Handbook of hydroinformatics: volume iii: water data management best practices saeid eslamian - The

Page 1


https://ebookmass.com/product/handbook-of-hydroinformatics-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Handbook of HydroInformatics: Volume I: Classic SoftComputing Techniques Saeid Eslamian

https://ebookmass.com/product/handbook-of-hydroinformatics-volume-iclassic-soft-computing-techniques-saeid-eslamian/

ebookmass.com

Handbook of HydroInformatics: Volume II: Advanced Machine Learning Techniques Saeid Eslamian

https://ebookmass.com/product/handbook-of-hydroinformatics-volume-iiadvanced-machine-learning-techniques-saeid-eslamian/

ebookmass.com

Volume III: Data Storage, Data Processing and Data Analysis 1st ed. 2021 Edition Volker Liermann (Editor)

https://ebookmass.com/product/volume-iii-data-storage-data-processingand-data-analysis-1st-ed-2021-edition-volker-liermann-editor/ ebookmass.com

International Zoning Code (international Code Council Series) 2018 International Code Council

https://ebookmass.com/product/international-zoning-code-internationalcode-council-series-2018-international-code-council/ ebookmass.com

The Handbook of Systemic Family Therapy, volume 1: The Profession of Systemic Family Therapy 1st Edition Karen S. Wampler

https://ebookmass.com/product/the-handbook-of-systemic-family-therapyvolume-1-the-profession-of-systemic-family-therapy-1st-edition-karens-wampler/ ebookmass.com

eTextbook 978-0134167220 Maternal & Child Nursing Care (5th Edition)

https://ebookmass.com/product/etextbook-978-0134167220-maternal-childnursing-care-5th-edition/

ebookmass.com

(eTextbook PDF) for Creative Activities and Curriculum for Young Children 11th Edition

https://ebookmass.com/product/etextbook-pdf-for-creative-activitiesand-curriculum-for-young-children-11th-edition/

ebookmass.com

The Geography of Gandh■ran Art: Proceedings of the Second International Workshop of the Gandh■ra Connections Project, University of Oxford, 22nd-23rd March, 2018 1st Edition Wannaporn Rienjang (Editor)

https://ebookmass.com/product/the-geography-of-gandharan-artproceedings-of-the-second-international-workshop-of-the-gandharaconnections-project-university-of-oxford-22nd-23rd-march-2018-1stedition-wannaporn-rienjang-editor/ ebookmass.com

The Summoning J.P. Smith

https://ebookmass.com/product/the-summoning-j-p-smith/

ebookmass.com

Philip V of Macedon in Polybius' Histories: Politics, History, and Fiction

https://ebookmass.com/product/philip-v-of-macedon-in-polybiushistories-politics-history-and-fiction-emma-nicholson/

ebookmass.com

HandbookofHydroInformatics

Handbook ofHydroInformatics

VolumeIII:WaterDataManagement

BestPractices

Editedby

SaeidEslamian

DepartmentofWaterEngineering,CollegeofAgriculture,IsfahanUniversityofTechnology, Isfahan,Iran

FaezehEslamian

DepartmentofBioresourceEngineering,McGillUniversity,Montreal,QC,Canada

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands

TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright©2023ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicor mechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem,without permissioninwritingfromthepublisher.Detailsonhowtoseekpermission,furtherinformationaboutthe Publisher’spermissionspoliciesandourarrangementswithorganizationssuchastheCopyrightClearance CenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher (otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenour understanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecome necessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusing anyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethods theyshouldbemindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhomtheyhavea professionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliability foranyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceorotherwise,or fromanyuseoroperationofanymethods,products,instructions,orideascontainedinthematerialherein.

ISBN:978-0-12-821962-1

ForinformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: CandiceJanco

AcquisitionsEditor: MariaElekidou

EditorialProjectManager: RupinderK.Heron

ProductionProjectManager: BharatwajVaratharajan

CoverDesigner: GregHarris

TypesetbySTRAIVE,India

ToLateProf.LotfiAliaskerZadeh (Mathematician,ComputerScientist,ElectricalEngineer,ArtificialIntelligence Researcher,andProfessorofComputerScienceattheUniversityofCalifornia, Berkeley,USA

(Azerbaijan-Iranian-American:1921–2017)

“AsComplexityRises,PreciseStatementsLoseMeaningandMeaningful

StatementsLosePrecision”

1.Advantageofgrid-freeanalytic elementmethodforidentification oflocationsandpumpingratesof wells1

ShishirGaur,PadamJeeOmar,and SaeidEslamian

1.Introduction1

2.Limitationsofthestudy3

3.Methodologyandformulationofthe simulation-optimizationmodel3

3.1AEMandFDMflowmodels3

3.2Particleswarmoptimization4

4.Modelapplicationandresults4

4.1Physiographyandtopographyofthe area5

5.Conclusions9 References9

2.Applicationofexperimentaldata andsoftcomputingtechniquesin determiningtheoutflowand breachcharacteristicsin embankmentsandlandslide dams11

KamranKouzehgarandSaeidEslamian

1.Introduction11

2.Proposedmethodology12

2.1Failuredatabase12

2.2Determinationofoutliers12

2.3Multivariateregressionanalysis18

2.4Assessmentofperformance indicators18

2.5Bayesianapproach18

2.6Waveletanalysis19

2.7Geneexpressionprogramming (GEP)19

2.8Physicalmodels19

2.9BREACHmathematicalmodel21

3.Landslidenaturaldams22

4.Resultsanddiscussion23

4.1Experimentalfindings23

4.2Simulationofthebreach characteristics24

4.3Simulationofthefailuretime25

4.4Simulationsoftheerodedvolumeof thedam26

4.5Simulationofthepeakoutflow discharge26

4.6Simulationofhydrographresulting fromdamfailure28

5.Conclusions29 References29

3.HydrologicalmodelingofHasdeo RiverBasinusingHEC-HMS33

Md.MasoodZafarAnsari,IshtiyaqAhmad, PushpendraKumarSingh,and SaeidEslamian

1.Introduction33

2.Therationaleofthestudy34

3.Materialsandmethods35

3.1Datacollection35

3.2Methodology38

3.3Modelcalibrationandvalidation50

3.4Modelevaluationparameter50

4.Resultanddiscussions51

4.1Calibrationandvalidationresults51

4.2Goodnessoffitcurve54

5.Limitationsofthestudy54

6.Conclusions55 Acknowledgment55 References55 Furtherreading56

4.Applicationofsoftcomputing methodsinturbulentstormwater modeling59

SaeidEslamianandMousaMaleki

1.Introduction59

2.Rainfall-runoffmodelingbetween SWMMandfuzzylogicapproach60

3.Urbanfloodpredictionusingdeepneural networkwithdataaugmentation61

4.Applicationofexpertsystemforstorm watermanagementmodeling62

5.Developingaflexibleexpertsystem tool62

6.DevelopmentofEStool“Flext”63 7.Conclusions64 References64

5.Assessmentofbedloadtransport forsteepchannelsonthebasisof conventionalandfuzzy regression67

MikeSpiliotis,VlassiosHrissanthou,and MatthaiosSaridakis

1.Introduction67

2.Bedloadtransportequations68

2.1FormulaofSmartandJaeggi68

2.2FormulaofMeyer-Peterand Muller70

3.Fuzzylinearregression71

4.Applicationofthebedloadtransport formulaofSmartandJaeggionthebasis ofconventionalandfuzzyregression73

