Synthesis, characterization, and applications of graphitic carbon nitride sabu thomas - Download the

Page 1


Synthesis,Characterization,andApplicationsof GraphiticCarbonNitrideSabuThomas

https://ebookmass.com/product/synthesis-characterizationand-applications-of-graphitic-carbon-nitride-sabu-thomas/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Nanowire Energy Storage Devices: Synthesis, Characterization and Applications Liqiang Mai

https://ebookmass.com/product/nanowire-energy-storage-devicessynthesis-characterization-and-applications-liqiang-mai/

ebookmass.com

Organic Corrosion Inhibitors: Synthesis, Characterization, Mechanism, and Applications Chandrabhan Verma

https://ebookmass.com/product/organic-corrosion-inhibitors-synthesischaracterization-mechanism-and-applications-chandrabhan-verma/

ebookmass.com

Advanced nanomaterials for catalysis and energy: synthesis, characterization and applications Sadykov

https://ebookmass.com/product/advanced-nanomaterials-for-catalysisand-energy-synthesis-characterization-and-applications-sadykov/ ebookmass.com

India and the European Union in a Turbulent World 1st ed. Edition

https://ebookmass.com/product/india-and-the-european-union-in-aturbulent-world-1st-ed-edition-rajendra-k-jain/

ebookmass.com

Christology and Metaphysics in the Seventeenth Century

https://ebookmass.com/product/christology-and-metaphysics-in-theseventeenth-century-richard-cross/

ebookmass.com

(eBook PDF) Investments 12th Edition By Zvi Bodie

https://ebookmass.com/product/ebook-pdf-investments-12th-edition-byzvi-bodie/

ebookmass.com

Graph Spectral Image Processing Gene Cheung

https://ebookmass.com/product/graph-spectral-image-processing-genecheung/

ebookmass.com

Sociology in a Changing World 9th Edition, (Ebook PDF)

https://ebookmass.com/product/sociology-in-a-changing-world-9thedition-ebook-pdf/

ebookmass.com

Stonehenge: A Brief History 1st Edition Mike Parker Pearson

https://ebookmass.com/product/stonehenge-a-brief-history-1st-editionmike-parker-pearson/

ebookmass.com

Women, Religion and Leadership in Zimbabwe, Volume 2: Engagement and Activism in Religious Institutions Molly Manyonganise

https://ebookmass.com/product/women-religion-and-leadership-inzimbabwe-volume-2-engagement-and-activism-in-religious-institutionsmolly-manyonganise/ ebookmass.com

SYNTHESIS,CHARACTERIZATION,AND APPLICATIONSOFGRAPHITICCARBON NITRIDE

SYNTHESIS, CHARACTERIZATION,

ANDAPPLICATIONS

OFGRAPHITICCARBON NITRIDE

AnEmergingCarbonaceous Material

InternationalandInterUniversityCentreforNanoscienceandNanotechnology,MahatmaGandhiUniversity, Kottayam,Kerala,India

S.ANAS

AdvancedMolecularMaterialsResearchCentreandDepartmentofPolymerChemistry,SchoolofChemicalSciences, MahatmaGandhiUniversity,Kottayam,Kerala,India

JOMON JOY

SchoolofChemicalSciences,MahatmaGandhiUniversity,Kottayam,Kerala,India

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands

TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom

50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright©2023ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicor mechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem,without permissioninwritingfromthepublisher.Detailsonhowtoseekpermission,furtherinformationaboutthe Publisher’spermissionspoliciesandourarrangementswithorganizationssuchastheCopyrightClearance CenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions.

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher (otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenour understanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusing anyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethods theyshouldbemindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhomtheyhaveaprofessional responsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeany liabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceor otherwise,orfromanyuseoroperationofanymethods,products,instructions,orideascontainedinthe materialherein.

ISBN:978-0-12-823038-1

ForinformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: SusanDennis

AcquisitionsEditor: AnitaKoch

EditorialProjectManager: KathrineEsten

ProductionProjectManager: BharatwajVaratharajan

CoverDesigner: VictoriaPearson

TypesetbySTRAIVE,India

Preface

Anintegratedapproachtomaterialsand chemistryisnecessitatedbythehugedemand insolvingseveralengineeringproblemsthat areusuallyaddressedbycouplinginterdisciplinaryapproaches.Graphiticcarbonnitride (g-C3N4)isafascinatingmaterialpossessing interestingpropertiesthatcanbeexplored formanyapplications.

Thisbookwillserveasanadvancedstudy materialforallthoseinterestedintheories, concepts,majorfindings,andobservations relatedtographiticcarbonnitride-basedsystems.Itprovidesacomprehensiveoverview oftheapplicationsandadvancedresearchon graphiticcarbonnitrideinvariousfields suchasphotocatalyticdegradationofpollutants,photocatalytichydrogengeneration, carbondioxidereduction,disinfection,sensors,supercapacitors,andsolarcells.The purposeofthisbookistoexplainanddiscuss alltheaspectsofpropertiesandapplications ofcarbonnitrideasachemicallystableand pollution-freematerialandtherebythe readerstoincreasetheirunderstandingand knowledgeaboutthediscipline.

Overall,thismakesthebookanindispensablereferencefor(post)graduatestudents, researchersinacademiaandindustry,and engineersworkinginthefieldofgraphitic carbonnitride-basedsystems.

Thisbook

•Highlightstheapplicationsofgraphitic carbonnitrideasaphotocatalystforthe reductionofCO2

•Coversthesynthesis,properties,and modificationsofgraphiticcarbon nitride

•Describesthesynthesisstructureand propertiesofvariousgraphiticcarbon nitride-basedsystems

•Dealswiththedevelopmentofgraphitic carbonnitride-basednanocomposites

•Describeshydrogenproductionvia watersplittingbyusinggraphiticcarbon nitride

•Describestheapplicationsofgraphitic carbonnitrideindiversefieldssuchas sensors,solarcells,fuelcells,andin analyticalandbiomedicalfields.

Editors’biographies

ProfessorSabuThomas iscurrentlyservingastheVice ChancellorofMahatmaGandhiUniversity,Kerala,India. AftercompletinghisPhDfromIITKharagpur,hejoined MahatmaGandhiUniversityasalecturerin1987.Hehas receivedHonorisCausadegreesfromRussiaandFrance andobtainedgrantsamountingtoRs.30croresforresearch fundingfromIndiaandabroad.Hehasbeenranked114th inthelistoftheworld’sbestscientistsand2ndinIndiaby theStanfordUniversityRankinginPolymers.Hehassupervised125PhDstudents,authored1300publications, andedited150books,earninghimanH-indexof125and 77,584citations.

Dr.S.Anas isanassistantprofessorattheSchoolofChemicalSciences,MahatmaGandhiUniversity,Kerala,India. Currently,heisalsoservingastheHonoraryDirectorof theAdvancedMolecularMaterialsResearchCentreand InstituteforIntegratedProgrammesandResearchinBasic Sciences(IIRBS)atMahatmaGandhiUniversity.He obtainedhisPhDinChemistryfromNIIST(CSIR), Thiruvananthapuram,India,in2008underthesupervision ofDr.K.V.Radhakrishnan.Subsequently,hecompleted hispostdoctoralresearchstudieswithProf.Henri B.KaganattheUniversityofParis-sud11,France,and withDr.HenrikOttossonatUppsalaUniversity,Sweden. Hiscurrentresearchincludesthedevelopmentof variousnovelsyntheticmethodologies,polymersupportedtransitionmetalcatalyzedreactions,andpolymernanocomposites.

Dr.JomonJoy isapostdoctoralfellowattheSchoolof EnergyofMaterials,MahatmaGandhiUniversity,Kerala, India.HereceivedhisPhDinChemistryfromtheSchoolof ChemicalSciences,MahatmaGandhiUniversity,Kerala, India.HeistherecipientoftheJuniorResearchFellowship awardintheareaofChemicalSciences.Heisanexpertin thefieldsofpolymericblends,polymericnanocomposites, andbiocomposites.Hehasauthoredmanybookchapters andhasagoodnumberofpublicationstohiscreditin manypeer-reviewed,high-impactjournalsofinternational repute.

