Molecular dynamics simulation 1st edition kun zhou - The ebook in PDF format is ready for download

Page 1


https://ebookmass.com/product/molecular-dynamicssimulation-1st-edition-kun-zhou/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Statistical Mechanics: Theory and Molecular Simulation 2nd Edition Mark E. Tuckerman

https://ebookmass.com/product/statistical-mechanics-theory-andmolecular-simulation-2nd-edition-mark-e-tuckerman/

ebookmass.com

Dynamics of Molecular Excitons: Theories and Applications (Nanophotonics) 1st Edition Seogjoo J. Jang

https://ebookmass.com/product/dynamics-of-molecular-excitons-theoriesand-applications-nanophotonics-1st-edition-seogjoo-j-jang/

ebookmass.com

Molecular kinetics in condensed phases: theory, simulation, and analysis First Edition Elber

https://ebookmass.com/product/molecular-kinetics-in-condensed-phasestheory-simulation-and-analysis-first-edition-elber/ ebookmass.com

Brazil and the United States during World War II and Its Aftermath: Negotiating Alliance and Balancing Giants 1st ed. Edition Frank D. Mccann

https://ebookmass.com/product/brazil-and-the-united-states-duringworld-war-ii-and-its-aftermath-negotiating-alliance-and-balancinggiants-1st-ed-edition-frank-d-mccann/ ebookmass.com

Smartphone-Based Detection Devices: Emerging Trends in Analytical Techniques 1st Edition Chaudhery Mustansar Hussain (Editor)

https://ebookmass.com/product/smartphone-based-detection-devicesemerging-trends-in-analytical-techniques-1st-edition-chaudherymustansar-hussain-editor/

ebookmass.com

Financial Analyst: A Comprehensive Applied Guide to Quantitative Finance in 2024: A Holistic Guide to: Python for Finance, Algorithmic Options Trading, Black Scholes, Stochastic Calculus & More Van Der Post

https://ebookmass.com/product/financial-analyst-a-comprehensiveapplied-guide-to-quantitative-finance-in-2024-a-holistic-guide-topython-for-finance-algorithmic-options-trading-black-scholesstochastic-calculus-more-van-de/ ebookmass.com

Corrections in America: An Introduction (Corrections in America : An Introduction) 14th Edition, (Ebook PDF)

https://ebookmass.com/product/corrections-in-america-an-introductioncorrections-in-america-an-introduction-14th-edition-ebook-pdf/

ebookmass.com

Ruthless Kings of Carnage : A Dark College Bully Mafia Romance (Leighton Royals University Book 1) Madison Kingsley

https://ebookmass.com/product/ruthless-kings-of-carnage-a-darkcollege-bully-mafia-romance-leighton-royals-university-book-1-madisonkingsley/

ebookmass.com

Site Engineering for Landscape Architects 6th Edition, (Ebook PDF)

https://ebookmass.com/product/site-engineering-for-landscapearchitects-6th-edition-ebook-pdf/

ebookmass.com

Infants, Toddlers, and Caregivers 11th Edition – Ebook

https://ebookmass.com/product/infants-toddlers-and-caregivers-11thedition-ebook-pdf-version/

ebookmass.com

MOLECULARDYNAMICS SIMULATION

Thispageintentionallyleftblank

MOLECULAR DYNAMICS SIMULATION

FUNDAMENTALSAND APPLICATIONS

SchoolofMechanicalandAerospaceEngineering,NanyangTechnologicalUniversity,Singapore

BO LIU

SchoolofMechanicalandVehicleEngineering,HunanUniversity,China

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands

TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright©2022ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans, electronicormechanical,includingphotocopying,recording,oranyinformationstorageand retrievalsystem,withoutpermissioninwritingfromthepublisher.Detailsonhowtoseek permission,furtherinformationaboutthePublisher’spermissionspoliciesandourarrangements withorganizationssuchastheCopyrightClearanceCenterandtheCopyrightLicensingAgency, canbefoundatourwebsite: www.elsevier.com/permissions

Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythe Publisher(otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperience broadenourunderstanding,changesinresearchmethods,professionalpractices,ormedical treatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusinganyinformation,methods,compounds,orexperimentsdescribedherein.Inusing suchinformationormethodstheyshouldbemindfuloftheirownsafetyandthesafetyofothers, includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors, assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproducts liability,negligenceorotherwise,orfromanyuseoroperationofanymethods,products, instructions,orideascontainedinthematerialherein.