5.Conclusions76 AppendixI76 AppendixII77 AppendixIII77 References78

6.Automatedfloodinundation mappingoverGangabasin81

SukanyaGhosh,DeepakKumar,and RinaKumari

1.Introduction81

2.Literaturereview82

3.Materialsandmethods84

4.Resultsanddiscussion84

5.Conclusions88 References88

7.Causalreasoningmodeling(CRM) forrivers’runoffbehavioranalysis andprediction91

Jose-LuisMolina,S.Zazo, Marı´aC.Patino-Alonso, A.M.Martı´n-Casado,andF.Espejo

1.Introduction91 2.Causalreasoning92

3.Bayesiancausalmodeling(BCM)92

3.1Mainprinciples93

3.2Generalmethodology95

3.3Validation96

4.Applications97

4.1Runofftemporalrecordsanalysis (runofffractions’evaluation)97

4.2Runofftemporalrecords prediction99

4.3Hydrologicalspatialrecords prediction102

4.4Spatiotemporalrecords prediction103

5.Resultsanddiscussion103

6.Conclusions105 Acknowledgments105 References106

8.Dataassimilationinhydrological andhazardousforecasting109

SandraReinst€ adtler,ShafiNoorIslam,and SaeidEslamian

1.Introduction109

2.Dataassimilationforhydrological forecasting111

3.Dataassimilationforhazardous forecasting115

4.Importanceofspatialprecisionsystems inerrorreduction117

5.Discussionandfutureperspective118

6.Conclusions119 References120

9.Floodroutingcomputations125

HenryFoust

1.Introduction125

1.1Hydrologicalroutingmodels125

1.2Hydraulicroutingmodels125

2.Hydrologicalrouting128

2.1Reservoirrouting128

2.2Muskingummethod130

2.3ModifiedPulsmethod134

3.Hydraulicrouting136

3.1DerivationofSt.Venant’s equation136

3.2Regimesofflow138

4.Uniformflow140

4.1Manning’sequation140

4.2Uniformflow,geometries144

5.Specificenergy147

5.1Rectangularcross-section147

5.2Nonrectangularcross-section148

6.Graduallyvariedflow148

7.Conclusions153 References153 Furtherreading153

10.Applicationoffuzzylogicinwater resourcesengineering155 GokmenTayfur

1.Introduction155

2.Fundamentalsoffuzzysets156

2.1Fuzzysetrepresentation156

2.2Fuzzysetoperations157

3.Fuzzylogicmodel158

3.1Fuzzification159

3.2Fuzzyrulebase160

3.3Fuzzyinferenceengine161

3.4Defuzzification163

4.Discussions164

5.Conclusions165 References165

11.GISApplicationinfloodsmapping intheGanges–PadmaRiverbasins inBangladesh167

ShafiNoorIslam,SandraReinstadtler, MohibulHassanKowshik,ShammiAkther, MohammadNazmiNewaz, AlbrechtGnauck,andSaeidEslamian

1.Introduction167

2.Objectiveofthisstudy168

3.Geographicallocationand physicalcharacteristicsofthe studyarea168

4.Dataandmethodology168

5.Geographerandanthropologist view169

6.Floodsand char-land erosionand depositionintheriverbasinsin Bangladesh170

6.1Impactsoffloodsonchar-landsand changingrurallivelihoods171

6.2 Char-lands erosionandaccretion patterninthePadmaRiverbasin174

7.UnstablesettlementlocationsatPurba KhasBandarkholaMouza176

7.1CyclicdisplacementofBasirUddin: Caseanalysis1(1960–2008)176

7.2CyclicdisplacementofOmarAli: Caseanalysis2(1945–2018)178

7.3Discussionondislodgmentmodel results180

8.Conclusions181 Acknowledgments182 References182

12.Groundwaterlevelforecasting usinghybridsoftcomputing techniques185

KrishnamurthyNayakandB.S.Supreetha

1.Introduction185

2.Governingequationforgroundwater flowanddatadrivengroundwaterlevel forecastingmodels187

3.SoftcomputingbasedGWLforecasting modeldevelopment191

3.1Studyareaanddata191

3.2Machinelearningalgorithmsand metaheuristics192

4.Resultsanddiscussion197

5.Conclusions205 Acknowledgment205 References205

13.Hydroinformaticsmethodsfor groundwatersimulation207

NastaranZamani,SaeidEslamian,and JahangirAbediKoupai

1.Introduction207 2.Methods208

2.1TimeseriesandMarkovchain methods208

2.2GeostatisticsMethods208

2.3GISandremotesensing209

2.4Clusteranalysis209

2.5Soft-computingmethods210

2.6Stochasticmodels211

2.7SOMmodels212

2.8Conceptualmodels212

3.Discussion213

4.Conclusions215 References215

14.Hydrological-HydraulicModeling offloodplaininundation:Acase studyinBouSa^ adaWadi— Subbasin_Algeria219

ZohraAbdelkrim,BrahimNouibat,and SaeidEslamian

1.Introduction219

2.Siteofstudy220

3.Methodology221

4.Resultsanddiscussion223

4.1Peakdischargeestimation223

4.2DelineationofBouSa^ ada Wadi—Subbasin224

4.3Floodplainmappingforreturn periods227

5.Conclusions231 References231

15.Interoceanicwaterwaynetwork system233

VladanKuzmanovic

1.Introduction233

2.Notablechannelsystems234

2.1ParanaandDanube234

3.Paleohydrographyandchannel systems235

4.Paleodynamicsoflargerivers,remote sensing236

5.Integratedwaterwayssystems238

6.Integratedinteroceanicchannel systems240

7.Conclusions243 References243 Furtherreading244

16.LatticeBoltzmannmodelsfor hydraulicengineering problems245

AyurzanaBadarchandHosoyamadaTokuzo

1.Introduction245

2.LatticeBoltzmannmodelsforclosed conduithydraulics245

2.1LBsolutionstoselectedproblems246

2.2Briefreviewonrecenttrendsofpipe flowsbytheLBmodels248

3.LatticeBoltzmannmodelsforopen channelhydraulics249

3.1Transcriticalflowoveraweir249

3.2Briefreviewofrecenttrendsinopen channelflowswiththeLBmodel250

4.LatticeBoltzmannmodelsforseepage flows251

4.1Seepageflowthroughanearth dam252

4.2Futureoutlookontheseepage flowmodelingwiththeLB models253

5.Conclusions253 References254

17.Developmentsinsediment transportmodelinginalluvial channels257

GokmenTayfur

1.Introduction257

2.Approachesforpredictingsediment transport257

2.1Empiricalapproaches257

2.2Physics-basedapproaches258

2.3Advancedapproaches259

3.Issuesunderconsiderations260

3.1Particlefallvelocity260

3.2Sedimentparticlevelocity261

3.3Sedimentratefunction262

4.Conclusions263 References263

18.Modelingapproachesfor simulatingtheprocessesof wetlandecosystems265

ShahidAhmadDar,SajadAhmadDar, SamiUllahBhat,IrfanRashid,and SaeidEslamian

1.Introduction265

2.Typesofmodels266

2.1Blackboxmodels266

2.2Process-basedmodels267

3.Discussion271

4.Modelingofemergingcontaminants272

5.Conclusions273 References273

19.Multivariatelinearmodelingfor theapplicationinthefieldof hydrologicalengineering277

Marı´aC.Patino-Alonso,Jose-LuisMolina, andS.Zazo

1.Introduction277

2.Generallinearmodel278

2.1Simplelinearregression279

2.2Multiplelinearregressionmodel279

2.3Analysisofvariance(ANOVA)vs. analysisofcovariance(ANCOVA)281

2.4Multivariateanalysisofvariance (MANOVA)vs.multivariateanalysis ofcovariance(MANCOVA)283

2.5Overviewofgeneralizedlinear models(GzLM)284

3.Hybridcausal-multivariatelinear modeling(H_C-MLM)284

4.Conclusions286 References287

20.Ontology-basedknowledge managementframework:Toward CBR-supportedriskresponseto hydrologicalcascading disasters291

FengYuandYuboGuo

1.Introduction291

2.Ontologymodelingforhydrological cascadingdisasterrisk292

2.1Hydrologicalcascadingdisasterrisk identification292

2.2Risk“context-scenario”nestedmodel building292

2.3Geneticmodelofdisasterrisk scenario293

3.Scenariolayoutwithontologybase294

3.1Planningcriteriaofscenario layout294

3.2Structuredesignofscenario layout295

3.3Expansionofscenariolayout295

4.Ontology-supportedfour-stagescenario reuse295

4.1Scenariofiltration295

4.2Scenariodeduction296

4.3Scenariocopy296

4.4Scenarioadaptation296

5.Gapanalysisonontology-basedCBR fromafailureperspective296

5.1Preparationforgapanalysis296

5.2FailureanalysisonCBR-supported HCDRresponse296

6.Conclusions297 Acknowledgments297 References297

21.Optimallyprunedextreme learningmachine:Anewnontuned machinelearningmodelfor predictingchlorophyll concentration299

SalimHeddam

1.Introduction299

2.Studyareaanddata300

3.Methodology302

3.1Multilayerperceptronneural networks(MLPNN)302

3.2Optimallyprunedextremelearning machine(OPELM)303

3.3Performanceassessmentofthe models304

4.Resultsanddiscussion306

4.1ResultsatCharlesRiverbuoy (CR-Buoy)station306

4.2ResultsatMysticRiverbuoy (MR-Buoy)station308

5.Conclusions314 References315

22.Proposingmodelforwaterquality analysisbasedonhyperspectral remotesensordata317

M.V.VPrasadKantipudi,SailajaVemuri, N.S.PradeepKumar,S.SreenathKashyap, andSaeidEslamian

1.Introduction317

2.Datacollectionandstudyarea318

3.Proposedmodel319

3.1Longshort-termmemory(LSTM)320

4.Resultanalysis321

5.Conclusions323 References323

23.Real-timefloodhydrograph predictionsusingratingcurveand softcomputingmethods(GA, ANN)325

GokmenTayfur

1.Introduction325

2.Floodroutingmethods325

2.1Hydraulicfloodrouting325

2.2Hydrologicfloodrouting326

2.3Ratingcurvemethod326

3.Softcomputingmethods(GA,ANN)in floodrouting327

3.1Geneticalgorithm(GA)327

3.2Artificialneuralnetwork(ANN)334

4.Conclusions337 References338

24.RiverBathymetryacquisition techniquesanditsutilityforriver hydrodynamicmodeling339

