Structural mechanics and design of metal pipes: a systematic approach for onshore and offshore pipel

Page 1


StructuralMechanicsandDesignofMetalPipes:A SystematicApproachforOnshoreandOffshore Pipelines1stEditionSpyrosA.A.Karamanos

https://ebookmass.com/product/structural-mechanics-anddesign-of-metal-pipes-a-systematic-approach-for-onshore-andoffshore-pipelines-1st-edition-spyros-a-a-karamanos/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Data Structures and Applications: A Simple and Systematic Approach Padma Reddy

https://ebookmass.com/product/data-structures-and-applications-asimple-and-systematic-approach-padma-reddy/

ebookmass.com

Kanski's Clinical Ophthalmology: A Systematic Approach 9th Edition John Salmon

https://ebookmass.com/product/kanskis-clinical-ophthalmology-asystematic-approach-9th-edition-john-salmon/

ebookmass.com

Kanski’s clinical ophthalmology : a systematic approach 8th Edition Bradley Bowling

https://ebookmass.com/product/kanskis-clinical-ophthalmology-asystematic-approach-8th-edition-bradley-bowling/

ebookmass.com

The Stoics on Lekta: All there is to Say Ada Bronowski

https://ebookmass.com/product/the-stoics-on-lekta-all-there-is-to-sayada-bronowski/

ebookmass.com

Essentials of Modern Business Statistics with Microsoft Excel 7th Edition David Anderson

https://ebookmass.com/product/essentials-of-modern-businessstatistics-with-microsoft-excel-7th-edition-david-anderson/

ebookmass.com

Shield Tunnel Engineering: From Theory to Practice 1st Edition Shuying Wang

https://ebookmass.com/product/shield-tunnel-engineering-from-theoryto-practice-1st-edition-shuying-wang/

ebookmass.com

(eTextbook PDF) for Doing Ethics: Moral Reasoning, Theory, and Contemporary Issues 5th Edition

https://ebookmass.com/product/etextbook-pdf-for-doing-ethics-moralreasoning-theory-and-contemporary-issues-5th-edition/

ebookmass.com

Ignition Point (Newman Fire Department Series Book 1) Rae Fields

https://ebookmass.com/product/ignition-point-newman-fire-departmentseries-book-1-rae-fields/

ebookmass.com

Understanding Human Sexuality 8th Edition Janet Shibley Hyde

https://ebookmass.com/product/understanding-human-sexuality-8thedition-janet-shibley-hyde/

ebookmass.com

Stop Wasting Time: End Procastination in 5 weeks with Proven Productivity Techniques Garland Coulson

https://ebookmass.com/product/stop-wasting-time-end-procastinationin-5-weeks-with-proven-productivity-techniques-garland-coulson/

ebookmass.com

StructuralMechanicsand DesignofMetalPipes

ASystematicApproachforOnshore andOffshorePipelines

SpyrosA.Karamanos ProfessorofStructuralMechanics, UniversityofThessaly,Volos,Greece

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright©2023ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans, electronicormechanical,includingphotocopying,recording,oranyinformationstorageand retrievalsystem,withoutpermissioninwritingfromthepublisher.Detailsonhowtoseek permission,furtherinformationaboutthePublisher’spermissionspoliciesandour arrangementswithorganizationssuchastheCopyrightClearanceCenterandtheCopyright LicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions

Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythe Publisher(otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchand experiencebroadenourunderstanding,changesinresearchmethods,professionalpractices,or medicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgein evaluatingandusinganyinformation,methods,compounds,orexperimentsdescribedherein. Inusingsuchinformationormethodstheyshouldbemindfuloftheirownsafetyandthesafety ofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors, assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterof productsliability,negligenceorotherwise,orfromanyuseoroperationofanymethods, products,instructions,orideascontainedinthematerialherein.

ISBN:978-0-323-88663-5

ForInformationonallElsevierpublicationsvisitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: MatthewDeans

AcquisitionsEditor: DennisMcGonagle

EditorialProjectManager: AeraF.Gariguez

ProductionProjectManager: KameshR

CoverDesigner: MilesHitchen

TypesetbyAptara,NewDelhi,India

Dedication

Foreword

Sincethedevelopmentofthefirstindustrialfacilities,metalpipeshavebeenemployed asbasiccomponentstofacilitatetheoperationofmachinery,mainlyusedtocontain steamunderpressureandasmeansoftransportingwaterandotherliquidsdepending ontheapplication.Inmoremodernyears,metalpipesareusedfortransportationand storageoftraditionalenergyresources,mainlyintheOil&GasandNuclearsectors,as wellasforthetransportationofwaterandbasicchemicalandpetrochemicalproducts.

Aswearealreadygoingthroughtheeraof“EnergyTransition,”pipesremain keycomponentsfortransportingenergyresources.Furthertotraditionalonshoreand offshoreOil&Gasapplicationswherepipesaredominantelements,toachievethe “NetZero”targetsinthefollowingyears’pipeswillbeusedinevenmoredemandingapplications,forexample,inhigh-pressure/high-temperatureapplications,forthe transportationofhydrogenandammonia,andincarboncapture&storageapplications.

Thisbookisacompleteguidethatdescribesthebasicprinciplesusedfortheanalysis ofonshoreandoffshorepiperesponseunderbasicandmoreelaborateloadingconditions.Startingfromthefirstprinciples,thetheoreticalformulationofthemechanical problemandthebasicequationsforeachcasearepresentedindetail.Insightfuldiscussiononthestructuralresponseundervariousconditionsisalsoprovided,allowing forthereadertounderstandindepththekeyfeaturesofpiperesponseanddesign. Thetraditionalmethodsaswellasthe“state-of-the-art”intheanalysisanddesignof pipesandpipelinesarediscussedwhilethelimitationsandbenefitsthateachanalysis approachoffersareexplained.

ThebookisbuiltontheknowledgeandexperienceofProfessorKaramanosgained overmanyyearsofscientificandprofessionalwork,R&Dprojects,andnumerous publicationswhichresultedinsignificantcontributionstothisfield,acombinationthat ishardtofindinanyothertextbook.Itsstructurecanserveengineersofalllevels.It canbeausefulreferencedocumentoftheoreticalandappliedknowledgeforstudents inthefieldwhowouldliketogainagoodunderstandingofpipeanalysisanddesign. Itcanbealsousedasa“go-by”forearlyandmidcareerprofessionalswhowanta completeguidebookwithreferencetopipelinedesigncodesanddiscussionoftheir provisions.Finally,itcanalsoservematureengineeringprofessionalswhoarelooking foracompletesourceofinformationanddescriptionofthe“state-of-the-art.”Itisvery

fortunatethatProfessorKaramanoshasaccomplishedtodeliversuchacompletebook onthistopic.