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

ISBN:978-0-12-816419-8

ForInformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: MatthewDeans

AcquisitionsEditor: BrianGuerin

EditorialProjectManager: EmilyThomson

ProductionProjectManager: NirmalaArumugam

CoverDesigner: ChristianJ.Bilbow

TypesetbyMPSLimited,Chennai,India

Listofsymbolsvii

Prefacexxv

1. Fundamentalsofclassicalmoleculardynamicssimulation1

1.1Introduction1

1.2Fundamentalsofmoleculardynamicssimulation10

1.3HardwareandsoftwareforMDsimulation37 References40

2. Potentialenergyfunctions41

2.1TheBorn Oppenheimerassumption41

2.2Potentialenergyfunctionsfordifferentmaterials50 References63

3. Controltechniquesofmoleculardynamicssimulation67

3.1Typesofconstraintsinmoleculardynamicssimulation67

3.2Thermodynamicensembles68

3.3Temperaturecontrol70

3.4Pressurecontrol83

3.5Boundaryconditions90

3.6Rigidbondconstraints93 References95

4. Advancedabinitiomoleculardynamicsandcoarse-grained moleculardynamics97

4.1Motivationsforthedevelopmentofadvancedmoleculardynamics simulationmethods97

4.2Abinitiomoleculardynamics99

4.3Coarse-grainedmoleculardynamics109 References126

5. Applicationofmoleculardynamicssimulationin mechanicalproblems129

5.1Roleofmoleculardynamicssimulationinmodelingthemechanical propertiesofmaterials129

5.2Tensile,compressive,andsheartests130

5.3Nanoindentationandnanoscratchingtests143

5.4Tribologicalbehaviors149

5.5Interfacialeffectsinnanocomposites161

5.6Defecteffects167 References178

6. Applicationofmoleculardynamicssimulationinthermal problems183

6.1Demandforunderstandingthethermalpropertiesofnanomaterials183

6.2Moleculardynamicssimulationmethodsforthermalconductivity calculation185

6.3Moleculardynamicssimulationofinterfacialthermaltransport205

6.4Thermalrectificationeffects228 References233

7. Applicationofmoleculardynamicssimulationinmass transportproblems237

7.1Fluidsinnanoconfinement237

7.2Nanofiltrationwithporousthinfilms274

7.3Liquid vaporphasetransition291 References311

8. Applicationofmoleculardynamicssimulationinother problems315

8.1Reactivemoleculardynamicssimulations315

8.2Irradiationprocesses326

8.3Materialcrystallization334 References336 Index339

Listofsymbols

a Sidelengthofacubicsimulationbox

Meannearest-neighborseparation

a Accelerationvector(thesecond-ordertimederivativeofa positionvector)

Edgevectorofaunitcell

apre

Predictedaccelerationvector

acor Correctedaccelerationvector

aGE

aSE

A

AIn

Latticeconstantofgraphene(2.46A ˚ )

Latticeconstantofsilicene(3.98A ˚ )

Aphysicalquantity

Amaterial-dependentconstant

Amplitudeofsurfaceroughness

Contactarea

Cross-sectionarea

Surfacearea

Areaoftheinterfacebetweenagraphenemonolayeranda silicenemonolayer

A(RN)ConfigurationalcomponentoftheHelmholtzfreeenergy

A hi

A hiblk

A hisim

AðRNn ; tÞ

bij

b

Truemeanvalueofaphysicalquantity A

Time-averagedvalueofaphysicalquantity A obtainedina blockperiodofanMDsimulation

Time-averagedvalueofaphysicalquantity A obtainedfroman MDsimulation

Amplitudefactorofanuclearwavefunction

BondorderintheREBOpotential

Third-ordertimederivativeofapositionvector

Edgevectorofaunitcell

B Aphysicalquantity

Bijk

Aconstantthatdenotesinteractionstrength

BOij

Bondorderbetweenthe ithandthe jthatom

c Afittingparameter

c Edgevectorofaunitcell

cIi

Linearcoefficientforthemappingfunctionofthecoordinatesof the Ithcoarse-grainedsites

c(t)Autocorrelationfunctionofhydrogenbonding

C Amaterial-dependentconstant

CGE

CSE

CV

Constantvolumeheatcapacityofagraphenenanosheet

Constantvolumeheatcapacityofasilicenenanosheet

Isochoricheatcapacity

d Meangrainsize

Thicknessofananochannel

D

Diffusionconstantofagaseousorliquidsystem

Diameterofthenanowire

Interlayerdistance

Amaterial-dependentconstant

Dc Diffusioncoefficient

D0

DimerbindingenergyintheTersoffpotentialenergyfunction

De PotentialenergywelldepthoftheMorsepotentialenergy function

D(ω )Phonondensityofstates

e Elementaryelectroncharge(1.60217662 3 10 19 C)

ePot i Potentialenergyoftheatom i

E,Ea Electricfieldintensity

E0 Originalenergyofawavepacket

E Electricfieldstrengthvector

Ei Electricfieldvectorattheposition r i

ΔE Interfacialbondingstrengthofananocomposite

Ea Adsorptionenergy

Activationenergy

Eangle

Eavg

Ebond

Potentialenergyrelatedtothebendingofabondangleinthe ReaxFFforcefield

Averagekineticenergyofagroupofatoms

Potentialenergyassociatedwiththebondingbetweentwo atomsintheReaxFFforcefield

Ecoh

Ecut

ECoul

Ee ðt0 Þ

Egap

EH-bond

Ematrix

Enanofillers

Eover

Erep

Cohesiveenergyoftheinterface

Highestkineticenergypertainingtoanexpansionofawave functionintermsofanelectronicorbitalset

