Applications of computational intelligence in multi-disciplinary research ahmed a. elngar - Own the

Page 1


https://ebookmass.com/product/applications-of-computationalintelligence-in-multi-disciplinary-research-ahmed-a-elngar/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Applications of Computational Intelligence in MultiDisciplinary Research Ahmed A. Elngar

https://ebookmass.com/product/applications-of-computationalintelligence-in-multi-disciplinary-research-ahmed-a-elngar-2/

ebookmass.com

Multi-Chaos,

Fractal and Multi-Fractional Artificial Intelligence of Different Complex Systems Yeliz Karaca

https://ebookmass.com/product/multi-chaos-fractal-and-multifractional-artificial-intelligence-of-different-complex-systems-yelizkaraca/

ebookmass.com

Bionanotechnology: Emerging Applications of Bionanomaterials Ahmed Barhoum

https://ebookmass.com/product/bionanotechnology-emerging-applicationsof-bionanomaterials-ahmed-barhoum/

ebookmass.com

Functional Anatomy for Physical Therapists 1st Edition

https://ebookmass.com/product/functional-anatomy-for-physicaltherapists-1st-edition/

ebookmass.com

Advertising & IMC: Principles and Practice 10th Edition, (Ebook PDF)

https://ebookmass.com/product/advertising-imc-principles-andpractice-10th-edition-ebook-pdf/

ebookmass.com

Food, Medical, and Environmental Applications of Nanomaterials Veeriah Jegatheesan

https://ebookmass.com/product/food-medical-and-environmentalapplications-of-nanomaterials-veeriah-jegatheesan/

ebookmass.com

Robert Louis Stevenson’s Pacific Impressions: Photography and Travel Writing, 1888–1894 1st ed. Edition Carla Manfredi

https://ebookmass.com/product/robert-louis-stevensons-pacificimpressions-photography-and-travel-writing-1888-1894-1st-ed-editioncarla-manfredi/

ebookmass.com

Facharztprüfung Anästhesiologie: in Fällen, Fragen und Antworten Thorsten Annecke (Autor)

https://ebookmass.com/product/facharztprufung-anasthesiologie-infallen-fragen-und-antworten-thorsten-annecke-autor/

ebookmass.com

A SARS-CoV-2 Vaccination Strategy Focused on PopulationScale Immunity Mark Yarmarkovich

https://ebookmass.com/product/a-sars-cov-2-vaccination-strategyfocused-on-population-scale-immunity-mark-yarmarkovich/

ebookmass.com

https://ebookmass.com/product/using-mis-10th-edition-ebook-pdf/

ebookmass.com

ApplicationsofComputationalIntelligencein Multi-DisciplinaryResearch

Applicationsof ComputationalIntelligence inMulti-Disciplinary

Research

AhmedA.Elngar FacultyofComputersandArtificialIntelligence,Beni-SuefUniversity,Beni-SuefCity,Egypt CollegeofComputerInformationTechnology,AmericanUniversityintheEmirates, UnitedArabEmirates

RajdeepChowdhury DepartmentofComputerApplication,JISCollegeofEngineering,Kalyani,WestBengal,India

MohamedElhoseny CollegeofComputingandInformatics,UniversityofSharjah,UnitedArabEmirates FacultyofComputersandInformation,MansouraUniversity,Egypt

ValentinaEmiliaBalas

DepartmentofAutomaticsandAppliedSoftware,FacultyofEngineering, “AurelVlaicu”UniversityofArad,Arad,Romania

SeriesEditor

ValentinaEmiliaBalas

DepartmentofAutomaticsandAppliedSoftware,FacultyofEngineering, “AurelVlaicu”UniversityofArad,Arad,Romania

AcademicPressisanimprintofElsevier 125LondonWall,LondonEC2Y5AS,UnitedKingdom 525BStreet,Suite1650,SanDiego,CA92101,UnitedStates 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom

Copyright©2022ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicormechanical,including photocopying,recording,oranyinformationstorageandretrievalsystem,withoutpermissioninwritingfromthepublisher. Detailsonhowtoseekpermission,furtherinformationaboutthePublisher’spermissionspoliciesandourarrangementswith organizationssuchastheCopyrightClearanceCenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions .

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher(otherthanasmaybe notedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenourunderstanding, changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusinganyinformation, methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethodstheyshouldbemindfuloftheir ownsafetyandthesafetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliabilityforanyinjury and/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceorotherwise,orfromanyuseoroperationof anymethods,products,instructions,orideascontainedinthematerialherein.

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

ISBN:978-0-12-823978-0

ForInformationonallAcademicPresspublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: MaraConner

AcquisitionsEditor: ChrisKatsaropoulos

EditorialProjectManager: IsabellaC.Silva

ProductionProjectManager: SelvarajRaviraj

CoverDesigner: GregHarris

TypesetbyMPSLimited,Chennai,India

Contents

Listofcontributorsix

1.Irisfeatureextractionusing three-levelHaarwavelettransform andmodifiedlocalbinary pattern1

PrajoyPodder,M.RubaiyatHossainMondaland JoarderKamruzzaman

Abbreviations1

1.1Introduction1

1.2Relatedworks3

1.3Irislocalization4

1.4Irisnormalization6

1.5Theproposedfeatureextraction scheme7

1.6Matchingresults11

1.7Performanceevaluation11

1.8Conclusion13 References14

2.Anovelcrypt-intelligent cryptosystem17

PratyusaMukherjeeand ChittaranjanPradhan

2.1Introduction17

2.2Relatedwork18

2.2.1Machinelearningcontributionsin cryptology18

2.2.2Geneticalgorithmcontributionsin cryptology20

2.2.3Neuralnetworkcontributionsin cryptology21

2.2.4BackgroundofDNAcryptography23

2.3Proposedmethodology23

2.3.1Proposedencryptionscheme24

2.3.2Proposeddecryptionscheme25

2.4Discussion25

2.5Conclusionandfuturework26 References26

3.Behavioralmalwaredetectionand classificationusingdeeplearning approaches29

T.Poongodi,T.LuciaAgnesBeena, D.SumathiandP.Suresh

3.1Introduction29

3.1.1Digitalforensics—malware detection30

3.1.2Malwareevolutionandits taxonomy32

3.1.3Machinelearningtechniquesfor malwareanalysis32

3.1.4Behavioralanalysisofmalware detection33

3.2Deeplearningstrategiesformalware detection35

3.2.1Featureextractionanddata representation35

3.2.2StaticAnalysis36

3.2.3Dynamicanalysis38

3.2.4Hybridanalysis38

3.2.5Imageprocessingtechniques38

3.3ArchitectureofCNNsformalware detection41

3.3.1Preprocessing41

3.3.2ClassificationusingCNNs41

3.3.3Evaluation42

3.4ComparativeanalysisofCNN approaches42

3.5Challengesandfutureresearch directions43

3.6Conclusion43 References43

4.Optimizationtechniquesand computationalintelligencewith emergingtrendsincloud computingandInternetofThings47

JayeshSVasudeva,SakshiBhargavaand DeepakKumarSharma

4.1Introduction47

4.1.1Introductiontooptimization48

4.1.2Introductiontocloudcomputingwith emphasisonfog/edgecomputing48

4.2Optimizationtechniques49

4.2.1Anoptimizationproblem49

4.2.2Solutiontotheoptimizationproblem52

4.3Understandingfog/edgecomputing54

4.3.1Whatisfog?54

4.3.2Preludetoourframework54

4.3.3Ourgoal55

4.3.4Frameworkforfogcomputing55

4.4Optimizingfogresources57

4.4.1Definingoptimizationproblemfor foglayerresources57

4.4.2Optimizationtechniquesused58

4.5Casestudies60

4.5.1CasestudyI:floorplanoptimization60

4.5.2CasestudyII:Gondwana— optimizationofdrinkingwater distributionsystem63

4.6Scopeofadvancementsandfuture research63

4.7Conclusion64 References65

5.Bluetoothsecurityarchitecture cryptographybasedongenetic codons67

AsifIkbalMondal,BijoyKumarMandal, DebnathBhattacharyyaandTai-HoonKim

5.1Introduction67

5.1.1Bluetooth67

5.1.2Bluetoothsecurityarchitecture67

5.2Surveyofliterature69

5.3Plaintext-to-ciphertextconversion process71

5.3.1Basicworkflow71

5.3.2Algorithm72

5.3.3Analysisanddiscussion78

5.4Conclusion79

5.5Futurework79 References80

6.Estimationofthesatellitebandwidth requiredforthetransmissionof informationinsupervisorycontrol anddataacquisitionsystems83 MariusPopescuandAntoanelaNaaji Abbreviations83