Preface

Theoriginsofthisbookgobackto1989whenIstartedmygraduatestudiesatThe UniversityofTexasatAustin(UTAustin)underthesupervisionofJohnTassoulas. ThefirstresearchprojectIworkedatUTAustinwasonthestructuralstabilityofdeepwaterpipelinesundercombinedloading,sponsoredbythenewlyestablishedOffshore TechnologyResearchCenter.Thesewereexcitingtimesfortheoffshoreindustry, extendingitsdeep-wateractivitiesintheGulfofMexicoandelsewhere,andplanning theconstructionofpipelinesinwaterdepthsthatexceeded7000feet(2000m).John’s supervisionandguidanceofmyresearchwereuniquetowarddevelopingstate-of-theartcomputationalmethodologiesandexploringthemechanicalbehaviorofoffshore pipelines.

Duringmypost-docyearatDelftUniversityofTechnology,in1996,Icontinued myresearchontubularsandtubularstructureswithJaapWardenier.Amongother projects,IstartedmycooperationwithNolGresnigtononshorepipelinemechanics. Nol’sexperienceinpipelinemechanicsandespeciallyinlarge-scalelaboratorytesting hasbeenexceptional.OurcooperationbecameveryclosewhenIstartedteachingat theUniversityofThessalyin1999,andsincethen,wehavecooperatedinnumerous projects.Allthoseyears,ourresearchteamhadastronginteractionwithNolthrough commonprojectsonissuesrelatedtopipelinemechanicsanddesign,andthishasbeen agreatassetforus.Nol’sfriendship,cooperation,andsupportcontinueuntiltoday,and Ireallyappreciatehisinstructiveadviceandcommentsonseveralpartsofthebook.

Thebookmaybeconsideredasapersonaljourneyinthe“worldofpipelines,” whicharethespearheadofmetaltubulars.Myinitialintentionwastoincludealso topicsrelatedtopipingcomponentsandsystems,verycommoninindustrialfacilities, powerplants,andterminals.However,thiswouldincreasethesizeofthebookby asignificantamount,andtherefore,thesetopicswillbepartofafuturepublication. Inthepresentbook,themechanicsanddesignofpipesaretackledfromastructural engineeringpoint-of-view.Emphasisisgivenonpipestress–strainanalysisconsidered asalongcylindricalshell,andonbucklingandstructuralinstabilityundercombined action,whereastopicsrelatedtomaterialbehavior,pipefracture,orassessmentofaged pipesaretreatedbrieflyandwillbethesubjectofafuturebook.

Thecontentsofthisbookaredividedintofourparts. PartI isintroductoryand offersanoverviewofpipelineengineeringintermsofpipemanufacturing,design, andconstruction(Chapters1and2).Thestructuralmechanicsofpipesistreated extensivelyin PartII;Chapters3and4refertoelasticpipes,whereasinChapters5and 6,themechanicsofmetallicpipesispresented. PartIII focusesonthestructuraldesign ofonshoreandoffshorepipelines(Chapters7and8),withreferencetomajorpipeline specifications.Italsocomprises“strain-baseddesign”againstgeohazards(Chapter9).

Finally,specialtopicsarepresentedin PartIV:large-diametersteelwatertransmission pipelines(Chapter10),upheavalandlateralbuckling(Chapter11),andmechanicallylinedpipes(Chapter12).

Thebookisaddressedtobothresearchersandpracticingengineersthatwishto deepentheirknowledgeandunderstandingofpipemechanics.Itmaybeusedasa referencebookforresearchersandgraduatestudentsworkinginthefieldofpipes andtubularstructures.Itmaybealsousefultopracticingengineersinthisfield, asacompleteguidebookforpipelinemechanicaldesign,whichoffersextensive backgroundtopipelinedesignstandards,anddiscussestheirrelevantprovisions.

Thereareseveralwaystoreadandmakeuseofthisbook.Belowaresomehints:

PartII(Chapters3–6)containsthebasicsofpipemechanicsandthenecessarybackground forunderstandingcurrentdesignstandardsandspecifications.Apartfromtheirusefulnessto practicingengineers,partsofthosechapterscanbeincorporatedinanelectiveorgraduate courseonstructuralmechanicsoradvancedmechanicsofmaterials.

Chapters1,2,7,and/or8constituteasetofchapterssuitableforanintroductorycourseon pipelinemechanicaldesign(onshoreand/oroffshore)addressedtopracticingengineers.This setofchaptersmayalsobeaddressedtoresearchersinthisfieldforanoverviewofpipeline engineering.

Chapter9onpipelinedesignagainstgeohazardsisastandalonechapterthatintroducesstrainbaseddesigntoresearchersandengineeringprofessionals.Itmaycomplementtheabove introductorycourseonpipelinemechanicaldesign.Itmayalsobepartofagraduatecourse ongeohazard(orseismic)designofcriticalinfrastructuresystems.

Chapter10isanotherstandalonechapter,offeringanoverviewoflarge-diametersteelpipes forwatertransmission.

Chapters3and4explaininsimpleterms,thedevelopmentofstressandstrainindeforming elasticpipes,presentingelegantanalyticalsolutions,andnumericalsimulations.Theycan beusedaspartofastructuralmechanicscourse,orasanintroductiontothemechanicsof elastictubesfromsoft/biologicalmaterials.

Duringmycareer,Ihadthechancetocooperateandinteractwithnumerous individualsandgroupsthatinfluencedmyresearchonpipesandpipelines.Whilea graduatestudentatUTAustin,ImetSteliosKyriakides,aworldwideexpertinthe field.Stelios’workandinparticularhishigh-qualityexperimentshavebeeninspiring formeandformystudents,andhislegacyisapparentinChapters5and6ofthis book.InThessaly,IhadtheopportunitytocooperatewithPhilipPerdikarisandCharis Papatheocharisinperformingnumerouslaboratoryexperiments,whichgaveadded valuetothenumericalmodelsofourresearchteamandimprovedourunderstanding onthestructuralbehaviorofpipeandtubularcomponents.Inaddition,mylongtime cooperationwithPanosDakoulaswasessentialfordevelopingastrongandunique expertisein“pipelinesandgeohazards”.Iwouldalsoliketothankallourpartners atCentroSviluppoMateriali,and,particularly,GiuseppeDemofontiandElisabetta Mecozzi,fortheircooperationinnumerousEuropeanresearchprojects,manyof whichrefertosteelpipesandtubularstructures.ManysincerethankstoBrentKeil andRichMielke,NorthwestPipeCompany,andBobCard,LAN,forourlongtime cooperationinsteelwaterpipelines,whichisreflectedinChapter10ofthepresent book.IamgratefultoCorinthPipeworks,andparticularlytoThanasisTazedakis,

ChrisPalagkas,TimDourdounis,andJohnVoudouris,forourlongtimecollaboration inmanyissuesrelatedtopipemanufacturing.Inallthosecollaborationswithresearch andindustrialpartners,thesystematicandcontinuousadministrativesupportofIoanna Charalambous-Moisidouhasbeentremendousandindispensable.Finally,Iwouldlike tothankmycolleaguesinThessalyandinEdinburghforprovidingafertileacademic environment,necessaryforwritingthisbook.