AzazkhanI.Pathan,DhruveshPatel, DipakR.Samal,CristinaPrieto,and SaeidEslamian

1.Introduction339

2.History339

3.Bathymetrymeasurementtechniques usedacrossworld340

4.Bathymetrymeasurementtechniques usedinIndia340

5.Methodsofacquiringbathymetry data341

5.1Fieldsurveymethods341

5.2Remotesensingmethods341

6.Approachesformeasuring bathymetry341

7.Acoustics342

8.Optics343

9.Radarstructure343

9.1Satellitealtimetry343

9.2Imagingradarstructure344

10.Methodsofrivercross-section extractionusingDEMwiththe applicationofHEC-RAS344

10.1GeometrygenerationinHEC GeoRAS344

10.2Preprocessing(arc-GISand HEC-GeoRAS)345

10.3HEC-RASmodelexecution346

11.Resultsanddiscussion348

12.Conclusions349 References349

25.Runoffmodelingusinggroup methodofdatahandlingandgene expressionprogramming353

SaharHadiPour,ShamsuddinShahid,and SaadSh.Sammen

1.Introduction353

2.Studyarea354

3.Dataandsources356

3.1Hydrometeorological data356

3.2Methodology359

3.3Modeldevelopment360

3.4Performanceevaluation361

4.Resultsanddiscussion361

5.Uncertaintyassessmentofperformance ofGMDHrainfall-runoffmodel368

6.Conclusions369 References375

26.Sedimenttransportwithsoft computingapplicationfortropical rivers379

MohdAfiqHarun,AminuddinAb.Ghani, SaeidEslamian,andChunKiatChang

1.Introduction379

2.Applicationofmachinelearningin sedimenttransport380

3.Ahybridmethodbyusingsoftcomputing technique382

4.Evolutionarypolynomialregression (EPR)382

5.Multi-genegeneticprogramming (MGGP)383

6.M5treemodel(M5P)383

7.Resultsanddiscussion384

8.Conclusions392 Acknowledgments392 References392 Index395

Contributors

Numbersinparaenthesesindicatethepagesonwhichtheauthors’ contributionsbegin.

ZohraAbdelkrim (219),InstituteofManagementof UrbanTechniques,MohamedBoudiafUniversity; LaboratoryofCity,Environment,SocietyandSustainableDevelopment,M’sila,Algeria

IshtiyaqAhmad (33),DepartmentofCivilEngineering, NationalInstituteofTechnology,Raipur,India

ShammiAkther (167),DepartmentofGeographyand Environment,JahangirnagarUniversity,Dhaka, Bangladesh

Md.MasoodZafarAnsari (33),DepartmentofCivilEngineering,NationalInstituteofTechnology,Raipur,India

AyurzanaBadarch (245),SchoolofCivilEngineeringand Architecture,MongolianUniversityofScienceand Technology,UlanBator,Mongolia

SamiUllahBhat (265),DepartmentofEnvironmental Science,UniversityofKashmir,Srinagar,Jammuand Kashmir,India

ChunKiatChang (379),RiverEngineeringandUrban DrainageResearchCentre,UniversitiSainsMalaysia, GeorgeTown,Malaysia

SajadAhmadDar (265),DepartmentofEnvironmental Science,UttarakhandTechnicalUniversity,Uttarakhand,India

ShahidAhmadDar (265),DepartmentofEnvironmental Science,UniversityofKashmir,Srinagar,Jammuand Kashmir,India

SaeidEslamian (1,11,33,59,109,167,207,219,265,317, 339,379),DepartmentofWaterEngineering,Collegeof Agriculture,IsfahanUniversityofTechnology,Isfahan, Iran;CenterofExcellenceforRiskManagementand NaturalHazards,IsfahanUniversityofTechnology, Isfahan,Iran

F.Espejo (91),HighPolytechnicSchoolofEngineering, UniversityofSalamanca,A ´ vila,Spain

HenryFoust (125),DepartmentofMathematics,UniversityofHouston,Houston,TX,UnitedStates

ShishirGaur (1),DepartmentofCivilEngineering,Indian InstituteofTechnology,Varanasi,India

AminuddinAb.Ghani (379),RiverEngineeringand UrbanDrainageResearchCentre,UniversitiSains Malaysia,GeorgeTown,Malaysia

SukanyaGhosh (81),AmityInstituteofGeoinformatics andRemoteSensing(AIGIRS),AmityUniversityUttar Pradesh(AUUP),Noida,UttarPradesh,India

AlbrechtGnauck (167),BrandenburgUniversityofTechnologyCottbus,Senftenbuerg,Cottbus,Germany

YuboGuo (291),SchoolofDesign,ShanghaiJiaoTong University,Shanghai,China

MohdAfiqHarun (379),RiverEngineeringandUrban DrainageResearchCentre,UniversitiSainsMalaysia, GeorgeTown,Malaysia

SalimHeddam (299),FacultyofScience,Agronomy Department,HydraulicsDivision,Laboratoryof ResearchinBiodiversityInteractionEcosystemand Biotechnology,Skikda,Algeria

VlassiosHrissanthou (67),DepartmentofCivilEngineering,DemocritusUniversityofThrace,Xanthi, Greece

ShafiNoorIslam (109,167),DepartmentofGeography, EnvironmentandDevelopmentStudies,FacultyofArts andSocialSciences,UniversityofBruneiDarussalam, Gadong,BruneiDarussalam

M.V.V.PrasadKantipudi (317),SymbiosisInstituteof Technology,SymbiosisInternational(DeemedUniversity),Pune,India

S.SreenathKashyap (317),DepartmentofElectronicsand CommunicationEngineering,KommuriPratapReddy InstituteofTechnology,Hyderabad,India

JahangirAbediKoupai (207),DepartmentofWaterEngineering,CollegeofAgriculture,IsfahanUniversityof Technology,Isfahan,Iran

KamranKouzehgar (11),DepartmentofCivilEngineering,VarzeghanBranch,IslamicAzadUniversity, Varzeghan,Iran

MohibulHassanKowshik (167),GovernmentTitumir College,Dhaka,Bangladesh

DeepakKumar (81),AmityInstituteofGeoinformatics andRemoteSensing(AIGIRS),AmityUniversityUttar Pradesh(AUUP),Noida,UttarPradesh,India

N.S.PradeepKumar (317),DepartmentofElectronicsand CommunicationEngineering,S.E.A.CET,Bangalore, India

RinaKumari (81),SchoolofEnvironmentandSustainable Development,CentralUniversityofGujarat,Gandhinagar,Gujarat,India

VladanKuzmanovic (233),SerbianHydrologicalAssociation,InternationalAssociationofHydrologicalSciences,Belgrade,Serbia

MousaMaleki (59),DepartmentofCivilEngineering, IllinoisInstituteofTechnology,Chicago,IL,United States

A.M.Martı´n-Casado (91),DepartmentofStatistics,UniversityofSalamanca,CampusMigueldeUnamuno,Salamanca,Spain

Jose-LuisMolina (91),HighPolytechnicSchoolofEngineering,UniversityofSalamanca,A ´ vila,Spain

KrishnamurthyNayak (185),DepartmentofElectronics andCommunicationEngineering,ManipalInstituteof Technology,ManipalAcademyofHigherEducation (MAHE),Manipal,India

MohammadNazmiNewaz (167),Management Department,BangladeshInstituteofManagement (BIM),Dhaka,Bangladesh

BrahimNouibat (219),InstituteofManagementofUrban Techniques,MohamedBoudiafUniversity;Laboratory ofCity,Environment,SocietyandSustainableDevelopment,M’sila,Algeria

PadamJeeOmar (1),DepartmentofCivilEngineering, MotihariCollegeofEngineering,Motihari,India

DhruveshPatel (339),SardarVallabhbhaiNational InstituteofTechnology,Surat;PanditDeendayal PetroleumUniversity,Gandhinagar,Gujarat,India

AzazkhanI.Pathan (339),SardarVallabhbhaiNational InstituteofTechnology,Surat;PanditDeendayal PetroleumUniversity,Gandhinagar,Gujarat,India

Marı´aC.Patino-Alonso (91,277),DepartmentofStatistics,UniversityofSalamanca,CampusMiguelde Unamuno,Salamanca,Spain

SaharHadiPour (353),SchoolofCivilEngineering, FacultyofEngineering,UniversitiTeknologiMalaysia, JohorBahru,Malaysia

CristinaPrieto (339),EnvironmentalHydraulicsInstitute IHCantabria-InstitutodeHidraulicaAmbientaldela UniversidaddeCantabria,Santander,Spain

IrfanRashid (265),DepartmentofGeoinformatics,UniversityofKashmir,Srinagar,JammuandKashmir,India

