Mass transport in magmatic systems bjorn mysen - The ebook is available for online reading or easy d

Page 1


https://ebookmass.com/product/mass-transport-in-magmaticsystems-bjorn-mysen/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Emerging Contaminants in Soil and Groundwater Systems: Occurrence, Impact, Fate and Transport Bin Gao

https://ebookmass.com/product/emerging-contaminants-in-soil-andgroundwater-systems-occurrence-impact-fate-and-transport-bin-gao/ ebookmass.com

The future of intelligent transport systems 1. Edition

George J. Dimitrakopoulos

https://ebookmass.com/product/the-future-of-intelligent-transportsystems-1-edition-george-j-dimitrakopoulos/

ebookmass.com

Diffusion: Mass Transfer in Fluid Systems (Cambridge Series in Chemical Engineering) 3rd Edition, (Ebook PDF)

https://ebookmass.com/product/diffusion-mass-transfer-in-fluidsystems-cambridge-series-in-chemical-engineering-3rd-edition-ebookpdf/ ebookmass.com

Song for a Cowboy Sasha Summers

https://ebookmass.com/product/song-for-a-cowboy-sasha-summers-4/

ebookmass.com

Lady Clementine Marie Benedict

https://ebookmass.com/product/lady-clementine-marie-benedict-3/

ebookmass.com

Holiness in Jewish thought First Edition Mittleman

https://ebookmass.com/product/holiness-in-jewish-thought-firstedition-mittleman/

ebookmass.com

Understanding and Applying Medical Anthropology 3rd Edition u2013 Ebook PDF Version

https://ebookmass.com/product/understanding-and-applying-medicalanthropology-3rd-edition-ebook-pdf-version/

ebookmass.com

The Rise of Smart Cities : Advanced Structural Sensing and Monitoring Systems Amir Alavi

https://ebookmass.com/product/the-rise-of-smart-cities-advancedstructural-sensing-and-monitoring-systems-amir-alavi/

ebookmass.com

Network security essentials: applications and standards William Stallings

https://ebookmass.com/product/network-security-essentialsapplications-and-standards-william-stallings/

ebookmass.com

Nutritional Epidemiology (Monographs in and Biostatistics)

3rd Edition – Ebook PDF Version

https://ebookmass.com/product/nutritional-epidemiology-monographs-inand-biostatistics-3rd-edition-ebook-pdf-version/

ebookmass.com

MassTransportin MagmaticSystems

Thispageintentionallyleftblank

MassTransportin MagmaticSystems

BjornO.Mysen

GeophysicalLaboratory, CarnegieInstitutionofWashington, Washington,DC,UnitedStates

Radarweg29,POBox211,1000AEAmsterdam,Netherlands

TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright © 2023ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicor mechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem,without permissioninwritingfromthepublisher.Detailsonhowtoseekpermission,furtherinformationaboutthe Publisher’spermissionspoliciesandourarrangementswithorganizationssuchastheCopyrightClearance CenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher (otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthis fieldareconstantlychanging.Asnewresearchandexperiencebroadenour understanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecome necessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusing anyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationor methodstheyshouldbemindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhomthey haveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeany liabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceor otherwise,orfromanyuseoroperationofanymethods,products,instructions,orideascontainedinthe materialherein.

ISBN:978-0-12-821201-1

ForinformationonallElsevierpublicationsvisitourwebsite at https://www.elsevier.com/books-and-journals

Publisher: CandiceJanco

AcquisitionsEditor: AmyShapiro

EditorialProjectManager: ChrisHockaday

ProductionProjectManager: SreejithViswanathan

CoverDesigner: MatthewLimbert

TypesetbyTNQTechnologies

2.1

2.2 Meltingintervalofmantleperidotitewithoutvolatiles...........................................53 2.2.1Degreeofmelting...........................................................................................56

2.2.2Meltcompositioninthemeltinginterval......................................................60

2.2.3Uppermantlemagmagenesiswithoutvolatiles............................................63

2.3 Meltingintervalofmantleperidotitewithvolatiles................................................65

2.3.1Degreeofmelting:Peridotite H2O..............................................................65

2.3.2Meltcompositionintheperidotite H2Omeltinginterval..........................67

2.3.3UppermantlemagmagenesiswithH2O.......................................................72

2.3.4Degreeofmelting:Peridotite

2.3.5Meltcompositionintheperidotite

2.3.6Meltingofperidotitewithhalogens,CO2 and/orH2O..................................83

2.3.7Peridotite-CO2 meltinganduppermantlemagmagenesis...........................83

2.3.8Peridotite C O Hmeltingandmeltcompositions....................................84

2.4 Meltingintervalofbasalt..........................................................................................87

2.4.1Redoxvariationsatambientpressure............................................................87

2.4.2High-pressuremeltingwithoutvolatiles........................................................89

2.4.3Meltingofbasaltwithvolatiles.....................................................................90

2.5 Meltingintervalofandesite......................................................................................96

2.6 Meltingintervalofgranite......................................................................................100

2.6.1H2O-undersaturatedmelting.........................................................................102

2.6.2Meltingwithvariableredoxconditions.......................................................102

2.7 Concludingremarks................................................................................................103

References.......................................................................................................................104

CHAPTER3Elementdistributionduringmeltingandcrystallization .................

3.1 Introduction.............................................................................................................113

3.2 Principles.................................................................................................................113

3.3 Traceelementsubstitutioninmeltsandminerals..................................................115

3.3.1Traceelementsubstitutioninminerals........................................................116

3.3.2Traceelementsubstitutioninmelts.............................................................120

3.4 Elementpartitioning,intensive,andextensivevariables.......................................130

3.4.1Olivine-melt..................................................................................................130

3.4.2Plagioclase-melt...........................................................................................141

3.4.3Clinopyroxene-melt......................................................................................154

3.4.4Orthopyroxene-melt......................................................................................171

3.4.5Garnet-melt...................................................................................................182

3.4.6Amphibole-melt............................................................................................189

3.4.7Othermineral-meltpairs..............................................................................199

3.5 Mineral-meltpartitioningandigneousprocesses..................................................200

3.5.1Meltingmodels.............................................................................................200

3.5.2Variablepartitioncoefficients......................................................................200

3.6 Concludingremarks................................................................................................201 References.......................................................................................................................202

CHAPTER4Energeticsofmeltsandmeltinginmagmaticsystems

4.1 Introduction.............................................................................................................213

4.2 Energeticsofmelting..............................................................................................214

4.2.1Thermodynamicsofpremelting...................................................................214

4.2.2Enthalpyandentropyoffusion....................................................................225

4.3 Heatcontent,heatcapacity,andentropyofsilicatemeltsandmagma................233

4.3.1Heatcapacityandentropyofmagmaticliquids..........................................237

4.3.2Heatcapacity,entropy,andsilicatemeltpolymerizationinmetal oxide-SiO2 systems......................................................................................243

4.3.3HeatcapacityandentropyinAl-bearingsystems.......................................246

4.3.4HeatcapacityandentropyinFe-andTi-bearingmeltsystems..................247

4.3.5Thermodynamicsofmixingandsolution....................................................252

4.4 Thermodynamicsofmeltsandliquidusphaserelations........................................262

4.5 Concludingremarks................................................................................................266

CHAPTER5Structureofmagmaticliquids ..........................................................

