalyticcapabilityundervisiblelight. MaterialsTechnology, 29(3),172–178. https://doi.org/ 10.1179/1753555714Y.0000000126.
Zhang,J.,Chen,J.,Wan,Y.,Liu,H.,Chen,W.,Wang,G.,&Wang,R.(2020).Defectengineeringinatomic-layered graphiticcarbonnitrideforgreatlyextendedvisible-lightphotocatalytichydrogenevolution. ACSAppliedMaterialsandInterfaces, 12(12),13805–13812. https://doi.org/10.1021/acsami.9b21115
Zhang,Y.,Gao,J.,&Chen,Z.(2019).Asolid-statechemicalreductionapproachtosynthesizegraphiticcarbonnitride withtunablenitrogendefectsforefficientvisible-lightphotocatalytichydrogenevolution. JournalofColloidand InterfaceScience, 535,331–340. https://doi.org/10.1016/j.jcis.2018.10.012
Zhang,S.,Gu,P.,Ma,R.,Luo,C.,Wen,T.,Zhao,G.,Cheng,W.,&Wang,X.(2019).Recentdevelopmentsinfabrication andstructureregulationofvisible-light-driveng-C3N4-basedphotocatalyststowardswaterpurification: Acriticalreview. CatalysisToday, 335,65–77. https://doi.org/10.1016/j.cattod.2018.09.013
Zhang,D.,Guo,Y.,&Zhao,Z.(2018).Porousdefect-modifiedgraphiticcarbonnitrideviaafacileone-stepapproach withsignificantlyenhancedphotocatalytichydrogenevolutionundervisiblelightirradiation. AppliedCatalysisB: Environmental, 226,1–9. https://doi.org/10.1016/j.apcatb.2017.12.044
Zhang,S.,Li,G.,Duan,L.,Wang,H.,Zhao,Y.,&Zhang,Y.(2020).g-C3N4synthesizedfromNH4SCNinaH2atmosphereasahighperformancephotocatalystforbluelight-drivendegradationofrhodamineB. RSCAdvances, 10(33),19669–19685. https://doi.org/10.1039/d0ra02454f