6.1Introduction84

6.2Supervisorycontrolanddataacquisition systems84

6.3Theverysmallapertureterminal networks87

6.3.1Thesatellitecommunication systems87

6.3.2Architectureverysmallaperture terminalnetworks89

6.3.3Connectivity92

6.3.4Multipleaccess93

6.4Algorithmforestimatingthesatellite bandwidth95

6.4.1Determiningthebandwidth requiredfordatatransmission95

6.4.2Casestudy98

6.4.3Overviewofsomerecent algorithmsindetail99

6.4.4Validationofbandwidth calculations104

6.5Challengesandfuturework106

6.6Conclusions107 References107

7.Usingartificialintelligencesearch insolvingthecameraplacement problem109

AltahirA.Altahir,VijanthS.Asirvadam, NorHishamB.HamidandPatrickSebastian Nomenclature109

7.1Introduction109

7.1.1Therolesofvisualsurveillance systems110

7.1.2Thecameraplacementproblem fromanartificialintelligence perspective111

7.1.3Chapterdescription112

7.2Background112

7.3Modelingthevisualsensors113

7.3.1Thesensorspacemodeling114

7.3.2Thecameracoveragemodeling114

7.3.3Theanalysisofcameravisibility115

7.4Solvingthecameraplacementproblem usingartificialintelligencesearch116

7.4.1Generateandtestalgorithm117

7.4.2Uninformedsearch118

7.4.3Hillclimbingstrategy119

7.5Furtherdiscussion121

7.5.1Theefficiencyofthealgorithms122

7.5.2Theperformanceofthealgorithms123

7.6Conclusion123 References124

8.Nanotechnologyandapplications129

KanikaDulta,AmanpreetKaurVirk, ParveenChauhan,ParasBoharaand PankajKumarChauhan

8.1Introduction129

8.2Nanoscienceandnanotechnology130

8.3Computationalnanotechnology130

8.3.1Molecularmodeling131

8.3.2Nanodevicesimulation133

8.3.3Nanoinformatics133

8.3.4High-performancecomputing135

8.3.5Computationalintelligence135

8.4Applicationsofcomputational nanotechnology137

8.4.1Nanotube-basedsensorsand actuators138

8.4.2Nanoinformaticsfordrugs138

8.4.3Moleculardocking138

8.4.4Nanotoxicology138

8.4.5Otherapplications139

8.5Conclusion139 References139

9.Advancesofnanotechnologyin plantdevelopmentandcrop protection143

RokeyaAkter,Md.HabiburRahman, Md.ArifurRahmanChowdhury, ManirujjamanManirujjamanand ShimaaE.Elshenawy

9.1Introduction143

9.2Agriculture’snanofarming:amodern frontier143

9.3Synthesisofgreennanoparticlesandits sources144

9.4Gooddistributionpossibilitiesallowed bynanoparticles:amodernsustainable agricultureportal145

9.5Nanofertilizers:agoodfoodsupplyfor crops146

9.6Germination,fieldproduction,and efficiencyenhancementofseed nanomaterials148

9.7Plantsensorysystemsandresponsesto radicalclimatechangeinfluences nanomaterials149

9.8Nanosensorsandnanomaterials: perturbationdetectionandcontrol150

9.9Pesticide-basedplantsafety nanomaterials150

9.10Nanotechnologyinpesticidesand fertilizers151

9.11Controlofplantpests152

9.12Concludingremarks152 Consentforpublication152 Conflictofinterest153 References153

10.Amethodologyfordesigning knowledge-basedsystemsand applications159

HienD.Nguyen,NhonV.Doand VuongT.Pham

10.1Introduction159 10.2Relatedwork160 10.3Designtheknowledge-basedsystem160 10.3.1Thearchitectureofa knowledge-basedsystem160 10.3.2Theprocessfordesigningthe knowledge-basedsystem162

10.4Knowledgebaseandinferenceengine ofaknowledge-basedsystem163 10.4.1Designtheknowledgebase163 10.4.2DesigntheInferenceengine164 10.5Applications168

10.5.1Designanintelligentproblem solverforsolvingsolidgeometry athighschool168

10.6ConclusionandFuturework183 References184

11.IoTinhealthcareecosystem187

PoonamGuptaandIndhraOmPrabhaM 11.1Introduction187 11.2ApplicationsofInternetofThingsin healthcare188

11.2.1Patient-centricIoT188 11.2.2Hospital-centricIoTapplications189 11.2.3IoTbenefittinghealthinsurance companies190

11.2.4Pharmaceuticalgovernance190 11.3Implementationmethodologies190 11.3.1Fogcomputing191 11.3.2Edgecomputing192 11.4Implementationmodels193

11.4.1Heartdiseaseprediction193 11.4.2HealthcareIoT-basedaffective stateminingusingdeep convolutionalneuralnetworks194

11.5ChallengesinhealthcareIoT195

11.5.1Technology-orientedchallenges195

11.5.2Adaptingtoremotehealthcare andtelehealth195

11.5.3Datasecurity195

11.6Securityissuesanddefense mechanismsandIoT196

11.6.1Securityrequirementsin healthcareIoT196

11.6.2AttacksonIoTdevices196

11.6.3Defensivemechanism197

11.7Covid19—howIoTrosetotheglobal pandemic198

11.7.1AboutCovid19199

11.7.2Decodingtheoutbreakand identifyingpatientzero199

11.7.3Quarantinedpatientcare199

11.7.4Publicsurveillance200

11.7.5Safeguardinghygiene200

11.7.6IoTandrobotics200

11.7.7Smartdisinfectionandsanitation tunnel201

11.7.8Smartmasksandsmartmedical equipment201

11.8FutureofIoTinhealthcare202

11.8.1IoTand5G202

11.8.2IoTandartificialintelligence202

11.9Conclusion203 References203 Index205

Listofcontributors

T.LuciaAgnesBeena DepartmentofInformation Technology,St.JosephsCollege,Tiruchirappalli, India

RokeyaAkter DepartmentofPharmacy,Jagannath University,Dhaka,Bangladesh

AltahirA.Altahir DepartmentofElectricaland ElectronicsEngineering,UniversitiTechnologi PETRONAS,Perak,Malaysia

VijanthS.Asirvadam DepartmentofElectricaland ElectronicsEngineering,UniversitiTechnologi PETRONAS,Perak,Malaysia

SakshiBhargava DepartmentofPhysicalSciencesand Engineering,BanasthaliVidyapith,Tonk,India

DebnathBhattacharyya ComputerScienceand EngineeringDepartment,KoneruLakshmaiah EducationFoundation,Guntur,India

ParasBohara FacultyofAppliedSciencesand Biotechnology,ShooliniUniversityofBiotechnology andManagementSciences,Solan,India

PankajKumarChauhan FacultyofAppliedSciences andBiotechnology,ShooliniUniversityof BiotechnologyandManagementSciences,Solan,India

ParveenChauhan FacultyofAppliedSciencesand Biotechnology,ShooliniUniversityofBiotechnology andManagementSciences,Solan,India

Md.ArifurRahmanChowdhury Departmentof Pharmacy,JagannathUniversity,Dhaka,Bangladesh; DepartmentofBioactiveMaterialsScience,Jeonbuk NationalUniversity,Jeoju,SouthKorea

NhonV.Do HongBangInternationalUniversity,HoChi MinhCity,Vietnam

KanikaDulta FacultyofAppliedSciencesand Biotechnology,ShooliniUniversityofBiotechnology andManagementSciences,Solan,India

ShimaaE.Elshenawy CenterofStemCelland RegenerativeMedicine,ZewailCityforScience, Zewail,Egypt

PoonamGupta GHRaisoniCollegeofEngineeringand Management,Pune,India

NorHishamB.Hamid DepartmentofElectricaland ElectronicsEngineering,UniversitiTechnologi PETRONAS,Perak,Malaysia

JoarderKamruzzaman SchoolofEngineeringand InformationTechnology,FederationUniversity Australia,Churchill,VIC,Australia

Tai-HoonKim ComputerScienceandEngineering Department,GlobalCampusofKonkukUniversity, Chungcheongbuk-do,Korea

DeepakKumarSharma DepartmentofInformation Technology,NetajiSubhasUniversityofTechnology (formerlyknownasNetajiSubhasInstituteof Technology),NewDelhi,India

IndhraOmPrabhaM GHRaisoniCollegeof EngineeringandManagement,Pune,India

BijoyKumarMandal ComputerScienceand EngineeringDepartment,NSHMKnowledgeCampus, Durgapur,India

ManirujjamanManirujjaman InstituteofHealthand BiomedicalInnovation(IHBI),SchoolofClinical Sciences,FacultyofHealth,QueenslandUniversityof Technology,Brisbane,QLD,Australia

AsifIkbalMondal ComputerScienceandEngineering Department,DumkalInstituteofEngineering& Technology,Murshidabad,India