5.1 Introduction.............................................................................................................275

5.2 Glassversusmeltandglasstransition....................................................................275

5.3 Silicatemeltandglassstructure.............................................................................278

5.3.1Degreeofsilicatepolymerization, NBO/T...................................................279

5.3.2Si O Albondingandcharge-balanceoftetrahedrally coordinatedAl3þ ..........................................................................................287

5.3.3Silicatespeciation(Qn-species)....................................................................292

5.3.4Al3þ substitutionforSi4þ inmagmaticsystems.........................................304

5.3.5Othertetrahedrallycoordinatedcations(P5þ andTi4þ)..............................309

5.4 Ironinmagmaticliquids.........................................................................................310

5.4.1RedoxrelationsofFe3þ andFe2þ ...............................................................311

5.4.2Structuralroleofironinmagmaticsystems................................................315

5.4.3Magmapropertiesandredoxratioofiron...................................................317

5.5 Concludingremarks................................................................................................318

CHAPTER6Structureandpropertiesoffluids

6.1 Introduction.............................................................................................................331

6.2 Fluid/meltpartitioningofvolatilecomponents......................................................332

6.2.1Fluid/meltpartitioningofH2O.....................................................................333

6.2.2Fluid/meltpartitioningofCO2 .....................................................................334

6.2.3Fluid/meltpartitioningofchlorine...............................................................336

6.2.4Fluid/meltpartitioningoffluorine...............................................................344

6.2.5Fluid/meltpartitioningofbromineandiodine............................................345

6.2.6Fluid/meltpartitioningofsulfur...................................................................347

6.3 StructureandpropertiesofH2Oinfluids..............................................................349

6.3.1StructureofliquidandsupercriticalH2O....................................................351

6.3.2PropertiesofliquidandsupercriticalH2O..................................................363

6.3.3H2O NaCl....................................................................................................375

6.3.4H2O C O H..............................................................................................383

6.3.5H2O

6.4 Solubilitybehaviorinfluid:H2O SiO2 .................................................................393

6.4.1SolubilityofSiO2 inH2O............................................................................393

6.4.2SolubilitymechanismofSiO2 inH2O.........................................................400

6.4.3PropertiesofH2O SiO2 fluid......................................................................406

6.4.4H2O SiO2 NaCl.........................................................................................410

6.5 Solubilitybehaviorinfluid:H2O SiO2 MgO.....................................................413

6.5.1SolubilityofMgO SiO2 inH2O.................................................................413

6.5.2SolubilitymechanismofMgO SiO2 inH2O.............................................415

6.5.3MgO SiO2 solubilityinsalinesolutions....................................................418

6.5.4PropertiesofMgO SiO2 H2Ofluid..........................................................421

6.6 Solubilitybehaviorinfluid:H2O Al2O3( NaCl KOH SiO2)..........................422

6.6.1Al2O3 H2Owithandwithouthalogens......................................................422

6.6.2H2O Al2O3-alkalialuminosilicatewithandwithouthalogens..................426

6.7 Minorandtraceelementsinaqueousfluid............................................................433

6.7.1Tisolubility..................................................................................................434

6.7.2Zrsolubility..................................................................................................436

6.7.3Salinityofaqueoussolutionsandtraceelementsolubility.........................440

6.7.4Sulfurinaqueoussolutionsandtraceelementsolubility............................450

6.8 Concludingremarks................................................................................................463

H2Osolubility.........................................................................................................485

7.4.1H2Osolubilityinsimplesystemmelts........................................................486

7.4.2Miscibilitybetweenhydrousmeltsandaqueousfluids...............................493

7.4.3Watersolubilityandmixedvolatiles...........................................................493

7.4.4Watersolubilityinnaturalmagmaticliquids..............................................496

7.4.5H2Osolubilitymodelsfornaturalmagma...................................................496

7.4.6Watersolutionmechanismsinmagma........................................................501

7.4.7H2Oinmagmaticliquids..............................................................................511

7.4.8Propertiesandprocessesofhydrousmagmaticliquids...............................513

7.5 Concludingremarks................................................................................................525

8.2.1SolubilityofCO2 inmagma........................................................................536

8.2.2SolubilitymechanismsofCO2 inmagma...................................................539

8.2.3Oxidizedcarbon(CO2)inmagmaticprocesses...........................................542

8.3 Reducedcarbon(CH4,CO,andcarbide)...............................................................548

8.3.1Carbonmonoxide(CO)................................................................................550

8.3.2Carbide(C)...................................................................................................551

8.3.3Methane(CH4).............................................................................................551

8.3.4MagmapropertiesandCH4-inducedmeltdepolymerization......................554

8.4 Sulfursolubility......................................................................................................555

8.4.1Oxidizedsulfur(SO2 andSO3)....................................................................558

8.4.2Reducedsulfur(S2 )....................................................................................561

8.5 Nitrogensolubilityandsolutionmechanisms........................................................567

8.5.1Oxidizednitrogen.........................................................................................568

8.5.2Reducednitrogen..........................................................................................569

8.5.3NitrogenintheEarth’sinterior....................................................................572

8.6 Hydrogensolubilityandsolutionmechanisms......................................................573

8.6.1HydrogenintheEarth’smantle...................................................................574

8.7 Halogensolubilityandsolutionmechanisms.........................................................575

8.7.1Fluorinesolubility........................................................................................575

8.7.2Fluorinesolutionmechanisms......................................................................576

8.7.3Chlorinesolubility........................................................................................579

8.7.4Chlorinesolutionmechanisms.....................................................................582

8.7.5Bromineandiodine......................................................................................582

8.7.6Halogensinmagma......................................................................................582

