Flow analysis for hydrocarbon pipeline engineering alessandro terenzi - Get the ebook instantly with

Page 1


https://ebookmass.com/product/flow-analysis-for-hydrocarbonpipeline-engineering-alessandro-terenzi/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Pipeline Rules of Thumb Handbook: A Manual of Quick, Accurate Solutions to Everyday Pipeline Engineering Problems (Ninth Edition) Kaiser

https://ebookmass.com/product/pipeline-rules-of-thumb-handbook-amanual-of-quick-accurate-solutions-to-everyday-pipeline-engineeringproblems-ninth-edition-kaiser/ ebookmass.com

Vapor Generation Techniques for Trace Element Analysis: Fundamental Aspects 1st Edition Alessandro D’Ulivo (Editor)

https://ebookmass.com/product/vapor-generation-techniques-for-traceelement-analysis-fundamental-aspects-1st-edition-alessandro-dulivoeditor/

ebookmass.com

Hydrocarbon Biorefinery: Sustainable Processing of Biomass for Hydrocarbon Biofuels 1st Edition Sunil Kumar Maity (Editor)

https://ebookmass.com/product/hydrocarbon-biorefinery-sustainableprocessing-of-biomass-for-hydrocarbon-biofuels-1st-edition-sunilkumar-maity-editor/

ebookmass.com

Developing and Administering a Child Care and Education Program 9th Edition – Ebook PDF Version

https://ebookmass.com/product/developing-and-administering-a-childcare-and-education-program-9th-edition-ebook-pdf-version/

ebookmass.com

Money and Medicine: The Evolution of National Health Expenditures Thomas E. Getzen

https://ebookmass.com/product/money-and-medicine-the-evolution-ofnational-health-expenditures-thomas-e-getzen/

ebookmass.com

Organization Change: Theory and Practice 5th Edition, (Ebook PDF)

https://ebookmass.com/product/organization-change-theory-andpractice-5th-edition-ebook-pdf/

ebookmass.com

Unlovable: M/M gay friends to lovers romance (Shooting Star Book 3) Sienna Sway

https://ebookmass.com/product/unlovable-m-m-gay-friends-to-loversromance-shooting-star-book-3-sienna-sway/

ebookmass.com

Life Cycle of Sustainable Packaging: From Design to Endof-Life Rafael A. Auras

https://ebookmass.com/product/life-cycle-of-sustainable-packagingfrom-design-to-end-of-life-rafael-a-auras/

ebookmass.com

Electoral Rules And Democracy In Latin America Cynthia Mcclintock

https://ebookmass.com/product/electoral-rules-and-democracy-in-latinamerica-cynthia-mcclintock/

ebookmass.com

Once More Upon a Time

https://ebookmass.com/product/once-more-upon-a-time-roshani-chokshi-3/

ebookmass.com

FLOWANALYSISFOR HYDROCARBON PIPELINEENGINEERING

ALESSANDROTERENZI

SaipemS.p.A.,Fano,Italy

AlessandroTerenzi

GulfProfessionalPublishingisanimprintofElsevier 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates TheBoulevard,LangfordLane,Kidlington,Oxford,OX51GB,UnitedKingdom

Copyright 2022ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyany means,electronicormechanical,includingphotocopying,recording,oranyinformation storageandretrievalsystem,withoutpermissioninwritingfromthepublisher.Details onhowtose2ekpermission,furtherinformationaboutthePublisher’spermissions policiesandourarrangementswithorganizationssuchastheCopyrightClearanceCenter andtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/ permissions.

Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyright bythePublisher(otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthis fieldareconstantlychanging.Asnewresearchand experiencebroadenourunderstanding,changesinresearchmethods,professional practices,ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgein evaluatingandusinganyinformation,methods,compounds,orexperimentsdescribed herein.Inusingsuchinformationormethodstheyshouldbemindfuloftheirownsafety andthesafetyofothers,includingpartiesforwhomtheyhaveaprofessional responsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,or editors,assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasa matterofproductsliability,negligenceorotherwise,orfromanyuseoroperationofany methods,products,instructions,orideascontainedinthematerialherein.