PratyusaMukherjee SchoolofComputerEngineering, KIITDeemedtobeUniversity,Bhubaneshwar, India

AntoanelaNaaji FacultyofEconomics,Computer ScienceandEngineering,“VasileGoldis”Western UniversityofArad,Arad,Romania

HienD.Nguyen UniversityofInformationTechnology, HoChiMinhCity,Vietnam;VietnamNational University,HoChiMinhCity,Vietnam

VuongT.Pham SaiGonUniversity,HoChiMinhCity, Vietnam

PrajoyPodder BangladeshUniversityofEngineering andTechnology,InstituteofInformationand CommunicationTechnology,Dhaka,Bangladesh

x Listofcontributors

T.Poongodi SchoolofComputingScienceand Engineering,GalgotiasUniversity,GreaterNoida, India

MariusPopescu FacultyofEconomics,Computer ScienceandEngineering,“VasileGoldis”Western UniversityofArad,Arad,Romania

ChittaranjanPradhan SchoolofComputer Engineering,KIITDeemedtobeUniversity, Bhubaneshwar,India

Md.HabiburRahman DepartmentofPharmacy, SoutheastUniversity,Dhaka,Bangladesh

M.RubaiyatHossainMondal BangladeshUniversityof EngineeringandTechnology,InstituteofInformation andCommunicationTechnology,Dhaka,Bangladesh

PatrickSebastian DepartmentofElectricaland ElectronicsEngineering,UniversitiTechnologi PETRONAS,Perak,Malaysia

D.Sumathi SCOPE,VIT-APUniversity,Amaravati, India

P.Suresh SchoolofMechanicalEngineering,Galgotias University,GreaterNoida,India

JayeshSVasudeva DepartmentofInstrumentationand ControlEngineering,NetajiSubashUniversityof Technology(formerlyknownasNetajiSubhas InstituteofTechnology),NewDelhi,India

AmanpreetKaurVirk FacultyofAppliedSciencesand Biotechnology,ShooliniUniversityofBiotechnology andManagementSciences,Solan,India

Chapter1

Irisfeatureextractionusingthree-level Haarwavelettransformandmodified localbinarypattern

PrajoyPodder1,M.RubaiyatHossainMondal1 andJoarderKamruzzaman2 1BangladeshUniversityofEngineeringandTechnology,InstituteofInformationandCommunicationTechnology,Dhaka,Bangladesh, 2Schoolof EngineeringandInformationTechnology,FederationUniversityAustralia,Churchill,VIC,Australia

Abbreviations

i ðx; yÞ 2Dcepstrumwith ðx; yÞ representingquefrencycoordinates

I ðu; vÞ 2Ddiscrete-timeFourierTransform

Gx; y ðÞ 2DGaborfunction

F ðU ; V Þ 2Ddiscretecosinetransform(DCT)coefficientmatrix

W Angularfrequency

σ x and σ y Standarddeviationsof x and y

xc The x-axiscoordinateoftheiriscircle

yc The y-axiscoordinateoftheiriscircle

r Radiusoftheiriscircle

gc Graylevelofthecenterpixel, c

gp Grayleveloftheneighboringpixel, p

ψ" sp BinaryiriscodeobtainedasXORoutput

LBPp MLBPoperator

1.1Introduction

Theconcernofhighsecurityandsurveillanceinthepresentworldhasmadetheidentificationofpeopleanincreasingly importantissue.Amongvariousidentificationmodes,biometrichasbeenconsideredoverthelastfewdecadesforits reliableandaccurateidentification [1 5].Commonlyusedbiometricfeaturesincludetheface,fingerprint,iris,retina, handgeometry,andDNAidentifications.Amongthem,nowadays,irisrecognitionhasattractedsignificantinterestin researchandcommercialization [6 15].Irisrecognitionhasseveralapplicationsinthesecuritysystemsofbanks,bordercontrol,restrictedareas,etc. [1 3].Onekeypartofsuchasystemistheextractionofprominenttextureinformation orfeaturesintheiris.Thisfeatureextractionmethodgeneratesfeaturevectorsorfeaturecodes.Thefeaturevectorsof theunknownimagesareusedtomatchthoseofthestoredknownones.Inanirisrecognitionsystem,thematchingprocessmatchestheextractedfeaturecodeofagivenimagewiththefeaturecodespreviouslystoredinthedatabase.In thisway,theidentityofthegivenirisimagecanbeknown.

Ageneralizedirisrecognitionschemeispresentedin Fig.1.1.Therearetwomajorpartsof Fig.1.1,oneshowing thefeatureextractionandtheotherdescribingtheidentificationportionofaniris.Thesystemstartswithimageacquisitionandendswithmatching,thatis,thedecisionofacceptanceorrejectionoftheidentity.Inbetween,therearetwo mainstages:irisimagepreprocessingandfeatureextraction [3,4].Furthermore,irisimagepreprocessingincludesthe stagesofirissegmentation,normalization,andenhancement [5,11].Intheacquisitionstage,camerasareusedtocapture imagesoftheiris.Theacquiredimagesarethensegmented.Inirissegmentation,theinnerandtheouterboundariesare

FIGURE1.1 Exampleofatypicalirisrecognition system:(A)processoffeatureextractionfromaniris image;(B)identificationofaniris.

detectedtoseparatetheirisfromthepupilandsclera.Acircularedgedetectionmethodisusedtosegmenttheiris regionbyfindingthepixelsoftheimagethathavesharpintensitydifferenceswithneighboringpixels [3].Estimating thecenterandtheradiusofeachoftheinnerandoutercirclesreferstoirislocalization.Afteririssegmentation,any imageartifactsaresuppressed.NextisthenormalizationstepinwhichtheimagesaretransformedfromCartesianto pseudopolarscheme.Thisisshownin Fig.1.1,whereboundarypointsarealignedatanangle.Imageenhancementis thenperformed.Asapartoffeatureextraction,theimportantfeaturesareextractedandthenusedtogenerateaniris codeortemplate.Finally,irisrecognitionisperformedbycalculatingthedifferencebetweencodeswiththeuseofa matchingalgorithm.Forthispurpose,HammingandEuclidianarewellknownandalsoconsideredinthischapter [15]. Thematchingscoreiscomparedwithathresholdtodeterminewhetherthegivenirisisauthenticornot.

Despitesignificantresearchresultssofar [3 9,11,12,14],thereareseveralchallengesinirisrecognition [13,15 26].Oneproblemistheocclusion,thatis,thehidingoftheiriscausedbyeyelashes,eyelids,specularreflection,andshadows [21].Occlusioncanintroduceirrelevantpartsandhideusefuliristexture [21].Themovementofthe eyecanalsocauseproblemsinirisregionsegmentationandthusaccuraterecognition.Anotherissueisthecomputation timeofirisidentification.Forlargepopulationsizes,thematchingtimeoftheiriscansometimesbecomeexceedingly highforreal-timeapplications,andtheidentificationdelayincreaseswiththeincreaseinthepopulationsizeandthe lengthoffeaturecodes.Ithasbeenreportedintherecentliterature [13,18,22] thattheexistingirisrecognitionmethods stillsufferfromlongruntimesapartfromotherfactors.Thisisparticularlytruewhenthesamplesizeisverylarge,and theirisimagesarenonidealandcapturedfromdifferenttypesofcameras.Hence,devisingamethodthatreducesthe runtimeofirisrecognitionwithoutcompromisingaccuracyisstillanimportantresearchproblem.Theidentification delaycanbereducedbyreducingthefeaturevectorofirisimages.Thusthischapterfocusesontheissueofreducing thefeaturevectorwhichwillleadtoareductioninidentificationdelaywithoutloweringtheidentificationaccuracy. Forloweringthefeaturevector,theconceptofHaarwaveletalongwith modifiedlocalbinarypattern (MLBP)isused inthiswork.Notethatinthecontextoffacerecognition [27 30] andfingerprintidentification [31],theHaarwavelet transformdemonstratesanexcellentrecognitionrateatalowcomputationtime.InRef. [32],theHaarwaveletisalso proposedwithouttheuseofMLBP.

Themaincontributionsofthischaptercanbesummarizedasfollows.

1. Anewirisfeatureextractionmethodisproposed.Thisnewmethodisbasedonrepeated Haarwavelettransformation (HWT)andMLBP.NotethatMLBPisthelocalbinarypattern(LBP)operationfollowedbyExclusiveOR (XOR).ThisproposedmethodisdifferentfromthetechniquedescribedinRef. [30],whichusessingle-levelHWT andLBP(withoutXOR)inthecontextoffacerecognition.