Asaprofessor,Ihadthehonortosupervisetop-qualityPhDstudents.Iwouldlike tothankallmyPhDstudents;theirexcellentresearchhasformedthefoundationof thepresentbook.Iamproudthatmostofthemarealreadywell-establishedinthe fieldofpipelinesandenergyinfrastructure,inGreeceorabroad.Specialthanksgo toGeorgeE.VarelisforwritingtheForewordofthebookandforhisconstructive inputinupheavalandlateralbuckling(Chapter11).ManythanksalsogotoArisG. StamouandApostolosNasikasfortheirgreathelpinthesectionsofcollapseandlocal buckling(Chapters3,5,and6);IliasGavriilidisforhisinputinlinedpipemechanics (Chapter12);DanielVasilikisforprovidinginformationonconfinedcylinderbuckling (Chapters3and5);PolynikisVazourasandGregorySarvanisfortheirstronginputin the“strain-demand”section(Chapter9);AglaiaPournaraforherworkonbuckled pipes(Chapter9);PatriciaPappaforherassistanceinissuesrelatedtopipeline construction(Chapter1);GiannoulaChatzopoulouandKostisChatziioannoufortheir inputincyclicplasticity(AppendixD).

IamindebtedtoAVAXS.A.,GeorgeTasakosandFoteiniMarnariforproviding severalphotosononshorepipelineconstruction,includingtheleftphotoofthecover page.ManythanksgotoDuaneDeGeer,Intecsea,andChrisTimms,C-FERTechnologies,fortheirvaluableinputandsupport.IamalsogratefultoSaipemS.p.A.andto RiccardoCastellaniandLuiginoVitali,forprovidingphotosfromoffshorepipeline installation,includingtherightphotoonthecoverpage.

Itwouldbeimpossibletoaccomplishwritingthisbookwithouttheprecious,continuous,andmeticuloussupportofKellyGeorgiadi-Stefanidi.Throughoutthewriting process,Kellyhasbeenmydirectandclosestassistantandhasdevotedtremendous effortsinmanagingandreviewingthemanuscript,inorganizingthefiguresandthe referencesandinscrutinizingtheproofs.ManythanksalsogotoDennisMcGonangle, KameshRamajogiandAeraGariguez,whocoordinatedthisprojectonbehalfof Elsevier.

Finally,IwouldliketoexpressmysinceregratitudetotheKaramanosfamily:my wifePeny,mykidsIoannaandTony,andmyparentsAnthonyandLily,fortheir continuoussupportandlove.TheendlesshoursIspentinthepreparationofthisbook wouldhaveotherwisebeenspentwiththem.

4.4Anoteonpost-bucklingbehaviorofaxially-compressed elasticcylinders 109

4.5Bucklingofelasticcylindricalshellsunderuniform externalpressure 110

4.6Uniformbendingofanelastictube 112

4.7Uniformbendingofanelastictubeinthepresenceofpressure122

4.8Bucklingofanelastictubeunderbending 124

5Mechanicalbehaviorofmetalpipesunderinternalandexternal pressure

5.1Abriefnoteonpiperesponseunderinternalpressure

5.2Externalpressurecollapseandpost-bucklingresponse 135

5.3Factorsinfluencingpipecollapse 152

5.4Bucklepropagationandarrestinlongmetalcylinders 159

5.5Effectoftensiononcollapseandbucklingpropagation 173

5.6Externally-pressurizedcylindersunderlateralconfinement177 References 184

6Metalpipesandtubesunderstructuralloading 187

6.1Metalpipesubjectedtotransverseloading 187

6.2Uniformaxialcompressionofametalpipe 200

6.3Anoteonconstitutivemodelingforbucklingcalculations210

6.4Bendingoflongmetalpipes 211

6.5Effectofinternalpressureonbendingresponse 214

6.6Bendingofexternallypressurizedpipes 219 References 228

7Basiconshorepipelinemechanicaldesign

7.1Briefintroductiontopipelinestandards,pipesizesand pressuredesign 233

7.2ASMEB31.8Gastransmission&distributionpipingsystems236

7.3ASMEB31.4Pipelinetransportationsystemsforliquids andslurries 245

7.4EN1594Gassupplysystems–Pipelinesformaximum operatingpressureover16bar–Functionalrequirements 248 References 250

8Offshorepipelinemechanicaldesign

8.1Offshorepipelinemechanicaldesignframework 251

8.2MechanicaldesignofoffshorepipelinesaccordingtoAPI1111253

8.3DNV-ST-F101provisionsforthemechanicaldesignof offshorepipelines

8.4Ashortnoteonbucklepropagationandarrestordesign

8.5DiscussionofAPIandDNVcollapseformulae

8.6Otherformulaeforpredictingthecollapsepressureofpipes andtubes

8.7Discussionofcollapseformulaeandtheslendernessapproach277

8.8Effectofpipemanufacturingonthecollapsepressure

PartI IntroductiontoPipelines

1.Introductiontopipelineengineering 3

2.Linepipemanufacturing 43

Introductiontopipeline engineering

1.1Historicalnote

Thehistoryofhydrocarbonpipelinesstartsinearly19th centuryinLondon,UK,where theWestminstergaslightcompanyconstructedgaspipesbelowpublicstreets1 , 2 .The gaswasburnttolightthestreetsofLondonusinglampposts(MiesnerandLeffler, 2006).ThisconceptwassoonadoptedbygaslightcompaniesinmajorUScities,using pipesmadeofleadorhollowedwoodenlogs.Inmid-nineteenthcentury,hollowed logswerealsousedfortransportingoilorgasfromtheproductionwelltothenearest refinery,inacontinuousmanner.Thetransitionfromhollowedwoodenlogsandlead pipestocastironpipesprovidedmoreopportunitiestotheoilandgasindustry.At thesametime,thefirststeeltubesemerged,manufacturedfromsteelsheets,rolled toacircularshapeandlaporbuttwelded.Inlate19th century,theinventionofthe rollpiercingprocessbytheMannesmannbrothershasbeenamilestoneinsteelpipe fabricationanditsindustrialproduction.Inmid-twentiethcentury,theadvancementof weldingtechnologyenabledthefabricationofweldedpipes,openingnewopportunities tothepipelineandpipingindustrialsector.