SandraReinstadtler (109,167),IndependentScientistas UniversityofTechnologyDresden—Alumna,former: FacultyofEnvironmentalSciencesandProcessEngineeringandFacultyofEnvironmentandNatural Sciences,BrandenburgUniversityofTechnology,Cottbus-Senftenberg,Germany;DepartmentofGeography, EnvironmentandDevelopmentStudies,Universityof BruneiDarussalam,Gadong,BruneiDarussalam

DipakR.Samal (339),CEPTUniversity,Ahmedabad, Gujarat,India

SaadSh.Sammen (353),DepartmentofCivilEngineering, CollegeofEngineering,UniversityofDiyala,Diyala Governorate,Iraq

MatthaiosSaridakis (67),DepartmentofCivilEngineering,DemocritusUniversityofThrace,Xanthi, Greece

ShamsuddinShahid (353),SchoolofCivilEngineering, FacultyofEngineering,UniversitiTeknologiMalaysia, JohorBahru,Malaysia

PushpendraKumarSingh (33),DivisionofWaterResources,NationalInstituteofHydrology,Roorkee,India

MikeSpiliotis (67),DepartmentofCivilEngineering, DemocritusUniversityofThrace,Xanthi,Greece

B.S.Supreetha (185),DepartmentofElectronicsandCommunication,ManipalInstituteofTechnology,Karnataka,India

GokmenTayfur (155,257,325),DepartmentofCivilEngineering,IzmirInstituteofTechnology,Izmir,Turkey

HosoyamadaTokuzo (245),GraduateSchoolofEngineering,NagaokaUniversityofTechnology,Nagaoka, Japan

SailajaVemuri (317),DepartmentofElectronicsand CommunicationEngineering,PragatiEngineering College,Surampalem,India

FengYu (291),SchoolofInternationalandPublicAffairs; SchoolofEmergencyManagement,ShanghaiJiaoTong University,Shanghai,China

NastaranZamani (207),DepartmentofWaterEngineering,CollegeofAgriculture,IsfahanUniversityof Technology,Isfahan,Iran

S.Zazo (91.277),HighPolytechnicSchoolofEngineering, UniversityofSalamanca,A ´ vila,Spain

AbouttheEditors

SaeidEslamian hasbeenaFullProfessorofEnvironmentalHydrologyandWater ResourcesEngineeringintheDepartmentofWaterEngineeringatIsfahanUniversity ofTechnologysince1995.Hisresearchfocusesmainlyonstatisticalandenvironmental hydrologyinachangingclimate.Inrecentyears,hehasworkedonmodelingnatural hazards,includingfloods,severestorms,wind,drought,andpollution,andonwaterreuse, sustainabledevelopmentandresiliency,etc.Formerly,hewasavisitingprofessoratPrincetonUniversity,NewJersey,andtheUniversityofETHZurich,Switzerland.Onthe researchside,hestartedaresearchpartnershipin2014withMcGillUniversity,Canada. Hehascontributedtomorethan600publicationsinjournals,books,andtechnicalreports. HeisthefounderandChiefEditorofboththe InternationalJournalofHydrologyScience andTechnology (IJHST)andthe JournalofFloodEngineering (JFE).Dr.EslamianiscurrentlyAssociateEditoroffourimportantpublications: JournalofHydrology (Elsevier), Eco-HydrologyandHydrobiology (Elsevier), JournalofWaterReuseandDesalination (IWA),and JournaloftheSaudiSocietyofAgriculturalSciences (Elsevier).Professor Eslamianistheauthorofapproximately35booksand180bookchapters.

Dr.Eslamian’sprofessionalexperienceincludesmembershiponeditorialboards,andheisareviewerofapproximately100WebofScience(ISI)journals,includingthe ASCEJournalofHydrologicEngineering, ASCEJournalof WaterResourcesPlanningandManagement, ASCEJournalofIrrigationandDrainageEngineering, AdvancesinWater Resources, Groundwater, HydrologicalProcesses, HydrologicalSciencesJournal, GlobalPlanetaryChanges, Water ResourcesManagement, WaterScienceandTechnology, Eco-Hydrology, JournaloftheAmericanWaterResources Association, AmericanWaterWorksAssociationJournal,etc.Furthermore,in2015,UNESCOnominatedhimfora specialissueofthe Eco-HydrologyandHydrobiologyJournal. ProfessorEslamianwasselectedasanoutstandingreviewerforthe JournalofHydrologicEngineering in2009and receivedtheEWRI/ASCEVisitingInternationalFellowshipattheUniversityofRhodeIsland(2010).Hewasalsoawarded prizesforoutstandingworkbytheIranianHydraulicsAssociationin2005andtheIranianpetroleumandoilindustryin 2011.ProfessorEslamianwaschosenasadistinguishedresearcherbyIsfahanUniversityofTechnology(IUT)andIsfahan Provincein2012and2014,respectively.In2016,hewasacandidateforNationalDistinguishedResearcherinIran.

Dr.Eslamianhasalsoactedasarefereeformanyinternationalorganizationsanduniversities.Someexamplesincludethe USCivilianResearchandDevelopmentFoundation(USCRDF),theSwissNetworkforInternationalStudies,HisMajesty’s TrustFundforStrategicResearchofSultanQaboosUniversity,Oman,theRoyalJordanianGeographyCenterCollege,andthe ResearchDepartmentofSwinburneUniversityofTechnologyofAustralia.Heisalsoamemberofthefollowingassociations: AmericanSocietyofCivilEngineers(ASCE),InternationalAssociationofHydrologicScience(IAHS),WorldConservation Union(IUCN),GCNetworkforDrylandsResearchandDevelopment(NDRD),InternationalAssociationforUrbanClimate (IAUC),InternationalSocietyforAgriculturalMeteorology(ISAM),AssociationofWaterandEnvironmentModeling (AWEM),InternationalHydrologicalAssociation(STAHS),andUKDroughtNationalCenter(UKDNC).

ProfessorEslamianfinishedHakim-SanaeiHighSchoolinIsfahanin1979.AftertheIslamicRevolution,hewas admittedtoIsfahanUniversityofTechnology(IUT)tostudyaBSinwaterengineering,andhegraduatedin1986.He wassubsequentlyofferedascholarshipforamaster’sdegreeprogramatTarbiatModaresUniversity,Tehran.Hefinished hisstudiesinhydrologyandwaterresourcesengineeringin1989.In1991,hewasawardedascholarshipforaPhDincivil engineeringattheUniversityofNewSouthWales,Australia.HissupervisorwasProfessorDavidH.Pilgrim,who encouragedProfessorEslamiantoworkon“RegionalFloodFrequencyAnalysisUsingaNewRegionofInfluence Approach.”HeearnedaPhDin1995andreturnedtohishomecountryandIUT.Hewaspromotedin2001toAssociate Professorandin2014toFullProfessor.Forthepast26years,hehasbeennominatedfordifferentpositionsatIUT, includingUniversityPresidentConsultant,FacultyDeputyofEducation,andHeadofDepartment.Dr.Eslamianis nowdirectoroftheCenterofExcellenceinRiskManagementandNaturalHazards(RiMaNaH).

ProfessorEslamianhasmadethreescientificvisits,totheUnitedStates,Switzerland,andCanadain2006,2008,and 2015,respectively.Inthefirst,hewasofferedthepositionofvisitingprofessorbyPrincetonUniversityandworkedjointly withProfessorEricF.WoodattheSchoolofEngineeringandAppliedSciencesfor1year.Theoutcomewasacontribution tohydrologicalandagriculturaldroughtinteractionknowledgethroughdevelopingmultivariateL-momentsbetweensoil moistureandlowflowsfornortheasternUSstreams.

Recently,ProfessorEslamianhaswritten14handbookspublishedbyTaylor&Francis(CRCPress):thethree-volume HandbookofEngineeringHydrology (2014), UrbanWaterReuseHandbook (2016), UndergroundAqueductsHandbook (2017),thethree-volume HandbookofDroughtandWaterScarcity (2017), ConstructedWetlands:HydraulicDesign (2019), HandbookofIrrigationSystemSelectionforSemi-AridRegions (2020), UrbanandIndustrialWaterConservation Methods (2020),andthethree-volume FloodHandbook (2022).

AnEvaluationofGroundwaterStoragePotentialsinaSemiaridClimate (2019)and AdvancesinHydrogeochemistry Research (2020)byNovaSciencePublishersarealsoamonghisbookpublications.Thetwo-volume HandbookofWater HarvestingandConservation (2021,Wiley)and HandbookofDisasterRiskReductionandResilience (2021,NewFrameworksforBuildingResiliencetoDisasters)arefurtherpublicationsbyProfessorEslamian,asarethe HandbookofDisaster RiskReductionandResilience (2022,DisasterRiskManagementStrategies)andthetwo-volume EarthSystemsProtection andSustainability (2022).