ISBN:978-0-12-822466-3

ForinformationonallGulfProfessionalPublishingpublicationsvisitour websiteat https://www.elsevier.com/books-and-journals

Publisher: CharlotteCockle

SeniorAcquisitionsEditor: KatieHammon

EditorialProjectManager: JaiMarieJose

ProductionProjectManager: KameshRamajogi

CoverDesigner: MatthewLimbert

TypesetbyTNQTechnologies

3.Transientcompressible

Basicsofhydrocarbons

1.1Introduction

Hydrocarbonstransportedbypipelinesystemsareusuallycomposed byalargenumberofcomponents;atambienttemperatures,someofthem arepresentinthegasphase,whileothersareliquids.Someheaviercomponentsmayalsoappearassolidinsomecriticaloperatingconditions(hydrates,waxes).Waterisoftenpresentinthetransported fl uidmixture, anditisusuallytreatedasaseparatephase,evenifahydrocarbonliquid ispresent.Thebehaviorofhydrocarbonmixturesdependsontheircompositionsaswellasthepressureandtemperatureconditionsencountered. Thethermodynamicsofmixturesisdeterminedbythecontributionsof singlecomponents;forthisreason,thepropertiesofsinglecomponents arecovered fi rst.Thetreatmentbeginswiththedescriptionoftheequationsofstate,de fi ningtherelationshipbetweenthemain fl uidproperties; startingwiththesimplestapproachbasedonidealgasmodel,morecomplexandrealisticmodelsareintroduced.Thermodynamicequilibrium conditionsarediscussedbyconsideringtherelevanttrendsofentropy

andfreeenergies,forspeci fi csystems.Stableequilibriumoccurswhenitis independentontimeanditsprevioushistory,anditisabletoresisttosmall thermodynamicparameter fl uctuations.Theseconceptsareappliedtothe analysisofvapor liquidphasetransformations,referredtobothsingle componentsandbinarymixtures.Thediscussionisfurtherextendedto multicomponentmixtures,astypicalofhydrocarbon fl uids.Thedescriptionoftheirpropertiesisdevelopedbytreatingtheinteractionofdifferent components,thephasebehaviorincludingavapor liquidcoexistence conditionoccupyinga fi niteregionofthepressure temperaturediagram, retrogradecondensationphenomena,thedifferentbehaviorsofreservoir fl uidasdependingontheirdominantcomponents,andtheinteraction withthewaterphase.

1.2Equationofstate

Thethermodynamicpropertiesofa fluidcanbedefinedbyusinga volumetricequationofstate,providinginformationabouttherelationship betweenpressure,temperature,andvolume(ordensity).

ThesimplerEoS(EquationofSate)isthatrelevanttotheidealgas model,whichassumesnointeractionamong fluidparticlesandneglectstheir volume.Itisexpressedbythefollowing:

where:

P ¼ fluidpressure

V ¼ fluidspecificvolume

R ¼ universalgasconstant

T ¼ fluidabsolutetemperature

Intermofcompressibilityfactor Z,definedinthisway,

theidealgasmodelisrepresentedbythecondition Z ¼ 1.

Thecompressibilityfactorisaparametergivingtheindicationofthe deviationofarealgasthermodynamicbehaviorfromtheidealgasapproximation;actually,therealsubstancescanbedescribedby Eq.(1.1) onlyina limitedrangeofconditions,i.e.,atlowpressuresandmoderatetemperatures.Hence,otherequationsofstatehavebeendevelopedonthebasis

ofexperimentaldataofreal fl uids;themostimportantfromahistorical pointofviewistheclassicalVanderWaalsequation,givenbythe following:

Inthisexpression,twoparametershavebeenintroducedtorepresentreal fluideffects,namely:

a ¼ itisaparameterrelevanttotheVanderWaalsintermolecularforces, whichareincludedasanequivalentpressuretermproportionaltotheinversesquareofthevolume

b ¼ itisaparameterrepresentingthe finitevolumeofmolecules

Eq.(1.3) isaso-calledcubicEoS,sinceacubicalgebraicequationmust besolvedinordertoobtainthevolume.