Thedemandsandrequirementsimposedbytheoffshoreindustrialsectorhave motivatedsignificantdevelopmentsinpipelineengineering.Thediscoveryoflarge offshorefieldsinthe70’s,bothintheGulfofMexicoandintheNorthSea,signaledthe beginningofanewerainpipelinetechnology(VeldmanandLagers,1997).Theneedto transportgasfromtheenormousgasreserveslocatedinNorthAfricatoEuropeanmarkets,motivatedtheconstructionofseveraloffshorepipelinesacrosstheMediterranean Seaindeepwater.Furthermore,theexploitationofnewoffshorehydrocarbonreserves locatedintheNorthSea,theGulfofMexico,thePersianGulf,Brazil,WestAfrica, South-EastAsia,WestAustralia,andrecentlyinEastMediterranean,inincreasingly deeperwaters,combinedwiththestricterenvironmentalrequirements,haveimposed newchallengesforpipelinedesignandconstruction.

Finally,theexploitationofhugeoilandgasreservesintheCaspianSeaandthe needtotransporttheminEuropeanmarkets,leadtothedesignandconstructionof large-diameterpipelinesthatcrosstheCaucasusmountains,AnatoliaandSouth-East Europe,andaresubjectedtoseveregeohazardthreats,imposingsignificantchallenges fortheirstructuralintegrity.

1 Thepresentchapterreferstohydrocarbonpipelines,whichhavebeendevelopedratherindependentlyof watertransmissionpipelines.SteelwaterpipelineswillbepresentedinChapter10ofthisbook.

2 ItisalsosaidthatChinese,severalthousandyearsago,usedbamboosealedwithmudtotransportnatural gas.However,thereexistsverylimited,ifany,informationonthisissue.

1.2Hydrocarbonpipelineprojects

MajorhydrocarbonpipelineprojectsrequireaninvestmentofbillionsofEuros(or dollars)andlong-termplanninguntiltheirconstructionstarts.Usually,thesemajor pipelinesarequitelong,crossingdifferentcountriesandcontinentalborders.Therefore,inadditiontofinancialaspects,geopoliticalissuesarisingfromtensionand conflictsbetweenneighboringcountries,maybedecisiveforthedesignandcompletion ofamajorpipelineproject.Furthermore,environmentalandsafetyissuesmayaffect theplanningandthefinaldecisionforsuchaproject.Thefollowingexamplesdescribe somemajorpipelineprojectspresentingtheirkeytechnicalfeatures,aswellassome importantnon-technicalinformation.Theyrefertoonshorepipelineprojectsingeohazardareasandtooffshorepipelineprojects,becausetheyconstitutetwotopicsassociatedwithuniquedesignaspects,whicharediscussedextensivelyinthepresentbook.

1.2.1Onshorepipelineprojects

Alargenumberofonshorepipelinesareinoperationandtheirdesignprocesshasbeen wellestablished.However,theconstructionoflarge-diameterhydrocarbonpipelines inearthquake-proneorgeohazardareas,hasimposedanumberofchallengesfor theirstructuralintegrity.Twolandmarkpipelineprojectsarepresentedbelow.The firstistheBaku-Tbilisi-Ceyhan(BTC)crudeoilpipeline,andthesecondisthe “SouthernGasCorridor”connectingBaku,Azerbaijan,withLecce,Italy,whichis composedbythreeconsecutivepipelines:(a)theSouthCaucasusPipelineexpansion (SCPX);(b)theTrans-AnatolianPipeline(TANAP);(c)theTrans-AdriaticPipeline (TAP).Herein,TANAPandTAPpipelinesaredescribedinmoredetail(seealso Table1.1).Finally,ashortmentiontotheInterconnectorGreece-Bulgaria(IGB) pipelineasbranchoftheTAPpipelineismade.

1.2.1.1Baku-Tbilisi-Ceyhan(BTC)pipeline

TheBaku-Tbilisi-Ceyhan(BTC)pipelinetransportscrudeoilfromtheCaspianSea (Baku,Azerbaijan)totheMediterraneanSea(Ceyhan,Turkey).Ithasbeenproposed asanalternativetocrudeoiltransportationwithtankersthroughtheBlackSeaandthe straitofBosporus.ThehighlycongestedBosporusstraitandtheensuingenvironmental issueshaveimposedamajordrawbackinthetankertransportationsolution,andthis wasadecisivefactorforthefinaldecisionforconstructingtheBTCpipeline(Güney andGudmestad,1999).Thepipelinewascommissionedinlate2005andisdesignedto deliveruptoonemillionbarrelsofcrudeoilperdayfromtheSangachalterminalnear Baku,Azerbaijan,toCeyhan,Turkey,intheMediterraneanthroughTbilisi,Georgia. Thetotalpipelinelengthis1,760km,ofwhich442kmareinAzerbaijan,248kmin Georgiaand1060kminTurkey.

ThefirstpartoftheBTCpipelineinAzerbaijanhasadiameterof42inches (1,070mm).Thediametersizeincreasesto46inches(1,170mm)initssecondpartin theCaucasusmountainsandinGeorgia.Then,itrevertsto1,070mminTurkey,and reducesto34inches(865mm)nearitsfinaldestinationinCeyhan.Thelinepipeis

Table1.1 Threeimportantonshorepipelineprojects(BTC,TANAP,TAP)andasummaryfor theirtechnicalandoperationaldetails.

Baku-TbilisiCeyhan(BTC) Trans-Anatolian Pipeline(TANAP) Trans-Adriatic Pipeline(TAP) Typeofcontent

(offshore)

Pipesize 42in,46in,34in56in,48inand 2 × 36in(offshore) 48in,36in(offshore)

part) n/a 70m(MarmaraSea)810m(AdriaticSea)

Specialissues Seismic,Landslides Seismic,Anatolia faultcrossing Seismic,Landslides

API5LsteelgradeX65,withthicknessupto25.8mmdependingonthediametersize andthelocationalongitsalignment.

ThemaintechnicalchallengesoftheBTCpipelineprojectarethehighlyseismic andgeohazardareascrossed,andhavemotivatedasignificantamountofresearch. ThereexistnumerousactiveseismicfaultsalongthealignmentinAzerbaijan,Georgia andTurkey(Hengeshetal.,2004).Furthermore,inseveralmountainousareasthereis ahighriskoflandslideactionduetoslopeinstability.ThedesignofBTCpipelinein thoseareasrequiredthedesignandimplementationofinnovativetechnicalsolutions formitigatingthosethreatsandhasbeenamilestoneinpipelinedesignpracticeagainst geohazards(Shilstonetal.,2004).

1.2.1.2SouthernGasCorridor

TheSouthernGasCorridorisaEuropeaninitiativefordevelopinganaturalgassupply routefromtheCaspianSeaandtheMiddleEasttoEurope,inanattempttoestablish diversesourcesofenergysupply.TheroutefromAzerbaijantoEuropestartsfrom theShahDeniz2GasFieldandconsistsoftheSouthCaucasusPipeline(SCPX),the Trans-AnatolianPipeline(TANAP),andtheTrans-AdriaticPipeline(TAP),reaching itsfinaldestinationinSanFoca,nearLecce,Italy.Inthefollowing,theTANAPand TAPpipelinesarebrieflydescribed.