8.8 Noblegassolubilityandsolutionmechanisms......................................................585

8.8.1Noblegasesinfullypolymerizedsilicatemeltstructure............................585

8.8.2Noblegasesindepolymerizedsilicatemeltstructure.................................588

8.8.3Noblegasesinmagmaticsystems...............................................................589

8.9 Concludingremarks................................................................................................590

Relationshipsamongtransportproperties..............................................................606

9.3 Viscosityofmagmaticliquids................................................................................607

9.3.1Magmaviscosity,composition,andtemperature........................................608

9.3.2Viscosityandstructureofmagmaticliquids...............................................614

9.3.3Viscosity,ironcontent,andFe3þ/SFeofmagmaticliquids.......................617

9.3.4Effectofpressureonviscosityofmagma...................................................619

9.3.5Viscosityandvolatilesinmagmaticliquids................................................626

9.4 Viscosityofmodelsystemsilicatemelts...............................................................633

9.4.1Viscosityofmeltsandglassesinthe M nþ 2=n O SiO2 system......................634

9.4.2Viscosityofmeltsandglassesinthe M nþ 2=n O Al2 O3 SiO2 system.......651

9.4.3Viscosityofiron-bearingsilicatemelts.......................................................670

9.5 Modelingmeltviscosity.........................................................................................673

9.6

9.6.1Diffusion,composition,andtemperature.....................................................677

9.6.2Diffusion,composition,andpressure..........................................................684

9.6.3Volatilesanddiffusion..................................................................................694

9.7 Electricalconductivity............................................................................................717

9.7.1Electricalconductivity,composition,andtemperature...............................719

9.7.2Electricalconductivityandpressure............................................................724

9.7.3Electricalconductivityandvolatiles............................................................725

CHAPTER10Equation-of-stateofmagmaticliquids

10.2 Equation-of-state(EOS)ofglassversusmelt......................................................757

10.4 Equation-of-stateofmagmaticliquids.................................................................766

ofmagmaticliquids...............784

10.5 Equation-of-stateofsimplesystemmodelliquids...............................................799

EOS ofmeltsinthe M

10.5.3 EOS ofmeltswithTi4þ andFe3þ ............................................................807

10.6 Concludingremarks..............................................................................................810 References.......................................................................................................................811

CHAPTER11Masstransport

11.1 Introduction...........................................................................................................821

11.2 Porosity,permeability,andtransport....................................................................822

11.2.1Porosityandpermeabilityofaqueousfluidsandsilicatemelts..............822

11.2.2Equilibriumtextureandwettingangle....................................................826

11.2.3DihedralanglesandH2Odistributionintheearth..................................841

11.2.4Wettinganglesandpartialmelts..............................................................849

11.2.5Melt/mineraldihedralangle,porosity,andproperties.............................854

11.2.6Permeabilityandporosityincarbonateandsulfide-bearingsilicate systems......................................................................................................859

11.3 Concludingremarks..............................................................................................865 References.......................................................................................................................866

Preface

TheformationandevolutionoftheEarthandplanetsdependontransferofmassandenergy.Magma andfluidareintegralpartsofthetransportprocessesthatgovernthemassandenergytransfer.Mass transportpropertydataarecentraltodescribethoseprocesses.Masstransportisaccomplishedby transferoffluidsandmagmaandtypicallytakesplaceathightemperatureandpressure.Masstransport typicallyoccursalongtemperatureandpressuregradients,whichmeansthatenergytransportalsoassociateswithmasstransport,althoughinthisbook,energytransferisnotexplicitlydiscussed.A structure-basedunderstandingofhowtransportpropertiesreflectchangesincomposition,temperature, andpressuregreatlyenhancesourabilitytousepropertydatatocharacterizetransportandtransfer processes.Thisknowledgenotonlyishelpfulforthematerialscharacterizationneededtodescribe masstransportprocessesinnature,italsocontributestotheknowledgebaseofadjoiningscientificdisciplinesincludingglassandmaterialsscience.Thefocusofthisbookistodescribeanddiscusstransportpropertiesofmagmatogetherwithaspectsoftransportpropertiesoffluids,andtoemploysuch datatocharacterizemasstransportintheinteriorofEarth,itsmoon,andtheterrestrialplanets.

TheprincipalaimofthisBook,therefore,istodescribemasstransportbymagmaandfluids,what andhowmeltandfluidpropertiesgovernthoseprocesses,andhowunderstandingofthestructureof thosetransportagents,and,therefore,theirchemicalcomposition,temperature,andpressure,canbe usedtocharacterizetheproperties.Linkageoftransportpropertiestostructureofthetransportagents isimportantbecausethisunderstandingprovidesabasisforquantitativemodelingofproperty behaviorwithoutotherwisemorecomprehensiveandextensiveexperimentalstudyofeachandevery compositionandconditions.Thelattereffortsrequiremorehumanandfinancialresourcesthanoften areavailable.

Themainfocusofthisbookisontransportbymagmawithlesseremphasisonmasstransferby fluids.Someofthereasonsforthisselectionisthatfluidpropertydatasuchasdensityandviscosity, forexample,differgreatlyfromthoseofsurroundingcrystallinematerialstotheextentthatvariations ofthosepropertiesoffluidsdonotimpactgreatlyfluid-mediatedmasstransport.Ofcourse,fluidcompositions,pressures,andtemperaturesdo.Thesepropertyvariations,therefore,arethesubjectofamajorchapterofthebook,buthavenotbeenisolatedintoindividualchaptersaswasdoneforsilicatemelt andmagmaproperties.Thevariablescausingpetrogeneticallyimportantchangesinpropertiesof fluidsalsoaffectmigrationefficiency.ThesevariableshavebeendiscussedinthelastChapterof theBook(Chapter11).ThatChapteriscenteredonmasstransferbyfluidsandmagmathroughcrystallinerockmatrixtogetherwithanumberofexamplesfromnaturalobservationsthatcanbe,orhave been,interpretedintermsofthepassageofmeltsorfluidsinarockmatrix.