Potentialenergycorrespondingtoelectrostaticinteractions

Phasefactorofthecompletewavefunctionofanatomicsystem

Energydifferencebetweenthelowestunoccupiedorbitaland thehighestoccupiedorbital

Cohesiveenergyduetohydrogenbonding

Energyofthematrixofananocomposite

Energyofthenanofillersofananocomposite

Energypenaltytermthatpreventstheovercoordinationof atomsintheReaxFFforcefield

Potentialenergyofanatominteractingwitharepulsivewall

Est Springpotentialenergyfunction

Especific System-specificenergytermsintheReaxFFforcefield

Esystem

Etot

Etr

Etors

EvdW

TotalenergyofamolecularsystemintheReaxFFforcefield

Totalenergyofthenanocomposite

Transmittedenergyofawavepacket

Potentialenergyrelatedtothetwistofadihedralbondanglein theReaxFFforcefield

PotentialenergycorrespondingtononbondingvanderWaals interactionsintheReaxFFforcefield

f NumberofdegreesoffreedomofanMDsystem

f Resultantatomisticforceactingonanatom

fA(rij)AttractiveatomicinteractionfunctionoftheTersoffpotential

fc(rij)Cutofffunctionfornearest-neighborinteractions

fd Drivingforce

fFVF

fij

Freevolumefraction

Interatomicforceimposedbythe jthatominthewallonthe ith atominthefluid

fi(r ri)Radialdistributionoftheremainingchargeoutsidethecoreof the ithatom

fiw Forceexertedonthe ithfluidparticlebythechannelwall

fp

Forcearisingfromthepressuredifferenceattheboundaryof the“pump”region

Listofsymbols

fR(rij)RepulsiveatomicinteractionsoftheTersoffpotential

fw

fz

Forceexertedonachannelwallbythefluidparticles

Netelectrostaticforceaveragedoverallthewatermolecules

Fi(RN)Forceactingonthe ithparticle

FI

Fij

Fijk

Forceactingonthe Ithcoarse-grainedsite

Forceimposedontheatom i duetoitsinteractionwithatom j

Forceontheatom i duetothethree-bodyinteractionsamong atoms i, j,and k

Fj(ijk)Three-bodyforcetermforthecalculationofheatflux

F[ni(ri)]Functionofthelocalelectrondensity ni(ri)attheatomicsite ri

g Gradientofthepotentialenergy

g(r)Radialdistributionfunction

g(θijk)BondangledistributionfunctionoftheTersoffpotentialenergy function

gref MN ðRÞ

gkMN ðRÞ

Targetradialdistributionfunction

Pairedradialdistributionfunctionfortheeffectivepotential obtainedfromthe kthIBIiterationstep

gμVT MN ðRIJ Þ Radialdistributionfunctioninthe μVTensemble

G Interfacialthermalconductance

G+

Interfacialthermalconductanceofthesystemcorrespondingto theforwardheatfluxdirection

G Interfacialthermalconductanceofthesystemcorrespondingto theoppositeheatfluxdirection

G Metrictensorgivenby G=hhT,with h=(a, b, c)T

GN MN

GkMN ðRÞ

Gref MN ðRÞ

GVMN

Kirkwood-Buffintegralinthethermodynamiclimit

PlateauvalueoftherunningKirkwood Buffintegralafterthe kthIBIiterationstep

PlateauvalueoftherunningKirkwood Buffintegralcalculated fromthereferenceall-atomsystem

Kirkwood Buffintegraloftheradialdistributionfunction betweenspecies M and N

h ReducedPlanckconstant(1.054572 3 10 34 Js 1)

h

Amatrixdefinedbytheedgevectors a, b,and c ofaunitcell

H Separationdistance

Hamiltonianofasimpleone-dimensionalharmonicoscillator

H

Hij

Hessianmatrixofpotentialenergy

Strengthofthestericrepulsionforthetwo-bodytermofthe Vashishtapotentialenergyfunction

He PartialHamiltonian

H2

Interlayerdistancebetweenthetwographenelayersineachelectrode

H(RN , PN)Hamiltonianofanatomicsystem

H2;adi ðp2 ; x2 Þ Hamiltonianofparticle2inanadiabatictwo-particlesystem

J Heatfluxvector

J+

Heatfluxintheforwarddirection(fromsilicenetographene)

J Heatfluxinthereservedirection(fromgraphenetosilicene)

Jx(y,t)Momentumofthefluxdensity

Jμ Componentoftheheatfluxvector J inthe μ direction

k Forceconstantintheharmonicfunction

ks Springconstantofanoscillator

Springconstantofasimpleone-dimensionalharmonicoscillator

k0 Wavenumber

k0 Wavevector

kB

kb i

Boltzmannconstant(1.380649 3 10 23 JK 1)

