Predictive modeling in biomedical data mining and analysis sudipta roy - The complete ebook is avail

Page 1


https://ebookmass.com/product/predictive-modeling-inbiomedical-data-mining-and-analysis-sudipta-roy/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

(eBook PDF) Data Mining and Predictive Analytics 2nd Edition

https://ebookmass.com/product/ebook-pdf-data-mining-and-predictiveanalytics-2nd-edition/

ebookmass.com

Handbook of statistical analysis and data mining applications Second Edition Elder

https://ebookmass.com/product/handbook-of-statistical-analysis-anddata-mining-applications-second-edition-elder/

ebookmass.com

Applied Data Analysis and Modeling for Energy Engineers and Scientists

https://ebookmass.com/product/applied-data-analysis-and-modeling-forenergy-engineers-and-scientists/

ebookmass.com

Nutrition and Lifestyle in Neurological Autoimmune Diseases: Multiple Sclerosis 1st Edition Ronald Ross Watson

https://ebookmass.com/product/nutrition-and-lifestyle-in-neurologicalautoimmune-diseases-multiple-sclerosis-1st-edition-ronald-ross-watson/

ebookmass.com

Foundations of Finance (Pearson Series in Finance)

https://ebookmass.com/product/foundations-of-finance-pearson-seriesin-finance/

ebookmass.com

Smart Delivery Systems: Solving Complex Vehicle Routing Problems 1st Edition Jakub Nalepa

https://ebookmass.com/product/smart-delivery-systems-solving-complexvehicle-routing-problems-1st-edition-jakub-nalepa/

ebookmass.com

Sovereignty and Event: The Political in John D. Caputo’s Radical Theology Calvin D. Ullrich

https://ebookmass.com/product/sovereignty-and-event-the-political-injohn-d-caputos-radical-theology-calvin-d-ullrich/

ebookmass.com

Planning and Urban Design Standards 2nd Edition

https://ebookmass.com/product/planning-and-urban-design-standards-2ndedition/

ebookmass.com

Capital Allocation 1st Edition David R. Giroux

https://ebookmass.com/product/capital-allocation-1st-edition-david-rgiroux/

ebookmass.com

https://ebookmass.com/product/employee-engagement-in-nonprofitorganizations-theory-and-practice-kunle-akingbola/

ebookmass.com

PredictiveModeling inBiomedicalDataMining andAnalysis

DepartmentofArtificialIntelligenceandDataScience,JioInstitute, NaviMumbai,Maharashtra,India

LalitMohanGoyal

DepartmentofComputerEngineering,JCBoseUniversityofScience andTechnology,YMCA,Faridabad,India

ValentinaE.Balas

ProfessorofAutomationandAppliedInformatics,AurelVlaicuUniversity ofArad,Arad,Romania

BasantAgarwal

DepartmentofComputerScienceandEngineering,IndianInstitute ofInformationTechnologyKota,Jaipur,Rajasthan,India

MamtaMittal

DelhiSkillandEntrepreneurshipUniversity,NewDelhi,India

AcademicPressisanimprintofElsevier 125LondonWall,LondonEC2Y5AS,UnitedKingdom 525BStreet,Suite1650,SanDiego,CA92101,UnitedStates 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom

Copyright©2022ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicor mechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem,without permissioninwritingfromthepublisher.Detailsonhowtoseekpermission,furtherinformationaboutthe Publisher’spermissionspoliciesandourarrangementswithorganizationssuchastheCopyrightClearance CenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions.

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher (otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenour understanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecome necessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusing anyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethods theyshouldbemindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhomtheyhavea professionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliability foranyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceorotherwise,or fromanyuseoroperationofanymethods,products,instructions,orideascontainedinthematerialherein.

ISBN:978-0-323-99864-2

ForinformationonallAcademicPresspublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: MaraE.Conner

AcquisitionsEditor: ChrisKatsaropoulos

EditorialProjectManager: FernandaA.Oliveira

ProductionProjectManager: AnithaSivaraj

CoverDesigner: GregHarris

TypesetbySTRAIVE,India

Contributorsxi

AbouttheEditorsxv

Prefacexix

1.Dataminingwithdeeplearninginbiomedicaldata1

KuldeepSinghandJyoteeshMalhotra

1.Introduction1

2.Roleofdeeplearningtechniquesinepilepticseizure detection3

3.Proposedmethodofseizuredetection5

4.Resultsanddiscussion12

5.Conclusions16 References16

2.Applicationsofsupervisedmachinelearningtechniques withthegoalofmedicalanalysisandprediction: Acasestudyofbreastcancer21 KoushalKumarandBhagwatiPrasadPande

1.Introduction21

2.Abriefliteraturesurvey23

3.Datasetandmodusoperandi24

4.Datavisualization30

5.Featureselectionanddimensionalityreduction33

6.Experimentalresultsanddiscussions39

7.Conclusions45 References46

3.Medicaldecisionsupportsystemusingdatamining49

N.L.Taranath,H.R.Roopashree,A.C.Yogeesh,L.M.Darshan,and C.K.Subbaraya

1.Introduction49

2.Medicaldecisionsupportsystem:Areview50

3.OntologicalrepresentationofMDSS53

4.Integratedmedicaldecisionsupportsystem57

5.Conclusionandfutureenhancement62 References63

4.RoleofAItechniquesinenhancingmulti-modality medicalimagefusionresults65

HarmeetKaurandSatishKumar

1.Introduction65

2.Modalities66

3.Fusionprocess67

4.AIbasedfusion70

5.Evaluation73

6.Experimentalresults75

7.Conclusionandfuturescope79 Acknowledgment79 References79

5.Acomparativeperformanceanalysisofbackpropagation trainingoptimizerstoestimateclinicalgaitmechanics83 JyotindraNarayan,SanchitJhunjhunwala,ShivanshMishra, andSantoshaK.Dwivedy