ProfessorEslamianwaslistedamongtheWorld’sTop2%ofResearchersbyStanfordUniversity,USA,in2019and 2021.Hehasalsobeenagrantassessor,reportreferee,awardjurymember,andinvitedresearcherforinternationalorganizationssuchastheUnitedStatesCivilianResearchandDevelopmentFoundation(2006),IntergovernmentalPanelon ClimateChange(2012),WorldBankPolicyandHumanResourcesDevelopmentFund(2021),andStockholmInternationalPeaceResearchInstitute(2022),respectively.

FaezehEslamian holdsaPhDinBioresourceEngineeringfromMcGillUniversity, Canada.Herresearchfocusesonthedevelopmentofanovellime-basedproducttomitigatephosphoruslossfromagriculturalfields.Dr.Elsamiancompletedherbachelorand master’sdegreesinCivilandEnvironmentalEngineeringattheIsfahanUniversityof Technology,Iran,wheresheevaluatednaturalandlow-costabsorbentsfortheremoval ofpollutantssuchastextiledyesandheavymetals.Furthermore,shehasconducted researchonworldwidewaterqualitystandardsandwastewaterreuseguidelines.Dr. Elsamianisanexperiencedmultidisciplinaryresearcherwithinterestsinsoilandwater quality,environmentalremediation,waterreuse,anddroughtmanagement.

Preface

WaterDataManagementBestPractices,Volume3ofthe HandbookofHydroInformatics,presentsin26chaptersthelatest andmostthoroughlyupdateddataprocessingtechniquesthatarefundamentaltothewaterscienceandengineeringdisciplines.Theseincludeawiderangeofnewmethodsthatareusedinhydro-modeling,suchasadvantagesofthegrid-free analyticelementmethod,soft-computingtechniquesfordeterminingthedamoutflowandbreachcharacteristics,thehydrologicengineeringcenterhydrologicmodelingsystem(HEC-HMS),soft-computingmethodsforturbulentstormwater modeling,bedloadtransportassessmentbyconventionalandfuzzyregressionmethods,automatedfloodinundation mapping,causalreasoningmodeling,dataassimilationandaccuracy,floodrouting,waterresourcesengineeringfuzzy logicapplications,geographicinformationsystems(GIS)applicationinfloodmapping,groundwaterlevelforecasting usinghybridsoft-computingtechniques,hydroinformaticsmethodsforgroundwatersimulation,hydrological-hydraulic modelingoffloodplaininundation,interoceanicwaterwaysnetworksystems,latticeBoltzmannmodelsforhydraulicengineeringproblems,mathematicaldevelopmentsinsedimenttransport,wetlandecosystemssimulations,multivariatelinear modelingapplicationinhydrologicalengineering,case-basedreasoning(CBR)-supportedriskresponsetohydrological cascadingdisasters,optimallyprunedextremelearningmachine(OP-ELM),waterqualityanalysisbasedonhyperspectral remotesensordata,real-timefloodhydrographpredictions,riverbathymetryacquisitiontechniques,geneexpression programming(GEP),andsedimenttransportbysoftcomputing.

Thisvolumeisatrueinterdisciplinarywork,andtheintendedaudienceincludespostgraduatesandearly-career researchersinterestedincomputerscience,mathematicalscience,appliedscience,Earthandgeoscience,geography,civil engineering,engineering,waterscience,atmosphericscience,socialscience,environmentscience,naturalresources,and chemicalengineering.

The HandbookofHydroInformatics correspondstocoursesthatcouldbetaughtatthefollowinglevels:undergraduate, postgraduate,researchstudents,andshortcourseprograms.Typicalcoursenamesofthistypeinclude:HydroInformatics, SoftComputing,LearningMachineAlgorithms,StatisticalHydrology,ArtificialIntelligence,Optimization,Advanced EngineeringStatistics,TimeSeries,StochasticProcesses,MathematicalModeling,DataScience,DataMining,etc.

Thethree-volume HandbookofHydroInformatics isrecommendednotonlyforuniversitiesandcolleges,butalsofor researchcenters,governmentaldepartments,policymakers,engineeringconsultants,federalemergencymanagement agencies,andrelatedbodies.

Keyfeaturesareasfollows:

l Containscontributionsfromglobalexpertsinthefieldsofdatamanagementresearch,climatechangeandresilience, insufficientdataproblems,etc.

l Offersthoroughappliedexamplesandcasestudiesineachchapter,providingthereaderwithreal-worldscenariosfor comparison

l Includesawiderangeofnewmethodsemployedinhydro-modeling,withstep-by-stepguidesonhowtousethem

SaeidEslamian

DepartmentofWaterEngineering,CollegeofAgriculture,Isfahan, UniversityofTechnology,Isfahan,Iran

FaezehEslamian DepartmentofBioresourceEngineering,McGillUniversity,Montreal,QC,Canada

Advantageofgrid-freeanalyticelement methodforidentificationoflocations andpumpingratesofwells

ShishirGaura,PadamJeeOmarb,andSaeidEslamianc,d a DepartmentofCivilEngineering,IndianInstituteofTechnology,Varanasi,India, b DepartmentofCivilEngineering,MotihariCollegeofEngineering, Motihari,India, c DepartmentofWaterEngineering,CollegeofAgriculture,IsfahanUniversityofTechnology,Isfahan,Iran, d CenterofExcellencefor RiskManagementandNaturalHazards,IsfahanUniversityofTechnology,Isfahan,Iran

1.Introduction

Satisfyingthegrowingwaterdemandisthemostcommonglobalproblem,andgroundwaterplaysthemostimportantrole forachievingthisdemand.Propermanagementanddistributionofthegroundwaterresourcescanhelpforfairgroundwater sharingandavoidoverexploitationofthisresource(Tziatziosetal.,2021).Solutionofgroundwatermanagementproblems oftenneedstofindthebestpossiblelocationandpumpingratesofwellsorboth,whichdependsontheefficiencyofthe simulationmodeltodefinethepreciselocationofwellsandwaterbudgeting.Illegalextractionofthisresourcethrough pumpingwellsmakesthisproblemworsenmoreandsetschallengesinfrontofwateragencies(Gauretal.,2021).The unknown/illegalwells’problemincreasestheunequaldistributionofwatershareandcorrespondingmismanagementof thenaturalresources(Puetal.,2020).

Furthermore,inordertofulfilltheexistingandforthcomingpopulation’swaterdemand,pressurehasbuiltuptoconserveandsustainablemanagementofthegroundwatertoensurethefulfillmentofthefuturewaterdemand(Kumaretal., 2021).Usuallygroundwatermanagementproblemsaresolvedbyreducingthedifferencesbetweencomputedandobserved groundwaterlevelthroughinversemodelingapproach(Heetal.,2021).InnorthBiharplains,fortheassessmentofthe groundwater, Omaretal.(2021a) conceptualizedanddevelopedatransientmultilayeredgroundwaterflowmodelfor theKoshiRiverbasin.Thisdevelopedmodeliscapableofsolvinglargegroundwaterproblemsandassociatedcomplexity withit.InnorthBiharplains,theKoshiRiverisoneofthebiggesttributariesoftheGangaRiversystem.Koshioriginates fromthelowerpartofTibetandjoinstheGangaRiverinKatihardistrict,Bihar,India.Aftermodeldevelopment,calibrationofthemodelwasalsodone,byconsideringthreemodelparameters,torepresenttheactualfieldconditions. Forvalidationofthemodel,15observationwellshavebeenselectedinthearea.Withthehelpofobservationwelldata, computedandobservedheadswerecompared.Comparisonresultshavebeenfoundtobeencouragingandthecomputed groundwaterheadmatchedwiththeobservedwaterheadtoarealisticlevelofaccuracy.Developedgroundwatermodelis usedtopredictthegroundwaterheadandflowbudgetintheconcernedarea.Thestudyrevealedthatgroundwatermodeling isanimportantmethodforknowingthebehaviorofaquifersystemsandtodetectgroundwaterheadunderdifferentvarying hydrologicalstresses.