Contributors

P.AbdulRasheed DepartmentofBiological SciencesandEngineering,IndianInstitute ofTechnologyPalakkad,Palakkad,Kerala, India

S.Anas SchoolofChemicalSciences;Advanced MolecularMaterialsResearchCentre,MahatmaGandhiUniversity,Kottayam,Kerala, India

K.S.Anjumol DepartmentofMaterialsEngineering,CzechTechnicalUniversity,Prague, CzechRepublic;SchoolofEnergyMaterials, MahatmaGandhiUniversity,Kottayam,Kerala,India

NurulAffiqahArzaee SolarEnergyResearch Institute,UniversitiKebangsaanMalaysia, Bangi,Selangor,Malaysia

AnchuAshok DepartmentofChemicalEngineering,CollegeofEngineering,QatarUniversity,Doha,Qatar

BaizengFang DepartmentofChemical&BiologicalEngineering,UniversityofBritishColumbia,Vancouver,BC,Canada

AzizHabibi-Yangjeh DepartmentofChemistry,FacultyofScience,Universityof MohagheghArdabili,Ardabil,Iran

JomonJoy SchoolofChemicalSciences;School ofEnergyMaterials,MahatmaGandhiUniversity,Kottayam,Kerala,India

ZiyauddinKhan LaboratoryofOrganicElectronics,DepartmentofScienceandTechnology, Link € opingUniversity,Norrk € oping,Sweden

AnandKumar DepartmentofChemicalEngineering,CollegeofEngineering,QatarUniversity,Doha,Qatar

HianKeeLee IntegrativeSciencesandEngineeringProgramme,NUSGraduateSchool; DepartmentofChemistry,NationalUniversity ofSingapore,Singapore,Singapore

XinzhengLi KeyLaboratoryofMicroorganism ApplicationandRiskControlofShenzhen, GuangdongProvincialEngineeringResearch CenterforUrbanWaterRecyclingandEnvironmentalSafety,TsinghuaShenzhenInternationalGraduateSchool,TsinghuaUniversity, Shenzhen,People’sRepublicofChina

GuangfuLiao NationalForestryandGrasslandAdministrationKeyLaboratoryofPlant FiberFunctionalMaterials,CollegeofMaterialEngineering,FujianAgricultureandForestryUniversity,Fuzhou,People’sRepublic ofChina

HannaJ.Maria SchoolofEnergyMaterials,MahatmaGandhiUniversity,Kottayam,Kerala, India

BijoyP.Mathew DepartmentofChemistry, VimalaCollege(Autonomous),Thrissur,Kerala,India

SnehaSabuMathew SchoolofEnergyMaterials,MahatmaGandhiUniversity,Kottayam, Kerala,India

SureshMathew MorningStarHomeScience College,Angamaly,Kerala;SchoolofChemical Sciences,MahatmaGandhiUniversity,Kottayam,India

MohamadFirdausMohamadNoh SolarEnergyResearchInstitute,UniversitiKebangsaan Malaysia,Bangi,Selangor,Malaysia

NurulAidaMohamed SolarEnergyResearch Institute,UniversitiKebangsaanMalaysia, Bangi,Selangor,Malaysia

SitiNurFarhanaMohdNasir SolarEnergyResearchInstitute,UniversitiKebangsaanMalaysia,Bangi,Selangor,Malaysia

MitraMousavi DepartmentofChemistry,FacultyofScience,UniversityofMohaghegh Ardabili,Ardabil;SchoolofChemistry,

UniversityCollegeofScience,Universityof Tehran,Tehran,Iran

SuminaNamboorimadathilBacker Research InstituteofScienceandEngineering(RISE), UniversityofSharjah,Sharjah,UnitedArab Emirates

InzamamNawasNawasMumthas SolarEnergyResearchInstitute,UniversitiKebangsaan Malaysia,Bangi,Selangor,Malaysia

MohammadQureshi DepartmentofChemistry,IndianInstituteofTechnologyGuwahati, Guwahati,Assam,India

JavadSafaei SolarEnergyResearchInstitute, UniversitiKebangsaanMalaysia,Bangi, Selangor,Malaysia

TusharKantaSahu DepartmentofChemistry, IndianInstituteofTechnologyGuwahati, Guwahati,Assam,India

T.V.Saranya SchoolofChemicalSciences, MahatmaGandhiUniversity,Kottayam, Kerala,India

PrasadV.Sarma IndianInstituteofScience EducationandResearchThiruvananthapuram, ResearchAssociate,SchoolofPhysics,Thiruvananthapuram,Kerala,India;Departmentof ChemistryandBiochemistry,Universityof Oregon,Eugene,OR,UnitedStates

PetrSpatenka DepartmentofMaterialsEngineering,CzechTechnicalUniversity,Prague, CzechRepublic

P.R.Sruthi SchoolofChemicalSciences,MahatmaGandhiUniversity,Kottayam,Kerala, India

SzeChiehTan IntegrativeSciencesandEngineeringProgramme,NUSGraduateSchool; DepartmentofChemistry,NationalUniversity ofSingapore,Singapore,Singapore

MohdAsriMatTeridi SolarEnergyResearch Institute,UniversitiKebangsaanMalaysia, Bangi,Selangor,Malaysia

RenyThankamThomas SchoolofPhysics,IndianInstituteofScienceEducationandResearch Thiruvananthapuram,Thiruvananthapuram, Kerala,India;CamfilABTechCenter,Trosa, Sweden

SabuThomas SchoolofChemicalSciences; SchoolofEnergyMaterials;Internationaland InterUniversityCentreforNanoscienceand Nanotechnology,MahatmaGandhiUniversity, Kottayam,Kerala,India

MarilynMaryXavier MorningStarHomeScienceCollege,Angamaly,Kerala,India

AfdhalYuda DepartmentofChemicalEngineering,CollegeofEngineering,QatarUniversity,Doha,Qatar

LiZhang DepartmentofChemistry,CityUniversityofHongKong,HongKongSAR, People’sRepublicofChina

Graphiticcarbonnitride:Anuprising carbonaceousmaterial

JomonJoya,b,S.Anasa,c,andSabuThomasa,d

aSchoolofChemicalSciences,MahatmaGandhiUniversity,Kottayam,Kerala,India bSchoolofEnergyMaterials,MahatmaGandhiUniversity,Kottayam,Kerala,India cAdvancedMolecularMaterialsResearchCentre,MahatmaGandhiUniversity,Kottayam, Kerala,India dInternationalandInterUniversityCentreforNanoscienceandNanotechnology, MahatmaGandhiUniversity,Kottayam,Kerala,India

1.1Introduction

Graphiticcarbonnitride,representedasg-C3N4,isoneoftheearliestpolymersknown, consistingprimarilyofcarbonandnitrogenandhavingthegeneralformula(C3N3H)n (Aiwuetal.,2017).Chemistryofgraphiticcarbonnitrideoffersdifferentmethodstomodify itsreactivitywithoutchangingtheoverallcomposition.Historyofcarbonnitrideanditsprecursorsbeginsin1834withitssynthesisbyBerzelius(Thomasetal.,2008)andsoonitwas named“melon”byLiebig(Gmelin,1835; X.Wangetal.,2012).Franklindescribedthestructureofthiscompoundin1922(Franklin,1922).Itisapolyconjugatedsemiconductormaterial withalayeredgraphiticstructuremadeupofcarbonandnitrogenatoms(Patnaiketal.,2016). Thefullypolymerizedformofg-C3N4 hasaC:Nratioof0.75,whichisimpossibletoobtainin practice.Asaresult,dependingonthesynthesistechnique,thesubstancenormallycontains 1%–2%hydrogen(Wu&Huo,2020; S.Zhang,Li,etal.,2020).Researchonthesecompounds blossomedin1990sduetoatheoreticalpredictionthatsp3-bondedC3N4 phasecouldhave exceptionallyhighhardnessvaluesascomparedwithdiamond(A.Y.Liu&Cohen,1989). Thermaldecompositionofnitrogen-richprecursorsiscommonlyusedintheproductionof bulkg-C3N4 toincorporate s-triazinerings.However,differentapproacheshavebeen adoptedbytheresearchersforthedevelopmentofgraphiticcarbonnitride(Mohamed etal.,2019; Nasiretal.,2019; Y.Zhang,Gao,&Chen,2019; D.Zhangetal.,2018).

Atambienttemperatures,g-C3N4 isconsideredtobethemoststableallotrope.Eachlayer ofgraphiticcarbonnitrideismadeupoftri-s-triazineunitsconnectedbyplanaramino

1 Synthesis,Characterization,andApplicationsofGraphiticCarbonNitride

Copyright # 2023ElsevierInc.Allrightsreserved. https://doi.org/10.1016/B978-0-12-823038-1.00001-5

2 1.Graphiticcarbonnitride:Anuprisingcarbonaceousmaterial

groupsandthevanderWaalsforcelinksthestackinglayers(covalentC Nbonds)together (Ouetal.,2017).Thepolymer’stri-s-triazineringstructureensuresexceptionalthermalstability(600°Cinair)andexhibitsbetterchemicalstabilityunderalkalineandacidicenvironments( J € urgensetal.,2003).Theperformanceofg-C3N4 canbegreatlyimprovedbythe introductionoffunctionalgroupsoratomsinthematrixorsurfaceofthecarbonnitride.Protonationanddoping(boron,fluorine,andsulfur)arethegeneralmethodsadoptedtocontrol theperformanceofgraphiticcarbonnitrideandexpandedapplications(Katsumataetal., 2020; Niuetal.,2014).Therefore,polymericsemiconductorg-C3N4 hasevolvedintoanew classofnontoxic,metal-free,earth-abundant,visiblelight-drivenpolymericsemiconductors. Asaresultofitspotentialapplicationsinenergystorageandconversion,watersplitting,waterpurification,analyticalchemistry,andashumidityandgassensors,thismaterialhasreceivedalotofinterestinrecentyears(Ronoetal.,2020).