Material-dependentconstantsthatdeterminetheinteraction strengthofbondstretching

kθ i Material-dependentconstantsthatdeterminetheinteraction strengthofbondanglebending

kχ Forceconstant

K Evaporationconstant

K2 Kineticenergyofparticle2

K(t)Instantaneouskineticenergy

Kfict Fictitiouselectronic“kineticenergy” KnKnudsennumber

Kst

Stochastickineticenergydefinedinthe Bussi Donadio Parrinellothermostat

l LengthoftheMFPofthephonons

l Setofvariationallydeterminedparameters

lb IntrinsiclengthofthephononMFPofthebulkmaterial

li,0

Referencevalueofbondlength

Bondlength

ly Lengthofthesimulationboxinthe y-direction

L LengthofanMDsimulationsystem

L Second-ordertensorormatrixofthedeformationrate

Lp

m

me

Periodlength

Massofasimpleone-dimensionalharmonicoscillator

Massofanelectron(9.109383 3 10 31 kg)

mi Massofthe ithatomorparticle

Massofthe ithnucleus

mw

minx1 V ðx1 ; x2 Þ

M

MI

M N R ðr n Þ

M N P ðpn Þ

M RI ðr n Þ

M PI ðpn Þ

Fictitiousmassofthewall

Thelowestenergystateofthesystem

Massofanucleus

Fictitiousmasshavingtheextradegreeoffreedom Q

Massofthe Ithnucleus

Mappingfunctionofthecoordinatesbetweenthesitesofa coarse-grainedsystemandthecorrespondingatomsina referenceall-atomsystem

Mappingfunctionofthemomentabetweenthesitesofacoarsegrainedsystemandthecorrespondingatomsinareferenceallatomsystem

Mappingfunctionofthepositionofthe Ithsiteinacoarsegrainedsystem

Mappingfunctionofthemomentaofthe Ithsiteinacoarsegrainedsystem

n Empiricalfittingparameter

Localelectrondensity

AdjustingparameterintheTersoffpotentialenergyfunction

ne Phononoccupationnumber

n(r ’)Electrondensitydistribution

nb

nk

nt

Numberofblocksfortheblockaveragemethod

Numberofatomsinthe kthslab

Totalnumberofconfigurationssampledduringtheentire courseofanall-atomMDsimulation

N Numberofatoms

Averagenumberofwatermoleculesinananochannel

Na

NA

Nc

Ne

Numberofatoms

Avogadroconstant(6.022140 3 1023 mol 1)

Numberofatomsinacell

Numberofelectrons

Nf Numberofatomsinthe“pump”region

Ni,nei

Nm

Nn

Numberofneighborsoftheatom i

Numberofmolecules

Numberofnuclei

Ns Numberofatomsontheboxsurface

Nt Totalatomnumber

Ntransfer

Nw

N0

N1

minx1 V ðx1 ; x2 Þ

Totalnumberofvelocityexchangeeventsthatoccurovertime t

Numberofatomsintheconstraintwall

HalfofthetotalnumberofCatomsinagraphenenanosheet

NumberofHatomsononesideofagraphenenanosheet

Minimizedpotentialenergy V ðx1 ; x2 Þ withrespectto x1 fora fixedvalueof x2

p Momentumvectorofanatom

Dipolemomentofawatermolecule

pi

pbo

p elc

p n

pNe

p nul

pp ðpn Þ

prp ðr n ; pn Þ

pr ðr n Þ

Momentumvectorofthe ithatom

Empiricalparameter

Momentumvectorsoftheelectrons

Momentumvectorsoftheatoms

Collectionofthemomentumvectors p1 ; ; pN e noofanMD simulationsystemcontaining Ne electrons

Momentumvectorsofthenuclei

Probabilitydensityoftheatomicmomentaofanall-atom systemdescribedbymomentumvectors pn ¼ p1 ; ; pn

Probabilitydensityofthedynamicstatesofanall-atomsystem describedbypositionvectors r n ¼ r 1 ; ; r n fg andmomentum vectors pn ¼ p1 ; ; pn

Probabilitydensityoftheatomicpositionsofanall-atomsystem describedbypositionvectors r n ¼ r 1 ; ; r n fg

p(t)Instantaneousmomentumofa1Doscillator

p0

Initialmomentumofa1Doscillator

pðθjik ; θ0 jik Þ

FunctionforthebendingofthebondangleoftheVashishta potential

P Pressure

Padi ðx2 Þ

Padi ðxÞ

Pext

TotalmomentumofanMDsysteminthe α-direction,with α being x, y,or z

Probabilitydistributionfunctionof x2 intheadiabaticlimit

Probabilitydistributionfunctionof x intheadiabaticlimit

Externalpressure

Pf Pressureexertedonthefluctuatingwall

Pin

PNn

PN

PP ðPN Þ

Inletpressure

Collectionofthemomentumvectors P1 ; ...; PNn ofanMD simulationsystemcontaining Nn atoms

GeneralizedspatialmomentaofalltheparticlesinanMD simulationsystem

Probabilitydensityofthesitemomentaofacoarse-grained systemdescribedbymomentumvectors PN ¼ P1 ; ; PN fg