1.Introduction83

2.Methods:Relatedworkanddataset86

3.Backpropagationneuralnetworkandtrainingoptimizers88

4.BPNNimplementation92

5.Resultsanddiscussions94

6.Conclusions101 References102

6.High-performancemedicineincognitiveimpairment: Brain–computerinterfacingforprodromal Alzheimer’sdisease105

H.M.K.K.M.B.Herath,R.G.D.Dhanushi,andB.G.D.A.Madhusanka

1.Introduction105

2.Relatedworks108

3.Methodology109

4.Results115

5.Conclusion119 References120

7.BraintumorclassificationsbygradientandXGboosting machinelearningmodels123 NaliniChintalapudi,GopiBattineni,LalitMohanGoyal, andFrancescoAmenta

1.Introduction123 2.Researchbackground125 3.Methods126 4.Resultsanddiscussions132 5.Conclusions135 Conflictsofinterest135 References135

8.Biofeedbackmethodforhuman–computerinteraction toimproveeldercaring:Eye-gazetracking137

B.G.D.A.Madhusanka,SureswaranRamadass,PremkumarRajagopal, andH.M.K.K.M.B.Herath

1.Introduction137

2.Anatomyofthehumaneye138

3.Overviewofeye-gazetracking140

4.Eye-gazetrackingforhuman–computerinteraction142

5.Proposeddesign143

6.Results147

7.Conclusion151 References152

9.Predictionofbloodscreeningparametersforpreliminary analysisusingneuralnetworks157 AmanKataria,DivyaAgrawal,SitaRani,VinodKarar, andMeetaliChauhan

1.Introduction157

2.Relatedwork158

3.Methodology160

4.Results163

5.Conclusion167 References167

10.Classificationofhypertensionusingan improvedunsupervisedlearningtechniqueand imageprocessing171 UsharaniBhimavarapuandMamtaMittal

1.Introduction171

2.Relatedwork174

3.Methodology175

4.Experimentalresults178

5.Conclusion184 References184

11.Biomedicaldatavisualizationandclinicaldecision-making inrodentsusingamulti-usagewirelessbrainstimulator withanovelembeddeddesign187

V.MilnerPaul,LoitongbamSurajkumarSingh,S.R.BoselinPrabhu, T.Jarin,ShumaAdhikari,andS.Sophia

1.Introduction187

2.Architecturaldesignandcircuitmodeling189

3.Implementationandexperimentalverification193

4.Resultsanddiscussions201

5.Conclusionandfuturedirections202 References204

12.LSTMneuralnetwork-basedclassificationofsensory signalsforhealthyandunhealthygaitassessment207

JyotindraNarayan,SanghamitraJohri,andSantoshaK.Dwivedy

1.Introduction207

2.Datasetcollection209

3.LSTMneuralnetworkmodel209

4.ImplementationofLSTMneuralnetwork215

5.Resultsanddiscussions217

6.Conclusions221 References221

13.Data-drivenmachinelearning:Anewapproachto processandutilizebiomedicaldata225

Kalpana,AdityaSrivastava,andShashankJha

1.Anintroductiontoartificialintelligenceandmachine learninginhealthcare225

2.Challengesandroadblockstobeaddressed231

3.Theneedtoaddresstheseissues238

4.Recommendationsandguidelinesfortheimprovement ofML-basedalgorithms238

5.Applicationsinthepresentscenarios241

6.Futureprospectsandconclusion244 References246

14.Multiobjectiveevolutionaryalgorithmbasedon decompositionforfeatureselectioninmedicaldiagnosis253

SudhansuShekharPatra,MamtaMittal,andOmPrakashJena 1.Introduction253

2.Medicalapplications255

3.Featureselection257

4.Literaturereview261

5.MetaheuristicsandMOO262

6.Multiobjectiveoptimizationproblems(MOOPs)266

7.RoleofEAinMOO272

8.MOEAbasedondecomposition274

9.ApplicationofMOEA/Dinfeatureselectionfor medicaldiagnosis281

10.Experimentalresults286 11.Conclusion289 References289

15.Machinelearningtechniquesinhealthcareinformatics: Showcasingpredictionoftype2diabetesmellitus diseaseusinglifestyledata295 MajidBashirMalik,ShahidMohammadGanie,andTasleemArif 1.Introduction295

2.Machinelearninginhealthcare296

3.Proposedframework302

4.Resultsanddiscussion303

5.Conclusionandfuturescope306 References309

Index313

Contributors

ShumaAdhikari DepartmentofElectricalEngineering,NationalInstituteofTechnology Manipur(NITM),Imphal,India

DivyaAgrawal CSIR-CSIO,Chandigarh,India

FrancescoAmenta ClinicalResearchCentre,SchoolofMedicinalandHealthProducts Sciences,UniversityofCamerino,Camerino;ResearchDepartment,InternationalRadio MedicalCentre(C.I.R.M.),Rome,Italy