Differentresearchersusedthisapproachforidentificationofunknownpollutionsources(Ayvaz,2010; Singhetal., 2004; Sunetal.,2006; Omaretal.,2021b),preventingseawaterintrusionthroughwells(Chengetal.,2000)pumpand-treatoptimizationtechnique(Matottetal.,2006; HuangandMayer,1997),unknown/illegalwellsproblem(Saffi andCheddadi,2010; AyvazandKarahan,2008)andparametersoptimization. HsiaoandChang(2002) solvedgroundwater problemsbytakingfixedwellinstallationcostandpumpingcost.Geneticalgorithm(GA)wasusedtodeterminethe numberandlocationsofpumpingwells.Constraineddifferentialdynamicprogramming(CDDP)wasusedtoevaluate theoperatingcosts.Thestudyconcludedthatwellinstallationcostsimpacttheoptimalnumberandlocationsofwellssignificantly. UddameriandKuchanur(2007) developedsimulationmodelforgroundwaterflowintheformationsoftheGulf coastaquifer.Themodelresultswereanalyzedwithmathematicalprogrammingschemetoestimatemaximumavailable groundwaterinthecounty,includingpreventionofsaltwaterintrusionintheaquiferbylimitingtheamountofallowable

drawdowninshallowaquifers. AmeliandCraig(2018) presentedanewsemianalyticalflowandtransportmodelforthe simulationof3Dsteady-stateflowandparticlemovementbetweengroundwater,asurfacewaterbodyandaradialcollector wellingeometricallycomplexunconfinedaquifers.Theirpresentedmethodwasgrid-freebasedanalyticelementmethod, whichhandlestheirregularconfigurationsofradialwellsmoreefficientlythangrid-basedmethods.Thismethodisthen usedtoexplorehowpumpingwelllocationandrivershapeinteractandtogetherinfluence(1)transittimedistribution (TTD)ofcapturedwaterinaradialcollectorwellandTTDofgroundwaterdischargedintotheriverand(2)thepercentage ofwellwaterscapturedfromdifferentsources.Accordingto Baulonetal.(2022),estimationofgroundwaterleveldevelopmentisamajorissueinthecontextofclimatechange.Groundwaterisakeyresourceandcanevenaccountinsome countriesformorethanhalfofthewatersupply.Groundwatertrendestimatesareoftenusedfordescribingthisevolution. However,theestimatedtrendobviouslystronglydependsonavailabletimeserieslength,whichmaybecausedbythe existenceoflong-termvariabilityofgroundwaterresources(Baulonetal.,2022).

Parketal.(2021) linkedagroundwaterflowandheattransportsimulationmodelwithageneticalgorithm(GA)as optimizationtechnique.Thiscoupledmodelcandetermineoptimalwelllocationsandpumping/injectionratestogether orapart.Resultsdemonstratedthatsimultaneousoptimizationofwelllocationandflowratecanprovideabetterdesignthan optimizationofonlywelllocationforgivenflowrate. WangandAhlfeld(1994) performedthestudybyconsideringwells’ locationasexplicitdecisionvariablesforapump-and-treatoptimizationproblem.Barrierfunctiontechniquewasused alongwithalinearobjectivefunction.Hermiteinterpolationfunctionwasusedtorepresentthewelllocationsasacontinuousfunctionofspace. HuangandMayer(1997) developedoptimizationformulationfordynamicgroundwaterremediationmanagementusinglocationofwellsandthecorrespondingpumpingratesasthedecisionvariables.Theyfoundthat optimallocationandpumpingrateofwellsobtainedwiththemoving-wellmodelwerelessexpensivethansolutions obtainedwithacomparablefixed-wellmodel. Kayhomayoonetal.(2021) proposedanewapproachforthesimulation ofgroundwaterlevelforanaridarea.Theirmethodologycomprisesthreestagesasclustering,simulation,andoptimization. Inoptimization,twoadvancedoptimizationmethods,i.e.,particleswarmoptimization(PSO)andwhaleoptimizationalgorithm(WOA)wereutilizedtooptimizetheANNresults. Mohanetal.(2007) appliedSimulation-Optimization(S O) approachforopencastmineareawhichhaddominantgroundwaterfeaturesandbecamecauseofheavingandbursting oftheminefloorduetoexcessiveupliftpressure.TheS Omodelwasusedtoidentifyoptimumdepressurizationstrategy andfindcapableapproachforsolvinglarge-scalegroundwatermanagementproblems(Mohanetal.,2007).

Identificationoflocationanddischargeofunknown/illegalwells,forgroundwaterquantitymanagement,hasbeen addressedbylimitedresearchers(SaffiandCheddadi,2010; AyvazandKarahan,2008; TungandChou,2004; Pu etal.,2021; Shekharetal.,2021). SaffiandCheddadi(2010) developedanalgebraicexpressiontogeneratethetransient influencecoefficientsmatrixfora1-Dmodel.Thegoverningequationwassolvedusingamixedcompartmentmodel.In thestudy,objectivefunctionwastominimizetheerrorsbetweenobservedandsimulatedhydraulicheadstodeterminethe illegalgroundwaterpumpingatfixedwelllocations. AyvazandKarahan(2008) developedasimulation/optimization modelforidentificationofunknownlocationandpumpingrateofwells.FiniteDifferenceMethod(FDM)basedflow modelandGAmodelwereusedtodeterminethedischargerateswhereaswelllocationswereidentifiedbyiterativemoving subdomainapproach(Omaretal.,2020).Themodelwastestedforbothsteadyandtransientflowconditionsontwohypotheticalaquifermodels.Resultsshowedthatthetruewelllocationswereidentifiedirrespectiveofstartingpointofthe searchprocess.Finally,theperformanceoftheproposedmodelwascomparedwiththatofaGAsolutionandfoundthat theproposedmodelhadsmallerResidualError(RE)thantheGAsolutionandrequired14%lesssimulations.

Theanalyticelementmethod(AEM)isbaseduponsuperpositionofanalyticalexpressionstosimulategroundwater flowbyconsideringdifferenthydrogeologicalfeaturelikestreams,lakesandwells(Strack,1989).TheAEMisagridfree methodandhascertainadvantagesovergrid-basedmethods,examplewellsaredirectlyrepresentedbytheirexact co-ordinates(Omaretal.,2019; Bandillaetal.,2007).TheAEMflowmodelgivescontinuoussolutionsoverthemodel domainandthereforegivesmoreaccuratewaterbudgetforthearea.Thetwo-dimensionalimplementationoftheanalytic elementmethod(AEM)iscommonlyusedtosimulatesteady-statesaturatedgroundwaterflowphenomenaatregionaland localscales.However,unlikealternativegroundwaterflowsimulationmethods,AEMresultsarenotordinarilyusedasthe basisforsimulationofreactivesolutetransport(CraigandRabideau,2006).

Aboveexplainedbefore,theliteraturereviewshowsdifferentquantityorqualitybasedgroundwatermanagement problemswhereoptimallocation,dischargeofwellsorbothweretakenasdecisionvariable.Consideringthis,thepresent studyiscarriedouttoexplorethebenefitsofAEMbasedflowmodeltocomputetheoptimallocationandpumpingratesof wellsforunknown/illegalwells’problem.Forthis,AEMandgridbasedapproachlikeFDMwasadopted,andflowmodel wasdeveloped,alongwithParticleSwarmOptimization(PSO)model.Afterthat,developedAEM-basedflowmodel,and FDMmodelwascoupledwiththe(PSO)model,individually.AccuracyassessmentwasdonetoknowwhichmodelprovidesbetterresultsbetweenAEM-PSOandFDM-PSO.Further,thedevelopedAEM-PSOmodelwasappliedtothereal fielddatatocomputethelocationandpumpingratesofunknownwells.

2.Limitationsofthestudy

Inspiteofthefactthatthepresentstudyisbasedonacomprehensivescientificanalysisofvarioushydrologicalandhydrogeologicalfeatures,ithassomelimitationsthatneedtobeaddressed.

Inthepresentstudy,tosolvethepartialdifferentialequationsofthegroundwaterflow,twodifferentapproacheshave beenadopted.OnemethodistheFiniteDifferenceMethod(FDM),inwhichderivativesareapproximatedwithfinitedifferences.AnothermethodistheAnalyticElementMethod(AEM),inwhichtheboundaryconditionsoftheflowmodelare discretizedinsteadofdiscretizationofthewholemodel.AnothermethodsuchastheFiniteElementMethod(FEM),in whichmeshingisperformedusingfiniteelements,hasnotbeentakenintoaccountfortheflowmodeling.

Tooptimizethepumpingrate(discharge)ofthewell,ParticleSwarmOptimization(PSO)modelwasalsodeveloped. Afterthat,ThePSOmodelwascoupledwiththedevelopedAEM-basedflowmodel,andgrid-basedFDMmodelseparately.Fortheoptimization,multiswarmoptimizationtechniquesalsocanbeapplied.

3.Methodologyandformulationofthesimulation-optimizationmodel

Optimallocationanddischargeofpumpingwellsisoftenco nsideredasadecisionvariablestosolveunknown/illegal wells’problem.Solutionoftheseproblemsdependsontheaccuracytoforecastthepositionofthewellsandaccuracy incalculationofwaterbudget( EslamianandEslamian,2022 ).Inthepresentstudy,TheAEMandFDMflowmodels andthePSOmodelweredeveloped.Aftervalidationofsimulationmodelsandoptimizationmodel( Gauretal.,2011), bothsimulationmodelswerecoupledwithPSOmodeltosolvetheunknown/illegalwells’problem.Twocases,with andwithoutuseofmovingsubdomainapproach(AyvazandKarahan,2008),wereconsideredtoidentifytheoptimal locationanddischargeofpumpingwells.Comparativea nalysiswasdonefortheAEM-PSOandFDM-PSOmodelsand theefficiencyofboththeAEMandFDMmethodstocompute thelocationanddischargeofwellsforbothcaseswere investigated.Computationalefficiencyofbothmodelswasalsomeasuredbasedonconvergenceofmodeltofind optimalsolution.