TheVanderWaalsequationisnotveryaccurate,butitwasthe first equationcapableofpredictingthetransitionbetweenvaporandliquid; furthermore,ithasalsobeentheprototypeformodern,moreaccurate equationsofstateasthePeng Robinsonone(PengandRobinson, 1976),givenby:

ortheSoave Redlich Kwong(Soave,1972):

Theparametersoftheaboveequationscanbeobtainedorby fittingthe equationsto PVT dataforthe fluidofinterestorbyusinggeneralrelations betweenthemandcriticalpointproperties(see Section1.4).

Alltheaboveexpressionscanbewritteninthefollowingform:

Thisisagainacubicalgebraicequationthatmustbesolvedtogetthe compressibilityfactor Z,asmustbeforthe fluidvolume.

Allcubicequationsofstateareapproximate;ingeneral,theyprovidea reasonabledescriptionofthermodynamicpropertiesofvaporandliquid phasesofhydrocarbons,andofvaporregiononlyformanyotherpure fluids. ThePeng RobinsonandSoave Redlich Kwongare,atpresent,among themorepopularcubicequationsofstateinoilandgasapplications.

Adifferenttypeofequationofstateisthevirialequation(Sandler,1999):

where BðT Þ and C ðT Þ arethetemperature-dependentsecondandthird virialcoefficients.Thisexpressionisoftheoreticalinterestsinceitcanbe derivedfromstatisticalmechanicswithexplicitformulationsofthevirial coefficientsintermsofparticleinteractions.Itisapowerseriesexpansionin specificvolumeabouttheidealgasresult.Withasufficientnumberofcoefficients,thevirialequationcanpredictthevaporphasepropertieswith goodprecision,butitisnotapplicabletotheliquidphase.However,evenin thecaseofthegases,itisnotrecommendedforpressureabove10bar.

1.3Otherreal fluidproperties

Oneofthequantitiesappearinginthefundamentalthermodynamic relationshipsistheheatcapacity.Itispossibletoshowthat,givenavolumetricEoS,andheatcapacitydataasafunctionoftemperatureatasingle valueofpressure P1 orvolume V1,thevalueoftheheatcapacityinanyother state(representedbypressure P2 orvolume V2)canbecomputedbythe following(Sandler,1999):

where CP and CV aretheconstantpressureandconstantvolumeheatcapacities,respectively.

Inpractice,heatcapacitydataareusuallycollectedforlowpressureconditionsorlargespecificvolumeswhereall fluidsareidealgases.Hence,if P1 or V1 aretakenas0and N,respectivelyin Eqs.(1.8)and(1.9) above,itis possibletowrite:

wheretheasteriskdenotestheidealgasheatcapacity.Usually,thetemperaturedependenceoftheidealgasheatcapacityisgiveninpolynomial formasfollows:

Otherthermodynamicvariablesthatallowtocalculatethedeviationsof thereal fluidbehaviorfromtheidealgasstatusarethe “Departure Functions.”

Inparticular,itispossibletoshowthat,forwhatconcernstheenthalpyH andtheentropyS,theirchangesforareal fluidareequaltothatofanideal gasundergoingthesametransformationplusthedepartureofthe fluidfrom theidealgasbehaviorattheendstatelessthedeparturefromtheidealgas behaviorattheinitialstate.These “DepartureFunctions” canbecomputed fromtheequationofstate,basedonthefollowing:

1.4Theprincipleofcorrespondingstates

Theanalysispresentedin Sections1.2and1.3 hasshownthatitis possibletocalculatethethermodynamiccharacteristicsofarealsubstance givenonlytheidealgasheatcapacityandthevolumetricEoS.However, thenecessaryinformationontheEoSisnotalwaysavailableforall fluids. Hence,itispossibletoresorttotheprincipleofcorrespondingstates,which allowstopredictthermodynamicpropertiesof fluidsfromgeneralizedpropertycorrelationsbasedonexperimentaldataforsimilar fluids.