P(q)Normalizedprobabilitydistributionofaspecificdegreeof freedom q

pR ðRN Þ

PRP ðRN ; PN Þ

PR ðRN Þ

Referenceprobabilitydensityofacoarse-grainedsystem determinedbyitscorrespondingall-atomtrajectories

Probabilitydensityofthedynamicstatesofacoarse-grained systemdescribedbypositionvectors RN ¼ R1 ; ; RN fg and momentumvectors PN ¼ P1 ; ; PN fg

Probabilitydensityofthesitepositionsofacoarse-grained systemdescribedbypositionvectors RN ¼ R1 ; ; RN fg

P(t)Instantaneouspressure

P(x)

Pout

Gaussiandistributionofarandomvariable x

Outletpressure

q Chargeofaparticle

qi

Partialchargeofthe ithatom

Q Aphysicalquantity

Chargepossessedbyacoreintheshellmodel

Fictitiousmassfortheadditionaldegreeoffreedomintroduced intheNose ´ Hooverthermostat

FictitiousdegreeoffreedomintroducedintheAndersen barostat

Waterflux

QHP

EstimatedflowratebasedontheHPequation

Q(RN ,PN)AphysicalquantityofanMDsystemdescribedbythe generalizedspatialcoordinates RN andspatialmomenta PN

Q0

Estimationofaquantity Q forabulkmaterial

r Distancebetweentwoatoms

_ r Thefirst-orderderivativeofthepositionvectorwithrespectto time

r € Thesecond-orderderivativeofthepositionvectorwithrespect totime

r0

rcm

rcut

r elc

Distancecorrespondingtotheminimumpotentialenergy

Equilibriumdistance

Equilibriumbondlengths

Positionofthecenterofmass

Cutoffdistanceforapotentialenergyfunction

Positionvectorsoftheelectrons

ri Positionvectorofthe ithatom

r i ðΔtÞ

ri,c

r ij

rij

ri,s

ri,α

Positionofthe ithatomwithoutconsideringthebondconstraint betweentheatoms i and j

Positionofthe ithcorefortheshellmodel

Displacementvectorfromtheatom i toatom j

Distancebetweentheatoms i and j

Positionofthe ithshellfortheshellmodel

Componentof ri inthe α-direction

ri(t)Time-dependentpositionofthe ithatom

rm

EmpiricalparameterfortheLJpotentialfunction

rnei NeighborlistdistancedefinedfortheVerletneighborlist method

r Ne Collectionofthepositionvectors r 1 ; ; r N e ofanMD simulationsystemcontaining Ne electrons

r n Spatialcoordinatesofthe n atomsinthedetailedatomistic system

rn,i Configurationofthe ithall-atomMDsimulationsystem

r nul

r4s

Positionvectorsofthenuclei

Decaylengthofthetwo-bodytermoftheVashishtapotential

rN Radiusoftheinnerboundaryoftheambientregion

Rc Criticaldistanceofanatomwithinwhichitsclosestneighbors caninteractwithit

RI

RIJ

RI

RMSD

RN

ΔRN

RNn

Idealgasconstant(8.314462JK 1 mol 1)

Relativepositionvectorofthe Ithand Jthcoarse-grainedsite

Positionofthe Ithcoarse-grainedsite

Meansquaredisplacement

GeneralizedspatialcoordinatesofalltheparticlesinanMD simulationsystem

Atomicdisplacement

Collectionofthepositionvectors R1 ; ; RNn ofanMD simulationsystemcontaining Nn atoms

RyRydbergconstant(1Ry=13.605693eV)

s Anenhancementfactor

Afictitiousdegreeoffreedom

si Arowvectorwiththecomponents(li ,mi ,and ni )

s(k) Directionvector

Smap r n Averageentropyresultingfromthedegeneraciescausedby configurationmapping

Srel Relativeentropy

SðRNn ; tÞ

Phasefactorforthenuclearwavefunction

t Time

Δt Timestep

Δtmax

ThemaximumvalueoftheAIMDtimestep

tsignal TimeatwhichtheHFACFpossessesamagnitudeequivalentto thatof W

T Temperature

ΔT Temperaturedifference

r T Temperaturegradient

Tc Criticaltemperature

Td

Telec

Highthresholddisplacementenergy

“Fictitious”temperatureoftheelectrons

Tf Tiltfactorthatdenotestheanglebetweenthe xz-planeandthe yz-plane

T 0 f

Initialtiltfactorat t=t0 thatdenotestheanglebetweenthe xzplaneandthe yz-plane

TG

T 0 G

Temperatureofthegraphenemonolayer

Initialtemperatureofthegraphenemonolayer

Ti Totalnuclearchargeofthe ithatom

ΔTIn

TMD

Tnucl

Temperaturedropataninterface

CalculatedtemperaturebasedonMDsimulation

Temperatureofthenuclei

TN m (zk)Instantaneoustemperatureofthe kthslabatthe(N m)thtime step

Tr(.)Traceofamatrix

TS Temperatureofthesilicenemonolayer

T 0 S

Initialtemperatureofthesilicenemonolayer

T(t)Instantaneoustemperature

T ðzk Þ M

@T =@z

Temperatureofthe kthslabaveragedoverthefinal M time stepsofthesimulation

Averagedvalueofthetemperaturegradientinthe z-direction overtime

ui Displacementvectorofthe ithatom

ui Timederivativeofthedisplacementvectoroftheatom i

u(rn)Atomisticinteractionpotentialenergy

Ubond-bending

UBuck

Ucross

UCG

UCoul , Uel

UES

Bondbendingpotentialcomponent

Buckinghampotential

Crosspotentialfunctiontermsforthecouplingsamongbond stretching,bondanglebending,andbondtorsion