Elc ¸iandAyvaz(2014) didanintensivestudytopresentanoptimizationapproachtodeterminelocationsofnew groundwaterproductionwells,wheregroundwaterisrelativelylesssusceptibleto groundwatercontamination.Forthis, theycoupledaregional-scalegroundwaterflowmodelwith ahybridoptimizationmodelthatusestheDifferential Evolution(DE)algorithmandtheBroyden– Fletcher– Goldfarb–Shanno(BFGS)methodastheglobalandlocaloptimizers.Inthisstudy,severalconstraintssuchasthedepthtothewatertable,t otalwelllengthandtherestrictionof seawaterintrusionareconsideredinth eoptimizationprocess.Theoptimizationproblemcanbeformulatedeitheras themaximizationofthepumpingrateorastheminimizationoftotalcostsofwellinstallationandpumpingoperation fromexistingandnewwells.After thedevelopmentofsimulation–optimizationmodel,theydemonstrateditonan existinggroundwaterflowmodelfortheTahtalı watershedinIzmir– Turkey.Themodelidentifiesforthedemonstrationstudylocationsandpumpingratesforuptofo urnewwellsandonenewwellinthecostminimization andmaximizationproblem,respectively.Allnewwelllo cationsintheoptimizedsolutioncoincidewithareasof relativelylowgroundwatervulnerability.

3.1AEMandFDMflowmodels

Theanalyticelementmethod(AEM)isanumericalmethodusedforthesolutionofpartialdifferentialequations.Thebasic principleoftheanalyticelementmethodisthat,forlineardifferentialequations,elementarysolutionsmaybesuperimposed toobtainmorecomplexsolutions.Theseanalyticsolutionstypicallycorrespondtoadiscontinuityinthedependentvariable oritsgradientalongageometricboundary(e.g.,point,line,etc.).Thisdiscontinuityhasaspecificfunctionalformandmay bemanipulatedtosatisfyDirichlet,Neumann,orRobin(mixed)boundaryconditions(Shamiretal.,1984).InAEM, groundwaterflowsolutionisobtainedbytheuseofpotentialtheorywherethedischargepotential Ф (x,y) foranaquifer isdeterminedbyprincipalofsuperposition(Reillyetal.,1987).Thelinearsolutionsofindividualelementsbecomesuperimposedtofindfinalsolutionandfurtherthepotentialisconvertedintohead.Eachsolutioncorrespondstoparticular hydraulicfeatures(e.g.,river,lakes,wells,hydraulicconductivity; Strack,1989).AEMdoesnotrequireafixedboundary condition,whichmakesthedevelopmentoftheconceptualmodellesscomplicated(Omaretal.,2019).

InAEM,themodelconceptualizationwasdoneinGISenvironment(GeographicInformationSystem)usingthebase mapfiles,whichwascreatedintheDXFformat.Boundaryconditionsaredefinedinthehydrologicalelementitselfasthe head.Themodeldomainwasdefinedbeforeinputtinganymodelparameters.Thetermdomainisreferringtotheregions withinwhichtheaquiferpropertiesareconstant.

InFDM,thegoverninggroundwaterflowequationcanbedefinedas:

where Kx,Ky,and Kz arethehydraulicconductivity(HC)oftheaquiferinallthreedirections(x, y,and z), W isthevolumetricflux(flow)perunitvolume, SS isthespecificstorageofaquifer’sporousmaterial, h isthepotentiometrichead,and t isthetime.

Numericalsolution,i.e.,FiniteDifferenceMethod(FDM)oftheequationgivesthevariabilityofgroundwaterhead(h) inanaquifer.IntheFDM,themathematicalapproximationisusedinsolvingthegroundwaterflowequationwhileinthe AEMharmonicfunctionisusedtosolvethegroundwaterflowequation(Laplaceequation)whichproducesmoreaccurate results.AstheAEMprovidesacontinuousgroundwaterlevelsurfacewhiletheFDMprovidessolutionsatdiscretepointsin thegrid,theAEMapproachissuitabletofollowthesharpchangesofthegroundwaterlevelwhiletheFDMapproachprovidesthegroundwatersurfaceonlyatdiscretepoints/grids.

3.2Particleswarmoptimization

Optimizationtechniquescanbeclassifiedintotwotypes.Thefirstis deterministicoptimization techniques,whichinclude linearprogramming(LP),nonlinearprogramming(NLP),anddynamicprogramming(DP).Thesecondtypeis stochastic optimization includingGeneticAlgorithm(GA),ParticleSwarmOptimization(PSO),ShuffledComplexEvolution,SimulatingAnnealing(SA),etc.Groundwatermanagementproblemsareusuallynonlinearandnonconvexmathematicalprogrammingproblems(McKinneyandLin,1994).Forsuchproblems,usingdeterministicoptimizationtechniquescanleadto someunforeseensituations.Thesetechniquesusuallyrequiregoodinitialsolutionstoproduceanoptimalsolution.Furthermore,theyrelyonthelocalgradientoftheobjectivefunctiontodeterminethesearchdirection,andthus,canconverge tolocaloptimalsolutions(Ayvaz,2009).Therefore,theuseofstochasticoptimizationtechniquesisgenerallypreferred becauseoftheirabilitytofindsolutionswithouttheneedforgradientsandinitialsolutions(El-GhandourandElsaid,2013).

Particleswarmoptimization(PSO)isastochasticpopulation-basedoptimizationalgorithminspiredbytheinteractions ofindividualsinasocialworld.Thisalgorithmiswidelyappliedinvariousareasofwaterresourceproblems.Particle SwarmOptimization(PSO),whichisalsoanevolutionarycomputationtechnique,whichisanefficientmethodforsolving largeandcomplexoptimizationproblems(KennedyandEberhart,1995).PSOisamemberofwidecategoryofswarm intelligencebasedmethodsandefficientinglobaloptimizationproblems.PSOconsiderstwofactorsforachievingthegoal: theparticle’sownbestpreviousexperience(i.e., pbest)andthebestexperienceofallothermembers(i.e., gbest).Themodel wasdevelopedontheMATLAB(Gauretal.,2011).

4.Modelapplicationandresults

BothAEM-PSOandFDM-PSOmodelswereemployedonrealfielddata.Bothcaseswereanalyzedandcomparativestudy wasperformed.ObjectivefunctionoftheproblemwasdefinedtominimizationtheResidualError(RE)betweenobserved andcomputedvalues.

where, hcomupted i arethevaluescomputedbyAEM-PSOmodel, hactual i areobservedvaluesinthepresenceofpumpingwells and Ne arethetotalnumberofcontrolpoints.

ThestudyareaislocatedinthecentralpartofIndo-GangeticplainoftheIndiansubcontinent.Varanasiistheoldestand religiousdistrictoftheUtterPradesh,India.VaranasihasbeentheculturalcenterofNorthIndiaforseveralthousandyears andiscloselylinkedtotheGanges.ItissituatedatthebankofGangaRiver.ThestudyarealiesinEasternUttarPradeshand boundedbetweentwomajorriverstheGangaRiverandGomatiRiver.TheRiverGangaliesinthesouthernandeasternpart ofthestudyareaandGomatiRiverliesinnorthernpart.Twosmalltributaries,namelyBasuhiandMorwalieinthewestern sideofthearea.TheVarunaRiverdividesthestudyareaintoalmosttwoequalparts.Thestudyareacoversthreedistricts; Varanasi,andsomeareasofSantRaviDasNagarandJaunpur.SantRaviDasNagarisalsoknownasBhadohi,situatedin theplainsoftheRiverGanga.JaunpurissituatedonthebankoftheGomatiRiver.

Thestudyareacoversabout2785km2 areainandaroundVaranasidistrict,ofwhich1535km2 locatedinVaranasi district.Thestudyarealiesbetweenthelatitude25

8230E8240E8250E830E8310E

STUDYAREA

Coordinate System: Lat Long WGS84

Datum: WGS84

Units: Degree

FIG.1 Locationofthestudyareawithobservationwellsandpumpingwells.

asshownin Fig.1.Theentireareaisdividedinto10administrativeblocksinwhich8blocksPindara,Cholapur,Baragaon, Harhua,Chiraigaon,Sevapuri,Arajiline,andKashiVidyaPeeth(KVP)existinVaranasiDistrict.