WeconcentrateourattentiononavolumetricEoS,whichisdeterminedbytheintermolecularinteractions.Fromthestudyofmolecular behavior,ithasbeenfoundthatmoleculescanbegroupedintoclasses,

suchassphericalmolecules,nonsphericalmolecules,moleculeshavinga permanentdipole,andsoon,andthatwithinanyoneclassmolecularinteractionsaresimilar.

IthasbeenalsofoundthatallthemembersofaclassobeythesamevolumetricEoS,i.e.,thevolumetricdataofeachmemberare fittedbysimply changingtheparametersoftheEoS.Thefactthatseveraldifferentmolecular speciesmaybedescribedbyavolumetricEoSofthesameformsuggeststhat itmightbepossibletoconstructgeneralizedcorrelationsforboththeEoS anddensity-dependentcontributiontoenthalpy,entropy,andotherthermodynamicvariables.The firsthistoricalgeneralizedcorrelationarose fromthestudyoftheVanderWaalsEoS. Fig.1.1 showstheisothermsof thisequationina P versus V diagram,for fivevaluesoftemperature includingthecriticaltemperature TC,whichisdefinedasthemaximum temperatureatwhichaliquidphasecanexist.Tobenotedthatthisdefinitionholdsforasinglecomponent fluidonly.

Itcanbeobservedinthis figurethattheisothermswithtemperature belowthecriticaloneexhibitanon-monotonebehavior,withalocalminimumfollowedbyalocalmaximumoverpartofthespecificvolume pressurerange.Suchtrendisassociatedwithaliquid vaportransition. Whilethisbehaviorisabsentfor T > TC,insuchawaythattheliquidphase cannotexistinthisrange,inthecriticaltemperaturecurve,thetwoextremescoincide,andthispoint(calledcriticalpoint)isaninflectionpoint,

Figure1.1 IsothermsoftheVanderWaalsEOSinaplane(

wherethe firstandsecondderivativeof P withrespectto V vanishessimultaneously.Thisisexpressedanalyticallybythefollowingrequirements:

Byreplacing Eq.(1.3) intherelations(1.15),thefollowingexpressionsof theVanderWaalsparameters a and b areobtained:

Using (1.16) intheVanderWaals Eq.(1.3),itispossibletogetthepressure PC andthecompressibilityfactor ZC atthecriticalpoint:

Byusingtheaboveexpressionsandbydefiningthedimensionlessvariablescalledreducedtemperature Tr,reducedpressure Pr andreducedvolume Vr

thefollowingformoftheVanderWaalsequationofstateisobtained:

From (1.19) itisconcludedthatallthe fluidsobeyingtheVanderWaals equationofstatehavethesamenumericalvalueofreducedvolumeforgiven valuesof Pr and Tr.Two fluidshavingthesamevaluesofreducedpressure andtemperaturearesaidtobeincorrespondingstates.

Theprincipleofthecorrespondingstateshasbeenhistoricallyrepresentedbydrawingthecompressibilityfactor Z asfunctionofreducedpressureandtemperature,asshownin Fig.1.2,wherethecompressibilitydata forseveral fluidshavebeenreported.

Fig.1.2 demonstratesthattheideaofthecorrespondingstatesisreasonable,sincethegeneraltrendofthedataconfirmsthesimilarityrepresented by (1.19).However,itcanbeobservedthatcompressibilityfactorsforinorganic fluidsarealmostalwaysbelowthoseforhydrocarbons.Furthermore,if (1.19) wereuniversallyvalid,all fluidswouldhavethesamevalueofthecriticalcompressibility ZC ¼ 0.375,asshownby (1.17),whileformost fluids, thecriticalcompressibilityisintherange0.23 0.31.

Figure1.2 Compressibilityfactorforseveral fluidsasafunctionofreducedpressure andtemperature. From SuandChang(1946).

Thesedeviationshaveledtothedevelopmentofmorecomplicatedcorrespondingstatesprinciples.Thesimplestgeneralizationisbasedonthe adoptionofafamilyofdifferentrelations Z ¼ Z(Pr,Tr),withdifferentvalues of ZC,i.e.,thecriticalcompressibilityfactorisusedasanadditionalparameterofthecompressibilitylaw:

Infact,otherquantitieshavebeenconsideredasadditionalcorrespondingstatesparameters,sincethecriticalcompressibilityfactor ZC isnot knownwithenoughaccuracyformanysubstances.