1.2.1.2.1TANAPpipeline

TheTrans-AnatolianNaturalGasPipeline(TANAP)ProjectisthesecondsegmentoftheSouthernGasCorridor.ItstartsfromtheTurkish-Georgianborderat Türkgözü/Posof/ArdahanwhereitconnectstoSCPXandendsattheGreek-Turkish borderin ˙ Ipsala/Edirne,whereitconnectstoTAPpipeline.Itincludesashortoffshore

StructuralMechanicsandDesignofMetalPipes partthatcrossestheSeaofMarmara.Therearetwooff-takestationsatEski¸sehirand atEastThrace,whichconnectthepipelinewiththelocalTurkishgasdistribution system.Itsmaximumdischargeis16 × 109 m3 (570 × 109 ft3 )ofgasperyearand wascommissionedin2018.

TheTANAPpipelinehastotallength1,841kmandnominalcapacity31 × 109 m3 peryear,inhigh-flowconditions.Itsdiametersizeis56inchesuptotheEski¸sehir CompressorStationand48inchesfromEski¸sehirCompressorStationtotheGreekTurkishborder.Theonshorelengthis1,832km,madeofAPI5LX70linepipe,with designpressureequalto95.5bar.The56-inch-diameterpartofTANAPhasthree differentwallthicknessesof19.45mm,23.34mmand28.01mm,dependingonthe location,whereasthepartwiththe48-inch-diameterhasthreethicknessesof16.67mm, 20.01mmand24.01mm.

The18-km-longoffshoresectionofTANAPcrossestheCanakkaleStrait (Dardanelles)intheSeaofMarmara.Itconsistsoftwo36-inch-diameterpipelines, madeofAPI5LX65linepipe,with22.9mmwallthickness,installedatamaximum waterdepthofapproximately70m.

Seismically-inducedgeohazardsexistalongtheentirealignmentofTANAP pipeline,giventhefactthatTurkeyrepresentsoneofthemostactiveseismiccountries intheplanet.Seismicthreatsconsistofstronggroundshakingaction,activetectonic faults,soilliquefactionandlateralspreading,andlandslides,constitutingseverethreats forthestructuralintegrityofthepipeline(Robletal.,2020).Inparticular,TANAP crossesnineactivefaultsincludingtheNorthAnatolianFaultZone(NAFZ)whichis crossedtwice.Thisisanotoriousseismicfault:itssurfaceruptureisassociatedwitha maximumhorizontaldisplacementofmorethan7m.

1.2.1.2.2TAPpipeline

TheTrans-AdriaticPipeline(TAP)startsattheGreek-TurkishborderatKipoi,Evros, whereitconnectswithTANAPgaspipeline.ItpassesthroughGreeceandAlbania,and aftercrossingtheAdriaticSea,itcomesashoreinSouthItaly,atSanFoca,nearLecce. ThetotallengthofTAPpipelineis878km,ofwhich550kmareinGreece,215kmin Albania,105kmareoffshoreintheAdriaticSea,andthefinal8kmarelocatedinItaly. AtitshighestpointtheTAPpipelinerisesupto1,800mintheAlbanianmountains, andtheoffshorepartisinstalledatamaximumwaterdepthof810m.Thepipelinewas commissionedin2020.

ThecurrentcapacityofTAPpipelineis10 × 109 m3 (350 × 109 ft3 )ofnatural gasperyear,ofwhich8 × 109 m3 (280 × 109 ft3 )aredeliveredtoItaly,1 × 109 m3 (35 × 109 ft3 )toGreece,and1 × 109 m3 (35 × 109 ft3 )toBulgaria,throughtheIGB (GasInterconnectorGreece-Bulgaria)pipeline.ItismadeofAPI5LX7048-inchdiameterlinepipes,designedforinternalpressureof95barintheonshoresectionand API5LX6536-inch-diameterlinepipes,designedforinternalpressureof145baron theoffshoresection.

GeohazardsexistalongtheTAPpipelineroute,includingseveraltectonicfault crossingsandnumeroussoilliquefactionareas,associatedwithlateralspreadingand buoyancy(Slejkoetal.,2021).Inaddition,especiallyintheAlbaniansectionofthe

Table1.2 Alistoflandmarkoffshorepipelineprojects.

pipeline,thereexistseveralareasofpotentiallandslideaction,whichconstitutesevere threatsforTAPpipelineintegrity(Marinosetal.,2019).

1.2.1.3InterconnectorGreece-Bulgaria(IGB)pipeline

TheIGBpipelineisabranchofTAPpipelineinterconnectingKomotini,Greece,with StaraZagora,Bulgaria.Itisa32-inch-diameter,182-kmlongpipeline(ofwhich31km areinGreece),operatingat55barinternalpressure.TheIGBpipelineisdesignedfor 3 × 109 m3 (105 × 109 ft3 )annualcapacity,whichmaybeexpandedupto5 × 109 m3 peryear.Itactsasastrategicgasinfrastructureprovidingdiversificationofgassupply toBulgariaandtoSoutheastEuropegasmarket.Becauseofitsreverseflowcapability, italsoimprovesGreece’senergysecurity.

1.2.2Offshorepipelineprojects

Theconstructionofoffshorepipelinesisafascinatingengineeringprocess.Offshore technologyhasallowedtheconstructionofdeep-waterpipelinesinwaterdepthsthat exceed2,000meters.Becauseofsuchlargedepths,thedesignofthosepipelinesis requiredtoconfrontseveralchallenges. Table1.2 listsafewlandmarkoffshorepipeline projectssortedbythecorrespondingwaterdepth.Fourofthosepipelineprojectsare describedinmoredetailbelow,togetherwiththefamousOman-IndiaPipeline,and theirtechnicalcharacteristicsaresummarizedin Table1.3.AshortnoteontheEastMedpipelineprojectisalsomade.

1.2.2.1BlueStreampipeline

BlueStreamisagaspipelinethattransmitsnaturalgasfromRussiatoTurkeycrossing theBlackSea,bypassingseveralcountries.Itwascommissionedin2005,andat

Table1.3 Landmarkoffshoregaspipelineprojects.

fullcapacityitiscapableofconveying16 × 109 m3 ofnaturalgasfromRussiato Turkey.TheoffshorepartofBlueStreampipelineconnectsDzhubga,Russiawith Samsun,Turkey.Itis396-kmlong,consistingofapairof24-inchoutsidediametersteel pipelines.Atthetimeofitsconstruction,BlueStreamwasthedeepestoffshorepipeline projectintheworld,anditisstillconsideredalandmarksubmarinepipelineproject (maximumwaterdepthof2,150m).ThetwopipelinesaremadeofAPI5LgradeX65 linepipes,withmaximumwallthicknessof31.8mm,installedindeepwatersusing theJ-laymethod,andextensivetestingwasperformedtoqualifythecollapsecapacity ofthelinepipes(DeGeer,2005).Furthermore,bucklearrestorswithoutsidediameter equalto652mmandthicknessequalto52.7mmareemployed.