4.1Physiographyandtopographyofthearea

TheRiverGangaispresentasatrans-boundarybetweenIndiaandBangladesh,thepointoforiginofthe2525km(1569 mile)longRiverisWesternHimalayaintheIndianstateofUttarakhand,anditflowstothesouthandeastGangeticplains ofNorthIndiaintoBangladeshwhereitdrainsintheBayofBengal(GuptaandDeshpande,2004;Jainetal.,2007).Ganga isthelongestRiverofIndiaandisrankedsecondasthegreatestRiverintermsofwaterdischarge.Theaverageannual dischargeoftheRiverGangaisabout16,650m3/s( Jainetal.,2007).Gangabasinisofmagnificentvariationinaltitude, usageoftheland,thepatternofcrops,andclimate.OneofthetributariesofRiverGangaisGomatiRiverwhichoriginates fromtheGomattaal,Pilibhit,India.ThelengthoftheriverGomatiisaround900kmextendingfromthestateofUttar PradeshandmeetstheGanganearSaidpur,KaithiinGhazipur.OneoftheminortributariesoftheGangaisRiverVaruna. Throughouttheentirecourse,boththeriversreceivealargeamountofagriculturalrun-offconsistingofpesticidesand fertilizersfromthecatchmentarea.

Thetopographyofstudyareaischaracterizedbysignificantvariationintheelevation.Itvariesfrom33to101mmean sealevel(MSL).ThehighestelevationinthestudyareahasbeenobservedneararoundBhadohi.Theaverageelevationof theareais80.71mfrommeansealevel(MSL).TheGangaRiverhasanelevationof66.27mMSLatthepointwhereit entersintothestudyareaand60.78,whereitleavestheareainthedownstream.TheGomatiRiverelevationfromtopto bottomrangesfrom68.32to60.78mMSL,respectively.

Thegroundwaterflowmodelwasconceptualizedonthebasisofgeological,climatic,andhydro-geologicalcharacteristicsofthestudyarea.ParametershavebeenusedtodeveloptheFDMmodelaswell.Griddimensionhasbeentaken 100 100mforthedevelopmentofFDMmodel.Further,theAEM-PSOandFDM-PSOmodelswereappliedoncase 1andcase2tocomputethelocationanddischargeofunknownwells.

Initially5wellswereplacedatdifferentlocationsandcorrespondinggroundwaterheadswerecomputedbyAEMand headvalueswererecordedatpredefined12observationpoints.Theserecordedvalueswereconsideredasobservedvalues.

Further,theAEM-PSOandFDM-PSOmodelswereemployedtoidentifythelocationanddischargeofthosefivewellsby consideringdifferentsetsof1–5wells.Correspondingoptimalvaluesofobjectivefunctions,i.e.,REvaluesfordifferentset ofwellshavebeenrecordedandthenumberofwellswasfinalizedbasedonminimumvalueofRE.Theresultsof AEM-PSOandFDM-PSOmodelswereappliedontwocases(1)optimallocationanddischargeofwells,(2)Computational efficiencyofbothmodels.

Case1:

Inthiscase,optimaldischargeandlocationofpumpingwellswereidentifiedbystraightapplicationofAEM-PSOand FDM-PSOmodel.Efficiencyofmodelwascalculatedbyidentifyingthedifferenceindischargevaluesandlocationdisplacementbetweencomputedandobservedvalues.Locationdisplacementwascomputedbyaccumulatingthedifference betweenobservedandcomputedlocationofallwells,whichisdefinedas,

where, di isthedistancebetweentwoadjacentwellsand N ¼ totalnumberofwells.

ResultsindicatethatAEM-PSOhaserrorof1.9%–4.1%andFDMhaserrorof3.4%–7.3%indischargeratefor5wells. Whereas,AEM-PSOhaserrorof128mandFDMhaserrorof437.7minlocationdisplacementof5wells. Table1 shows thelocation,dischargerateofwellsandgroundwaterheadvaluesbybothAEM-PSOandFDM-PSOmodels.Results describethattheoptimallocationsdifferintheAEMandFDMmodel,whereAEMgivesmoreaccuratevaluesincomparisonofFDM.Althoughpresentmodelwasdevelopedbyconsideringsmallsizeofcells,butitshowsthatincreasingthe sizeofcellscanleadtomoreerrorinthefinalresults.

Maximumnumberofiterations,i.e.,1000wasconsideredfortheconvergenceoftheoptimizationmodel.Themodel convergenceshowedthattheAEM-PSOmodelconvergedafter905iterationsforthesetof5wells,whereastheFDM-PSO modelwasfoundtohaveconvergedafter825iterationsforthesetof5wells,respectively.Theresultsshowthatthe FDM-PSOmodelconvergedwithlessiterationthantheAEM-PSOmodel.TheparametersofthePSOmodelwereconsideredaslinearlyvaryinginertiaweightfrom2.0to1.8,accelerationconstant2.0–2.0.

Case2:

Inthiscase,movingsubdomainapproachwasappliedanditsefficiencyinbothAEMandFDMmodelwereanalyzed. Detaileddescriptionaboutthistechniquecanbefoundin AyvazandKarahan,2008.Inthisstudy,initiallocationofsubdomainwastakensameinAEMandFDMwithequalsizeof300m 300minAEMand3 3cellsinFDM.InAEM, domainsizewasallowedtoreducetill20m 20mfrom300m 300masAEMisnotboundedbyminimumsizeof grids.Predefinedwelllocationwasassumedonthecenterofthedomainandcenterofitssides.Contractionofdomain

TABLE1 Actualandoptimizedlocationanddischargeofthewellsincase1.

Case 1 Well ID

ExactlocationComputedlocationsRelativeerrorPumpingrates Xcoordinate Ycoordinates Xcoordinate Ycoordinates Location displacementExactComputed Relative errorRE

AEMW1687,2152,108,755687,1972,108,74321.631031662.22

W2686,5622,108,117686,5542,108,09820.628529510 W3687,1262,108,085687,1112,108,07319.23203299

W4686,0052,107,182685,9832,107,16031.129030212 W5686,8362,107,134686,8102,107,10936.12752816

FDMW1687,2152,108,755687,1432,108,69693.1310325153.48

W2686,5622,108,117686,5062,108,05186.628529813

W3687,1262,108,085687,0612,108,01397.032033111

W4686,0052,107,182685,9662,107,12073.229030212

W5686,8362,107,134686,7512,107,11287.827529520

wasallowedwhenthelocationofwellwasnotfoundimprovedinsubdomainbyflippinginalldirectionsasshownin Fig.2. Ineachcontractionofsubdomain,againitwasallowedtomoveinalldirectiontofindanyotherpossiblebestlocation.The procedureremainedcontinuetillthesubdomainsizeapproachestominimumlimit,i.e.,20 20m.Contractionwas employedtothetwosides,bytheshiftingrateof 10m,havingwellswithmoreREvaluesthanwellsofremaining twosides.TheREvalueforadditionofeachsubdomainwascomputedandusedtofindtheoptimalnumberofwells. Table2 showsnumberofwellsandthedifferentREvalues.WhereasreductionofsubdomainintheFDMmodelwas restrictedandthesubdomainwasallowedtomoveuntil,theoptimallocationwasnotfound.Optimallocationwasfinalized whenlocationofwell,inspecificcellofgrid,wasnotimproved.Tofinalizethelocationofcell,subdomainwasallowedto flipinalldirections(Fig.2).

Inthepresenceofoptimallocationofwell,locationoffinalcellwasnotfoundtobeimproved. Table3 showsthe location,dischargerateofwellsandgroundwaterheadvaluesbybothAEM-PSOandFDM-PSOmodelsforCase2.

Resultsshowthatoptimalnumberofwellsisfive,whichshowsminimumREvalues.Resultsindicatethatcumulative locationdisplacementinFDMwasfound270.7mmoreincomparisonoftheAEMmodel.Whereascomputedpumping rateswasfoundwiththeerrorof1.3%–2.1%inAEMand2.1%–3.6%inFDM.TotalnumberofiterationsinAEM-PSO modelwasfound22%moreincomparisonofFDMmodel.Itshowsthatsimulationmodelneedsmoreiterationtogetcloser valuestorealvalues.

ThecomparisonbetweenresultsofCase1andCase2shows(Table4)thatmovingsubdomainapproachisefficientto findmoreaccurateresults.Itwasalsoobservedthatlocationdisplacementerrorwasmoreimprovedthanpumpingrates errorinCase2.Itwasfoundthatlocationdisplacementerrorwasimprovedby42.7minAEMmodeland81.7minFDM modelfromCase1toCase2.Dischargevalueswereimprovedby1.1%inAEMand1.5%inFDM.InCase2,only5 decisionvariablesweretakentooptimizethepumpingrateofthewells,whereastotal15decisionvariablesweretaken inCase1tooptimizethelocationandpumpingrates.BothAEM-PSOandFDM-PSOmodelswereemployedforsingle runtofindtheoptimalsolutionintheCase1.WhereasinCase2,bothmodelstook10to15runstofindtheoptimalsolution. AlthoughmodelrunwasmoreinCase2,butduetopresenceoffivevariables,modelconvergesveryearlyincomparison ofCase1.

FIG.2 Flipandreductionofsubdomain.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.