Thetransportpropertiesofmagmaticliquids,oftensubstantiatedwithinformationfromcompositionallysimplermodelsystem,arethemainfocusofthisBook.Forthispurpose,theBookisorganized inapetrogeneticallyevolutionarysensebeginningwithmeltingandcrystallizationofrock-forming materialstoformandevolvemagma(Chapters1and2).Withinthisevolution,whichleadstoa widevarietyofmagmacompositionsandgreatlyvariabletransportproperties,wefollowthemelting andcrystallizationbehaviorfromthemostprimitivemagmacreatedbypartialmeltingofperidotitic parentalrocksintheEarth’smantletoafinishwheremeltingandcrystallizationofthemostevolved magmaticliquids,suchasthoseofrhyoliteandgranitecomposition,arepresented.Rolesofvolatiles, inparticularH2OandCO2,wereincorporatedasappropriate.Thecompositionalvariationsofthe

magmaticliquidsinthoseenvironmentscancausetheirtransportpropertiestovaryovermanyorders ofmagnitude.

Elementdistributionamongmelts,fluids,andminerals,andhowthisdistributionisaffectedby theircompositionandstructure,iscentraltocharacterizationofmasstransportintheEarth.Bulk compositionofmagmaandcrystallinemineralstogetherwithelement,oxide,andisotopicsolubility inandpartitioningbetweenthesephasesaresensitivetotemperature,pressure,andredoxconditionsof theformationandevolutionofmagmaticliquidsandtheenvironmentinwhichpartitioningoccurs. Elementpartitioningisdescribedanddiscussedin Chapter3,whichfollownaturally,therefore, fromphaseequilibriummeltingandcrystallizationbehaviorpresentedinChapters1and2.Thefocus of Chapter4 isthermodynamicdataneededforcharacterizationofthepropertiesandprocesses discussedin Chapters1 3.Thischapterhighlightsexistingthermodynamicdataandhowsuch informationaidsourunderstandingofthebehaviorofmagmaticsystems.Thisincludesmeltingand crystallizationbehavior,elementpartitioning,andhowthermodynamicdatacanbeemployedto characterizetransportproperties(viscosity,diffusion,andelectricalconductivity)ofsilicatemelts andmagmaticliquids.Thermodynamics,therefore,notonlyhelpustounderstandmelting,crystallization,andelementdistributionbehavior,suchinformationcanbeemployeddirectlytomodel transportpropertiesofmagma.Ofcourse,ultimately,thermodynamicdataandothermeltandfluid propertydataaremanifestationsofthestructureofthematerialsofinterest.

Structuralinformationformsthebasis,therefore,forcharacterizationoftransportpropertiesof magmaticliquidsandoffluids.Structuraldataandhowthosedataarelinkedtotransportandassociatedpropertiessuchasdescribedin Chapters1 4,obtainedforthemostpartfromexperimental studies,arecontainedin Chapters5 8.Thosefourchaptersareseparatedintoabasicdescription ofstructuralprinciplesnecessarytodescribesilicatemeltstructureandcanbefoundin Chapter5 formeltandin Chapter6 forfluidstructure.

In Chapter6,inadditiontostructurediscussions,otherpropertiesoffluids,includingpartitioning ofthefluidcomponents(H2O,CO2,CH4,H2,halogen-,N-,andS-containingfluidspecies,both reducedandoxidized)betweenfluidsandmeltsfillouttheinitialsectionsofthediscussion.Thisis followedbydescriptionofsolubilitybehaviorofmajor,minor,andtracecompositionsinfluidsof variousrelevantcompositions.Thesolubilityandsolutionmechanismsofvolatilesinmagmaticliquidsandmodelsimple-systemsilicatemeltsarediscussedin Chapters7and8.Thispresentation wasintendedtofollownaturallyfromthestructuredataprovidedin Chapters5and6.Manyfacets ofmeltandfluidstructureaffecttheirtransportproperties,someofwhichalsocanbefoundinthese chapters.

Theremainingchapters(Chapters9 11),focusdirectlyonhowmasstransport(propertiesandprocessesgovernedbyproperties)bymagmaandfluidandofmagma-andfluid-bearingsystemsdepends onintensiveandextensiveparameters.Transportpropertiessuchasviscosity,diffusion,andconductivitytogetherwithhowthesemaybelinkedtogether,canbefoundin Chapter9.Thischapteralso offersseveralexamplesofhowtransportpropertiesaffectmasstransportprocessesintheEarthand terrestrialplanets.

Masstransportinplanetaryinteriorsisaffectedcriticallybytheequation-of-state(EOS)of magmaticliquidsasdiscussedinChapter10.TheEOSinformationincludesdensity,volumes,thermal expansion,andcompressibilityofchemicallycomplexmagmaticliquids.Similardatareportedforthe simplermodelsystemareemployedforamorethoroughunderstandingofEOSofmagmaand(fluid) athightemperatureandpressure.

Thelastchapter(Chapter11)dealswithactualmovementoffluidsandmagmathroughrock matricesatpressuresandtemperaturesexceedingthoseabovewhichopencrackscanbesupported bytherockstrength.Characterizationofthesepropertiesandhowtheyareaffectedbyintensive andextensiveparametersarecriticalforcharacterizationofmasstransportinplanetaryinteriors.In thischapter,therenotonlyisadiscussionofsomeofthemainvariablesgoverningfluidandmelt migration,Chapter11alsoincludesassessmentofwhichmeltandfluidpropertiescanaffectmovementofthoseliquidsthroughacrystallinematrix.Moreover,thischaptercontainssummariesof howliquiddistributionandcompositioninacrystallinematrixaffectsgeophysicallyandgeochemicallyimportantpropertiesofrocksoftenwithsmallvolumefractionsofmagmaorfluid,andhow suchknowledgehelpsinterpretationofnaturalgeochemicalandgeophysicaldata.

Thecreationofabooksuchasthisrequiresinputfromawiderangeofspecialties,manyofwhich mightnotalwayshavebeeninthecenteroftheauthor’sresearchactivities.Ithasbeenveryimportant, therefore,togarnerinputfromfriendsandcolleaguesand,perhaps,mostimportantofall,accessand helpinaccessingpublishedliteraturefromawidevarietyofscientificdisciplinesandsubdisciplines. Theassistancefromourlibraryanditstwomembers,ShaunHardyandM.O.O’Donnell,has beeninvaluableinthisregard.Thisbookcouldnothavebeenproducedwithouttheirexceptional professionalism,efficiency,andcheerfulassistance.Thisisparticularlysoasthisbookwaswritten whiletheCOVID-19pandemicwasraginghereandelsewhereintheworld.Hence,muchofthe workwascarriedoutelectronicallybecauseperson-to-personcontactwasdifficult.Moreover, COVID-19-relatedtechnicalproblemssuchas,forexample,productionofgraphicswereovercome thanksinnolittleparttotheassistanceandsupportofmywife,Susana,whoassistedinthegeneration ofmanyofthediagramsusedinthetext.