1.2.2.2Medgazpipeline

TheMedgazpipelineisa210kmsubseapipelinebetweenBeniSaf,Algeriaand Almería,Spain,andwascommissionedin2010atamaximumdepthof2,160m.It isa24-inch-diameterpipelinelaidacrosstheMediterraneanSeawiththecapacityto carry8billioncubicmetersperyearofnaturalgas,butthiscapacitywasextendedto 10.5billioncubicmetersperyear.Thiscapacityisexpectedtodoubleinasubsequent plannedupgrade.ThepipelineismadeofAPI5LgradeX70linepipe,withouter diameter624mmandthickness29.9mm.Initsdeepestpart,thepipelinewasinstalled withtheJ-laymethod.Eachbucklearrestoris4mlongwithouterdiameterequal to675mmandwallthickness55.6mm.Anextensiveexperimentalprogramwas conductedfordeterminingthecollapsestrengthoflinepipes,includingaseriesof full-scalecollapsetests(DeGeeretal.,2007).

1.2.2.3NordStreampipeline

TheNordStreamGasPipeline(NSGP)projectsuppliesEuropewithnaturalgasfrom RussiathroughtheBalticSeaandGermany,andconsistsofatwin-pipelinesystem withacombinedcapacityof55billioncubicmetersperyear.Thefirstpipelinewas commissionedin2011andthesecondin2012.TheoffshorepartofNordStream is1,224-km-longandconnectsVyborg,nearLeningrad,RussiatoLubmin,near Greifswald,Germany.Thediameterofthepipeis1,220mm(48in),madeofSAWL 485gradecarbonsteellinepipe(equivalenttoAPI5LX70),withwallthickness rangingfrom26.8mmto41mm.Thepipelineisinstalledinmaximumwaterdepthof 213mandtheworkingpressureis220bar.Bucklearrestorsarerequiredatthedeepest sectionsofthepipelinetoavoidpropagationbuckling.Thebucklearrestorsare12.2 mlongpipesegmentswith41mmthickness.Duetounevenseabed,theformationof freespansisassociatedwithsignificantlocalpipelinebendingmomentsinthepipeline (Bruschi,2012; Pettinellietal.,2012),whichhavebeenmitigatedbymeansofspecialpurposeseabedinterventionworks(e.g.,rockdumping).

1.2.2.4SouthStream(TurkStream)pipeline

TheSouthStreamprojectwasaimedatconstructingalong,deep-seapipeline,to transportnaturalgasfromtheBlackSeatoBulgariaandthroughSerbia,Hungary, SloveniaandfurthertoAustria.However,theprojectwascancelledin2014,seven

yearsafteritsstart.TheTurkStreampipelineprojectwasannouncedinlate2014, replacingSouthStreampipelineproject.TurkStreamstartsfromtheRusskaya,near Anapa,Russia,crossestheBlackSea,andterminatesatKıyıköy,intheEuropeanpart ofTurkey.Inmostofitspart,theTurkStreampipelinefollowstheSouthStream alignmentbutdeviatesfromitinthewestpartoftheBlackSea,goingsouthwestto TurkeyinsteadofcontinuingwesttowardsBulgaria.

TheoffshoresectionofTurkStreamisa910-km-longnaturalgaspipeline,which crossestheBlackSeaatdepthsof2,200m.Itconsistsoftwoparallelpipelinesrunning acrosstheBlackSea,eachhavingadiameterof32inches.Thepipelineoperatesat 300barinternalpressure,anditismadeofSAWL450steelgradelinepipewith39mm wallthicknesstowithstandthehighexternalpressureatthosedepths.Asubstantial amountofcollapsetestinghasbeenperformedinsupportofTurkStreampipeline construction(Timmsetal.,2018).Itisthefirstlarge-diameteroffshorepipeline(with diameterlargerthan30inches)installedinwaterdepththatexceeds2,000meters.

1.2.2.5Oman-Indiapipeline

ThefamousOman-IndiaPipelineproject(OIP)hasbeenalandmarkinoffshore pipelineengineering.Itsdesignwasconductedintheearly90’sandreferstoa 1140-km-longpipeline,withdiametersizesof20to26inches,designedfor 3,500metersofwaterdepth.Thisextremewaterdepthimposedanumberofsignificant technicalchallenges,includingcollapseresistanceinultra-deep-waterconditions.This projectisstillconsideredasthestate-of-the-artofoffshorepipelinedesign.TheOIP designhadtoconfrontnumeroustechnicalmatters,suchasthedevelopmentofaqualifieddeep-waterpipelinerepairsystem,pipemillupgradesnecessarytomanufacture thethick-walledlinepipe,theupgradeoflayvesselswithadequatetensioncapacity toenabletheinstallationofpipesin3,500mwaterdepth,andthemitigationofdeep offshoregeohazards,suchasmudflows,seismicfaultsandslopefailures(McKeehan, 1995).TheOIPpipelinewasnotconstructed,forgeopoliticalreasons,butitisstill consideredasamilestoneinoffshorepipelineengineering,withimmensecontributions tothe“state-of-the-art”ofdeep-waterpipelinedesign.

1.2.2.6EastMedpipeline

ThelastoffshorepipelineprojectmentionedinthisbriefintroductionistheEastMed pipelineproject.Itreferstoa1,900-kilometersubseapipelineaimedatdelivering naturalgasfromtherecentlydiscoveredgasfieldsofEastMediterraneanSeato Europeanmarkets.Thepre-FEEDstageoftheEastMedprojecthasbeencompleted in2018,andtheprojectiscurrentlyattheFEEDstage.Theproposedalignment crossestheEastMediterraneanSeafromeasttowest.ThefirstpartofEastMed pipelineconnectsthegasfieldsinEastMediterranean,southofCyprus,withthe islandofCrete,Greece.SubsequentlyitcrossesthesouthpartoftheAegeanSea,it becomesonshoreinGreeceandthen,crossingtheAdriaticSea,itconnectstoItaly. Itsconstructionhasnotstartedyet,anditisexpectedtobecommissionedby2025. Uponitsconstruction,itwillbethelongestanddeepestunderwaterpipelineinthe

world,tobeinstalledinwaterdepthsthatreachorevenexceed3,000meters.Apart fromitsdesignagainstcollapseinthosewaterdepths,theconstructionofEastMedis associatedwithnumeroustechnicalchallengesfromdeep-watergeohazards,including seismicactions,underwaterlandslidesandmudflows.Thepipeline,initsfirststageof operation,isexpectedtodeliver10 × 109 m3 ofnaturalgasperyear.