Pitzer(1995) hasproposedtheso-calledacentricfactor u asthirdcorrelativeparameter,whichisdefinedinthisway:

¼ 1:0 Log10 ðP vap ðTr ¼ 0:7Þ = PC Þ (1.21)

Here P vap ðTr ¼ 0:7Þ isthevaporpressureofthe fluidat Tr ¼ 0:7. Eventheseextensionsofthecorrespondingstateconcepthavebeen foundnotsuitabletorepresentthethermodynamicbehaviorofsomekinds ofmolecules,inparticularthathavingdipolesorquadrupoles.Hence,this applicationremainslimitedtosomeclassesofmoleculesonly,asincaseof mosthydrocarbons.

ThemodernversionofthecorrespondingstatesideaistheuseofgeneralizedEoS.

TheVanderWaalsequationisthe firstexampleofapplicationofthis approach.Infact,theexpressions (1.16),rewrittenintermsofthecritical pressureandtemperatureinthisway,

demonstratethatthethermodynamicpropertiesofaclassof fluidswith parameters a and b thathavenotbeenderivedfromasetofexperimentaldata canbedescribedbyknowingthe fluidcriticalpropertiesonly.Asitwassaid before,theVanderWaalsequationisnotaccurateenough,andothermore sophisticatedequationsareused.

Inparticular,weconsiderherethePeng Robinsonequationalreadypresentedin Section1.1,byshowingthatitsgeneralizedformisgivenbythe following:

TheaboverelationshipswereobtainedbyPengandRobinsoninorder toimprovethepredictionsoftheboilingpointpressureversustemperature, andthefunction aðT Þ waschosenby fittingthevaporpressurevaluesfor many fluids.WithrespecttotheVanderWaalsscheme,thegeneralized Peng Robinsonapproachusesoneparametermoreotherthan PC and TC,namelytheacentricfactor u

Thisequationcanbeusedtocalculatenotonlythecompressibilityfactor,butalsothedeparturefunctionsfortheotherthermodynamic properties.

AnotherverypopularcubicequationofstateusedintheoilandgasindustryistheSRK(Soave Redlich Kwong):

with:

Thecurrentindustrialpracticeisbasedontheapplicationofthecorrespondingstatesconcept,byassumingthatdifferent fluidsaredescribedby thesamegeneralizedequationsofstate,andthattheirthermodynamic behaviorinanextendedpressureandtemperaturerangeisdescribedby knowingthegeneralizedparametersonly.Suchkindofequationscan giveaveryaccuratethermodynamicpictureofmanysubstances,inparticularhydrocarbons.

1.5Equilibriumandstabilityofone-component fluids

Theequilibriumstateofaclosedthermodynamicsystemcanbe derivedbyusingtheenergyandentropybalancesderivedfromthe first andsecondprinciplesofthermodynamics:

where:

U ¼ specificinternalenergy _ Q ¼ heattransferrate

S irr ¼ rateofinternalgenerationofentropybyirreversibleprocesses 0 In (1.33) onlyworkduetodeformationofthesystemboundariesis considered.

Foranadiabatic( _ Q ¼ 0)andconstantvolumesystem,thesystemofenergyandentropybalancesequationsbecomes

Sincetheentropyfunctioncanonlyincreaseduringtheapproachto equilibriumdueto (1.36),theentropymustbeamaximumatequilibrium. Hence,theequilibriumcriterionforaclosedandisolatedsystemisas follows:

Thisprinciplecanbeillustratedbyreferringtothesimplesystemshown in Fig.1.3.

Thesystemiscomposedbytwosubsystemscontainingdifferentamounts ofthesamemolecularspeciesofparticlesofasingle-component fluid(N representsthenumberofmoles).Theyareconnectedbyachannelofinfinitesimalvolumeequippedbyanidealvalveopeninginstantaneously.The systemisassumedadiabaticandconstantvolume,exchangingneithermass neitherenergywiththeexternalenvironment.However,thetwosubsystemscanexchangeheatandmassacrossthecommunicationchannel whenthevalveisopen.Fortheglobalsystem,thetotalnumberofmoles

Figure1.3 Isolatednonequilibriumsystem.