2. TheefficacyoftheHWT MLBPmethodisevaluatedusingthreewell-knownbenchmarkdatasets:CASIA-Iris-V4 [33],CASIA-Iris-V1 [34],andMMUirisdatabase [35]

3. Acomparisonismadeofthisnewtechniquewiththeexistingmethodsoffeatureextractionintermsoffeaturevectorlength, falseacceptancerate (FAR),and falserejectionrate (FRR).Itisshownherethattheproposedmethod outperformstheexistingonesintermsoffeaturevectorlength.

Theremainderofthischapterisorganizedasfollows. Section1.2 providesaliteraturesurveyoftherelevant research. Section1.3 showstheirislocalizationpartwheretheinnerboundaryandouterboundarycanbedetected. Section1.4 describesirisnormalization. Section1.5 illustratesourproposedapproachforthepurposeofencodingthe irisfeatures. Section1.6 describestheirisrecognitionprocessbymatchingscore.Theeffectivenessofthenewmethod isevaluatedin Section1.7.Finally, Section1.8 providesasummaryoftheresearchworkfollowedbythechallenges andfuturework.

1.2Relatedworks

Anumberofresearchpapersdescribeirisfeatureextractiontechniques,whicharediscussedinthefollowing. Maetal. [3] appliedabankofspatialfilterstoacquirelocaldetailsoftheiris.Thesespatialfiltersgeneratediscriminatingtexturefeaturesforanirisimagebasedonthecharacteristicsoftheiris.Maetal. [4] consideredabankofcircularsymmetricfiltersforirisfeatureextraction.Thesefilters [4] aremodulatedbyacircularsymmetricsinusoidal function,whichisdifferentfromtheGaborfiltermodulatedbyanorientatedsinusoidalfunction.Monroetal. [5] used discretecosinetransform(DCT)foririsrecognition.Daugman [6] introducedtheideaofusinga2DGaborwaveletfilterforextractingfeaturesofanirisimage.Furthermore,Maseketal. [9] used1Dand2DLog-Gaborfiltersforfeature extraction.Lietal. [8] usedaconvolutionalneuralnetwork(CNN)algorithm,whichisaformofdeeplearning,to extractirisfeatures.Umeretal. [12] usedanoveltexturecodedefinedoverasmallregionateachpixel.Thistexture codewasdevelopedwithvectororderingbasedontheprincipalcomponentofthetexturevectorspace.Solimanetal. [11] consideredfeatureextractionusingtheGaborfilter,wheretheoriginalGaborfeaturesweremaskedviaarandom projectionscheme.Themaskingwasperformedtoincreasethelevelofsecurity.Inthisscheme,theeffectsofeyelids andeyelasheswereremoved.Anirisfeatureextractionmethodusingwavelet-based2Dmel-cepstrumwasproposedin Ref. [14],wherethecepstrumofasignalistheinverseFouriertransformofthelogarithmoftheestimatedsignalspectrum.The2Dcepstrumofanimagecanbedefinedbythefollowingexpression:

where ^ i ðx; yÞ isthe2Dcepstrumwith ðx; yÞ representingquefrencycoordinates,IDFTrepresentstheinversediscrete Fouriertransform,and I ðu; vÞ isthe2Ddiscrete-timeFourierTransformoftheimage.Thisschemeappliedthe Cohen Daubechies Feauveau 9/7filterbankforextractingfeatures.Inwaveletcepstrum,nonuniformweightsare assignedtothefrequencybins.Inthisway,thehigh-frequencycomponentsoftheirisimageareemphasized,resulting ingreaterrecognitionreliability.Furthermore,thiswaveletcepstrummethodhelpstoreducethefeatureset.

Barpandaetal. [15] usedatunablefilterbanktoextractregion-basedirisfeatures.Thesefilterswereusedforrecognizingnoncooperativeimagesinsteadofhigh-qualityimagescollectedincooperativescenarios.Thefiltersinthisfilter bankwerebasedonthehalfbandpolynomialof14thorderwherethefiltercoefficientswereextractedfromthepolynomialdomain.Toapplythefilterbank,theiristemplatewasdividedintosixequispacedpartsandthefeatureswere extractedfromallthepartsexceptthesecondone,whichmainlycontainsartifacts.Betancourtetal. [13] proposeda robustkeypoints basedfeatureextractionmethod.Toidentifydistinctivekeypoints,threedetectors,namely Harris Laplace,Hessian Laplace,andFast-Hessiandetectors,wereused.Thismethodissuitableforirisrecognition undervariableimagequalityconditions.

Foririsfeatureextraction,Sahuaetal.in [22] used phaseintensivelocalpattern (PILP),whichconsistsofdensitybasedspatialclusteringandkey-pointreduction.Thistechniquegroupssomecloselyplacedkeypointsintoasingle keypoint,leadingtohigh-speedmatching.Jamaludinetal. [18] useda1DLog-Gaborfilterandconsideredthesubiris regionforfeatureextraction.Thisfilterhasasymmetricalfrequencyresponseonthelogaxis.Inthiscase,onlythe loweririsregionsthatarefreefromnoise,aswellasocclusions,areconsidered.

InRef. [17],combined discretewavelettransform (DWT)andDCTwereusedfortheextractionofirisfeatures. Firstly,DWTwasperformedwheretheoutputofthisstagewasinthespatialdomain.Next,DCTwasperformedto transformthespatialdomainsignaltothefrequencydomainandtoobtainbetterdiscriminatoryfeatures.AnotherfeatureextractionmethodisthediscretedyadicwavelettransformreportedinRef. [16].Indyadicwavelettransform,the

decompositionateachlevelisdoneinawaythatthebandwidthoftheoutputsignalishalfofthatoftheinput.InRef. [26],aPILPtechniqueisusedforfeatureextractionandtoobtainafeaturevectorofsize1 3 128.InthisPILPmethod, therearefourstages:key-pointdetectionviaphase-intensivepatterns,removalofedgefeatures,computationoforientedhistogram,andformationofthefeaturevector.Irisfeatureswereextractedusing1DDCTand relationalmeasure (RM),whereRMencodesthedifferenceinintensitylevelsoflocalregionsofirisimages [21].Thematchingscoresof thesetwoapproacheswerefusedusingaweightedaverage.Thescore-levelfusiontechniquecompensatesforsome imagesthatarerejectedbyonemethodbutacceptedbytheother [21].Anotherwayofextractingfeaturevectorsfrom irisimagesisbytheuseoflinearpredictivecodingcoefficients(LPCC)andlineardiscriminantanalysis(LDA) [24]. Llanoetal.in [19] useda2DGaborfilterforfeatureextraction.Beforeapplyingthisfilter,thefusionofthreedifferent algorithmswasperformedatthesegmentationlevel(FSL)oftheirisimagestoimprovethetextualinformationofthe images.Oktianaetal. [36] proposedanirisfeatureextractionsystemusinganintegrationofGradientface-basednormalization(GRF),whereGRFusesanimagegradienttoremovethevariationintheilluminationlevel.Furthermore, theworkinRef. [19] concatenatedtheGRFwithaGaborfilter,adifferenceofGaussian(DoG)filter,binarystatistical imagefeature(BSIF),andLBPforirisfeatureextractioninacross-spectralsystem.Shuaietal.proposed [37] aniris featureextractionmethodbasedonmultiple-sourcefeaturefusionperformedbyaGaussiansmoothingfilterandtexture histogramequalization.Besides,therehavebeensomerecentstudiesinthefieldofirisrecognition [38 49],withsome focusingonirisfeatureextractionmethods [38,40 42,45,49] andsomeonirisrecognitiontasks [39,44,46,48]

The2DGaborfunctioncanbedescribedmathematicallybyusingthefollowingexpression:

and2DDCTcanbedefinedas:

where f(X,Y)istheimagespacematrix;(X, Y)isthepositionofthecurrentimagepixeland FU ; V ðÞðU ; V 5 1; 2; ... ::; M 1Þ isthetransformcoefficientmatrix; W istheangularfrequency;and σ x and σ y arethe standarddeviationsof x and y,respectively.

Theconceptsofmachinelearning(ML)-drivenmethodsforexample,neuralnetworksandgeneticalgorithmshave beenreported [46],whiletheideaofdeepCNNshasalsobeenapplied [40].Moreover,researchersarenowinvestigatingtheeffectivenessofmultimodalbiometricrecognitionsystems [43,47].

Acomparativesummaryofsomeofthemostrelevantworksonirisfeatureextractionisshownin Table1.1.Itcan beseenthatthereareseveralalgorithmsandtheseareappliedtodifferentdatasets,achievingvaryingperformance results.

1.3Irislocalization

ThissectiondiscussestheirislocalizationstepthatemployscircularHoughtransformation,whichiscapableofproperlydetectingcirclesintheimages.Houghtransformsearchesforatripletofparameters(xc ; yc ; r )determining(xi ; yi ), where xc ; yc ,and r representthex-axiscoordinate,y-axiscoordinate,andtheradiusoftheiriscircle,respectively.In thiscase,(xi ; yi )representsthecoordinatesofanyofthe i pointsonthecircle.Withthisconsideration,theHoughtransformcanbedefinedasfollows.