Thereis,ofcourse,muchmoredataandunderstandingneededbeforewecanclaimanunderstandingofalltransportprocessesgoverningthemassandenergytransferassociatedwiththeformationand evolutionofEarth,itsmoon,andtheterrestrialplanets.Ihope,however,thattheinformationthatis offeredinthisbookwillhelppointingnotonlytowhatwebelieveweknow,butalso,andperhaps moreimportantly,whatwedonotknow.Itprovides,therefore,anoverviewofcurrentunderstanding ofmasstransportinpetrogeneticprocesses.Amajoraimalsoistodevelopsuggestionsforwhere futureresearchactivitiesmightbethemostuseful.Thoseobjectivescanbereachednotbywhat maybethefancyoftheday,butwithconcertedandintegratedeffortsandinputsfromnaturalobservations,fromsystematiclaboratoryexperiments,andbynumericmodelingandintegration.

Thispageintentionallyleftblank

MeltingintheEarth’sinterior: solidusandliquidusrelations 1

1.1Introduction

MasstransportintheEarthandterrestrialplanetsisbymagma(silicatemelts)andbyfluids compositionallyinthesystemC O H N S.Generationofmagmaisthefocusofthischapter.

Magmaexistsfromambientpressureandhightemperaturetothepressuresandtemperatures correspondingtothecore/mantleboundary(Labrosseetal.,2007; Andraultetal.,2014; Frenchand Romanowicz,2015).Magmacan,therefore,serveasamass(andenergy)transportmedium throughoutthepressurerangeofthesilicateEarth(136GPa).Detailsofmagmatransportare presentedinChapter9.

Inthischapter,wewilldiscusshowtogeneratemagmaintheEarthwithafocusonthevariables thatgovernthemelting(solidus)andcrystallization(liquidus)temperature/pressurecoordinates.The phaserelationsthatdescribeequilibriabetweenmineralsandmeltthetemperatureintervalbetween initialmeltingandcompletemeltingwillbediscussedin Chapter2.Here,afterabriefdiscussionof premeltingphenomena,wewilldescribetherelationshipsatornearthesolidusandtheliquidusofthe dominantsilicaterocksintheEarth.

1.2Premelting

Aphenomenonknownas“premelting”isdetectedbydiscontinuitiesinheatcapacityversustemperaturetrajectories(Fig.1.1).Todatepremeltinghasbeenobservedonlyinlaboratoryexperiments usingendmemberminerals(RichetandFiquet,1991; Courtialetal.,2000; Richetetal.,1996, 1998). Thelackofinformationfromchemicallycomplexnaturalsystemsmaysimplybebecausetherelevant experimentshavenotbeencarriedout.

Macroscopically,premeltingisrepresentedbyarapidincreaseoftheheatcapacityasthemelting temperatureofacrystalisapproached(Fig.1.1).Theheatcapacitydiscontinuitybeginsfrom80to 250 Cbelowactualmeltingtemperatures.Enthalpyandentropyeffectsrepresentifrom7%to22%of theenthalpiesandentropiesoffusion(RichetandFiquet,1991; Thie ´ blotetal.,1999; Courtialetal., 2000; Nera ´ detal.,2013).

Premeltinghasbeenreportedinsyntheticdiopside,CaMgSi2 O6,togetherwithothersynthetic metasilicates(Richetetal.,1996).Fordiopside,theonsetofpremeltingcoincideswithdiscontinuouschangesinpropertiessuchasCadiffusion(DimanovandIngrin,1995 )andelectricalconductivity(Bouhifdetal.,2002 ).Inthiscase,premeltinghasbeeninferredtobeareflectionof

FIGURE1.1

Meanheatcapacityofcrystallinediopside(CaMgSi2O6)andanorthite(CaAl2Si2O8)asafunctionof temperature.Shadedregionshowstemperatureintervalofactualtemperaturerangeofpremelting.

Modifiedafter Richetetal.(1996)

temperature-dependent(Ca,Mg)structuraldisord erasthestructuralmechanismforthepremelting phenomenon(Richetetal.,1996).Inothermetasilicates,incipie ntbreakupofthesilicatechain structurehasbeenproposed(Richetetal.,1998 ; Nesbittetal.,2017).Foraluminosilicatecrystals suchasanorthite(CaAl2Si2 O8),(Al,Si)disorderingaccountsforthepremeltingeffect( Richetetal., 1994 ).Possibleeffectsofsolidsolutionssuchasdiopside-hedenbergitean danorthite-albiteon premeltinghavenotbeenaddressedasyet.

1.3Meltingofperidotite

PartialmeltingofperidotiteintheEarth’smantleistheprincipalsourceofprimarymagma.Following melting,magmaaggregatesandascendstowardthesurfaceoftheEartheithertoformshallow-depth magmachambers,perhapsgovernedbytheprincipleofneutralbuoyancy(Ryan,1987),wherecrystal fractionationcanalterthemagmacomposition,ormagmaascendsdirectlyascenttoorneartheEarth’s surface.

Peridotitemeltingmaytakeplaceunderessentiallyvolatile-freeconditions(e.g., Kushiro,1969; Falloonetal.,1988; ZhangandHerzberg,1994; Walter,1998)oritoccursinthepresenceofvolatiles suchasH2O(Groveetal.,2006; KawamotoandHolloway,1997),CO2 (CanilandScarfe,1990; Brey etal.,2008),ormixturesofCO2 andH2O(MysenandBoettcher1975a,b; Wyllie,1977; Ulmerand Sweeney,2002).Underredoxconditionsequaltoormorereducingthanthatcorrespondingtothe iron-wu ¨ stite(IW)oxygenbuffer1 reducedspeciessuchasH2 andCH4 canalsoplayimportantroles

1Inthisandfollowingchapters,oxygenfugacityisoftenreferredtowithreferencetocommonoxygenbuffers.TheseareHM (hematite-magnetite),NNO(nickel-nickeloxide),QFM(quartz-fayalite-magnetite),MW(magnetite-wustite)andIW(ironwustite).

duringmelting(EgglerandBaker,1982; LuthandBoettcher,1986; TaylorandGreen,1988).Such conditionslikelyweremorecommonduringtheEarth’searlyhistory.