1.3Introductiontohydrocarbonpipelinedesignand

construction

1.3.1Initialstepsofapipelineproject

Tostartahydrocarbonpipelineprojecttheneedforsuchapipelinehastobeestablished.Atthatstage,thefollowingpartiesarenecessarytoagreeonthisproject: (a)thehydrocarbonproducer,(b)thehydrocarbonconsumer(client)and(c)the investoroftheproject.Uponagreement,theinterestedpartiesformthe“pipeline consortium”,whichistheownerofthepipeline,andappointthecontractorandthe projectmanager.

Attheinitialstage,severalalternativesforhydrocarbontransportationareconsidered,e.g.,roadtransportation,railway,ortankers.Inthisprocess,thefollowing featureshavetobetakenintoaccount,andmakethepipelineanattractivesolutionfor hydrocarbontransportation:

Thepipelineconstitutesthesafestwayfortransportingenergyresources,andexhibitsthe lowestrateofincidents,casualtiesetc.comparedwithothertransportationmeans. Itrequiresanimportantinitialinvestment,butitisacost-effectiveinvestment,withhighest returnoftheinvestedcapital.

Ithasalifespanofatleast40yearsandrequiresrelativelylowmaintenancecost. Itismuchlessaggressivetotheenvironmentthanothertransportationmeans(road,rail, tanker).

Overall,thepipelineprojectshouldbeeconomicallyfeasible,andthefinaldecision forsuchaprojectshouldbebasedontheexpectedrateofreturnoftheinvestedcapital.

1.3.2Introductiontopipelinemechanicaldesign

Themechanicaldesignofapipeline,alsocalledstructuraldesign,constitutesamajor partofthepipelineengineeringproject,whichaimsatdeterminingthepipediameter andwallthickness,thesteelgrade,themethodofpipemanufacturing,andthemethod ofinstallation(mainlyforoffshorepipelines).

Themagnitudeofhydrocarbonsupplyisthemajorparameterfordeterminingthe sizeofthepipeline.Inaddition,fluidcontainmentproperties(foreitherliquidorgas) determinetheoperatingpressureandtemperatureandshouldbeconsideredasthe initialinputtomechanicaldesign.

Pipelinedesignisperformedinaccordancewiththecodesandstandardsandother specificationsimposedbytheowner.Inmajoronshorehydrocarbonpipelineprojects,

ASMEstandardsareusuallyfollowedinmanypartsoftheworld,unlessacompleteset ofnationalstandardsisavailable.Inoffshorepipelines,theDNVstandardsaremostly used,butAPIandASMEstandardsarealsoemployed,especiallyinNorthAmerica.

Theoptimumpipelinealignmentshouldbechosenintermsoftopography,easy access,andgeologicalissues(includingseismicandothergeohazards).Inonshore pipelines,asurveyoftheinstallationsiteisusuallycommissioned,andthepipeline alignmentisselected.Themainloadingconditionisinternalpressure,whichis associatedprimarilywiththedevelopmentofhoopstressesinthepipewall.However, additionalsourcesofpipewallstressesexist,suchastemperature,soilsettlements, geohazardandseismicactions,andpipelinecrossingswithrailwaysandhighways.

Thedesignofoffshorepipelinesismorechallenginganddependsonthewater depth.Selectingthepipelinealignmentisacriticaltask,whichrequiresthorough underwaterinvestigationanddepends,amongotherissues,onthereliefandthe geologicalparametersoftheseafloor.Thoseparametersinfluencetheselectionofthe basicpipelineparameters,aswellastheinstallationmethodtobeused.Itisimportant tounderlinethat,inanoffshorepipeline,themostsevereloadingconditionsoccur duringtheinstallationphase,ratherthaninitsoperation.

1.3.3Pipefabrication

Onceallthebasicparametersofthepipearespecified,theyaresubmittedtothepipe millfortheproductionofthelinepipes.“Linepipe”isthepipesegmentproducedinthe pipemillandconstitutesthebasiccomponentforpipelineconstruction.Thepipemill receivestherawmaterialfromthesteelproducer(steelmill)intheformofsteelplates, coilsorbillets,dependingonthetypeoflinepipetobefabricated(seeChapter2).Line pipefabricationisaverysystematicprocess,whichfollowsstrictspecifications.Those include:

dimensionaltolerances(e.g.,cross-sectionalovality,walleccentricity,out-of-straightness); minimumspecifiedyieldstressandmaximumyield-to-tensile(Y/T)stressratioforductility; toughnessandrelatedmechanicalcharacteristicsofthepipematerial,suchasthenon-ductile transitiontemperature; weldcharacteristics(forseam-weldedpipes); specialcorrosionresistancerequirements.

Duringthelinepipemanufacturingprocess,continuouscommunicationbetween thedesigner,thecontractorandthefabricatorisessential.Directcommunicationwith thesteelmillproducerthatsuppliestherawmaterialtothepipemill(plates,coils,or billets)isalsonecessary.Thisallowsforefficientcontrolofthefabricationprocess, reducesthecost,resolvesanyproblemsthatmayariseandresultsincostoptimization ofthepipelineproject.

1.3.4Pipelineconstruction

Uponmanufacturing,thelinepipesareshippedtotheconstructionsiteforbuildingthe pipeline.Inoffshoreprojects,theyareshippedtoayardclosetotheoffshoreproject andtransferredinsmallerquantitiestothelaybargeformarineinstallation.Theoverall

Figure1.1 Loweringofastraightpipelinesectioninthetrench(photobyS.A.Karamanos).

installationisadministeredbyaconstructionprojectengineer,whoshouldbeinclose communicationwiththepipelinedesignengineerandthepipemill.Adescription ofpipelineconstructionprocessforonshoreandoffshorepipelinesisofferedin Sections1.5 and 1.6 respectively.

1.4Pipelinedesignconsiderations

Similartoanyotherengineeringdesignproject,thedesignofapipelineconsistsof asystematicsetoftasks.Ontheotherhand,itmaynotbeconsideredasasimple sequenceoftasksbutrequiresseveral“iterations”becauseofnumerousinteractions amongdifferentfactors.

Thepipelinehasthesimplestgeometryinstructuralengineering:anelongated cylinder(Fig.1.1).Therefore,onemayunderestimatetheimportanceanddifficulty ofpipelinedesign.Pipelinedesignisatopicinvolvingimportanttechnologicalimplicationsandverystrictrequirementsthatrequirehigh-leveldesignexperiencein ordertoconvergetoanoptimaldesign.Italsoinvolvesaseriesofdesigncalculations. Inmostcases,thosecalculationsarenotverycomplicated,andnowadaystheycan beperformedbytheuseofcomputermethodsusingspecial-purposesoftwareinan efficientandeconomicalmanner.Thisallowsthepipelinedesignertoconcentrateon thenon-quantitativeaspectsofthedesignprocessandoptimizethepipelinedesign.