EffectivepotentialsoftheCGMDmodel

PotentialenergyduetoCoulombicinteractions

Potentialenergyduetoelectrostaticinteractions

ΔU KBI ðRÞ KBI IBIrampcorrectionterm

UMorse

U 0 MN ðRÞ

Morsepotentialfunction

Initialguessofthenonbondedtwo-bodypotentialofaCGMD model

UMN(R)Nonbondedtwo-bodypotentialofaCGMDmodel

U k MN ðRÞ Effectivepotentialobtainedfromthe kthIBIiterationstep

Unb PotentialenergyduetononbondedvanderWaalinteractionin theMMforcefield

ΔUP ðRÞ Linearpressurecorrectionterm

U(RN)Potentialenergyfunction

U’(RN)Gradientof U(RN)

URigid ðRN Þ PotentialenergyofanMDsimulationsystemwitharigidbond constraintimposed

U SR(rij)Potentialenergyduetotherepulsionoftheelectronshells

Utot Potentialenergyfunction

Out-of-planebendinginteractionsthatarecloselyrelatedtothe bondtorsionterm

U2(rij)Two-bodytermoftheVashishtapotential

U3(rij, rik, rjk)Three-bodytermoftheVashishtapotential

v Velocityofanatom

Rotationalfrequency

v Averagevelocityofthewatermoleculesinthenanochannel

vC Velocityofthecenterofmassofalltheparticlesintheheat sourceortheheatsink

vcom Velocityofthecenterofmassoftheatomsinastrip

vi,α Componentofthevelocityofthe ithatominthe α-direction

vi Velocityvectorofthe ithatom

vij

Relativevelocityofthetwopoints(oratoms) i and j

vj(t)Velocityoftheatom j attime t

vmax

Maximumvalueoftheadvectionvelocity

vmax hi Timeaverageofthehighestatomicvelocity

vp Groupvelocityofthephonons

Velocityoftheincidentwave

vs Velocityofthesurfacewaveonthesolid

vx x-componentofthelocalaveragestreamvelocity

V Volumeofasystem

V(x1, x2)Potentialofasimpleone-dimensionalchainmodelconsisting thetwoparticles1and2

V(r)Electron nucleiinteractionpotentialenergy

V(rij)Two-bodypotentialthataccountsfortheinteractionsamongthe nuclei

V2(rij)Two-bodypotentialenergyfunction

V3(ri, ri, rk)Three-bodypotentialenergyfunction

V E e ðRNn Þ

Effectivepotentialenergycontributedbytheelectrons

Vfree Totalfreevolume

Voccupy

Totalvolumeoccupiedbythenanofillersandthematrixofthe composite

Vvacuum Sumofthefreevolumesthatexceedacriticalsize

VH(r)Hartreepotentialenergy

Vm Volumeofthecomposite

Vne ðr Ne ; RNn Þ

Operatorforthetotalpotentialenergyofthenucleiand electrons

Vn Energybarriersforbondtorsion

VREBO

REBOtermoftheAIREBOpotentialenergyfunction

VLJ Lennard Jonespotentialenergyfunction

VTorsion

Vw

PotentialenergycontributedbybondrotationsfortheAIREBO potentialenergyfunction

Potentialenergycontributedbytheinteractionbetweenthe ith particleandthewall

W(τ )Amplitudeoftheautocorrelationfunction

wA Waveamplitudeofawavepacket

x0

x1;adi ðx1 ð

Initialpositionofa1Doscillator

Valueof x1 attime t when x1 evolvesadiabaticallyunderthe initialconditionsof x1(0)and v1(0)with x2 beingfixedatits initialvalue

x(t)Instantaneouspositionofa1Doscillatorattime t

xi(t0)Coordinateofatom i at t=t0 inthe x-direction

yi y-componentofthepositionofthecenterofmassofwater molecule

yi(t0)Coordinateoftheatom i at t=t0 inthe y-direction

Z Effectiveconfigurationpartitionfunction

ZI Atomicnumberofthe Ithnucleus

Z1 ðx2 ; β 1 Þ Effectiveconfigurationpartitionfunctionof x2

Zi,eff

Effectivenuclearchargeofthe ithion

zi Coordinateofthe ithatominthedirectionofheattransport

zk Positionofthecenterofthe kthslabofatoms

z0 Centerofthewavepacket

zðr n;i Þ

Partitionfunctionsofthe ithall-atomconfiguration r n;i

zðRN ;i Þ

Listofsymbols

Partitionfunctionsofthe ithcoarse-grainedconfiguration RN ;i

αi Electronicpolarizabilityofthe ithion

Anglesatthecoreofthenanowireforthe ithwedge

ρ Amaterial-dependentconstant

ρ y; t

Massdensityattheposition y andtime t

ρ(RN , PN)ProbabilitydensitydistributionofthephasesofanMDsystem describedbythegeneralizedspatialcoordinatesRN andspatial momentaPN