TasleemArif DepartmentofInformationTechnology,BGSBUniversity,Rajouri,UTJ&K, India

GopiBattineni ClinicalResearchCentre,SchoolofMedicinalandHealthProducts Sciences,UniversityofCamerino,Camerino,Italy

UsharaniBhimavarapu DepartmentofComputerScienceandEngineering,Koneru LakshmaiahEducationFoundation,Vaddeswaram,AndhraPradesh,India

MeetaliChauhan DepartmentofComputerScienceandEngineering,GulzarInstituteof EngineeringandTechnology(AffiliatedToI.K.G.PunjabTechnicalUniversity,Kapurthala) GulzarGroupofInstitutes,Khanna(Ludhiana),Punjab,India

NaliniChintalapudi ClinicalResearchCentre,SchoolofMedicinalandHealthProducts Sciences,UniversityofCamerino,Camerino,Italy

L.M.Darshan SchoolofCSE,REVAUniversity,Bengaluru,Karnataka,India

R.G.D.Dhanushi FacultyofLivestockFisheries&Nutrition,WayambaUniversityofSri Lanka,Makandura,SriLanka

SantoshaK.Dwivedy DepartmentofMechanicalEngineering,IndianInstituteof TechnologyGuwahati,Guwahati,Assam,India

ShahidMohammadGanie DepartmentofComputerSciences,BGSBUniversity,Rajouri, UTJ&K,India

LalitMohanGoyal DepartmentofComputerEngineering,JCBoseUniversityofScience andTechnology,YMCA,Faridabad,India

H.M.K.K.M.B.Herath FacultyofComputingandIT,SriLankaTechnologicalCampus, Padukka,SriLanka

T.Jarin DepartmentofElectricalandElectronicsEngineering,JyothiEngineeringCollege, Thrissur,India

OmPrakashJena DepartmentofComputerScience,RavenshawUniversity,Cuttack, India

ShashankJha DepartmentofBiotechnology,Dr.AmbedkarInstituteofTechnologyfor Handicapped,Kanpur,UttarPradesh,India

SanchitJhunjhunwala DepartmentofMechanicalEngineering,IndianInstituteof TechnologyGuwahati,Guwahati,Assam,India

SanghamitraJohri DepartmentofMechanicalEngineering,IndianInstituteof TechnologyGuwahati,Guwahati,Assam,India

Kalpana DepartmentofBiotechnology,Dr.AmbedkarInstituteofTechnologyfor Handicapped,Kanpur,UttarPradesh,India

VinodKarar CSIR-CSIO,Chandigarh,India

AmanKataria CSIR-CSIO,Chandigarh,India

HarmeetKaur DCSA,PanjabUniversity,Chandigarh,India

KoushalKumar SikhNationalCollege,Qadian,GuruNanakDevUniversity,Amritsar, Punjab,India

SatishKumar SSGRegionalCentreHoshiarpur,PanjabUniversity,Chandigarh,India

B.G.D.A.Madhusanka SchoolofScienceandEngineering,MalaysiaUniversityofScience andTechnology(MUST),PetalingJaya,Malaysia

JyoteeshMalhotra DepartmentofEngineeringandTechnology,GuruNanakDev UniversityRegionalCampusJalandhar,Punjab,India

MajidBashirMalik DepartmentofComputerSciences,BGSBUniversity,Rajouri,UTJ&K, India

V.MilnerPaul DepartmentofElectricalEngineering,NationalInstituteofTechnology Manipur(NITM),Imphal,India

ShivanshMishra DepartmentofMechanicalEngineering,SardarVallabhbhaiNational InstituteofTechnology,Surat,India

MamtaMittal DelhiSkillandEntrepreneurshipUniversity,NewDelhi,India

JyotindraNarayan DepartmentofMechanicalEngineering,IndianInstituteof TechnologyGuwahati,Guwahati,Assam,India

BhagwatiPrasadPande DepartmentofComputerApplications,LSMGovernmentPG College,Pithoragarh,Uttarakhand,India

SudhansuShekharPatra SchoolofComputerApplications,KIITDeemedtobe University,Bhubaneswar,India

S.R.BoselinPrabhu DepartmentofElectronicsandCommunicationEngineering,Surya EngineeringCollege,Mettukadai,India

PremkumarRajagopal MalaysiaUniversityofScienceandTechnology(MUST),Petaling Jaya,Malaysia

SureswaranRamadass SchoolofScienceandEngineering,MalaysiaUniversityofScience andTechnology(MUST),PetalingJaya,Malaysia

SitaRani DepartmentofComputerScienceandEngineering,GulzarInstituteof EngineeringandTechnology(AffiliatedToI.K.G.PunjabTechnicalUniversity, Kapurthala)GulzarGroupofInstitutes,Khanna(Ludhiana),Punjab,India

H.R.Roopashree DepartmentofCS&E,GSSSITEW,Mysuru,Karnataka,India

KuldeepSingh DepartmentofElectronicsTechnology,GuruNanakDevUniversity Amritsar,Punjab,India

LoitongbamSurajkumarSingh DepartmentofElectronics&Communication Engineering,NationalInstituteofTechnologyManipur(NITM),Imphal,India

S.Sophia DepartmentofElectronicsandCommunicationEngineering,SriKrishna CollegeofEngineeringandTechnology,Kuniyamuthur,India