Itisalsoimportanttounderlinethatpipelinedesignfollowsadifferentphilosophy thantraditionalstructuraldesign.Inmanystructuralsystems,e.g.,steelbuildings, optimizationofstructuraldesignrefersmainlytosimplifyingtheconstructionandthe correspondingstructuraldetails,ratherthansavingquantitiesofsteel.Ontheother hand,optimizingpipelinedesignintermsofsavingsteelmaterial,mainlybyreducing pipewallthickness,mayleadtosubstantialsavings.Thosesavingsareduetomaterial costreduction,butalsototransportationandinstallationcost,aswellastoweldingcost. Asanexample,theuseofamoreelaboratedesignapproachfora48-inch-diameter onshorepipelinethatreducesitswallthicknessfrom22mmto19mm,resultsin significantmaterialcostsavings,andfurthermore,transportingandhandlinglighter linepipesbecomeeasierandmoreeconomical.

1.4.1Routeselection

Theselectionofpipelineroute(alignment)isacriticalpartofthedesignprocess.A poorlychosenalignmentmayresultinverycostlysurprisesanddelaysatalaterstage oftheproject,withseriousconsequencesfortheprogressofpipelineconstruction. Problemsmayariseifthealignmenthasconflictswithpublicauthoritiesandother operators,orviolatesenvironmentalrequirements.Inaddition,goodunderstandingof geomorphologicalfactorsshouldbeacquiredattheinitialstageofdesign,especially inareaswithseveregeohazards(seismicorlandslides).Incaseswheregeohazardsare expectedtooccur,appointinganexperiencedteamofgeologiststovisitthesite,to inspecttheproposedpipelinealignmentandreportanyalignmentconflictsorpotential geohazardscanbeofsignificantbenefitforthepipelineprojectanditstimelyexecution.

1.4.2Pipematerials

Materialsneedtobespecifiedatanearlystageofpipelinedesign.Inhydrocarbon pipelines,steelmaterialdominatesthemarket.Currently,steelgradesX60,X65and X70accordingtoAPI5L (AmericanPetroleumInstitute,2018) aremainlyusedin pipelineapplications.GradeX70steelisquitecommoninonshorepipelineprojects. Inoffshorepipelines,X70islessfrequent,butitsuseissteadilyincreasing.Inspecial projects,especiallyoffshore,besidescarbonsteel,variouskindsofstainlesssteelcan beused,mainlyintheformofcladorlinedbi-materialpipes(seealsoChapter12). Inoffshorepipelineprojects,thedesignermayneedtoconsidermaterialsforanticorrosioncoatings,concretecoatings,ormaterialsforthermalinsulation,depending ontherequirementsoftheproject.

1.4.3Pipelinedesignforoptimumthickness

Anonshorepipeneedstobestrongenoughnottoburst.Itshouldbealsocapableof resistingactionsfromhydraulicsandfromground-inducedactions,ifany.Anoffshore pipeneedstobestrongenoughnottoburst,andnottodeformexcessivelyunder externalpressure(buckling),especiallyduringitsinstallationphase,whenthepipeline isemptywithnointernalpressure.Furthermore,anoffshorepipelineshouldbeheavy enoughtobehydrodynamicallystableontheseabed,andsafeagainstupheavalbucklingandvortex-inducedvibrations(VIV)inspansontheseabed.Ontheotherhand, aheavypipeisalwaysmoreexpensive.Apartfromtheamountofmaterial,aheavy pipeismoredifficulttotransport,bend,weldandinstall.Therefore,itisthedesigner’s responsibilitytodetermineanoptimumthicknessforthepipelinetobeconstructed, consideringallrelevantparametersthroughoutthepipelineconstructionproject.

1.4.4Pipelineconstructability

Thedesignedpipelinemustbeconstructable.Morespecifically,theprimarytaskof thedesigneristoensurethatthepipelinecanbeconstructedeasilyandeconomically, withouttechnicaldifficulties.Towardsthispurpose,thedesignermustensurethatthe pipelinecanbeconstructedbyalargenumberofcontractorsaspossible,sothatthe ownerisinastrongnegotiatingpositionfortheawardoftheconstructioncontract.This

Figure1.2 Fracturedsteelpipeafterburstduetoexcessiveinternalpressure(photobyS.A. Karamanos).

ispossibleinonshorepipelineprojects.Ontheotherhand,thechoiceofcontractors inoffshorepipelinesismorelimited,becauseoffshoreconstructionrequiresmore specializedequipmentandpersonnel.Thechoiceofcontractorbecomesquitelimited inthecaseofdeepoffshorepipelineprojects,wherefewcontractorshavethenecessary equipmentandexpertiseforperformingtheinstallationtask.

1.4.5Pipelineprotection

Thepipelinemustbesecuredagainstinternalandexternalcorrosion,andthisrequires coatingofthepipeline,aswellascathodicprotectiononsite.Protectingthepipeline againstinternalcorrosionmayalsorequiretheuseofspecialchemicalsinjectedinto thepipelinetocontrolthecorrosion(corrosioninhibitors),ortheuseofpipeslined withathin-walledpipemadeofaCorrosionResistanceAlloy(seealsoChapter12).

Thepipelinemustalsobeprotectedfromvarioussourcesofexternaldamagesuchas droppedobjects,excessivesettlement,geohazardsandseismicactions.Forthecaseof offshorepipelines,trawlgearandshipanchorsmayimposesignificantthreats.Finally, changesofseabedlevelshouldbeaccountedfor.

1.4.6Principalstructuralfailuremodesofpipelines

Underexcessiveinternalpressure,pipelinesburst.Thishappensbecausethepipeline wallmaynotbeabletoresisttensilestresseshigherthanacertainlimit,andthiscauses pipewallrupturewithcatastrophicconsequences(Fig.1.2).Burstisaccompaniedwith explosion,whichisaseriousthreatforhumanlives,especiallyinonshoregaspipelines. Furthermore,itmaydestroynearbyproperties,facilities,orinfrastructure.Burstin offshoreoilpipelineisalsodangerous,itmayalsobeaccompaniedwithexplosion, andconstitutesaseriousenvironmentalthreatduetooilspill.Burstandtheassociated spillcanbeaveryseriousmatterinoffshorepipelinesorflowlinesconveyingliquid hydrocarbons,especiallyindeepwater,wherelimitedaccesstothedamagedareaexists andthespreadofoilintothemarineenvironmentissometimesverydifficulttostop.

Inoffshorepipelines,apartfromburst,structuralinstabilityduetoexternalpressure isalsoveryimportant,primarilyduringtheirinstallationprocess.Inmostcases, pipelinesareinstalledempty,andaresubjectedtoexternalpressure,whichmaycause bucklingandcollapse(Fig.1.3).Collapseleadstoflatteningofthecross-sectionand,

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.