N1, S1, U1, V1
N2, S2, U2, V2

N,thetotalinternalenergy U,thetotalvolume,andthetotalentropyare givenbytheadditionofthetwosubsystemscontributions:

Byusingthefundamentalthermodynamicrelationships,theentropy changeofeach i-thsubsystemaftercommunicationandmixingofparticles canbeexpressedasafunctionofchangesinthenumberofmoles,volumes, andinternalenergybythefollowing:

where Gi isthe i-thsubsystemmolarGibbsenergy.

Theentropychange dS oftheoverallsystemcanbeeasilyobtainedby summingthetwosubsystemscontributions,byconsideringthatthetotal quantitiesgivenby (1.38), (1.39),and (1.40) areconstant:

Sincetheentropymustbeamaximumatequilibrium,the (1.25) expressionmustvanishforsystemvariations,thusobtainingthefollowing:

Hence,theequilibriumconditionforanadiabaticisolatedsystemstates thatallitssubsystemsmusthavethesametemperature,thesamepressure, andthesamemolarGibbsenergy.

Theabovediscussionisbasedonthecondition dS ¼ 0,whichisnecessarybutnotsufficientforStoreachamaximumvalue.Thefurther

condition d 2 S 0assuresthatamaximumentropyvalue,givingatrue equilibriumstate,hasbeenidentified.Onthecontrary,aminimumofthe entropycorrespondstoanunstablestate.Therefore,thesignof d 2 S determinesthestabilityofthethermodynamicstatefoundfrom dS ¼ 0.

Itispossibletodeterminetheequilibriumandstabilityforotherkindsof systemsalso.

Forinstance,foraclosedsystemkeptatconstanttemperatureandvolume,theenergyandentropybalanceequationsbecome

Bycombiningtheaboveequations,thefollowingrelationship,writtenin termofthemolarHelmholtzfreeenergy F ,isobtained:

SincethemolarHelmholtzfreeenergy F canonlydecreaseduringthe approachtoequilibriumdueto (1.49),itmustbeaminimumatequilibrium. Hence,theequilibriumcriterionforaclosedsystemkeptatconstant temperatureandvolumeisthefollowing:

Foraclosedsystemkeptatconstanttemperatureandpressure,theenergy andentropybalanceequationsbecomethefollowing:

Bycombiningtheaboveequations,thefollowingrelationship,writtenin termofthemolarGibbsfreeenergy G ,isobtained:

whichleadstothefollowingequilibriumcriterion:

Table1.1

Equilibriumandstabilityconditionsforselectedsystems.

KindofsystemConstraints Equilibrium

Isolated,adiabatic systemwith constantvolume U ¼ constant, V ¼ constant S ¼ maximum, dS ¼ 0 d 2 S 0

Isothermal,closed systemwith constantvolume T ¼ constant, V ¼ constant F ¼ minimum, dF ¼ 0

Isothermal,isobaric closedsystem T ¼ constant, P ¼ constant

Actuallyforallthesystemsconsideredhere,theapplicationoftheequilibriumcriteriadeterminesthattheyareatuniformtemperature,pressure, andmolarGibbsfreeenergy.

Theequilibriumandstabilityconditionsforthesystemunderconsideration,writtenforasingle-component fluid,aresummarizedin Table1.1.It ispossibletoshowthattheyarealsovalidformulticomponent fluids.