ρi

Electrondensityatthesiteofthe ithatom

ρij(rij)Electrondensityofthe jthatomatthesiteofthe ithatom

ρN

ρN

NumberdensityoftheatomsinanMDsystem

Numberdensityofcoarse-grainedparticlesofthe N type

θ Generalangle

Misorientationangle

Rayleighangle

θD

Debyetemperatureofthesystem

θi Bondangle

θi,0

θijk

θ0 jik

θ hi

Referencevalueof θi

Anglebetweentwosuccessivebondvectors

Equilibriumbondangle

Time-averageddipoleorientationangleofthewatermolecules

ε Depthofthepotentialenergywell

ScalingfactorintheSWpotentialenergyfunction

Effectivespringconstantofasimpleharmonicspringpotential energyfunction

Rectificationratio

εAB PotentialenergywelldepthoftheLennard Jonespotentialfor thetwoatomtypesAandB

εcoh

Cohesiveenergydensity

εi Eigenvaluesoftheunoccupiedorbitals

εPot i Potentialenergytermofthesiteenergy

εi(k0)Polarizationparameter

εi(t)Siteenergyofthe ithatomattime t

εfw Potentialenergywell(orbindingenergy)oftheLJpotential

εj Eigenvaluesoftheoccupiedorbitals

_ εi Atomicstrainratetensor

εxy Shearstrainrate

ε0

Δε

Vacuumdielectricconstant(8.854 3 10 12 Fm 1)

Amountofheatinputintotheheatsource

ξ Widthofthewavepacket

ξ i Material-dependentconstant

NoisetermintheLangevinequationthatimposesastochastic forceonthe ithatom

ζ EffectivecoordinationnumberoftheatomsfortheTersoff potentialenergyfunction

Thermalrelaxationtime

Velocityrescalingfactor

ζ ij Effectivecoordinationnumberoftheatoms

ς i ScaledcoordinatevectorfortheAndersenbarostat

π i Momentumthatconjugatesthescaledcoordinatevectorforthe Andersenbarostat

Π Momentumthatconjugatesthedegreeoffreedom Q inthe Andersenbarostat

ηi Coefficientthatdeterminesthemagnitudeofthestochasticforce imposedonthe ithatomfortheLangevinthermostat

ηij ExponentofthestericrepulsionfortheVashishtapotential energyfunction

μ MeanofaGaussiandistribution

ReducedmassoftheatomfortheMorsepotential

Fictitiousmassparameter(intheunitofeVs2)

υ Constantthatdenotesthenonzerocollisionfrequencyforthe Andersenthermostat

δ αβ Kroneckerdelta

σ Criticalseparationdistanceforanegativepotentialenergy

StandarddeviationofaGaussiandistribution

Zero-crossingdistancesoftheLJpotential

σ AB

Zero-crossingdistanceoftheLennard Jonespotentialforthe twoatomtypesAandB

σ 2 VarianceoftheGaussiandistribution

σ virial(r)Virialstressofavolumeelement

λ Positivecoefficientforthesteepestdescentmethod

Thermalconductivity

Time-dependentLagrangemultiplier

λ+

Thermalconductivityintheforwarddirection

λ Thermalconductivityintheoppositedirection

λμv Componentofthethermalconductivitytensor λ

λ Thermalconductivitytensor

λGE

λH

Thermalconductivityofthegraphenesheet

Thermalconductivityofthehybridgraphene/silicene monolayer

λk Lagrangemultipliersforbondconstraints

λ(k)

λSE

Acoefficient

Thermalconductivityofthesilicenesheet

λ0 Predefinedvalueof λ(k)

λ3 CutoffparameterintheTersoffpotentialenergyfunction

λmax N

Upperlimitofbulkthermalconductivity

Λ deBrogliethermalwavelength

Λij

Lagrangemultipliersintroducedtodynamicallysatisfythe condition ψi jψj DE ¼ δ ij

γ FittingconstantfortheSWpotentialenergyfunction

γ i Positiveatomicfrictioncoefficient

φ Ageneralangle

φ0 Torsionanglesatpointsofminimumpotentialenergy

ω Vibrationalfrequencyofabond

Frequencyofmotionofaparticle

Strengthofawedgedisclination

Angularfrequency

Phononfrequency

ωc Criticaldisclinationstrength

ωD

Debyefrequencythatcorrespondstothehighestphonon frequencyallowedintheDebyemodel

ωe Vibrationalfrequencyoftheelectrons

ωmax

e Highestpossibleelectronicfrequency

ωmin

e Lowestpossibleelectronicfrequency

ω n Vibrationfrequencyofthenuclei

ω max n Highestphononmodefrequency

ΞðRNn Þ Wavefunctionofthenucleiinasystem

Φðr Ne ;RNn Þ Wavefunctionoftheelectronsinasystem

Φðr Ne ; RNn ; tÞ Time-dependentwavefunctionthatdependsonboththe nuclearandelectronicdegreesoffreedom