Inthisregard,edgepointsaredetectedfirst.Foreachoftheedgepoints,acircleisdrawnhavingthecenterinthe middleoftheedge.Inthisway,eachoftheedgepointsconstitutescircleswiththedesiredradius.Next,anaccumulator matrixisformedtotracktheintersectionpointsofthecirclesintheHoughspace,wheretheaccumulatorhasthenumberofcircles.ThelargestnumberintheHoughspacepointstothecenteroftheimagecircles.Severalcircularfilters withdifferentradiusvaluesareconsideredandthebestoneisselected.

TABLE1.1 Summaryofliteraturereview.

ReferencesAdoptedtechniqueinreferenceRemarksDatabase

[3] Spatialfiltersconstructedbasedon observations

Extractionoffeaturesisperformedonlyin theupperportionofthenormalizediris regionasitprovidesusefultexture information.Thefeaturevectorlengthis large,beingofsize1 3 1536.

[4] CircularsymmetricfiltersAbout75%ofthetop-mostofthe unwrappedirisimagesareusedfortexture information.Thevariationofthetextureof theirisinthelocalregionisnotfocusedon inthispaper.

[5] Patch-codingtechniqueforextracting featuresfromnormalizediris.The featuresarederivedbyusingfastFourier transformation.

Themethodhaslowcomplexitywithahigh amountofaccuracy.Additionally,the dimensionalityofthefeaturevectoris 1 3 2343.However,nonidealimagesarenot considered.

[6] 2DGaborfilterThedimensionalityofthefeaturevectoris 1 3 2048.

[9] 1Dand2DLog-GaborfiltersThismethodcannotproducefeaturesof differentfrequencies,andthesizeoftheiris templateis1 3 4800.

[8] DeeplearningCNNasdeeplearningisusedtoextractiris features,andthefeaturesarethenusedfor imageencryption.

[12] TexturecodecooccurrencematrixFeaturevectorsizeof1 3 400.Themethod usesonlyaneffectiveportionoftheiris imagestoavoidtheocclusionpartcausedby notonlyeyelashesbutalsoeyelids.

[11] 1DGaborfilterwhereGaborfeatures aremasked

[7] 2DkernelandhybridMLPNN PSO algorithm

[14] 2Dwaveletcepstrumtechniquefor featureextraction

[15] Tunablefilterbankbasedonhalfband polynomialof14thorder

[13] Keypoints basedfeatureextraction method

MaskstheoriginalGaborfeaturesfor improvingsecuritywhileexcludingthe effectsofeyelidsandeyelashes.Moreover, onlytheupperhalfofthenormalizediris portionisconsidered.

Featureextractionisperformedonasmall sampleof140imagesatanaccuracyrateof 95.36%.Inthiscase,1000iterationsare performed,whichleadstohigh computationaltime.

Falseacceptancerateis10.45%;recognition accuracyis89.93%.

Falseacceptancerateis8.45%;recognition accuracyis91.65%.

Considersonlysalientkeypointsinthe wholeregion.Thefeatureextractionstageis timeconsuming.

[23] Low-densityparitycheckandSHA-512Comparativelyhighfalserejectionrate.

[22] Density-basedspatialclusteringandkeypointreductiontobeappliedonPILP

Forfeatureextractionandfeaturevector reduction,postprocessingisrequired, leadingtoadditionaltimeconsumption.

[18] SubiristechniqueDoesnotextractfeaturesoftheunoccluded upperpartoftheirisregion.

CASIA-Iris-V1

CASIA-Iris-V1

UPOL,CASIA-Iris-V3Interval,MMU1,and IITD

CASIA-Iris-V3-Interval

CASIA-Iris-V3

CASIA-Iris-V3, UBIRISv1,IITD

CASIA-Iris-V3, UBIRISv1,IITD

CASIA-Iris-V4-Interval, MMU2,UBIRIS1

BATHandCASIA-IrisV3

CASIA-Iris-V4

(Continued )

CASIA-Iris-V1
CASIA-Iris-V4

TABLE1.1 (Continued)

ReferencesAdoptedtechniqueinreferenceRemarksDatabase

[17] DWTandDCTcombinationforfeature extraction

Providesgoodperformanceonlyforlowcontrastimages.Arecognitionrateof88.5% wasachievedonthePhoenixdatabase.

[16] DiscretedyadicwavelettransformIrisimagesofonly10peopleareusedanda featurevectorwithasizeof1 3 256is achieved.Resultsneedtobevalidatedwitha highernumberofsubjects.

[26] Localfeaturebasedonphase-intensive patterns

Featureextractionisbasedonkeypoint detectionviaphase-intensivepatterns. Obtainsafeaturevectorofsize1 3 128.

[21] DCTandRMBasedonthedissimilarityscoreofDCTand RMandusingtheHammingdistancemetric, thematchingofimagesisperformed.Thisis usedtocompensateforimagesrejectedby eitherDCTorRMbutacceptedbytheother.

[24] LPCCandLDAThemethodhashighcomplexity,andinthe caseofLPCC,resultsinafeaturevectorwith asizeof1 3 546.

[19] Texturalinformationdevelopmentand exploration

Thismethodhasthreestages:quality evaluation,automaticsegmentation,and fusionatthesegmentationlevel.This methodrejectsimagesthathavelowquality. Theobtainedfeaturevectorisofsize 1 3 2048.

[36] Gaborfilter,aDoGfilter,BSIF,andLBPThefeatureextractionisdoneusingthe fusionofGRFwithaGaborfilter,aDoG filter,aBSIF,andLBP.Hammingdistanceis usedformatchingpurposes.

[37] ConvolutionalneuralnetworkFeatureextractionisdoneusingtheconcept offeaturefusion,whichisachievedbyusing aGaussianfilterandatexturehistogram equalizer.

1.4Irisnormalization

PhoenixandIITDiris database

BATH,CASIA-Iris-V3, UBIRISv2,and FERETv4

CASIA-Iris-V4Interval, Lamp,andselfcollectedIITK

MBGC-V2,CASIA-IrisV3,CASIA-Iris-V4, andUBIRISv1(foriris image)

HongKong PolytechnicUniversity Cross-SpectralIris ImagesDatabase

JLUirislibrary

Thissectiondescribestheirisnormalizationstep.Thesizeofdifferentacquiredirisimageswillvarybecauseofthevariationinthedistancefromthecamera,angleofimagecapturing,illuminationlevel,etc.Forthepurposeofextracting imagefeatures,theirisimageistobesegmentedandtheresultantsegmentsmustnotbesensitivetotheorientation, size,andpositionofthepatterns.Forthis,aftersegmentation,theresultantelementistransformedtoCartesian.Inother words,thecircularirisimageistransformedintoafixeddimension.

Fig.1.2 illustratesthenormalizationofirisimagesfromthreedatasets.Foreachofthedatasets,theoneoriginal inputimageisshown,followedbyitsinnerandouterboundarydetection,andthenitssegmentedversion,andfinally itsnormalizedversion. Fig.1.2A describesDaugman’srubbersheetmodelforirisrecognition.Threeoriginalimages fromthreedatasetsareshownin Fig.1.2B,F,andJ.Firstofall, Fig.1.2B isoneoriginalimagefromtheCASIA-IrisV4dataset [33].Fortheirisimagein Fig.1.2B E representthecorrespondinginnerandouterboundaries,the segmentedversion,andthenormalizedversion,respectively.Secondly, Fig.1.2F isoneoriginalimagefromthe CASIA-Iris-V1dataset [34].Fortheirisimagein Fig.1.2F I representthecorrespondinginnerandouterboundaries, thesegmentedversion,andthenormalizedversion,respectively.Thirdly, Fig.1.2J isoneoriginalimagefromthe MMUirisdatabase [35],and Fig.1.2K M representthecorrespondinginnerandouterboundaries,thesegmentedversion,andthenormalizedversion,respectively.

CASIA-Iris-V1

FIGURE1.2 Illustrationsof(A)Daugman’srubbersheetmodel;(B,F,J)originalinputimages;(C,G,K)imageswithinnerandouterboundary detection;(D,H,L)segmentedirisregions,and(E,I,M)irisimagesafternormalization.