AdityaSrivastava DepartmentofBiomedicalEngineering,IndianInstituteofTechnology Hyderabad,Sangareddy,Kandi,Telangana,India

C.K.Subbaraya AdichuchanagiriUniversity,Nagamangala,Karnataka,India

N.L.Taranath DepartmentofCS&E,GraphicEraHillUniversity,Dehradun,Uttarakhand, India

A.C.Yogeesh DepartmentofCS&E,GovernmentEngineeringCollege,Kushalnagar, Karnataka,India

AbouttheEditors

Dr.SudiptaRoy isworkingasanassistantprofessorintheArtificialIntelligenceandData ScienceDepartmentatJIOInstitute,NaviMumbai,Maharashtra,India.Priortothat,he wasapostdoctoralresearchassociateatWashingtonUniversityinSt.Louis,MO,United States.HehasreceivedhisPhDinComputerScienceandEngineeringfromtheDepartmentofComputerScienceandEngineering,UniversityofCalcutta,Kolkata,WestBengal, India.Heistheauthorofmorethan50publicationsinrefereedinternationaljournalsand conferenceproceedingspublishedbyIEEE,Springer,Elsevier,andmanyotherpublishers. Hehasauthored/editedfourbooksandmanybookchapters.HeholdsaUSpatentin medicalimageprocessingandhasfiledanIndianpatentinthefieldofsmartagricultural systems.Hehasservedasaregularreviewerformanyinternationaljournalsincluding thosepublishedbyIEEE,Springer,Elsevier,IET,andmanyotherpublishers,andinternationalconferences.Hehasservedasaninternationaladvisorycommitteememberand programcommitteememberofINDIAcom-2020,AICAE-2019,INDIACom-2019,CAAI 2018,ICAITA-2018,ICSESS-2018,INDIACom-2018,ISICO-2017,AICE-2017,andmany otherconferences.Currently,heisservingasassociateeditorof IEEEAccess (IEEE)and InternationalJournalofComputerVisionandImageProcessing (IJCVIP;IGIGlobal)and topiceditorof JournalofImaging (MDPI).Inrecognitionofhisexceptionalcontributions tothe IEEEAccess journalasassociateeditor,theIEEEAccessEditorialBoardandEditorial OfficehonoredhimasanOutstandingAssociateEditorof2020.Hehasmorethan5years ofexperienceinteachingandresearch.Hisfieldsofresearchinterestsarebiomedical imageanalysis,imageprocessing,steganography,artificialintelligence,bigdataanalysis, machinelearning,andbigdatatechnologies.

Dr.LalitMohanGoyal hascompletedPhDinComputerEngineeringfromJamiaMillia Islamia,NewDelhi,India,MTech(Honors)inInformationTechnologyfromGuruGobind SinghIndraprasthaUniversity,NewDelhi,India,andBTech(Honors)inComputerEngineeringfromKurukshetraUniversity,Kurukshetra,India.Hehas17yearsofteaching experienceintheareasoftheoryofcomputation,parallelandrandomalgorithms,distributeddatamining,andcloudcomputing.Hehascompletedaprojectsponsoredbythe IndianCouncilofMedicalResearch,Delhi.Hehaspublishedandcommunicatedmore than40researchpapersinSCI,SCIE,andScopus-indexedjournalsandattendedmany workshops,FacultyDevelopmentPrograms,andseminars.Hehasfiledninepatentsin theareaofartificialintelligenceanddeeplearning,outofwhichfourhavebeengranted andothersarepublishedonline.Heisareviewerofmanyreputedjournalsandconferences.HeisaserieseditorforCRCPress,Taylor&Francis,andhaseditedmanybooks

forElsevierandSpringer.Presently,heisworkingintheDepartmentofComputerEngineering,J.C.BoseUniversityofScienceandTechnology,YMCA,Faridabad,India.

Prof.ValentinaE.Balas iscurrentlyfullprofessorintheDepartmentofAutomaticsand AppliedSoftwareattheFacultyofEngineering,AurelVlaicuUniversityofArad,Romania. SheholdsaPhDcumlaudeinAppliedElectronicsandTelecommunicationsfromPolytechnicUniversityofTimisoara.Dr.Balasistheauthorofmorethan400researchpapers inrefereedjournalsandinternationalconferences.Herresearchinterestsareinintelligent systems,fuzzycontrol,softcomputing,smartsensors,informationfusion,andmodeling andsimulation.Sheistheeditor-in-chiefofthe InternationalJournalofAdvancedIntelligenceParadigms (IJAIP)and InternationalJournalofComputationalSystemsEngineering (IJCSysE),editorialboardmemberofseveralnationalandinternationaljournals,and expertevaluatorfornational/internationalprojectsandPhDtheses.Dr.BalasisthedirectorofIntelligentSystemsResearchCentreinAurelVlaicuUniversityofAradanddirector oftheDepartmentofInternationalRelations,ProgramsandProjectsinthesameuniversity.SheservedasthegeneralchairfornineeditionsoftheInternationalWorkshoponSoft ComputingandApplications(SOFA)organizedduringtheperiod2005–2020andheldin RomaniaandHungary.Dr.Balasparticipatedinmanyinternationalconferencesasorganizer;honorarychair;sessionchair;memberofthesteering,advisory,orinternational programcommittees;andkeynotespeaker.Recently,shewasworkingonanationalprojectwithEUfundingsupport“BioCell-NanoART ¼ NovelBio-inspiredCellularNanoArchitectures—ForDigitalIntegratedCircuits,”3MEurofromtheNationalAuthority forScientificResearchandInnovation.SheisamemberoftheEuropeanSocietyforFuzzy LogicandTechnology(EUSFLAT),memberoftheSocietyforIndustrialandApplied Mathematics(SIAM),aseniormemberofIEEE,memberofTechnicalCommittee—Fuzzy Systems(IEEEComputationalIntelligenceSociety),chairoftheTaskForce14inTechnical Committee—EmergentTechnologies(IEEECIS),andmemberofTechnicalCommittee— SoftComputing(IEEESMCS).Dr.BalaswaspastvicepresidentoftheInternationalFuzzy SystemsAssociation(IFSA)Council(2013–2015),isajointsecretaryofthegoverning counciloftheForumforInterdisciplinaryMathematics(FIM,amultidisciplinaryacademicbodybasedinIndia),andisarecipientofthe“TudorTanasescu”Prizefromthe RomanianAcademyforcontributionsinthefieldofsoftcomputingmethods(2019).