1.2Structuresofgraphiticcarbonnitride

Carbonnitrideexhibitsvariousnaturallyoccurringhypotheticalphases,includingcubic, pseudo-cubic,andgraphiticstructures.Underambientconditions,g-C3N4 isbelievedtobe themoststableoftheseallotropes.g-C3N4 hasalayeredtwo-dimensional(2D)structurethat canbethoughtofasanitrogenheteroatom-substitutedgraphiteframeworkmadeupof pi-conjugatedgraphiticplanesgeneratedbysp2 hybridizationofcarbonandnitrogenatoms (Naserietal.,2017).

Thestructuralisomersofg-C3N4 canbeproducedusingtherightprecursorsandcondensationprocedures(S.Zhang,Gu,etal.,2019).Thefirststructuralisomerconsistsofaperiodic patternofsinglecarbonvacanciesincondensed s-triazineunits(ringofC3N3).Theotheris madeupofcondensedtri-s-triazine(C6N7 tri-ring)subunitsjoinedbyplanartertiaryamino groups,withlargerperiodicvacancieswithinthelattice(Krokeetal.,2002). Chapter2 titled “Synthesis,StructureandPropertiesofGraphiticCarbonNitride,”summarizestheelectronic bandstructure,latticestructure,andchemicalenvironmentofthegraphiticcarbonnitride material.Thischapteralsodiscussesdifferentsynthesisroutesfortheproductionofgraphitic carbonnitride.Structuresof s-triazineandtri-s-triazineunitsareshownin Fig.1.1 (Deifallah

FIG.1.1 s-Triazine(left)andtri-s-triazineastectonsofg-C3N4 FromWang,X.,Blechert,S.,&Antonietti,M.(2012). Polymericgraphiticcarbonnitrideforheterogeneousphotocatalysis. ACSCatalysis, 2(8),1596–1606. https://doi.org/10.1021/ cs300240x

etal.,2008; Dongetal.,2014; Finaetal.,2015; Rahmanetal.,2018; S.P.Sunetal.,2018; S.Sun& Liang,2017).

1.3Morphologiesofgraphiticcarbonnitride

Nanosheets,nanowires,nanotubes,quantumdots,andthree-dimensional(3D)g-C3N4 are allexamplesofvariousformsgraphiticcarbonnitride.The3Dstructureofbulkg-C3N4 is comparabletothatofgraphite.Thepyrolysisprocessisusedfortheproductionofbulk g-C3N4 fromnitrogen-richprecursorslikedicyandiamide,melamine,urea,orthiourea.Bulk g-C3N4,ontheotherhand,hascertaindrawbackssuchasalowspecificsurfaceareadueto layerstackingduringpolycondensation,alowquantumyieldduetorestrictedelectronic transition,andahighrecombinationrateofphotogeneratedelectronsandholes.Therefore researchersprefertotransformbulkg-C3N4 intovariousnanostructureswhicharediscussed inthefollowingsections.

1.3.1Graphiticcarbonnitride2Dnanosheets

Thebulkstructureofg-C3N4 islayeredandplanar,withweakvanderWaalsforcesofattractionbetweenthelayers(Xiaoruietal.,2015).Graphiticcarbonnitridenanosheetscanbe preparedfrombulkmaterialsbytheseparationoflayers(Fig.1.2).Thiscouldbeachievedby providingsufficientenergyforbreakingthevanderWaalsforcesofattractionbetweenthe layersofg-C3N4 inasuitablesolvent(Yeetal.,2015).Differenttechniquesareusedforthe preparationofnanosheetsfrombulkmaterial(Challagullaetal.,2019; Fanetal.,2017; R.Li,Ren,etal.,2019; Talapanenietal.,2017; Xuetal.,2013).

1.3.2Graphiticcarbonnitridenanotubes

Graphiticcarbonnitridenanotubesaregenerallypreparedbyaneffectiveapproach termedaschemicalvapordeposition(CVD),eventhoughthistechniqueneedscomplex andexpensiveequipment.Graphiticcarbonnitridenanotubesexhibiteduniqueproperties

FIG.1.2 Aschematicrepresentationofthesynthesisoftheg-C3N4 nanosheets. FromFan,C.,Miao,J.,Xu,G.,Liu,J., Lv,J.,&Wu,Y.(2017).Graphiticcarbonnitridenanosheetsobtainedbyliquidstrippingasefficientphotocatalystsundervisible light. RSCAdvances, 7(59),37185–37193. https://doi.org/10.1039/c7ra05732f.

1.Graphiticcarbonnitride:Anuprisingcarbonaceousmaterial

FIG.1.3 (A)SEMimagesoftheg-C3N4 nanotubes,(B)TEMimagesoftheg-C3N4 nanotubes,and(C)magnified TEMimageoftheg-C3N4 nanotubes. FromMo,Z.,Xu,H.,Chen,Z.,She,X.,Song,Y.,Yan,P.,Xu,L.,Lei,Y.,Yuan,S.,& Li,H.(2018).Self-assembledsynthesisofdefect-engineeredgraphiticcarbonnitridenanotubesforefficientconversionofsolar energy. AppliedCatalysisB:Environmental, 225,154–161. https://doi.org/10.1016/j.apcatb.2017.11.041

suchasincreasedvisible-lightabsorption,alargespecificsurfacearea,rapidelectrontransport,andadecreasedrateofphotogeneratedelectron-holepairrecombination(Heetal., 2016).Soft,hard,andself-templatingmethodsaregenerallyusedforthepreparationof g-C3N4 nanotubes(Fig.1.3)(Moetal.,2018).Silicahasbeenextensivelyemployedasatemplateduetoitslesstoxicnatureandnormallyremovedafterwardsbytheutilizationofammoniumbifluoride(NH4HF2)orhydrogenfluoride(HF).Inthesoft-templatingtechniquefor thesynthesisofgraphiticcarbonnitridenanotubes,surfactantslikeTritonX-100andpluronic P123areutilizedassofttemplates(Y.Wangetal.,2010).Graphiticcarbonnitrideprecursors likedicyandiamideandmelaminearemixedandpolymerizedalongwiththetemplateto produceag-C3N4 materialwithappropriatestructure(S.Liuetal.,2017).

1.3.3Graphiticcarbonnitridenanowires

Duetotheirhighsurfacearea-to-volumeratio,whichincreasesthenumberofreaction sites,one-dimensionalg-C3N4 nanowireshaverecentlyattractedalotofscientificattention. Ohetal.produceda3Dcompositeconsistingofg-C3N4 nanowiresimpregnatedwith mesoporouscarbonspheres(Ohetal.,2018).Duetoitslargersurfacearea,theresultingcompositehashigherelectrochemicalcharacteristicswhencomparedtographeneandcarbon nanotubes.Thereforetheseactivatedcarbonmaterialsareutilizedaselectricaldoublelayer capacitors.Tangandcoworkers(Tangetal.,2019)developedaflexiblecompositematerial consistingofg-C3N4 nanowires(Fig.1.4).

Graphiticcarbonnitridenanowireswerepreparedbypolycondensationofthemixtureof melamineandcyanuricacidprecursorat500°Cfor2hby Xieetal.(2016).Undervisible-light irradiation,thenanowiresdisplayedimprovedphotocatalyticdegradationofmethyleneblue owingtotheincreasednumberreactionssitesinthenanostructuredmaterial.

1.3.4Graphiticcarbonnitridequantumdots

Brightfluorescence,betterchemicalstability,largespecificsurfacearea,andbiocompatibilityaresomeofthepropertiesexhibitedbygraphiticcarbonnitridequantumdots

FIG.1.4 FESEMimagesofg-C3N4 (A)andGCNW(B). FromTang,Z.,Zhang,X.,Duan,L.,Wu,A.,&Lu,W.(2019). Three-dimensionalcarbonnitridenanowirescaffoldforflexiblesupercapacitors. NanoscaleResearchLetters, 14 https://doi. org/10.1186/s11671-019-2932-z

(g-CNQDs)(H.Liuetal.,2019).Becauseoftheircapacitytofluoresce,thermalstability, nontoxicnature,water-solubility,andbiocompatibility,g-CNQDscanbeemployedasfluorescentprobesforenvironmentalandbiologicaldetection(Linetal.,2019).Hurandcolleaguesusedasimplehydrothermalproceduretomakebiocompatibleandfunctionalized graphiticcarbonnitridequantumdotsutilizingphenylboronicacid(g-CNQDs/PBA)which isusedasaglucose-detectingfluorescentmaterial.Schematicrepresentationofthestrategy forthepreparationofg-CNQDs/PBAandtheirglucosesensingpropertiesareshownin Fig. 1.5 (Ngoetal.,2019).