1.5Theproposedfeatureextractionscheme

Thissectiondescribestheproposedirisfeatureextractionmethod. Fig.1.3 representstheblockdiagramoftheproposed three-levelHWTandMLBP.ThedecompositionoftheimagethreetimesbyHWTresultsinthereductioninfeature sizewithoutsignificantlossintheimagequalityorimportantattributes.TheuseofMLBPfurtherreducesthefeature vectorsizewithoutlossinimageattributes. Fig.1.4 showsthethree-levelHWT.Itcanbeseenfromthefigurethatat eachlevelofHWT,theinputimageisdividedintofouroutputimages.Theseoutputimagesaredenotedas horizontal detail (HL), verticaldetail (VL), diagonaldetail (HH),and approximation (LL)images.TheLLsubimage,alsoknown astheLLsubband,containssignificantinformationabouttheoriginalimage.Inotherwords,theLLsubbandisa coarseapproximationofanimageanditdoesnotcontainhigh-frequencyinformation.Next,thethree-levelHWTalgorithmisdiscussed.

Algorithm1:HWT

Input:Normalizedirisimage

Output:Approximationpartoflevelthree

MainProcess:

Step1:Applyfirst-levelHWTtothenormalizedirisimagetogenerateitswaveletcoefficients.

Step2:Applysecond-levelHWTontheapproximationpartobtainedfromStep1togenerateitswavelet coefficients.

Step3:Applythird-levelHWTontheapproximationpartobtainedfromStep2togenerateitswaveletcoefficients.

Step4:GetthelevelthreeapproximationpartobtainedfromStep3.

ThemainideaofusingHWTisthatwaveletdecompositioncantransformadetailedimageintoapproximation images.Theapproximationpartscontainamajorportionoftheenergyoftheimages.TheHWTisrepeatedlyexecuted toshrinktheinformationsize.Theresultsofthethree-leveldecompositionproduceareducedcharacteristicsregion havinglittleloss.Thisisshownin Fig.1.5.Itcanbenotedthatmostoftheinformationoftheirisimageiscontained intheextractedLL(low-frequency)regiononthemultidividedirisimageasindicatedby Fig.1.5.Theotherregions havelessinformationasindicatedbytheirlowintensity(dark)levels. Fig.1.6 illustratesthesizeofeachlevelforthe three-levelHWT.Theapplicationoflevel1HWTtothenormalizedimageofsize64 3 512resultsinwavelet

FIGURE1.4 Three-levelHWT.
FIGURE1.3 Blockdiagramoftheproposedapproachforirisfeatureextraction.

FIGURE1.5 Three-levelwavelet decompositionofnormalizediris.

FIGURE1.6 Three-levelHWT withthesizeofeachlevel.

coefficientsof LL1, LH1, HL1,and HH1.Inthiscase,theapproximationpartoflevel1,denotedas LL1,becomesof size32 3 256.Next,level2HWTisappliedto LL1,whichgenerateswaveletcoefficientsof LL2,LH2, HL2,and HH2 Inthiscase,theapproximationpartoflevel2(LL2)becomesofsize16 3 128.Afterthat,level3HWTisappliedto LL2 togenerateitswaveletcoefficients LL3,LH3, HL3,and HH3.Inthiscase,theapproximationpartoflevel3(LL3) becomesofsize8 3 64.Henceamajordistinctiveregion LL3 isobtainedbyperformingthewavelettransformation threetimes.Next,the LL3 regionisusedfortheMLBPtasks.

NowconsidertheMLBPoperation [25],whichgeneratesrobustbinaryfeatures.Furthermore,MLBPhaslow computationalcomplexity.MLBPlabelseachpixelbasedontheneighboringpixelsandconsideringagiventhreshold. MLBPthenproducesoutputsinthebinaryformat.Thisbinarycodecandescribethelocaltexturepattern.Notethat MLBPisanLBPfollowedbyanXORoperation.Next,MLBPoperationisdescribedinthefollowing.

Foracenterpixel c,andneighboringpixels p withinaneighborhoodof P pixels,theMLBPoperationcanbe expressedasfollows.

where LBPp istheMLBPoperator, gc isthegraylevelof c,and gp isthegraylevelof p pixels.Moreover, SxðÞ in(4) referstothesignfunctiondefinedas,

FIGURE1.7 Centerelementofa3 3 3pixel image.

FIGURE1.8 MLBPoperationof a3 3 3subregion:(A)theneighborhoodofapixelwithinthe image,(B)thethresholdversionof theneighborhood,and(C)the MLBPpatternwherethemiddle pixelhasbeencomputed.

Next,thecenterpixelvalueisgeneratedbyapplyingXORoperationonthevaluesof LBPp .Thisresultsinthefollowingexpression.

ψ" ðsp Þ 5 so " "sP-1 (1.6) where " denotestheXORoperatorand ψ" sp isthebinaryiriscodeobtainedastheXORoutput.SinceitisacommutativeoperationofXOR,thiscanbeperformedbycircularlyshiftingon sp intheclockwiseoranticlockwisedirection.NowXORisperformedtoreducethesizefrom8 3 64to1 3 64.XORiscomputedinthecolumnvector.Inother words,theeight-rowirissignatureisreducedtoonlyasinglerow. Figs.1.7and1.8 describetheMLBPoperation. Fig.1.7 showsthecenterpixelina3 3 3neighborhood,while Fig.1.8 illustratesthecomputationof LBP8;1 withXOR forasinglepixel.

Algorithm2:FeatureencodingusingtheproposedMLBP

Input:Levelthreeapproximationpartofthenormalizedimage

Output:Binarysequenceofthenormalizedirisimage.

MainProcess:

Step1:Readtheintensityvaluesofthelevelthreeapproximationpartofthenormalizedimage.

Step2:ConverttheRGBimagetograyscaleform.

Step3:Resizetheimageifrequiredandthenstorethesize ½M ; N oftheimage.

Step4:Dividetheimageintoeightsegments.

Step5:Foreachoftheimagesegments,applya3 3 3kernel.

Step6:Fori 5 1:P // P 5 8fora3 3 3kernel.

Step7:Compute DiðÞ 5 gp ðiÞ gc ðiÞ // gp isthegraylevelforneighboringpixelsand gc isthecenterpixel.

Step8:If DiðÞ , 0

else

end.

Step9:ComputeLBP_p 5 XOR(SiðÞ);//ApplyXORoperationtogetthebinarymask.

Step10:PlacethebinaryoutputoftheXORoperationinthecenterpixel.

Step11:Movethekernelinordertoobtainabinarytemplate.

Step12:ApplyXORoperationacrossthecolumns.

So,forthecaseofMLBP,thefirstLBPoperationextractsthedistinctivefeaturestogenerateauniqueiriscode. Thiscodeisreducedfrom8 3 64featuresto1 3 64byapplyingtheXORoperation.

1.6Matchingresults

Thissectionprovidesresultsonirisrecognitionusingthematchingprocessofiriscodes.Inordertofindthesimilarity ortomeasuretheclosenessofanunknowniriscodewithatemplateiriscode,thedistancebetweenthesetwoiscalculated.Thedistanceisamethodofdefiningthedegreeofmatchingbetweentwoiriscodes.Forthis,Euclideanand Hammingdistancesareconsidered.TheEuclideandistanceiscalculatedasfollows.

where ED istheEuclideandistancebetweentwocoordinatepoints:(X1,Y1)and(X2,Y2).InthecaseofHammingdistancebetweentwoiriscodes,thenumberofunmatchedbitsisdividedbythenumberofbitsusedforcomparison.The mainoperationintheHammingdistanceistheuseofanXORgatewhichcomputesthedisagreementbetweentwo inputbits.If P and Q aretwobitwisetemplatesofirisimagesand N isthenumberofbitsofeachiriscode,thenthe Hammingdistancecanbemathematicallyexpressedasfollows.

where HD denotestheHammingdistance.Henceaccordingto(6), HD 5 0indicatescompletesimilaritybetweentwo iriscodes,while HD 5 1meanstotaldissimilaritybetweenthecodes.Inpractice,thetwoiriscodesareassumedtobe thesame,iftheHammingdistanceislowerthanathreshold.SimilartotheworkinRef. [6],thischapterconsidersa Hammingdistancevalueof0.32foriristemplatestobeidentical.