Dr.BasantAgarwal isworkingasanassistantprofessorattheIndianInstituteofInformationTechnologyKota(IIIT-Kota),India,whichisaninstituteofnationalimportance.He holdsaPhDandMTechfromtheDepartmentofComputerScienceandEngineering, MalaviyaNationalInstituteofTechnologyJaipur,India.Hehasmorethannineyearsof experienceinresearchandteaching.Hehasworkedasapostdocresearchfellowatthe NorwegianUniversityofScienceandTechnology(NTNU),Norway,undertheprestigious EuropeanResearchConsortiumforInformaticsandMathematics(ERCIM)fellowshipin 2016.HehasalsoworkedasaresearchscientistatTemasekLaboratories,National

UniversityofSingapore(NUS),Singapore.Hisresearchinterestsareinartificialintelligence,cyber-physicalsystems,textmining,naturallanguageprocessing,machinelearning,deeplearning,intelligentsystems,expertsystems,andrelatedareas.

Dr.MamtaMittal isworkingasprogramheadandassociateprofessor(DataAnalyticsand DataScience)inDelhiSkillandEntrepreneurshipUniversity(undertheGovernmentof NCTDelhi),NewDelhi,India.ShereceivedherPhDinComputerScienceandEngineering fromThaparUniversity,Patiala;MTech(Honors)inComputerScienceandEngineering fromYMCA,Faridabad;andBTechinComputerScienceandEngineeringfromKurukshetraUniversity,Kurukshetra,in2001.Shehasbeenteachingforthelast18yearsandspecializesindatamining,machinelearning,DBMS,anddatastructure.Dr.Mittalisa lifetimememberofCSIandhaspublishedmorethan80researchpapersinSCI,SCIE, andScopus-indexedjournals.Sheholdsfivepatents,twocopyrightsgranted,andthree morepublishedpatentsintheareasofartificialintelligence,IoT,anddeeplearning.Dr. Mittalhasedited/authoredmanybookswithreputedpublisherslikeSpringer,IOSPress, Elsevier,andCRCPressandisworkingonaDST-approvedproject“Developmentof IoT-BasedHybridNavigationModuleforMid-sizedAutonomousVehicles”witharesearch grantof25lakhs.Currently,sheisguidingPhDscholarsintheareasofmachinelearning, computervision,anddeeplearning.Dr.Mittalisaneditorialboardmemberforpublishers likeInderscience,BenthamScience,Springer,andElsevier,andhashandledspecialissues andchairedanumberofconferences.SheisbookserieseditorofInnovationsinHealth InformaticsandHealthcare:UsingArtificialIntelligenceandSmartComputingand anotherseriesEdgeAIinFutureComputingforCRCPress,Taylor&Francis,UnitedStates. Sheisassociateeditor,advisorymember,andeditorforSpringerjournals, Dyna (Spain), andElsevierjournals,respectively.

Preface

Machinelearning(ML)techniquesareusedaspredictivemodelsformanyapplications includingthoseinthefieldofbiomedicine.Thesetechniqueshaveshownimpressive resultsacrossavarietyofdomainsinbiomedicalengineeringresearch.Biologyandmedicinearedata-richdisciplines,butthedataarecomplexandoftennotproperlyunderstood.Mostbiomedicaldataarecategorizedintostructured,semi-structured,and unstructuredtypeswithveryhighvolume.Thevolumeandcomplexityofthesedatapresentnewopportunities,butalsoposenewchallenges.Automatedalgorithmsthatextract meaningfulpatternscouldleadtoactionableknowledgeandchangehowwedevelop treatments,categorizepatients,orstudydiseases,allwithinprivacy-criticalenvironments.Thisbookaddressestheissuesdescribedtopredictandmodelbiomedicaldata miningandanalysis.Thebookhasbeenorganizedinto15chapters.