Fromthestabilitycriterialistedin Table1.1,threefundamentalthermodynamicinequalitiescanbederivedforsystemsconsideredinastableequilibriumstate: CV > 0; vP vV T < 0; vU vT > 0(1.55)

1.6Vapor

fluids

liquidequilibriumforone-component

Nowwearegoingtoanalyzetheequilibriumoftwophases(vapor andliquid)onthebasisofthediscussionexposedin Section1.5.In Fig.1.4,someisothermalcurvesinaplane(P,V)areshown,asgivenbya typicalcubicEoS.Thesecurvesarerepresentedforincreasingtemperature (T1 < T2 < T3 < T4 < T5).Wecanobservethattheisothermslabeledby T1 and T2 donothaveamonotonetrend,buttheypresentaminimumfollowedbyamaximuminacertainregionofthe(P,V)diagram.Therefore, whileforthehigh-temperatureisothermsthestabilitycondition ð vP vV Þ T < 0isfulfilledeverywhere,thisisnottrueforthelow-temperatureisotherms. Actually,theregionsofthediagramwherethestabilityviolationoccursare notphysicallyrealizableandcannotbeobservedinpractice.Thus,inthis

particularthermodynamicregion,thecubicequationsofstatefailtopredict therealbehaviorofthe fluid,andtheirtrendmustbereplacedbyanother physicaldescription.Theisothermattemperature T3 hasasinglepointfor whichthe firstandsecondderivativesofpressurewhichrespecttovolume vanishsimultaneously:thisiscalledcriticalpointand T3 isthecriticaltemperature(usuallyidentifiedasTC).

Alow-temperatureisothermisrepresentedalonein Fig.1.5;itisshown thattheintersectionofahorizontallineatconstantpressurewiththecurve givesthreepossiblevaluesforthevolumeofthe fluid, V 0 , V 00 ,and V 000 .One ofthese, V 00 ,isonthepartoftheisothermthatisunphysicalfortheabove mentionedstabilityreasons.Theothertwovalueshaveaphysicalmeaning instead,andtheyrepresentthevolumesoftheliquidandvaporphase, respectively,atthespecifiedpressureandtemperature.

Thetruethermodynamicbehaviorintheregionbetween V 0 and V 000 is shownin Fig.1.6,whereaphasechangeoccursalongtheconsidered isothermisobarrepresentedbythehorizontalsectionwhichboundaryvolumesarethesingle-phaseliquidandvaporvolumeslabeledas V L and V V . Thisisthevapor liquidcoexistenceregion.Thetwo-phasemixturespecificvolume V M variesinthisregionsince,althoughthespecificvolumes ofthesinglephasesare fixed,thevaporfraction a inthemixturevaries from0to1,thusgivingthefollowing:

Figure1.4 Isothermsonaplane(P,V)predictedbyacubicequationofstate.

Isotherm T1 < T3

Line

Figure1.5 Low-temperatureisotherminaplane(P,V)predictedbyacubicEoS.

Isotherm T1 < T3

Figure1.6 Reallow-temperatureisotherminaplane(P,V)includingthevapor liquid phasetransition.

Thus,theisothermsectionpredictedbyacubicEoSinthetwo-phase regionofasingle-component fluidmustbereplacedbytheisobarichorizontallineshownin Fig.1.6

Thequestionthatremainsisthevalueofpressurecorrespondingtothe vapor liquidcoexistenceregion.Thecriteriontobeappliedinorderto findthispressureistheequalityofthetwophasesGibbsfreeenergies,as

derivedfrom Section1.5.Fromfundamentalthermodynamicrelationships, thefreeGibbsenergyvariation DG alonganisothermisgivenbythe followingintegral:

Thus,byusingtheequationofstatewhichprovidestherelationship among V and P ,thevalueofthephasechangepressure P f isobtained bythefollowing:

where P 0 and P 00 aretheminimumandmaximumpressurevaluesinthephase transitionregion.Graphically,thiscorrespondstotheequalitybetweenthe regions A and B of Fig.1.5,comprisedbetweenthehorizontaltransitionline andtheisothermcurvegivenbythecubicEoS. Fig.1.4 mustbereplacedby Fig.1.7,showingthetruethermodynamicbehaviorassociatedtothephase transition,inwhichthetwo-phasemixtureregionisincludedinsideadomeshapedenvelopecurvecrossingthelow-temperatureisotherms.For

Coexistence Region

Figure1.7 Realisothermsinaplane(P,V)includingthevapor liquidcoexistence region.

Critical Point (TC , PC )

temperaturesabovethecriticaltemperature,nophasetransitioncanoccur, andthe fluidissaidtobeinthesupercriticalconditionordensephasegas.