1.7Performanceevaluation

Thissectiondiscussestheexperimentalresultsoftheproposedmethod.Fortheexperimentation,imagesareobtained fromthreedifferentdatasets [33 35]. Figs.1.9 1.11 correspondtoimagesfromtheCASIA-IRIS-V4 [33],CASIAIRIS-V1 [34],andMMU [35] datasets,respectively.Thedatasetsaredescribedin Table1.2.TheCASIA-IRIS-V4datasetconsistsof2639imagesof249subjects/persons.Ontheotherhand,theCASIA-IRIS-V1datasethas756irisimages from108eyesof54subjects,whiletheMMUdatasetconsistsof450imagesof45subjects.Firstly,oneoriginaliris imagefromRef. [33] isillustratedin Fig.1.9A,whereas Fig.1.9B isthecorrespondingtemplateaftertheapplicationof LBPtoLL3ofsize8 3 64.Forclarity, Fig.1.9C illustratesalargerviewofthefinaltemplateshownin Fig.1.9B.The templateisfurtherreducedtoasizeof1 3 64byapplyingXORoperationthroughcolumnvectors.Secondly, Fig.1.10A C illustrateanotheroriginalirisimagefromRef. [34],itscorrespondingtemplateafterapplyingLBP,and alargerviewofthetemplate,respectively.Thirdly, Fig.1.11A C illustratethesameforanoriginalirisimagefrom Ref. [35]

Theperformanceoftheproposedmethodisevaluatedforthethreedatasetsmentionedabove.Foreachdataset,90% (roundeduptothenextinteger)oftheimagesareconsideredfortrainingwhiletheremainingareconsideredfortesting. Table1.3 presentsthesuccessfulrecognitionrateoftheproposedmethodusingHammingdistanceandEuclideandistance.Theresultsareobtainedonlyforthetestingirisimages.Itcanbeseenfrom Table1.3 thatfortheCASIA-IRISV1dataset,theproposedalgorithmobtainsanaveragecorrectrecognitionrateof98.30%and97.60%forthecaseof HammingdistanceandEuclideandistance,respectively.Therecognitionratesfortheothertwodatasetsareslightly lower,asshownin Table1.3

Next,theproposednewmethodiscomparedwiththeexistingtechniquesreportedintheliterature [3,4,6,16,24] Table1.4 presentsthecomparativeresultsoftheproposedmethodwiththepreviousones.Fortheproposedmethod,

FIGURE1.9 (A)Anoriginaliris imagefromtheCASIA-IRIS-V4 dataset [33],(B)thefinalgeneratediristemplate,and(C)alarger viewofthebinarizedtemplate.

FIGURE1.10 (A)Anoriginal irisimagefromtheCASIA-IRISV1dataset [34],(B)thefinalgeneratediristemplate,and(C)a largerviewofthebinarized template.

FIGURE1.11 (A)Anoriginal irisimagefromtheMMUdataset [35],(B)thefinalgeneratediris template,and(C)alargerviewof thebinarizedtemplate.

TABLE1.2 Descriptionofthedatasetsusedinthiswork.

DatasetImagesSubjectsSensorLightwavelength

CASIA-IRIS-V4(CASIA-Iris-Interval) [33] 2639249CASIAclose-upiriscameraNIR CASIA-IRIS-V1 [34] 75654CASIAclose-upiriscameraNIR MMU(MMU1) [35] 45045LGEOU2200NIR

TABLE1.3 Comparisonofaccuracyoftheproposedmethod.

DatasetSuccessrate

HammingdistanceEuclideandistance

thebestresultsthatareobtainedwiththeHammingdistancemethodusingtheCASIA-IRIS-V1datasetaretakeninto consideration.Inthiscase,thethresholdvalueissetforcomputingFAR,whichistherateatwhichabiometricsecurity systemincorrectlyacceptsanunauthorizeduser,andFRR,whichistherateatwhichthesystemincorrectlyrejectsan authorizeduser.Inotherwords,theFARistheratioofthe numberoffalseacceptances tothe numberofimposterverificationattempts,whereasFRRistheratioofthenumberoffalserejections(NFR)tothenumberof enrolleeverificationattempts.ThisproposedmethodandtheworksinRefs. [3,24] usethesameCASIA-IRIS-V1datasethavingBMP imageswitharesolutionof320 3 280.From Table1.4,itcanbeseenthattheproposedmethodhasaFARof0.003% andFRRof0.80%andanaverageaccuracyof98.30%.Thefeaturevectorlengthandsothecomputationtimeofthe proposedschemeissignificantlylowerthanexistingmethodsreportedinRefs. [3,4,6,16,24].Amongtheresearchworks listedin Table1.4,theproposedmethodhasthesecondbest(lowest)FARpercentage,whiletheworkinRef. [24] reportshavingaFARof0%,butitsgeneratedfeaturevectorlengthisover8.5timesthatofourproposedone.The

TABLE1.4 Comparisonofresultswiththeexistingmethods.

ReferencesFeature

[3] 1 3 15360.021.9898.00CASIABMPformatwithresolution 320 3 280

[4] 1 3 3840.103.5699.85CASIAandModified database Notreported

[6] 1 3 20480.010.0999.90Ophthalmology Associatesof Connecticut ImagesinRS170,VHS(NTSC),andSVHS(NTSC)formatsweredigitized by480 3 640monochrome8-bit/ pixel.

[16] 1 3 2560.032.0897.89Adatabaseofbotheyes of10peopleand,at least,10photosofeach eye. Notreported

[24] 1 3 5460.000.6999.14CASIABMPformatwithresolution 320 3 280

Proposed method (Hamming distance) 1 3 640.0030.8098.30CASIA-IRIS-V1BMPformatwithresolution 320 3 280

extremelylowFAR(0.003%)attainedbyourmethodindicatesitsstrongsecuritycapabilitybynotallowingaccessto imposteriris.AsacomparisontothemethodproposedinRef. [3],whichisahighlycitedworkinthisdomain,our methodoutperformsinallthreeperformancemetricswithahighlyreducedfeaturevectorlength(1/24thoftheformer), makingourmethodhighlysuitableforreal-timepersonidentification.ThemethodinRef. [16] thatproducesafeature vectorlengthclosesttoourmethod(256-bitvs64-bit)showsdegradedperformanceinallthreeperformancemetrics. TheaverageaccuracyoftheproposedschemeisslightlylowerthanthosereportedinRefs. [4,6,24].ThoughRef. [6] reportedthehighestoverallaccuracyamongmethodslistedinthetable,theirfeaturevectorsize(2048-bit)isextremely longandthehighestofallmethods,andthereportedFARishigherthanourmethod.Similarly,themethodinRef. [4], thoughproduceshigheraccuracy,suffersfromthehighestFARandFRRofallmethodsincludingours.Consideringall performancemetricsandtheverysmallfeaturevector,theproposedmethodishighlyattractiveforreal-time applications.

1.8Conclusion

Irisfeatureextractionisanimportantaspectofmanymodernsecuritysystems.Hence,anefficientandfasterapproach isimportantforirisrecognition.Thischapterproposesanew,hybrid,HWTandMLBP basedtechniquetoreducethe featuresizesothattheirisimagescanbematchedfaster.HWTextractsthemostprominentfeaturesoftheiris,reducingthetemplatesize.Inthiswork,athree-levelHWTisappliedtoextracttheregioncontainingthemajorinformation oftheirisimage.Thethree-levelapproximationpartresultingfromHWTisconsideredamajorcharacteristicsregion. Forinstance,therepeatedHWTconvertsa64 3 512normalizedirisimageintoanapproximationimageofsize8 3 64, whichbecomesatemplateofsize1 3 64aftertheapplicationofMLBPandXOR.TheproposedhybridHWTand MLBPalgorithmsareappliedonthreedifferentirisdatasets.Resultsshowthattheproposedmethodreducesthefeature lengthmultipletimeswhencomparedtotheexistingmethodsreportedintheliterature.Thisreducedlengthresultsina reductionincomputationtime.Thisreducedfeaturelengthisatthecostofonlya1%reductionintheaccuracylevel comparedwithsomepreviouslyproposedmethods,butitstillproducesbetterFARandFRRvaluesthansomemethods. Hence,theproposedmethodishighlyattractivefordevelopingafastandreliableirisrecognitionsystem.

Theresultsoftheproposednewhybridmethodhavesomeimplications.Thisworkonlyconsidersthreedatasets,so theresultsmayvarywhenappliedtosomeverylargedatasets.Theresultsmayalsovarywhennoisy,blurred,anddistortedirisimagesaretakenintoconsideration.Inthefuture,irisdatasetswithmoreimageshavetobedevelopedand

theHWT MLBPmethodhastobeevaluatedforthosedatasets.Thecomplexityoftheproposedmethodshouldalso beevaluatedandcomparedwiththeexistingtechniques.DifferentMLanddeeplearningalgorithmscanalsobeeffectivelyusedintheoverallirisrecognitionprocess.Finally,researchisneededtodevelopeffectivebiometricsystemsby combiningirisrecognitionwithotherbiometricfeatures.

References

[1] J.Daugman,C.Downing,Epigeneticrandomness,complexityandsingularityofhumanirispatterns,ProceedingsoftheRoyalSocietyof London.SeriesB:BiologicalSciences268(1477)(2001)1737 1740.

[2]L.Flom,A.Safir,Irisrecognitionsystem.GooglePatents,(1987).

[3] L.Ma,T.Tan,Y.Wang,D.Zhang,Personalidentificationbasedoniristextureanalysis,IEEETransactionsonPatternAnalysisandMachine Intelligence25(12)(2003)1519 1533.