Chapter1 titled“DataMiningwithDeepLearninginBiomedicalData”presentsatimedomainstudyofEEGsignalstodetectvariousneurologicaldisorderswithaspecificfocus onepilepsy.Thepresentedconvolutionalneuralnetwork(CNN),longshort-termmemory network(LSTM),andCNN-LSTMhybridmodelswereusedtodetectseizureactivitiesin preciselyfilteredEEGsegments.Theexperimentalresultsrevealthesuitabilityofthe CNN-LSTMhybridmodelforaccurateandpromptdetectionofepilepticseizureswith anaccuracyof98%,sensitivityof98.48%,andspecificityof99.19%,sothatpatientscould besavedfrommajorinjuriesorsuddenexpecteddeaths.Thesemodelscanbeusefulin thedetectionofvariousdiseasesordisorderssuchasschizophrenia,Parkinson’sdisease, andtheidentificationofbreastcancerandbone-orskin-relateddiseases.

Chapter2 titled“ApplicationsofSupervisedMachineLearningTechniqueswiththe GoalofMedicalAnalysisandPrediction:ACaseStudyofBreastCancer”analyzestheWisconsinBreastCancerDiagnosisdatasetforidentifyingessentialfeaturesandassessingthe performanceofsomepopularmachinelearning(ML)classifiersinbreastcancerprediction.Thedatasetisfirstcleanedbyeliminatingnon-numericalvaluesandnormalizingthe data.Theprocesseddataarethenvisualizedtograspthehiddenpatternsandnonessentialattributesaretrimmed.EightdifferentMLmodelsaretrainedandtestedover therefineddataforpredictionofthetwotumorclasses.Thepresentedstudyidentified vitalfeaturesthatweremust-havesfortheanalysis,andtheempiricalresultsinvestigated thesuperiorityofparticularMLclassifiersovertheothers.

Chapter3 titled“MedicalDecisionSupportSystemUsingDataMining”describeshow amedicaldecisionsupportsystemcansupportthemedicaldecision-makingprocessesat bothclinicalanddiagnosticlevels.Toprovideanerror-freeandaccurateservice,clinicians

mustapplyrelevantcomputer-basedinformationanddecisionsupportsystems.Decision supportsystemscanbedesignedasasystembasedonknowledgeorasystembasedon learning.Human-engineeredmappingstosuggestionsbasedonbestmedicaltreatments andpatientdataareknownasknowledge-basedsystems.Learning-basedsystemsutilize datamining,statistics,andMLapproachestomapthesystem.Integrateddecisionsupportincorporatesboththesystemsofknowledgeandlearningtosolvetheproblemof presenceofpartialinformationinarealisticsituation.Thiseffortaimstoassistphysicians medicallyandtoapplythemedicineprescriptionspecifically.Theapproachmaybe utilizedforquery-basedapplications,onlinewebbrowserapplications,ormobileapplicationsonnumerousterminalinterfaces.

Chapter4 titled“RoleofAITechniquesinEnhancingMulti-ModalityMedicalImage FusionResults”outlinesthebenefitsofusingAImethodsformedicalimagefusionofdifferentmodalities.Themodalitycanbecomputedtomography,magneticresonance-T1, magneticresonance-T2,andPositronemissiontomographydependingonthesuspected malignantregion.Theaimoffusionistocollaborateeachmodality’sbestinformationinto asingleimagecalledafusedimage.Thischapteraddressesthemulti-modalitymedical imagefusionusingAItechniqueslikeFuzzyLogicandAdaptiveNeuro-FuzzyInference System(ANFIS).ThestudyrevealsthattheAItechniquesnotonlygivebetterresults buttheirlearningcapabilitieswilllikelymakethefutureworkself-driven.

Chapter5 titled“AComparativePerformanceAnalysisofBackpropagationTraining OptimizerstoEstimateClinicalGaitMechanics”indicatesthattheclinicalgaitanalysis ofhealthypeopleofdifferentagegroupsplaysasignificantroleintheearlyestimation ofdifferentphysiologicalandneurologicaldisorders.However,duetocomplicateddata acquisitionsetupsandin-personrequirements,theestimationofthegaitanalysishas beenquitetoughtofollow.Toavoidsuchissues,aML-basedapproachhasbeenproposed inthisworktoestimatethebiomechanicalgaitparameters.Threebackpropagationneural networkmodelswithLevenberg-Marquardtmethod,resilientbackpropagationmethod, andgradientdescentmethodoptimizershavebeendesignedtoestimatethejointangles, jointmoments,andgroundreactionforcesinthesagittalplane.Thedatasetusedinthe neuralnetworkmodelshasbeentakenfromanopen-sourcerepository.Theanthropometric,biological,andspatiotemporalparametersof50differentsubjectshavebeen exploitedasinputdataset.

Chapter6 titled“High-PerformanceMedicineinCognitiveImpairment:Brain–Computer InterfacingforProdromalAlzheimer’sDisease”suggeststhatAlzheimer’sdiseaseisfrequentlymisdiagnosedasnormalagingbecauseithasalwaysbeendifficulttodetectearly on.Mildcognitiveimpairment(MCI)canbeidentified,butthereislittlethatcanbe doneatthattimebecausenomedicinecanreversetheeffectofMCI;instead,itcanonly slowdowntheprogression.Alzheimer’sdiseaseisdifficulttodiagnosemedically,especiallyinitsearlystages.Asaresponse,amethodforearlydiagnosisofAlzheimer’sdiseaseisurgentlyneededevennow.Inthischapter,theauthorshaveproposedastrategy fordetectingAlzheimer’sdiseaseinitsearlystageusingnoninvasivebrain-computer interfacetechnology.Electroencephalography(EEG)brainwavepatternswereusedfor

threegroups(Alzheimer’sdisease—AD,mildcognitiveimpairment—MCI,andhealthy subjects—HS)oftestsubjectsinthisresearch.Theproposedframeworkwasevaluated with46testsubjects,withanaccuracyof86.47%andaprecisionof0.801.