1.3.53Dgraphiticcarbonnitride

Amacroporous3Dg-C3N4 waspreparedusingmelaminespongeasatemplatebyYang andcoworkers(Liangetal.,2015).Theyadoptedone-steppolymerizationofmelamine spongesoakedinureaandresultantproductwasdirectlycutintodifferent3Dshapes containingg-C3N4.Photocatalytichydrogenproductionwasimprovedinmacroscopic3D g-C3N4.Severalhardandsofttemplateshavebeenutilizedforthefabricationof3D mesoporousg-C3N4 structures.Wangetal.usedsilicaastemplateforthefabricationof mesoporous3Dg-C3N4 andthepreparedmaterialoutperformedbulkg-C3N4 in photocatalytichydrogenevolution.3Dg-C3N4 withcolossalphotocatalytichydrogenevolutionwaspreparedbyZhang’sgroup(Luoetal.,2018),whichwas29.5timesmoreefficient thanpristineg-C3N4.Qianetal.adoptedasimpleball-millingapproachusingNaCltomake porous3Dg-C3N4 (Qianetal.,2019)(Fig.1.6).

1.Graphiticcarbonnitride:Anuprisingcarbonaceousmaterial

FIG.1.5 Schematicillustrationofthestrategyforthepreparationofg-CNQDs/PBAandtheirglucosesensing properties. FromNgo,Y.L.T.,Choi,W.M.,Chung,J.S.,&Hur,S.H.(2019).Highlybiocompatiblephenylboronicacidfunctionalizedgraphiticcarbonnitridequantumdotsfortheselectiveglucosesensor. SensorsandActuators,B:Chemical, 282,36–44. https://doi.org/10.1016/j.snb.2018.11.031

FIG.1.6 Schematicillustrationofthesynthesis procedureofporousg-C3N4. FromQian,X., Meng,X.,Sun,J.,Jiang,L.,Wang,Y.,Zhang,J., Hu,X.,Shalom,M.,&Zhu,J.(2019).Salt-assistedsynthesisof3Dporousg-C3N4asabifunctionalphoto-and electrocatalyst. ACSAppliedMaterialsandInterfaces, 11(30),27226–27232. https://doi.org/10.1021/ acsami.9b08651.

1.4Modificationsofgraphiticcarbonnitride

Researchershaveusedavarietyofstrategiestoenhancethepropertiesofgraphiticcarbon nitride,includingthecouplingwithcarbonaceousmaterials,doping,fabricationof heterojunctions,andtheintroductionofdefects,togeneratealternativemorphologieswith improvedproperties.Inthissection,variousmodificationapproachesarediscussedindetail.

1.4.1Constructionofheterojunctions

Oneofthemostimportantprerequisiteconditionsforimprovedperformanceofg-C3N4 is tominimizeproblemssuchaslowlightabsorptionbehaviorandpoorseparationof photogeneratedcharges.Theheterojunctioninterfaceisoneofthemostimportantprerequisiteconditionsforimprovedperformanceofg-C3N4.Withaheterojunction,theenergyofthe bandgapcanbegreatlylowered,resultingingreaterlightabsorptionandchargetransfer. TypeIheterojunction,typeIIheterojunction,p-nheterojunction,Schottkyjunction,and Z-schemeheterojunctionaredifferentheterojunctionsconstructedsofar(Yijieetal.,2019). Chapter3 titled“EngineeringofHeterojunctionPhotocatalyst,”givesafantasticexplanation ofheterojunctionstrategywhichhasbecomeveryimportantformaximizingtheperformance ofg-C3N4 photocatalyst. Fig.1.7 showsthebandstructureofseveraltypesofheterojunctions inphotocatalytichybridnanocomposites.

1.4.2Couplingwithcarbonaceousmaterials

Carbonaceousmaterialshavebeenusedwithg-C3N4 toboostitsoptoelectronicperformancebecausethesematerialshaveappealingqualitiessuchaschemicalandthermalstabilities,highsurfacearea,safefortheenvironment,andhighconductivity.Toimproveits photocatalyticactivity,graphiticcarbonnitridecanbecombinedwithcarbonaceousmaterials withhighercarboncontent,suchasorderedmesoporouscarbon,multiwalledcarbon nanotubes,fullerene,andgraphene,aswellaspolymerssuchasPANI,C-PDA,7,7,8,8tetracyanoquinodimethane(TCNQ,P3HT).Thephotocatalyticactivitycanbesignificantly improvedbythecombinationofg-C 3N 4 withthesecarbonnanostructures.Thisisdueto theexceptionalfeaturesofnanostructuredca rbon,whichincludealargenumberofactive adsorptionsites,improvedvisible-lightabsorptionthroughsensitization,andgood electron-holeseparation.Theelectronicintegrationofgraphiticcarbonnitridewithother carbonaceousmaterialinthelatticethathave unpairedelectronsconsiderablyimproves delocalizationandhencethepotentialapplications. Yuetal.(2014) usedthecalcination approachtofabricategraphene-modifiedporousg-C3 N 4 (porousg-C 3N 4 /graphene)compositesthatdemonstratedefficientphotocatalyticactivitywhenexposedtovisiblelight. Withouttheuseofatemplate,thesamplebecomesporousduetoammoniagasbubblescreatedduringcalcination.Theporousnatureofthecompositeenhancesmaterial’sopticalabsorption.Usingcyanamideandmultiwalle dcarbonnanotubesprecursors,Wangand coworkers(Gongetal.,2014 )createdag-C3 N4 /carbonnanotubecomposite.Thepresence ofhighlyconductingCNTsprovidedsynergisticbenefitstothecomposite,anditsinherent electricalconductivitywasattributedtotheirexistence.Compositescontainingahigh

FIG.1.7 Bandstructureofvarioustypesofheterojunctionsinaphotocatalytichybridnanocomposite:(A)Type Iheterojunction,(B)typeIIheterojunction,(C)p-njunction,(D)Schottkyjunction,(E)Z-schemeheterojunction(withoutanelectronmediator),and(F)indirectZ-scheme(withanelectronmediator).A,D,andEF representelectronacceptor,electrondonor,andFermilevel,respectively. FromYijie,R.,Deqian,Z.,&Wee-Jun,O.(2019).Interfacial engineeringofgraphiticcarbonnitride(g-C3N4)-basedmetalsulfideheterojunctionphotocatalystsforenergyconversion: Areview. ChineseJournalofCatalysis,289–319. https://doi.org/10.1016/s1872-2067(19)63293-6

amountofg-C3 N 4 hadbetteroptoelectronicactivity,whereasthosecontainingahigher proportionofCNTswerebetteratoxygenreduc tion.Aporouscarbon/carbonnitridecompositewaspreparedbyLi’sgroup( Y.Li,Meng,etal.,2019 ).Thepreparedcomposite exhibitedenhancedphotocatalyticdegradationofmethyleneblue(MB)owingtothesynergisticeffectsofbothcarbonandcarbonnitride,suchasenhancedadsorptionandbetter lightabsorptionefficiency.

FullerenemodifiedC3N4 (C60/C3N4)compositeswerefabricatedbyZhouandcoworkers usingsimpleadsorptionapproach(Chaietal.,2014).Undervisible-lightirradiation,thecompositesdisplayedexcellentphotocatalyticactivityduetotheinteractionbetweenC3N4 and C60 (Fig.1.8).