Atypicalphasetransitioncurveina(P,T)diagramhastheformshownin Fig.1.8,endingwiththecriticalpointidentifiedbythecouple(TC, PC). Again,fortemperaturesabovethecriticaltemperature,nophasetransition canoccur(supercritical fluid).Fortemperatures T < TC andpressures P > PC,the fluidisintheliquidphase,butitsthermodynamicproperties, closetothecriticalconditions,areverysimilartothatofthesupercritical gasinsuchawaytheyarepracticallyindistinguishable.

Theequation P ¼ P ðT Þ ofthephasetransitioncurvecanbederivedby applyingtheequalityoftheGibbsfreeenergiesrelevanttothetwophases:

From (1.59),itdescendsthatforsmallchangesofpressureandtemperaturethechangesoftheGibbsfreeenergiesaresmallandequal:

Fromfundamentalthermodynamicrelationships,thedifferentialsof (1.60) canbeexpressedintermsoftheotherthermodynamicquantitiesin thisway:

Liquid-Vapour Transition Curve
Figure1.8 Liquid vaportransitioncurveinaplane(P,T).

And,byindicatingwith DV ; DS thechangesinspecificvolumeandentropy whenpassingfromonephasetotheother,from (1.61),weobtainthe following:

where DH isthephasetransitionenthalpyvariation,alsocalledlatentheatof vaporization(orcondensation).The (1.62) isknownasClapeyronequation. Thepressureatwhichtheliquidandvaporphasesareinequilibriumis termedvapororsaturationpressure,hereindicatedas P vap .From (1.62), itstrendasfunctionoftemperature P vap ¼ f ðT Þ canbeobtained.At temperaturesforwhichthevaporpressureisnotveryhigh,itresultsthat V V >> V L and DV zV V .Furthermore,ifthevaporcanbetreatedas ideal,wehave DV ¼ V V ¼ RT P ,thusgivingthefollowing:

thatcanbewrittenalsoasfollows:

where DH vap ¼ H V H L isjustthelatentheatofvaporization.

Theintegrationof (1.64) givesthewantedvaporpressuretemperature function;ifitisassumedthatthetemperaturedependenceof DH vap isnegligible,wegetthefollowing:

where C isanintegrationconstant.

AcommoncorrelationusedtoreproducethevaporpressureastemperaturefunctionistheAntoineequation,whichisverysimilarto (1.65) andit isexpressedinthisway:

where D and E arecorrelatingparameters.

Thediscussionreportedsofarhasbeenconcernedwiththeanalysisof stableequilibriumstatesofasingle-component fluid.However,metastable statesasthesuperheatedliquidandthesubcooledvaporcanoccurin

Isotherm T1 < T3

Superheated Liquid

Subcooled Vapour

experiments.Infact,bysuitableexperimentalproceduresinwhichthethermodynamictransformationalonganisothermisrealizedveryslowly,by avoidingasmuchaspossibletheonsetofbubblenucleationincaseofliquid andofdropletnucleationincaseofvapor,theone-phaseisothermsections canbeprolongedoutsidethestabilityregionasshownin Fig.1.9.Theliquid belongingtotheextendedleftisothermportionissaidsuperheatedliquid andthevaporbelongingtotheextendedrightisothermportionissaidsubcooledvapor.Boththesestatesaremetastablesincetheyexistasone-phase fluidsinaregionwherethetwo-phasetransitionshouldhavehadoccurred, andifslightlyperturbed,the fluidexperiencesasuddentransitiontowardthe stablecondition.

Actually,inthestudyofliquid vaporequilibria,itiscommonpractice toutilizetheso-calledfugacityintheequilibriumequation,insteadofthe Gibbsfreeenergy.

Thefugacity f isdefinedinthisway:

Anotherquantitycorrelatedtothefugacityisthefugacitycoefficient

Figure1.9 Metastablestatesalonganisotherminaplane(P,V).

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Flow analysis for hydrocarbon pipeline engineering alessandro terenzi - Get the ebook instantly with by Education Libraries - Issuu