Φ(ri rj)Puretwo-bodypotentialformodelingnuclei

Φi Rc Setofatomswithinasphereofradius Rc withtheatom i atits center

ΨðRNn ; r Ne Þ Totalwavefunctionofanatomicsystem

Ψðr Ne ; tÞ Time-dependentwavefunctionoftheelectronsinasystem

χðRNn ; tÞ Time-dependentwavefunctionofthenucleiinasystem

Ψ Wavefunction

Ψ i One-particleorbitalsubjectedtotheorthonormalconstraint

Ψ 0 Potentialenergyofelectronsatthegroundstate

Ψ 1 Potentialenergyofelectronsatthefirstexcitedstate

α Electronicpolarizabilityofanion

β AdjustingparameterintheTersoffpotentialenergyfunction Isothermalcompressibilityofamaterial

χ Dihedralangle Nuclearwavefunction

χ2 Objectiveresidualfunction

τ b Timestepsfortheblockaveragemethod Intrinsicrelaxationtimeofthecorrespondingsingle-crystalbulk material

τ g Relaxationtimeundertheeffectofgrainboundaryscattering

τ s Relaxationtimeundertheeffectofsurfacescattering

τ im Relaxationtimeinthepresenceofimpurities

τ m UpperintegrallimitintheGreen Kuboexpression

τ m;max Largestnumericallymeaningfulupperlimitfortheintegralin theGreen Kuboexpression

τ P Couplingparameterthatdetermineshowcloselyasystemis coupledwithabarostat

τ T CouplingparameteroftheBerendsenthermostat

Δτ Timeintervalbetweentwosuccessivecollisionsforagiven atom

Σ Reciprocalcoincidencesitedensity

γ AtomicfrictioncoefficientoftheLangevinthermostat Interfacialadhesionenergy

hi Averageofaphysicalquantityoverallthepossiblephasesofan MDsystem

j hi Innerproductoftwofunctions

Ω Avolumeelement

Systemvolume

Ω i Volumesurroundingtheatom i

Ωmap ðM N R ðr n;i ÞÞ

Degreeofdegeneracyof RN ;i

Γ Transmissioncoefficient

Dyadicproductoftwovectors

Preface

Moleculardynamics(MD)simulationisapowerfulcomputational methodformodelingmatterontheatomisticscale.Itprovidesdetailed informationregardingtheinteractionsandmovementsoftheconstituentatomsormoleculesofasystemandallowsforthepredictionand understandingofitsmacroscopicproperties,therebycomplementing physicalexperiments.Sincethismethodwasfirstappliedtomodelthe phasetransitionofasimplehard-spheresystemin1957,ithasundergoneextensivedevelopmenttobecomearobust,established,and widelyadoptedtoolforthescientificcommunity.Moreover,withthe adventofincreasinglypowerfulcomputersandadvancednumerical algorithms,MDsimulationisfrequentlyemployednowadaystosolve highlycomplexproblemsinareasofcutting-edgeresearch,which includenanomaterialdevelopment,polymerscience,metallurgy,seawaterdesalination,pharmacy,organicchemistry,catalyticdevelopment, andtribology.

AdeepunderstandingofthefundamentalprinciplesofMDsimulationisindispensableforitsutilization.Itstheoreticalfoundationismultidisciplinaryinnatureandentailskeyconceptsfromseveralsubjects, includingclassicalmechanics,molecularmechanics,statisticalmechanics,quantummechanics,andcondensedmatterphysics.Therefore, understandingtherudimentsofMDsimulationconstitutesadaunting taskfornoviceresearchers.Thisbookintroducesandencapsulatesthe coreprinciplesofMDsimulationwhileemphasizingtheirsignificance inthegeneralworkflowofthesimulationprocesses.Formoreexperiencedpractitioners,advancedMDsimulationtechniquesdevelopedin recentyearsarereviewedalongwithsubstantialcasestudies.Thecase studiesselectedfeaturethewideapplicabilityofMDsimulationand includediverseresearchtopicsspanningmechanical,thermal,mass transport,andchemicalreactionproblems.

Chapters1 4 aredevotedtothefundamentalsofMDsimulationas wellasrecentlydevelopedsimulationalgorithms.ResearchersunfamiliarwithMDsimulationareencouragedtoperusethesefourchapters sequentiallytoattainasolidunderstandingoftheseprinciples.For moreexperiencedpractitioners,thesechaptersserveasaconcisehandbookinwhichthetheoreticalfoundationsofkeyconceptsandthephysicalmeaningsofimportantsimulationparametersarerevealed.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Molecular dynamics simulation 1st edition kun zhou - The ebook in PDF format is ready for download by Education Libraries - Issuu