1.4.3Doping

Dopingofgraphiticcarbonnitrideisanothermodificationmethodadoptedtoenhanceits photo-electronicproperties.Boron,cobalt,sulfur,etc.,wereusedforthedopingofg-C3N4

FIG.1.8 Mechanismfortheenhanced photocatalyticactivityoftheC60/C3N4 composite. FromChai,B.,Liao,X.,Song,F.,&Zhou,H.(2014).FullerenemodifiedC3N4compositeswithenhanced photocatalyticactivityundervisiblelightirradiation. DaltonTransactions, 43(3),982–989. https://doi.org/10. 1039/c3dt52454j.

andtheheteroatomscanbeaccommodatedinthecavitiesoflayeredgraphiticcarbonnitride, allowingtheupshiftingofconductionbandwithoutinterferingwithvisible-lightabsorption (Shengetal.,2011).Yangandcoworkers(Kamaletal.,2019)preparedboron-dopedg-C3N4 andusedthepreparedboron-dopedg-C3N4 tomakeaNiFe2O4-basedcomposite.B-CN/ NiFe2O4 compositedisplayedexcellentphotocatalyticeffectformethyleneblue degradation.Cobalt-dopedg-C3N4 isutilizedasaheterogeneouscatalystby L.Wangetal. (2019) totriggerthephotocatalyticeffectofperoxymonosulfateforthedegradationoforganic pollutants.Gaoandcoworkersusedtrithiocyanuricacidasaprecursortomakeanitrogendeficientandsulfur-dopedg-C3N4 photocatalystwithporousstructure.Thepreparedmaterialexhibitedexcellentvisible-lightphotocatalyticactivityforH2 production. Yanetal.(2010) studiedthephotodegradationofmethylorangeandrhodamineBusingboron-dopedg-C3N4 andalsoexaminedthephotodegradationofmethylorangeandrhodamineBwithpristine g-C3N4.Theyprovedthatboron-dopedg-C3N4 displayedabetterphotodegradationeffect thanpristineg-C3N4. Chapter13 titled“Dopingofgraphiticcarbonnitridefor photocatalysis,”discussesthedopingofdifferentheteroatoms(metal,nonmetal,andrare earthmetaldopingandco-doping)withtheirphotocatalysismechanism.

1.4.4Introductionofdefects

Theintroductionofdefects(imperfections)intog-C3N4 haspiquedscientists’curiosity sincetheseimperfectionshavetheabilitytoalterthematerial’sstructureaswellasitselectronicbandgapenergy(Xiongetal.,2018).Thermaltreatmentofbulkg-C3N4 resultedinthe generationofnanosheetswithstructuralimperfections(Niuetal.,2018).Duringhydrogen evolution,theresultingnanosheetsdisplayedexcellentlightabsorptionandphotocatalytic efficacy.Thermaltreatmentmayenhancethebreakageofforcesofattractionbetweenthe layersofg-C3N4 andalsoinduceporeformation,resultinginthegenerationofnanosheets withporousstructure.Thermaltreatmentalsogeneratesmyriadofimperfectionsonthe designedelectronicstructureofnanosheets,whichincreasethematerial’slightabsorption efficiency.Defectsingeneralcanaltertheelectronicbandstructureandmorphologyofamaterial.Finally,thecombinedimpactsofthechangedmorphologyandimprovedelectrical bandstructureresultedinasuperiorphotocatalyst.Wangandcoworkersusedahightemperaturetreatmentaswellastwo-stepthermalexfoliationprocedurestocreatedefect

engineeringalteringatomic-layeredg-C3N4 nanosheets( J.Zhang,Chen,etal.,2020).Theintroductionofcyanogengroupsandnitrogenvacanciesintotheg-C3N4 structureresultedin anupshiftoftheVBpotentialandtheformationofmid-gapstates,therebysuppressingthe quantumsizeeffectofatomic-layeredg-C3N4.Asaresult,thevisible-lightresponseimproves whileelectronandholerecombinationdecreases.

1.5Applicationsofgraphiticcarbonnitride

Atunablenarrowbandgap,sustainability,electron-richproperties,andbiodegradability arejustafewoftheremarkablepropertiesofg-C3N4.Graphiticcarbonnitridehasbeenused inavarietyoffields,includingphotocatalysis,energystorage,sensing,analyticalchemistry, andbiomedicalfields,duetoitsuniqueproperties(Fig.1.9).Ofthe14chaptersofthisbook6 exclusivelydealswithvariousapplicationsofgraphiticcarbonnitridesuchasphotocatalytic watersplittingandreductionofcarbondioxide(Chapter6),photocatalyticpollutantdegradationandbacterialdisinfection(Chapter7),sensors(Chapter9),solarcells(Chapter10),analyticalchemistry(Chapter11),andbiomedicalfield(Chapter14).

1.6Challenges

Theexceptionalqualitiesofg-C3N4,suchasatinybandgap,2Dstructureoftri-s-triazine units,andexcellentchemicalandthermalstabilitiesmakethesematerialssuitableforavarietyofapplications.However,bulkg-C3N4 hasalimitednumberofsurfaceactivesites, whichenhancesthechancesofsurfaceorvolumerecombination.Thesedifficultiescould beovercomebyapplyingvarioussyntheticmethodologiestorationallydesignanddevelop itstextureandframework.Traditionalstrategiessuchasnanoarchitecturedesign,surface defects,thermalexfoliation,elementaldoping,andsupramolecularpreorganizationalmost meetsomeoftherequirements,suchasimprovedlightharvestingandreducedchargecarrier recombination,buttheyfallshortofmeetingallofthem.Althoughdopingandsurface vacanciescanlowerthebandgapandimprovevisible-lightabsorption,theymaynotprovide enoughredoxabilitytoovercomeathermodynamicbarrierintargetreactions.Toimprove theatomeconomyandhencelowerthecostofmaterialdevelopment,theyieldofg-C3N4

FIG.1.9 Differentapplicationsofgraphiticcarbonnitride. NoPermissionRequired.

Photo catalysis

Sensors

Fuel Cells

Biomedical Applications

Solar Cells

Heterogeneous Catalysis

Metal Nitride Synthesis g-C3N4 Applications

CO2 Reduction

fromitsprecursorsshouldbeincreased.Toimprovethelong-termuseofg-C3N4,itsphoto stabilityneedstobefurtherinvestigated.Furthermore,thereisstilladearthofunderstanding ofthechargetransferprocessincompositesintheliterature.

1.7Conclusions

Graphiticcarbonnitride(g-C3N4)exhibitedexcellentpropertiessuchasadjustable bandgap,goodchemicalandthermalstability,andappealingelectroniccharacteristics.To increasethesurfaceareaandhenceintroducemoreactivesitesforreactionsandhighquantumconfinement,bulkg-C3N4 hasbeenconvertedintonanotubes,nanosheets,nanorods, quantumdots,andnanowires.Exfoliation,doping,andamalgamationofg-C3N4 withother materialstoformcompositescanimprovethematerial’soptoelectroniccapabilities,andcompositescanhavesynergisticproperties.Thisbookcoverssynthesis,structure,properties,and applicationsofg-C3N4 inwiderangeoffieldsincludingbiosensing,photocatalysis,energy, analyticalchemistry,andbiomedicalapplications.Thisbookwillbebeneficialtomaterialscientistsandnanotechnologistslookingfornewmaterialsforavarietyofapplicationssuchas energy,sensing,photocatalysis,biomedical,andanalyticalapplications.

References

Aiwu,W.,Chundong,W.,Li,F.,Winnie,W.-N.,&Yucheng,L.(2017).Recentadvancesofgraphiticcarbonnitridebasedstructuresandapplicationsincatalyst,sensing,imaging,andLEDs. Nano-MicroLetters https://doi.org/ 10.1007/s40820-017-0148-2

Chai,B.,Liao,X.,Song,F.,&Zhou,H.(2014).FullerenemodifiedC3N4compositeswithenhancedphotocatalytic activityundervisiblelightirradiation. DaltonTransactions, 43(3),982–989. https://doi.org/10.1039/c3dt52454j Challagulla,S.,Payra,S.,Chakraborty,C.,&Roy,S.(2019).Determinationofbandedgesandtheirinfluenceson photocatalyticreductionofnitrobenzenebybulkandexfoliatedg-C3N4. PhysicalChemistryChemicalPhysics, 21(6),3174–3183. https://doi.org/10.1039/c8cp06855k.

Deifallah,M.,McMillan,P.F.,&Cora ` ,F.(2008).Electronicandstructuralpropertiesoftwo-dimensionalcarbonnitridegraphenes. JournalofPhysicalChemistryC, 112(14),5447–5453. https://doi.org/10.1021/jp711483t. Dong,G.,Zhang,Y.,Pan,Q.,&Qiu,J.(2014).Afantasticgraphiticcarbonnitride(g-C3N4)material:Electronicstructure,photocatalyticandphotoelectronicproperties. JournalofPhotochemistryandPhotobiologyC:PhotochemistryReviews, 20(1),33–50. https://doi.org/10.1016/j.jphotochemrev.2014.04.002.