Chapter7 titled“BrainTumorClassificationsbyGradientandXGBostingMachine LearningModels”describestheuseoftheboosting-typeMLalgorithmstoevaluatethe modelperformanceparameters.ModelperformanceisvalidatedusingK-foldmethods andpreliminaryresultsindicatethattheXGboostingalgorithmyieldsthehighestclassificationaccuracy.Evaluationsofthistypearelargelysupportiveofbiomedicalimaging studiesandthereisscopeforfuturestudiesusingotherclassificationmodelsforachieving thehighestpredictionaccuracy.

Chapter8 titled“BiofeedbackMethodforHuman–ComputerInteractiontoImprove ElderCaring:Eye-GazeTracking”proposeshowphysiologicalmethodsofeye-gazetrackingcouldbeusedtodesignanddevelopnaturaluserinteractiontechniques.Ahuman user’stacitintentiontousephysiologicalsignalsforthedomesticarea’srequiredactivities/requirementsmaybeunderstoodbyutilizingnonverbalcontacttodefinetheuser’s intentiontousephysiologicalsignalsforthedomesticarea’snecessaryactivities/requirements.Toachievegoodaccuracyandrobustness,traditionalgazemonitoringsystems dependonexplicitinfraredlightsandhigh-resolutioncameras.Recentadvancements inmobiledevices,aswellasanincreasinginterestinrecordingnormalhumanbehavior, haveshownthattrackingeyemotionsinanon-restrictedenvironmentcouldyieldpromisingresults.

Chapter9 titled“PredictionofBloodScreeningParametersforPreliminaryAnalysis UsingNeuralNetworks”describesvarioustechniquesusedinthepredictionofblood parameters.Thepredictionofbloodscreeningtestfeaturesusingthebackpropagation neuralnetworkispresentedindetail.Thefeaturesusedinthischapterwerefibrinogen andglobulin.Thenormalrangesoffibrinogenandglobulinare2–4g/Land20–35g/L, respectively.Fibrinogenisa glycoprotein thatcirculatesinthebloodofallvertebrates. Itisobservedfromtheresultsthatthepredictionaccuracyforfibrinogenisbetterthan thatforglobulin.Toincreasetheaccuracyofthepredictionforglobulin,thetraining parametersandactivationfunctionsmustbemodified.

Chapter10 titled“ClassificationofHypertensionUsinganImprovedUnsupervised LearningTechniqueandImageProcessing”presentsanimprovednearestneighbordistanceclusteringalgorithmbyrecognizingthelesionspresentintheretina.Thecurrent approachidentifiesthesymptomsassociatedwithretinopathyforhypertensionandclassifiesthehypertensiveretinopathy.Thischapterprovidesanassessmentofthehypertensiveretinopathyrecognitiontechniquesthatapplyarangeofimageprocessing proceduresusedforfeatureextractionandclassification.Thechapteralsospecifiesthe existingopendatabases,containingeyefundusimages,whichcanbeusedforhypertensiveretinopathyresearch.

Chapter11 titled“BiomedicalDataVisualizationandClinicalDecision-Makingin RodentsUsingaMulti-usageWirelessBrainStimulatorWithaNovelEmbeddedDesign” describesindetailthecompletedesign,biomedicaldatavisualization,andmodeling

aspectsofthestimulatordevice.Thefeasibilityofthisdeviceissuccessfullytestedin invivoandinvitrostagesforaperiodofmorethanamonth.Thisembeddeddesign hasbeendevelopedtakingintoaccountcost-effectiveness,user-friendliness,andprecision,whicharethemainfocusofthischapter.Thebrain-computerinterfacecanbeuseful intakingeffectiveclinicaldecision-makingatanearlystage.However,thereislimited researchinthisareasofar.Therefore,alltheeffortsinthisdirectionareextremelyimportantfornumerousyoungflourishingspecialists,andaspirationstowardthebraincomputerinterface.

Chapter12 titled“LSTMNeuralNetwork-BasedClassificationofSensorySignalsfor HealthyandUnhealthyGaitAssessment”describesthemodelingofthelongshort-term memory(LSTM)deepneuralnetworkmodelanditsimplementationtoclassifyhealthy andunhealthygaitbasedonasensorydataset.Thereferencesensorydatasetof22subject samples(11healthyand11withkneepathology)istakenfromtheUCIIrvineMachine LearningRepository.Twodifferentoptimizers,namelyStochasticGradientDescentand Adam,havebeenexploitedinthedesignedLSTMmodelwithdifferentsetsoflearning hyperparameters.Theclassificationresultsoftheproposeddeeplearningmodelwith bothoptimizershavebeencomparedwitheachotherusingseveralperformancemeasureslikeprecision,recall,andF1score.

Chapter13 titled“Data-DrivenMachineLearning:ANewApproachtoProcessand UtilizeBiomedicalData”includesastudyofpreciseandaccuratediagnostictoolstoease thepressureonmedicalpersonnel,simultaneouslyenhancingefficiency.Thischapter exploresthedevelopmentofartificialneuralnetworkbaseddiagnostictoolsthatfocus onthechallengesdescribedpreviously.Abriefoverviewofthecurrentscenariosand futureprospectsofMLinbiomedicineisalsopresented.