1.3.1Peridotitemeltingwithoutvolatiles

NotwithstandingthecommonoccurrenceofmantlemeltingwithvolatilessuchaseitherH2OorCO2, orboth,meltingofaperidotitelithospherealsotakesplacewithoutvolatiles(Herzbergetal.,1990; HiroseandKushiro,1993; Asimowetal.,2001).Earlyexperimentalstudiesonperidotitemelting usingnaturalperidotitestartingmaterialwerethoseof GreenandRingwood(1967) and Kushiroetal. (1968).Ascanbeseenin Fig.1.2,theambientpressuresolidusofatypicalperidotiteisnear1150 C. Thesolidustemperatureincreaseswithincreasingpressureatarateofabout150 C/GPa.Within experimentalerrorofthe Kushiroetal.(1968) study,thesoliduscurveislinear.However,giventhe changeofsolidusmineralassemblagefromolivine þ orthopyroxene þ clinopyroxene þ spinelto olivine þ orthopyroxene þ clinopyroxene þ garnetatpressuresbetween2and3GPa,onewould expectachangeoftheslopeofthesoliduscurve.FromtheClaussius-Clapeyronexpression

thevolumechange, DV,willchangeasthemineralassemblagechangeswithincreasingpressure.Such avolumechangewouldbeexpectednear3GPaatthesolidustemperatureshownin Fig.1.2 asthisis approximatelywherethegarnet-to-spineltransitionislocated.Evidently,thiskinkiswithin

FIGURE1.2

Pressure/temperatureofperidotitemelting(solidus)intheabsenceofvolatiles.

Modifiedafter Kushiroetal.(1968)

ol: olivine

cpx: clinopyroxene

gt: garnet

b: β-Mg SiO

g: γ-Mg SiO

gt: garnet

MgPv: Mg-perovskite

CaPv: Ca-pervskite

Mw: magnesiowüstite

FIGURE1.3

Pressure/temperaturetrajectoryofperidotitemeltingtopressuresneartheinterfaceofthetransitionzoneto thelowermantle.

Modifiedafter HerzbergandZhang(1996)

experimentalerrorintheearlydatashownin Fig.1.2.Inmorerecentexperimentalstudies,thereare distinctivekinksofthesoliduscurveasaphasetransformationisencounteredalthoughnokinksin thesoliduswerereportedwherethespinel-to-garnetislocated(Herzbergetal.,2000;seealso Fig.1.3).Theresultssummarizedin Fig.1.3 do,however,showkinksofthesolidusnear15,20,and 23GPa.Thesekinksandchangeinsolidusslopereflecttransformationfromolivineto b-spinelphase (b-Mg2SiO4),Ca-perovskite(CaSiO3),tomagnesiowustite þ Mg-perovskite(MgOandMgSiO3). Obviously,thesechangesinphaseassemblageswillalsoaffectthecompositionofthemeltsonthe solidus.Theselatterissueswillbediscussedindetailin Chapter2

Althoughthereislittledisagreementastothegeneralnatureofsolidusphaseassemblagesof peridotiteintheEarth’smantle,detailsofthesephaseassemblagesaswellasthepressure/temperature coordinatesofthesoliduscurveandofthephasechangesremainopentosomediscussion(see,for example,areviewofthosedataby Herzbergetal.,2000).Someofthedifferences,seen,forexample, inthevarioussolidustemperaturesreportedintheliterature(Fig.1.4)aretheresultofdifferent peridotitecompositions.

Themostobviouscompositionaleffectontheperidotitesolidustemperatureisfromchangesinthe Mg/(Mg þ Fe)ratiooftheperidotite.Thisratiorangesfromnear0.95tolessthan0.85inmantle peridotite.Fromacompilationof3GPadatafromvariousexperimentallydeterminedperidotite solidustemperatures, Hirschmann(2000) foundtheretobea90 100 Crangeintemperaturesasa functionofthebulkmeltMg/(Mg þ Fe)oftheperidotite(Fig.1.5).Thiseffectisnotsurprisinggiven therelationshipbetweenMg/(Mg þ Fe)andsolidustemperaturesoftheperidotitemineralphases (olivine,pyroxenes,spinel,andgarnet).TheMg/(Mg þ Fe)ratioalsoaffectsthepressureofthespinelto-garnettransformationgarnetontheperidotitesolidus(MysenandBoettcher,1975a).

Anothercompositionvariableaffectingsolidustemperaturesofterrestrialmantleperidotiteisthe alkalicontent(Na þ K)(Fig.1.6).Thisprobablyhappensbecausealkalielementsareincompatiblein peridotitemineralassemblagesand,therefore,entersthemeltphasealmostexclusively,atleastunder uppermantleconditions.IncreasingNaandK,orboth,resultsinsolidustemperaturedepression.

FIGURE1.4

HiroseandKushiro[1993]

Robinsonetal.[1998] BertkaandHolloway[1994]

Pressure/temperaturetrajectoriesofvariousperidotitesolidiiintheabsenceofvolatiles.

Modifiedafter Herzbergetal.(2000) withthesourcesofindividualcurvesindicatedonindividualsolidii.

FIGURE1.5

Solidustemperatureofvolatile-freeperidotiteasafunctionoftheirMg/(Mg þ Fe).

Modifiedafter Hirschmannetal.(2000)

FIGURE1.6

Solidustemperatureofvolatile-freeperidotiteasafunctionoftheirtotalalkalicontent.

Modifiedafter Hirschmannetal.(2000)

Takahashi[1986]

1.3.2Solidusphaseassemblageandpressure

Theperidotitesolidusmineralassemblagegovernsthecompositionofinitialmelts.Thisassemblage and,therefore,themeltcompositionontheperidotitesolidus,isafunctionofpressure(seealso Chapter2 fordiscussionofmeltingandcrystallizationmineralassemblages).Uptopressuresnear 15GPa,olivine,orthopyroxene,clinopyroxene,andoneormorealuminousphases(plagioclase, spinel,andgarnet)formthesolidusmineralassemblage.Atpressuresbelowapproximately1GPa, plagioclaseistheprincipalaluminousphaseandinitialmeltissimilartomidoceanridgebasalt(Yoder andTilley,1962; Presnalletal.,2002).Fortypicalterrestrialperidotite,aluminousspinelisonthe solidusfromnear1GPatosomewherebetween2and3GPaabovewhichpressuregarnetbecomesthe aluminousphaseonthesolidusofvolatile-freeperidotite.Garnetandaluminousspinelcancoexist overapressurerangeuptoasmuchas1.5GPaforthemostFe-richperidotites(BertkaandHolloway, 1994; Walter,1998; Groveetal.,2013).Thereisalsoapressurerangebetweenabout1and1.5GPa wherespinelandplagioclasecoexist.Inthispressurerange,plagioclasebecomesincreasingly anorthite-richaspressureincreasesuntiltheplagioclaseendmember,anorthite,finallydisappearsvia themeltingreaction(Presnalletal.,2002):

olivine þ anorthite ¼ orthopyroxene þ clinopyroxene þ spinel þ melt.(1.2)