Fan,C.,Miao,J.,Xu,G.,Liu,J.,Lv,J.,&Wu,Y.(2017).Graphiticcarbonnitridenanosheetsobtainedbyliquidstrippingasefficientphotocatalystsundervisiblelight. RSCAdvances, 7(59),37185–37193. https://doi.org/10.1039/ c7ra05732f

Fina,F.,Callear,S.K.,Carins,G.M.,&Irvine,J.T.S.(2015).Structuralinvestigationofgraphiticcarbonnitridevia XRDandneutrondiffraction. ChemistryofMaterials, 27(7),2612–2618. https://doi.org/10.1021/acs. chemmater.5b00411

Franklin,E.C.(1922).Theammonocarbonicacids. JournaloftheAmericanChemicalSociety, 44(3),486–509. https://doi. org/10.1021/ja01424a007

Gmelin,L.(1835).UebereinigeVerbindungendesMelon’s. AnnalenderPharmacie, 15(3),252–258. https://doi.org/ 10.1002/jlac.18350150306

Gong,Y.,Wang,J.,Wei,Z.,Zhang,P.,Li,H.,&Wang,Y.(2014).Combinationofcarbonnitrideandcarbonnanotubes: Synergisticcatalystsforenergyconversion. ChemSusChem, 7(8),2303–2309. https://doi.org/10.1002/ cssc.201402078

1.Graphiticcarbonnitride:Anuprisingcarbonaceousmaterial

He,F.,Chen,G.,Miao,J.,Wang,Z.,Su,D.,Liu,S.,Cai,W.,Zhang,L.,Hao,S.,&Liu,B.(2016).Sulfur-mediatedselftemplatingsynthesisoftaperedC-PAN/g-C3N4compositenanotubestowardefficientphotocatalyticH2evolution. ACSEnergyLetters, 1(5),969–975. https://doi.org/10.1021/acsenergylett.6b00398

J € urgens,B.,Irran,E.,Senker,J.,Kroll,P.,M € uller,H.,&Schnick,W.(2003).Melem(2,5,8-triamino-tri-s-triazine),an importantintermediateduringcondensationofmelamineringstographiticcarbonnitride:Synthesis,structure determinationbyx-raypowderdiffractometry,solid-stateNMR,andtheoreticalstudies. JournaloftheAmerican ChemicalSociety, 125(34),10288–10300. https://doi.org/10.1021/ja0357689.

Kamal,S.,Balu,S.,Palanisamy,S.,Uma,K.,Velusamy,V.,&Yang,T.C.K.(2019).SynthesisofborondopedC3N4/ NiFe2O4nanocomposite:Anenhancedvisiblelightphotocatalystforthedegradationofmethyleneblue. Resultsin Physics, 12,1238–1244. https://doi.org/10.1016/j.rinp.2019.01.004.

Katsumata,H.,Sakakibara,K.,Tateishi,I.,Furukawa,M.,&Kaneco,S.(2020).Structurallymodifiedgraphiticcarbon nitridewithhighlyphotocatalyticactivityinthepresenceofvisiblelight. CatalysisToday, 352,47–53. https://doi. org/10.1016/j.cattod.2019.12.007.

Kroke,E.,Schwarz,M.,Horath-Bordon,E.,Kroll,P.,Noll,B.,&Norman,A.D.(2002).Tri-s-triazinederivatives.PartI. Fromtrichloro-tri-s-triazinetographiticC3N4structures. NewJournalofChemistry, 26(5),508–512. https://doi. org/10.1039/b111062b

Li,Y.,Meng,M.,Ji,C.,Teng,S.,Gao,L.,Qu,R.,Yang,Z.,Sun,C.,&Zhang,Y.(2019).Soft-templatesynthesisofhybrid carbonandcarbonnitridecompositeswithenhancedphotocatalyticactivityforthedegradationofmethyleneblue undervisiblelight. EnvironmentalProgress&SustainableEnergy, 38(5). https://doi.org/10.1002/ep.13186

Li,R.,Ren,Y.,Zhao,P.,Wang,J.,Liu,J.,&Zhang,Y.(2019).Graphiticcarbonnitride(g-C3N4)nanosheets functionalizedcompositemembranewithself-cleaningandantibacterialperformance. JournalofHazardousMaterials, 365,606–614. https://doi.org/10.1016/j.jhazmat.2018.11.033

Liang,Q.,Li,Z.,Yu,X.,Huang,Z.H.,Kang,F.,&Yang,Q.H.(2015).Macroscopic3Dporousgraphiticcarbonnitride monolithforenhancedphotocatalytichydrogenevolution. AdvancedMaterials, 27(31),4634–4639. https://doi. org/10.1002/adma.201502057

Lin,X.,Liu,C.,Wang,J.,Yang,S.,Shi,J.,&Hong,Y.(2019).Graphiticcarbonnitridequantumdotsandnitrogendopedcarbonquantumdotsco-decoratedwithBiVO4microspheres:Aternaryheterostructurephotocatalyst forwaterpurification. SeparationandPurificationTechnology, 226,117–127. https://doi.org/10.1016/j. seppur.2019.05.093

Liu,S.,Chen,F.,Li,S.,Peng,X.,&Xiong,Y.(2017).EnhancedphotocatalyticconversionofgreenhousegasCO2into solarfuelsoverg-C3N4nanotubeswithdecoratedtransparentZIF-8nanoclusters. AppliedCatalysisB:Environmental, 211,1–10. https://doi.org/10.1016/j.apcatb.2017.04.009

Liu,A.Y.,&Cohen,M.L.(1989).Predictionofnewlowcompressibilitysolids. Science, 245(4920),841–842. https:// doi.org/10.1126/science.245.4920.841.

Liu,H.,Wang,X.,Wang,H.,&Nie,R.(2019).Synthesisandbiomedicalapplicationsofgraphiticcarbonnitridequantumdots. JournalofMaterialsChemistryB, 7(36),5432–5448. https://doi.org/10.1039/c9tb01410a.

Luo,B.,Song,R.,Geng,J.,Jing,D.,&Zhang,Y.(2018).Facilepreparationwithhighyieldofa3Dporousgraphitic carbonnitridefordramaticallyenhancedphotocatalyticH2evolutionundervisiblelight. AppliedCatalysisB:Environmental, 238,294–301. https://doi.org/10.1016/j.apcatb.2018.07.039.

Mo,Z.,Xu,H.,Chen,Z.,She,X.,Song,Y.,Yan,P.,Xu,L.,Lei,Y.,Yuan,S.,&Li,H.(2018).Self-assembledsynthesisof defect-engineeredgraphiticcarbonnitridenanotubesforefficientconversionofsolarenergy. AppliedCatalysisB: Environmental, 225,154–161. https://doi.org/10.1016/j.apcatb.2017.11.041

Mohamed,M.A.,Zain,M.F.M.,Minggu,L.J.,Kassim,M.B.,Jaafar,J.,SaidinaAmin,N.A.,MohdHir,Z.A.,& Rosmi,M.S.(2019).Enhancementofvisiblelightphotocatalytichydrogenevolutionbybio-mimeticC-dopedgraphiticcarbonnitride. InternationalJournalofHydrogenEnergy, 44(26),13098–13105. https://doi.org/10.1016/j. ijhydene.2019.02.243

Naseri,A.,Samadi,M.,Pourjavadi,A.,Moshfegh,A.Z.,&Ramakrishna,S.(2017).Graphiticcarbonnitride(g-C3N4)basedphotocatalystsforsolarhydrogengeneration:Recentadvancesandfuturedevelopmentdirections. Journal ofMaterialsChemistryA, 5(45),23406–23433. https://doi.org/10.1039/c7ta05131j

Nasir,M.S.,Yang,G.,Ayub,I.,Wang,S.,Wang,L.,Wang,X.,Yan,W.,Peng,S.,&Ramakarishna,S.(2019).Recent developmentingraphiticcarbonnitridebasedphotocatalysisforhydrogengeneration. AppliedCatalysisB:Environmental, 257 https://doi.org/10.1016/j.apcatb.2019.117855

Ngo,Y.L.T.,Choi,W.M.,Chung,J.S.,&Hur,S.H.(2019).Highlybiocompatiblephenylboronicacid-functionalized graphiticcarbonnitridequantumdotsfortheselectiveglucosesensor. SensorsandActuators,B:Chemical, 282, 36–44. https://doi.org/10.1016/j.snb.2018.11.031

Niu,P.,Qiao,M.,Li,Y.,Huang,L.,&Zhai,T.(2018).Distinctivedefectsengineeringingraphiticcarbonnitridefor greatlyextendedvisiblelightphotocatalytichydrogenevolution. NanoEnergy, 44,73–81. https://doi.org/ 10.1016/j.nanoen.2017.11.059

Niu,P.,Yin,L.C.,Yang,Y.Q.,Liu,G.,&Cheng,H.M.(2014).Increasingthevisiblelightabsorptionofgraphitic carbonnitride(Melon)photocatalystsbyhomogeneousself-modificationwithnitrogenvacancies. AdvancedMaterials, 26(47),8046–8052. https://doi.org/10.1002/adma.201404057

Oh,T.,Kim,M.,Choi,J.,&Kim,J.(2018).Designofgraphiticcarbonnitridenanowireswithcapturedmesoporous carbonspheresforEDLCelectrodematerials. Ionics, 24(12),3957–3965. https://doi.org/10.1007/s11581-018-25440.