Chapter14 titled“MultiobjectiveEvolutionaryAlgorithmBasedonDecompositionfor FeatureSelectioninMedicalDiagnosis”presentsamathematicalmodelofamultiobjectiveevolutionaryalgorithmbasedondecomposition(MOEA/D)anditsapplication infeatureselectioninmedicaldiagnosis.Mostofthemedicaldatasetsarehighdimensionalinnatureandsothereisaneedforoptimalfeatureselection,whichisadifficult problem.Thenegativeinfluencemaybeduetothepossibilityofirrelevantormanyredundantfeatures.Intelligentmodelsincludingclassification,clustering,regression,and boostingtechniquesarehelpfulinextractingusefulknowledge.Theperformanceof theMOEA/Dmethodiscomparedwiththatofstate-of-the-artmulti-objectiveoptimizationmethodswhenappliedtomostofthedatasets.

Chapter15 titled“MachineLearningTechniquesinHealthcareInformatics:ShowcasingPredictionofType2DiabetesMellitusDiseaseusingLifestyleData”focusesontherole oftheMLparadigmsinhealthcareanalyticsandpresentstheimplementationofthe frameworkfordevelopingMLmodelsfortype2diabetesmellitus(T2DM)disease.Inthis chapter,lifestyleindicatorsratherthanclinical/pathologicalparametershavebeenused forthepredictionofT2DM.Thestudyinvolvesdifferentexpertslikediabetologists,endocrinologists,dieticians,andnutritionistsforselectingthecontributinglifestyleparameterstopromotehealthandmanagediabetes.Thestudyaimstodevelopanintelligent

knowledge-basedsystemforthepredictionofT2DMwithoutconductingclinicaltests.It cansavethepatientunduedelayscausedbyunnecessaryreadmissionsandpathological testsinhospitals.TheproposedworkemphasizestheuseofMLtechniques,namelyKnearestneighbor(KNN),logisticregression(LR),naı¨veBayes(NB),supportvector machine(SVM),decisiontree(DT),randomforest(RF),andartificialneuralnetwork (ANN),forthepredictionofT2DMdisease.TheRFtechniqueattainedthehighestaccuracyof93.56%followedbyDT,LR,SVM,NB,ANN,andKNNwithaccuraciesof92.70%, 91.41%,90.98%,89.27%,87.98%,and84.54%,respectively.

WearegratefultoElsevier,especiallyChrisKatsaropoulos,SeniorAcquisitionsEditor, forprovidingustheopportunitytoeditthisbook.

SudiptaRoy Maharashtra,India

LalitMohanGoyal Faridabad,India

ValentinaE.Balas Romania

BasantAgarwal Jaipur,India

MamtaMittal NewDelhi,India

Dataminingwithdeeplearning inbiomedicaldata

KuldeepSingha andJyoteeshMalhotrab

1.Introduction

IntheeraofInternetofthings(IoT)technologies,smarthealthcareisanemergingsector thatisattractingtheattentionofmedicalpersonnel,theresearchcommunity,and patients[1, 2].Thesetechnologicaladvancesinassociationwithmachinelearningand cloud-fogcomputingcapabilitieshavestartedrevolutionizingthehealth-caresectorby shiftingthetraditionalpatientmonitoringapproachtoremotepatientmonitoring[3]. Inthissector,biomedicaldataanalysisiscrucialinthedetectionanddiagnosisofavariety ofhealth-relatedissuessuchasbacterialandviralinfectiousdiseases;neurologicaland mentaldisorders,particularly,epilepsy,schizophrenia,Alzheimer’sdisease,etc.;cardiovasculardiseases;autoimmunediseases;cancer;andskin-orbone-relateddiseases[2, 4–10].Thebiomedicaldatamayincludeelectroencephalogram(EEG)orelectrocardiogram(ECG)signals,X-ray,CTscan,MR-basedimagesormicroscopicimages,etc.,which couldbeanalyzedusingmachinelearningordeeplearning-basedsignalanalysistechniques[10–13].

Amongtheaforementioneddiseases,neurologicalandmentaldisordersareoneofthe mostserioushazardstopublichealth[4].Thesedisordershavebecomeoneofthemain causesofdisabilitiesanddeathsglobally.Thesocialandeconomicburdenofthesedisordersismoresevereinunderdevelopedorimpoverishedcountriesduetoascarcityof health-careinfrastructure.Thisburdenislikelytogrowrapidlyinforthcomingyearsas aresultofanintensiveincreaseinpopulationandaging[14].ModernIoT-enabled health-caretechnologiesmaybeusefulindetectingandpredictingtheseneurological andmentalproblemstosavepatients’lives.

Inthisregard,epilepsyisconsideredtobeaprevalentfatalneurologicalillness,which usuallyaffectsthehumanbrainbycausingspontaneousandrepeatedseizures[15].This disorderdistressesthelivesofdifferentagegroupsfrominfantstooldpeople.According totheWorldHealthOrganization(WHO)data,around50millionindividualssufferfrom epilepsyaroundtheworld[16],and80%ofthemarelivinginthedevelopingandunderdevelopedcountries.AccordingtotheIndianEpilepsyCentreinNewDelhi,around PredictiveModelinginBiomedicalDataMiningandAnalysis. https://doi.org/10.1016/B978-0-323-99864-2.00018-4

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.