Atpressuresnear2GPa,spinelbeginstoreactouttoformagarnet þ spinelperidotitemineral assemblagewithspinelfinallydisappearingatpressuresnear2.5GPafortypicalperidotitecompositionssuchasillustratedin Fig.1.7.Thepressurerangewithonlygarnetonthesoliduscansometimes beaswideas10GPa,whichcorrespondstothedepthrange w300kmintheuppermantle(Takahashi, 1986; HerzbergandZhang,1996).ThegarnetinthispressurerangenotonlychangesitsMg/ (Mg þ Fe)butalsoitsAl/(Al þ Si)ratiobecausetheconcentrationofthesilicateperovskite componentingarnetincreaseswithincreasingpressure(Irifune,1994; OkamotoandMaruyama, 2004).

FIGURE1.7

Walter(1998)

1.3 Meltingofperidotite

Atpressuresnear15GPa,olivineonboththesolidusandliquidusofperidotitecompositions undergoesatransformationtodenser b-(Mg,Fe)2SiO4 (Feietal.,1992).Thisphaseistransformedto g-(Mg,Fe)2SiO4 withafurtherpressureincreasebeforesilicateperovskiteisstabilizedatpressures near20GPa.Magnesiowustite[(Mg,Fe)O]becomesthesolidusphaseatevenhigherpressures (Irifune,1994; HerzbergandZhang,1996).

Thecompositionoftheinitialmeltattheselatterveryhighpressures(>20GPa)isnotwellknown. Mostlikely,thislackofinformationresultsfromchallengesassociatedwithtemperature-quenchingof meltwithoutcrystallizationofquenchphasesattheseveryhighpressures.

Asnotedearlierinthedescriptionoftheresultsin Fig.1.3,thepressure/temperaturetrajectoryof thesoliduscurveshowsadistinctivechangesorkinksinslopeaschangesinsolidusphaseassemblages takeplace.Thesekinksreflectthevolumechangeofmeltingasnewmineralphasesappearonthe solidus.

1.3.3Peridotitemeltingwithvolatiles

TheprinciplesthatdescribecongruentmeltingofanyrockinthepresenceofH2Ooranyothervolatile intheC O H N Ssystemareillustratedintheisobaric,low-pressureschematicrepresentationin Fig.1.8.Inthisfigure,thesolidustemperature, f-d,isfixedregardlessoftheamountofH2Ointhe systemunlessalltheH2Oisboundinhydratedmineralssuchaschloritephases,amphiboles,mica minerals,orepidote.Thesolidusterminatesat d becausethereisafinitesolubilityofrockmaterialsin theH2Ofluid(seeChapter6).Theliquidustopology,ontheotherhand,dependsontheamountofH2O

H2O fluid

vapor

H2O-saturated liquidus

Rock+melt+H2O vapor

Solidus: Rock+H2O

Subsolidus: Rock+H2O vapor

CompositionH

FIGURE1.8

Schematicrepresentationofrock-H2Ophaserelationsfromtemperaturesabovetheirvaporoustosubsolidus conditionsatlowpressure(seetextfordetaileddiscussion).

presentinthesystem.Foranybulkcompositionbetween f and b,theinitialmeltisat b.Thismeltis saturatedwithH2O.Byincreasingtemperatureabovetheundersaturatedliquidus, a-b,anH2Oundersaturatedmeltwillform.Asdrawnin Fig.1.8,itisassumedthattheH2Osolubilityinthe meltdecreaseswithincreasingtemperature,afeaturecommonlyobservedinexperiments(Holtzetal., 1995;seealso Chapter7 fordiscussionofH2Osolubilitybehaviorinmagmaticliquids).Thismeans thatbyincreasingthetemperatureuntiltheH2O-saturatedliquidus, c-b,isreached,H2Owillexsolve. ItisevenpossibletoreachaconditionbelowtheH2O-saturatedliquiduswherethemeltwillexsolve H2Oandwillalsopartiallycrystallize.Afurtherincreasewilleventuallyreachthevaporous.Details onsolubilityofsilicate(rock)inthevapor(orfluid)canbefoundinChapter6.

1.3.3.1Peridotite-H2O

MeltingofperidotiteinthepresenceofH2Oathighpressuresuchasthedeepcrust,uppermantle,and beyondoccursatlowertemperaturethanmeltingofperidotiteintheabsenceofH2O(Fig.1.9).When thereisexcessH2Ooverthatwhichmaybeboundinhydrousminerals(amphibole,phlogopite,and chlorite,forexample)oriftemperaturesandpressuresareoutsidethestabilityfieldofhydrousphases inaperidotite-H2Osystem(MysenandBoettcher,1975a; Groveetal.,2006; Tilletal.,2012),the isobarichydroussolidustemperatureisthesameregardlessoftotalH2Ocontent.

AsisalwaysthecaseformeltingofrocksinthepresenceofH2O,itssolidustemperaturedecreases fromitscoincidencewithH2O-freemeltingatambientpressuretominimumtemperatureatpressures

FIGURE1.9

Soliduspressure/temperaturetrajectoriesofdifferentperidotitecompositionsinthepresenceofexcessH2O. TheindividualcurvesarefromperidotitewithvaryingMg/(Mg þ Fe)andtotalalkalicontent.

Modifiedafter MysenandBoettcher(1975a) and Groveetal.(2006).Alsoshowninthesolidustrajectoryofvolatile-freeperidotite from Kushiroetal.(1968)

Groveetal.(2006)
anhydrous
peridotite solidus
[Kushiro et al. (1968)
Mysen and Boettcher (1975a)
peridotite-H2

inthe2 4GParange(Fig.1.9).ThecoincidenceatambientpressureoccursbecausetheH2Osolubilityinmagmaatambientpressureisonlyasmallfractionofwt%(see Chapter7)anddoes,therefore, havenodiscernibleeffectsonthesolidustemperature.Theexactpressure/temperaturetrajectoryofthe H2O-saturatedsolidusdependsontheparticularbulkcompositionoftheperidotite. Mysenand Boettcher(1975a) found,forexample,thatdependingofMg/(Mg þ Fe)ratioandalkalicontent,the hydrousperidotitetemperaturecanvarybyasmuchas150 Catpressuresnear3GPa(Fig.1.9).