Ou,H.,Lin,L.,Zheng,Y.,Yang,P.,Fang,Y.,&Wang,X.(2017).Tri-s-triazine-basedcrystallinecarbonnitride nanosheetsforanimprovedhydrogenevolution. AdvancedMaterials, 29(22). https://doi.org/10.1002/ adma.201700008.

Patnaik,S.,Martha,S.,&Parida,K.M.(2016).Anoverviewofthestructural,texturalandmorphologicalmodulations ofg-C3N4towardsphotocatalytichydrogenproduction. RSCAdvances, 6(52),46929–46951. https://doi.org/ 10.1039/c5ra26702a.

Qian,X.,Meng,X.,Sun,J.,Jiang,L.,Wang,Y.,Zhang,J.,Hu,X.,Shalom,M.,&Zhu,J.(2019).Salt-assistedsynthesisof 3Dporousg-C3N4asabifunctionalphoto-andelectrocatalyst. ACSAppliedMaterialsandInterfaces, 11(30), 27226–27232. https://doi.org/10.1021/acsami.9b08651

Rahman,M.Z.,Davey,K.,&Mullins,C.B.(2018).Tuningtheintrinsicpropertiesofcarbonnitrideforhighquantum yieldphotocatalytichydrogenproduction. AdvancedScience, 5(10). https://doi.org/10.1002/advs.201800820

Rono,N.,Kibet,J.K.,Martincigh,B.S.,&Nyamori,V.O.(2020).Areviewofthecurrentstatusofgraphiticcarbon nitride. CriticalReviewsinSolidStateandMaterialsSciences https://doi.org/10.1080/10408436.2019.1709414

Sheng,Z.H.,Shao,L.,Chen,J.J.,Bao,W.J.,Wang,F.B.,&Xia,X.H.(2011).Catalyst-freesynthesisofnitrogen-doped grapheneviathermalannealinggraphiteoxidewithmelamineanditsexcellentelectrocatalysis. ACSNano, 5(6), 4350–4358. https://doi.org/10.1021/nn103584t

Sun,S.P.,Gu,S.,Sun,J.H.,Xia,F.F.,&Chen,G.H.(2018).Firstprinciplesinvestigationoftheelectronicpropertiesof graphiticcarbonnitridewithdifferentbuildingblockandsheetstaggeredarrangement. JournalofAlloysandCompounds, 735,131–139. https://doi.org/10.1016/j.jallcom.2017.11.061

Sun,S.,&Liang,S.(2017).Recentadvancesinfunctionalmesoporousgraphiticcarbonnitride(mpg-C3N4)polymers. Nanoscale, 9(30),10544–10578. https://doi.org/10.1039/c7nr03656f

Talapaneni,S.N.,Lee,J.H.,Je,S.H.,Buyukcakir,O.,Kwon,T.W.,Polychronopoulou,K.,Choi,J.W.,&Coskun,A. (2017).Chemicalblowingapproachforultramicroporouscarbonnitrideframeworksandtheirapplicationsingas andenergystorage. AdvancedFunctionalMaterials, 27(1). https://doi.org/10.1002/adfm.201604658.

Tang,Z.,Zhang,X.,Duan,L.,Wu,A.,&Lu,W.(2019).Three-dimensionalcarbonnitridenanowirescaffoldforflexiblesupercapacitors. NanoscaleResearchLetters, 14. https://doi.org/10.1186/s11671-019-2932-z.

Thomas,A.,Fischer,A.,Goettmann,F.,Antonietti,M.,Muller,J.O.,Schlogl,R.,&Carlsson,J.M.(2008).Graphitic carbonnitridematerials:Variationofstructureandmorphologyandtheiruseasmetal-freecatalysts. Journalof MaterialsChemistry, 18(41),4893–4908. https://doi.org/10.1039/b800274f.

Wang,X.,Blechert,S.,&Antonietti,M.(2012).Polymericgraphiticcarbonnitrideforheterogeneousphotocatalysis. ACSCatalysis, 2(8),1596–1606. https://doi.org/10.1021/cs300240x.

Wang,L.,Guo,X.,Chen,Y.,Ai,S.,&Ding,H.(2019).Cobalt-dopedg-C3N4asaheterogeneouscatalystforphotoassistedactivationofperoxymonosulfateforthedegradationoforganiccontaminants. AppliedSurfaceScience, 467–468,954–962. https://doi.org/10.1016/j.apsusc.2018.10.262

Wang,Y.,Wang,X.,Antonietti,M.,&Zhang,Y.(2010).Facileone-potsynthesisofnanoporouscarbonnitridesolids byusingsofttemplates. ChemSusChem, 3(4),435–439. https://doi.org/10.1002/cssc.200900284 Wu,H.,&Huo,Y.(2020).OnestepsynthesisofefficientphotocatalystsbyTCAPdopedg-C3N4forenhancedvisiblelightphotocatalyticactivity. NewJournalofChemistry, 44(3),1127–1137. https://doi.org/10.1039/c9nj05270d Xiaorui,D.,Guojun,Z.,Zhonghao,W.,&Xiaolai,W.(2015).Ascalablechemicalroutetosolubleacidifiedgraphitic carbonnitride:Anidealprecursorforisolatedultrathing-C3N4nanosheets. Nanoscale,8701–8706. https://doi. org/10.1039/C5NR00665A

Xie,M.,Wei,W.,Jiang,Z.,Xu,Y.,&Xie,J.(2016).Carbonnitridenanowires/nanofibers:Anoveltemplate-freesynthesisfromacyanuricchloride-melamineprecursortowardsenhancedadsorptionandvisible-lightphotocatalytic performance. CeramicsInternational, 42(3),4158–4170. https://doi.org/10.1016/j.ceramint.2015.11.089

Xiong,J.,Di,J.,Xia,J.,Zhu,W.,&Li,H.(2018).Surfacedefectengineeringin2Dnanomaterialsforphotocatalysis. AdvancedFunctionalMaterials, 28(39). https://doi.org/10.1002/adfm.201801983

1.Graphiticcarbonnitride:Anuprisingcarbonaceousmaterial

Xu,J.,Zhang,L.,Shi,R.,&Zhu,Y.(2013).Chemicalexfoliationofgraphiticcarbonnitrideforefficientheterogeneous photocatalysis. JournalofMaterialsChemistryA, 1(46),14766–14772. https://doi.org/10.1039/c3ta13188b

Yan,S.C.,Li,Z.S.,&Zou,Z.G.(2010).PhotodegradationofrhodamineBandmethylorangeoverboron-doped g-C3N4undervisiblelightirradiation. Langmuir, 26(6),3894–3901. https://doi.org/10.1021/la904023j

Ye,S.,Wang,R.,Wu,M.Z.,&Yuan,Y.P.(2015).Areviewong-C3N4forphotocatalyticwatersplittingandCO2 reduction.In Vol.358 Appliedsurfacescience (pp.15–27).ElsevierB.V. https://doi.org/10.1016/j. apsusc.2015.08.173.

Yijie,R.,Deqian,Z.,&Wee-Jun,O.(2019).Interfacialengineeringofgraphiticcarbonnitride(g-C3N4)-basedmetal sulfideheterojunctionphotocatalystsforenergyconversion:Areview. ChineseJournalofCatalysis,289–319. https://doi.org/10.1016/s1872-2067(19)63293-6.

Yu,Q.,Guo,S.,Li,X.,&Zhang,M.(2014).Templatefreefabricationofporousg-C3N4graphenehybridwithenhancedphotocatalyticcapabilityundervisiblelight. MaterialsTechnology, 29(3),172–178. https://doi.org/ 10.1179/1753555714Y.0000000126.

Zhang,J.,Chen,J.,Wan,Y.,Liu,H.,Chen,W.,Wang,G.,&Wang,R.(2020).Defectengineeringinatomic-layered graphiticcarbonnitrideforgreatlyextendedvisible-lightphotocatalytichydrogenevolution. ACSAppliedMaterialsandInterfaces, 12(12),13805–13812. https://doi.org/10.1021/acsami.9b21115

Zhang,Y.,Gao,J.,&Chen,Z.(2019).Asolid-statechemicalreductionapproachtosynthesizegraphiticcarbonnitride withtunablenitrogendefectsforefficientvisible-lightphotocatalytichydrogenevolution. JournalofColloidand InterfaceScience, 535,331–340. https://doi.org/10.1016/j.jcis.2018.10.012

Zhang,S.,Gu,P.,Ma,R.,Luo,C.,Wen,T.,Zhao,G.,Cheng,W.,&Wang,X.(2019).Recentdevelopmentsinfabrication andstructureregulationofvisible-light-driveng-C3N4-basedphotocatalyststowardswaterpurification: Acriticalreview. CatalysisToday, 335,65–77. https://doi.org/10.1016/j.cattod.2018.09.013

Zhang,D.,Guo,Y.,&Zhao,Z.(2018).Porousdefect-modifiedgraphiticcarbonnitrideviaafacileone-stepapproach withsignificantlyenhancedphotocatalytichydrogenevolutionundervisiblelightirradiation. AppliedCatalysisB: Environmental, 226,1–9. https://doi.org/10.1016/j.apcatb.2017.12.044

Zhang,S.,Li,G.,Duan,L.,Wang,H.,Zhao,Y.,&Zhang,Y.(2020).g-C3N4synthesizedfromNH4SCNinaH2atmosphereasahighperformancephotocatalystforbluelight-drivendegradationofrhodamineB. RSCAdvances, 10(33),19669–19685. https://doi.org/10.1039/d0ra02454f

Synthesis,structure,andproperties ofgraphiticcarbonnitride

PrasadV.Sarmaa,b

aIndianInstituteofScienceEducationandResearchThiruvananthapuram,ResearchAssociate, SchoolofPhysics,Thiruvananthapuram,Kerala,India bDepartmentofChemistryand Biochemistry,UniversityofOregon,Eugene,OR,UnitedStates

2.1Introduction

Graphiticcarbonnitride(g-C3N4)wasreportedbackin1834asametal-freeartificialpolymer,whichisstructurallyanalogtographiteandnamedas“melon.”(Liebig,1832; Miller etal.,2017; Wang,Blechert,&Antonietti,2012)Graphitic-C3N4 moderatebandgapof 2.7eV,anditexhibitsinterestingphysicochemicalpropertiesincludinghightoleranceand stabilitytoextremepHconditions(pH0–14)(Prasadetal.,2019).Thepeculiaroptical,electronic,andsuperiorstabilityofg-C3N4 inharshconditions,madethemsuitableforvarious applications(Zhengetal.,2012).Graphitic-C3N4 foundapplicationsinvariousareassuchas photocatalyst,electrolyzercatalystsupport,redoxcatalyst,pollutiondegradation,photoelectronicdevices,sensors,energyconversion,etc.( Jin-Shui&WangXin-Chen,2013; Sun etal.,2016).Also,graphiticcarbonnitridesarefoundverystableagainstmolecularoxygen. Becauseofitsveryhighchemicalinertnesstooxygen,g-C3N4 canbeutilizedinvariouscatalyticreactions,wheretraditionalinorganicmaterialundergoesoxidation(Peietal.,2016). Theenvironmentalbenignity,followedbyreadilyavailablechemicalprecursors,madethem asuitablematerialfordiverseapplications.Still,intermsofeconomicviewpoint,further developmentofg-C3N4 isrequiredtoaddressfundamentalconcernsregardingtheirelectronicandchemicalstructures.Themodificationsintheirstructurearenecessarytosuitaparticularapplicationandmaximizetheirefficiency.Variousmethodologieswereadaptedfor thesynthesisandtuningofthepropertiesofg-C3N4.Thepropertiesofg-C3N4 largelydepend onthesynthesisconditions,andbycontrollingtheseparameters,onecancontroltheirpropertiesaswell(Milleretal.,2017; Zhengetal.,2012).Forhigh-performanceenergystorageand catalyticapplications,highsurfaceareag-C3N4 isrequiredthatenhancestheactivesites.

2.Synthesis,structure,andpropertiesofgraphiticcarbonnitride

Theoreticalstudieshaveshownthatg-C3N4 nanosheetscanhaveasurfaceareaupto 2500m2 g 1 (Sanoetal.,2013).Nanostructuredg-C3N4 aremoreefficientintermsoflowmass transferkinetics,highsurfacearea,andlowcarrierrecombinationratethataidstoovercome thedisadvantagesofbulkstructures(Zhaoetal.,2015).

Inthischapter,wearehighlightingthestructureofg-C3N4 andemphasismodifyingtheir electronicstructurethroughdifferentmethodologiessuchasdoping,chemicalfunctionalization,andcompositesformation.Weexpectthischapterwillbringacomprehensiveanalysisofvarioussynthesisstrategiesofgraphitic-C3N4 andtheirstructures.

2.2Lattice,electronic,andchemicalstructureofgraphitic-carbonnitride

2.2.1Latticestructureofthegraphitic-carbonnitride

GraphiticcarbonnitrideisoneamongthevariousstructuresofC3N4 suchasb^ eta-C3N4, alfa-C3N4,cubicC3N4,etc.(Prasadetal.,2019),g-C3N4 inthefullpolymerizedformthatcontainscarbonandnitrogeninaratio0.75,whichisnotyetobtainedexperimentally,butwith 1%–2%ofhydrogenincluded,thestructurescanbesynthesizedexperimentally(Milleretal., 2017).Thepresenceofhydrogenmoleculesstabilizesthestructure,anditalsofunctionsas defectsite.Thepercentageofhydrogenmoleculesinthestructuredependsheavilyonthe synthesisconditions(Finaetal.,2015).Thereisarangeofgraphiticcarbonnitridesreported intheliteraturewithdifferentC:N:Hratioshavingdiverseelectronicandphysiochemical properties(Finaetal.,2015; Thomasetal.,2008).

Duringearlyworks,carbonnitridewasconsideredasanultimateproductofseveral de-ammoniationprocessesonmaterialssuchascyanamideormelamine.Butthepureform ofcarbonnitridewasneverachievedduetothepresenceofhydrogeninthelattice;hencethe finalproductwasnamedmelon,ratherthangraphiticcarbonnitride.Thetermmelonwas firstusedbyLiebig,toanamorphousyellowresidue,synthesizedbyheatingayellowprecipitateformedbyreactingCl2 toaqueousKSCN(Liebig,1832; Milleretal.,2017).Also,itwas foundthatthecombustionofammoniumthiocyanateorfromamixtureofNH4ClandKSCN yieldsasimilaryellowproduct.LaterLiebigalsoshowedthatthecompositionofsynthesized melonvarieswithdifferentsynthesisroutes,butthestoichiometryfoundtolienear C6N9H3 orC2N3H(Milleretal.,2017).

Inmostofthecurrentsynthesisapproachesofg-C3N4,thethermolyticcondensationof nitrogen-richcompoundssuchasurea,C2N4H4,melamine,cyanamide,dicyandiamide, DCDAoccur(Gaddametal.,2020).Thefinalproductofallthesematerialsaftercondensation reactionshasalimitingcompositionnearmelon.ThecompoundmelonwasassignedaformulaH3C6N9 thatledRedemannetal.toproposetwoplanarstructuremodels,shownin Fig.2.1,basedonheptazinecore(cyameluric)C6N7 (Lotschetal.,2007).Butitwasexpected thatafterhigh-temperaturepyrolysisreactions,someportionofthesynthesizedamorphous materialmightbefoundinahighlycondensedgraphite-likestructureformedbycontinuous eliminationofammonia.Theoretically,thesestructuresareobservedashighlystable,butno experimentalevidenceisavailabletodate(Finaetal.,2015; Milleretal.,2017).Theabsenceof graphitic-likehighlycondensedphasecanbeattributedtothesuperiorthermalstabilityof CxNyHz heptazine-basedpolymers(Milleretal.,2017).Also,athightemperatures,some

FIG.2.1 (A)(1a,1b)Proposedstructuremodelsformelon.(2a)Hypotheticalstructuremodelsoftriazine-based graphiticcarbonnitride(2b)andheptazine-basedbuildingblocks.(1c)Thestructure“C36N52H12”isderivedfrom melonhavingastructuralformulaintermediatebetweeng-C3N4 andmelon.(B)Structuralmodelsforcarbonnitride moleculesandvarioussolid-statestructures.(a)Polyheptazineg-C3N4 (b)Polytriazineg-C3N4 (c)Polytriazine g-C3N4 ThefigureswereadoptedandreproducedwithpermissionfromLotsch,B.V.;D € oblinger,M.;Sehnert,J.; Seyfarth,L.;Senker,J.;Oeckler,O.;Schnick,W.Unmaskingmelonbyacomplementaryapproachemployingelectrondiffraction, solid-stateNMRspectroscopy,andtheoreticalcalculations—Structuralcharacterizationofacarbonnitridepolymer. Chemistry – AEuropeanJournal2007,13(17),4969–4980.doi:10.1002/chem.200601759;Suter,T.;Bra ´ zdova ´ ,V.; McColl,K.;Miller,T.S.;Nagashima,H.;Salvadori,E.;Sella,A.;Howard,C.A.;Kay,C.W.M.;Cora ` ,F.;McMillan,P.F. Synthesis,structureandelectronicpropertiesofgraphiticcarbonnitridefilms.JournalofPhysicalChemistryC2018,122 (44),25183–25194. https://doi.org/10.1021/acs.jpcc.8b07972.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Synthesis, characterization, and applications of graphitic carbon nitride sabu thomas - Download the by Education Libraries - Issuu