Thetemperature/pressuretrajectoryofthehydrousperidotitedifferssignificantlyamongvarious publishedexperimentalstudies.Attheminimumtemperaturebetween2and4GPa,solidustemperatureshavebeenreportedtobefrom1000 C(HiroseandKawamoto,1995; KawamotoandHolloway, 1997)tolessthan800 C(MysenandBoettcher,1975a; Groveetal.,2006; Tilletal.,2012).The reasonforsuchalargevariationinexperimentallydeterminedsolidustemperaturesisnotclear.Itis evenfurtherpuzzlinginlightofthefactthatforotherrocktypesrangingfrombasalt/gabbro þ H2Oto granite/rhyolite þ H2O,thereislittledisagreementbetweenthepublishedexperimentaldata(see discussionofthoseexperimentaldatabelow).A w200 Cdifferenceinreportedsolidustemperatures forhydrousperidotiteisimportantasthisaffectsthedepthinthemantlewheremeltingofhydrous peridotitemaytakeplacebyperhaps25kmdependingonthegeotherm.

Themineralassemblagesonthehydrousperidotitesolidusinthecontinentallithospherearethe sameasforanhydrousperidotiteexceptthatthepressuresatwhichthetransformationofplagioclaseto spinelandspinel-to-garnetoccursontheH2O-saturatedsolidusislowerbecausethepressuresand temperaturesofthehydroussolidusislowerthanforanhydrousperidotiteandthespinel-to-garnet transformationasapositivedT/dPslope(see Fig.1.9,forexample).Garnetappearsnearandbelow 2GPa,forexample(TaylorandGreen,1988),whereasforanhydrousmelting,garnetontheperidotite solidusappearsabove2.5 3.0GPa(Takahashietal.,1993; Walter,1998).

Thestabilityrelationsofhydrousphasesincontinentallithosphereareprofoundlydifferentfrom theirstabilityrelationsintheperidotitewedgeinsubductionzones.Thisdifferenceisgovernedbythe releaseofhydrousfluidssaturatedinsilicatecomponentsfromthedescendingslabinsubduction zones,whereasnosuchsourceofH2Oandsilicatecomponentscanbefoundinlithosphericmantle. Hydrousphasessuchasamphibole,mica,andchloriteonthehydrousperidotitesoliduswedgein subductionzonescanoccuroverarangeofpressuresandtemperatures(MysenandBoettcher,1975a; Groveetal.,2006; Tilletal.,2012).Duringmeltingofcontinentallithosphere,ontheotherhand,the nearabsenceofH2Ointhemeltingregionresultsinlackofsignificantcontributionofhydrousphases totheperidotitemelting.

Itisgenerallyagreedthatatleasttopressuresnear2GPa,theinitialmeltonthesolidusofhydrous peridotiteisquartznormativeandresemblesandesiticcompositions(Kushiro,1972; Groveetal., 2006).Itislesswellknownhowthatmeltcompositionmaychangeathigherpressures.Itseems reasonabletoassumethatthemeltcompositionsmayeventuallytakeonanolivinenormativecharacter (Condamineetal.,2016).

1.3.3.2Dehydrationontheperidotitesolidus

WheneverthetotalH2Oofhydrousperidotiteiscontainedinhydrousphases,initialmeltinginlimited pressurerangescouldbecontrolledbythedehydrationofthehydrousmineral(s).Thismaybethe situationinthecontinentallithospherewheretheH2Ocontentsareontheorderofhundredsofppm (Jambon,1994).ThisH2Olikelyiscontainedinafewhydrousphasesandinnominallyanhydrous phases.Amongthesehydrousphases,theirdetailedstabilityfielddependsontheperidotite

FIGURE1.10

Exampleofsoliduspressure/temperaturetrajectorywithallH2Oboundinhydrousphases(amphiboleand chlorite)intheirstabilityrangeonthesolidus.

Modifiedafter Fig.1.5:Solidustemperatureofvolatile-freeperidotiteasafunctionoftheirMg/(Mg þ Fe)(Modifiedafter Tilletal. (2012)

composition.Forthe HartandZindler(1986) primitiveperidotiteusedintheexperimentsby Tilletal. (2012),therelationshipsbetweenhydrousphasestabilityanddehydrationmeltingareshownin Fig.1.10

TheMg/(Mg þ Fe)ofmantleperidotiteisintherange0.85 0.94andtotalalkaliconcentrations rangingbetween,0.1and0.9wt%.Arangeinamphibolestabilityoverabout75 Cand0.3 0.4GPa temperatureandpressurerangeistheresult(Fig.1.11).Thealkaliconcentration,whichisimportant fortheamphibolestability(Allenetal.,1975),isuncertainintheperidotitewedgeabovedescending platesinsubductionzonesasdehydrationoftheplatematerialslikelywillreleaseanaqueousfluid enrichedinalkalimetals(Mysen,2002; Manning,2004).

AlkalimetalconcentrationalsoisimportantindefiningmicastabilityfieldasaK-richphasesuch asphengitecanbestabletopressuresnear10GPa,forexample(PoliandSchmidt,1998; Tronnes, 2002).K-richamphiboleshavebeenreportedstabletonear10GPaattemperaturesnearthehydrous peridotitesolidus(SudoandTatsumi,1990; Tronnes,2002).Suchamphibolesandmicasmaynotbe foundintypicaluppermantle,butcanbestableinmetasomatizedperidotitewedgeabovesubducting slabs.Inthedeepermantleofsubductionzones,theH2OcontentlikelyissolowthatallH2Oisbound insuchhydrousphases.Theperidotitesolidusunderthiscircumstancescanthenbegovernedby dehydrationofthesephases(Fig.1.12).

Green [1973]

Mysen and Boettcher (1975a)

FIGURE1.11

Pressure/temperaturetrajectoriesofamphiboledehydrationsolidiofperidotitewithallH2Oboundin amphibolewhenstableonthesolidus.

Modifiedafter Green(1973) and MysenandBoettcher(1975a)

FIGURE1.12

Pressure/temperaturetrajectoryofdehydrationsolidusofperidotitewithK-richteriteandphlogopiteas dehydrationphases.

Modifiedafter Tronnes(2002).H2O-saturatedsoliduswithextrapolationtohighpressurein dashedlines from Mysenand Boettcher(1975a)

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.