[4] L.Ma,Y.Wang,T.Tan,Irisrecognitionusingcircularsymmetricfilters,ObjectRecognitionSupportedbyUserInteractionforService, Robots2(2002)414 417.

[5] D.M.Monro,S.Rakshit,D.Zhang,DCT-basedirisrecognition,IEEETransactionsonPatternAnalysisandMachineIntelligence29(4)(2007) 586 595.

[6] J.G.Daugman,Highconfidencevisualrecognitionofpersonsbyatestofstatisticalindependence,IEEETransactionsonPatternAnalysisand MachineIntelligence15(11)(1993)1148 1161.

[7] N.Ahmadi,G.Akbarizadeh,Hybridrobustirisrecognitionapproachusingirisimagepre-processing,two-dimensionalgaborfeaturesand multi-layerperceptronneuralnetwork/PSO,IETBiometrics7(2)(2017)153 162.

[8] X.Li,Y.Jiang,M.Chen,F.Li,Researchonirisimageencryptionbasedondeeplearning,EURASIPJournalonImageandVideoProcessing 2018(1)(2018)1 10.

[9]L.Masek,Recognitionofhumanirispatternsforbiometricidentification,Bachelor’sThesis,UniversityofWesternAustralia(2003).

[10] H.Proenca,L.A.Alexandre,Towardnoncooperativeirisrecognition:aclassificationapproachusingmultiplesignatures,IEEETransactionson PatternAnalysisandMachineIntelligence29(4)(2007)607 612.

[11] R.F.Soliman,M.Amin,F.E.AbdEl-Samie,Anovelcancelableirisrecognitionapproach,in:InternationalConferenceonInnovative ComputingandCommunications,Springer,Singapore,2019,pp.359 368.

[12] S.Umer,B.C.Dhara,B.Chanda,Texturecodematrix-basedmulti-instanceirisrecognition,PatternAnalysisandApplications19(1)(2016) 283 295.

[13] Y.Alvarez-Betancourt,M.Garcia-Silvente,Akeypoints-basedfeatureextractionmethodforirisrecognitionundervariableimagequalityconditions,Knowledge-BasedSystems92(2016)169 182.

[14] S.S.Barpanda,B.Majhi,P.K.Sa,A.K.Sangaiah,S.Bakshi,Irisfeatureextractionthroughwaveletmel-frequencycepstrumcoefficients, Optics&LaserTechnology110(2019)13 23.

[15] S.S.Barpanda,P.K.Sa,O.Marques,B.Majhi,S.Bakshi,Irisrecognitionwithtunablefilterbankbasedfeature,MultimediaToolsand Applications77(6)(2018)7637 7674.

[16]D.deMartin-Roche,C.Sanchez-Avila,R.Sanchez-Reillo,Irisrecognitionforbiometricidentificationusingdyadicwavelettransformzerocrossing,ProceedingsIEEE35thAnnual2001InternationalCarnahanConferenceonSecurityTechnology(Cat.No.01CH37186)pp.272-277 (2001).

[17] S.S.Dhage,S.S.Hegde,K.Manikantan,S.Ramachandran,DWT-basedfeatureextractionandradontransformbasedcontrastenhancementfor improvedirisrecognition,ProcediaComputerScience45(2015)256 265.

[18] S.Jamaludin,N.Zainal,W.M.D.W.Zaki,Sub-iristechniquefornon-idealirisrecognition,ArabianJournalforScienceandEngineering43 (12)(2018)7219 7228.

[19]E.G.Llano,M.S.Garcı´a-Va ´ zquez,L.M.Zamudio-Fuentes,J.M.C.Vargas,A.A.Ramı´rez-Acosta,Analysisoftheimprovementontextural informationinhumanirisrecognition,InVIILatinAmericanCongressonBiomedicalEngineeringCLAIB2016,Bucaramanga,Santander, Colombia,October26th-28th,2016(pp.373-376).Springer,Singapore(2017).

[20] K.Miyazawa,K.Ito,T.Aoki,K.Kobayashi,H.Nakajima,Aneffectiveapproachforirisrecognitionusingphase-basedimagematching,IEEE TransactionsonPatternAnalysisandMachineIntelligence30(10)(2008)1741 1756.

[21] A.Nigam,B.Kumar,J.Triyar,P.Gupta,Irisrecognitionusingdiscretecosinetransformandrelationalmeasures,in:InternationalConference onComputerAnalysisofImagesandPatterns,Springer,Cham,2015,pp.506 517.

[22] B.Sahu,P.K.Sa,S.Bakshi,A.K.Sangaiah,Reducingdenselocalfeaturekey-pointsforfasteririsrecognition,Computers&Electrical Engineering70(2018)939 949.

[23] K.Seetharaman,R.Ragupathy,LDPCandSHAbasedirisrecognitionforimageauthentication,EgyptianInformaticsJournal13(3)(2012) 217 224.

[24] C.TeChu,C.-H.Chen,HighperformanceirisrecognitionbasedonLDAandLPCC,IEEE,2005,p.5.

[25] B.Zahran,J.Al-Azzeh,Z.Alqadi,M.-A.AlZoghoul,AmodifiedLBPmethodtoextractfeaturesfromcolorimages,JournalofTheoretical andAppliedInformationTechnology96(10)(2018).

[26] S.Bakshi,P.K.Sa,B.Majhi,Anovelphase-intensivelocalpatternforperiocularrecognitionundervisiblespectrum,Biocyberneticsand BiomedicalEngineering35(1)(2015)30 44.

[27] S.A.Khan,M.Ishtiaq,M.Nazir,M.Shaheen,Facerecognitionundervaryingexpressionsandilluminationusingparticleswarmoptimization, JournalofComputationalScience28(2018)94 100.

[28] S.Kumar,S.Singh,J.Kumar,AutomaticlivefacialexpressiondetectionusinggeneticalgorithmwithhaarwaveletfeaturesandSVM, WirelessPersonalCommunications103(3)(2018)2435 2453.

[29] E.Owusu,J.D.Abdulai,Y.Zhan,Facedetectionbasedonmultilayerfeed-forwardneuralnetworkandHaarfeatures,Software:Practiceand Experience49(1)(2019)120 129.

[30] D.Bhattacharjee,A.Seal,S.Ganguly,M.Nasipuri,D.K.Basu,AcomparativestudyofhumanthermalfacerecognitionbasedonHaarwavelet transformandlocalbinarypattern,ComputationalIntelligenceandNeuroscience2012(2012).

[31]S.Shaju,D.Davis,Haarwavelettransformbasedhistogramconcatenationmodelforfingerprintspoofingdetection,In2017International ConferenceonCommunicationandSignalProcessing(ICCSP),pp.1352-1356,IEEE(2017).

[32] N.Ahmadi,M.Nilashi,Iristexturerecognitionbasedonmultilevel2-DHaarwaveletdecompositionandHammingdistanceapproach,Journal ofSoftComputingandDecisionSupportSystems5(3)(2018)16 20.

[33]CASIA-Iris-V4, http://biometrics.idealtest.org/dbDetailForUser.do?id 5 4,2020.

[34]CASIA-Iris-V1, http://biometrics.idealtest.org/dbDetailForUser.do?id 5 1,2020.

[35]M.U.Database,MMU1andMMU2irisimagedatabases. http://pesona.mmu.edu.my/Bccteo,2008.

[36] M.Oktiana,K.Saddami,F.Arnia,Y.Away,K.Hirai,T.Horiuchi,etal.,Advancesincross-spectralirisrecognitionusingintegrated gradientface-basednormalization,IEEEAccess7(2019)130484 130494.

[37] L.Shuai,L.Yuanning,Z.Xiaodong,H.Guang,C.Jingwei,Z.Qixian,etal.,Multi-sourcefeaturefusionandentropyfeaturelightweightneural networkforconstrainedmulti-stateheterogeneousirisrecognition,IEEEAccess8(2020)53321 53345.

[38] N.Ahmadi,Morphological-edgedetectionapproachforthehumanirissegmentation,JournalofSoftComputingandDecisionSupportSystems 6(4)(2019)15 19.

[39] X.-hChen,J.-sWang,Y.-lRuan,S.-zGao,Animprovedirisrecognitionmethodbasedondiscretecosinetransformandgaborwavelettransformalgorithm,EngineeringLetters27(4)(2019).

[40] Y.Chen,C.Wu,Y.Wang,T-Center:anovelfeatureextractionapproachtowardslarge-scaleirisrecognition,IEEEAccess8(2020) 32365 32375.

[41] M.Danlami,S.Jamel,S.N.Ramli,S.R.M.Azahari,Comparingthelegendrewaveletfilterandthegaborwaveletfilterforfeatureextraction basedonirisrecognitionsystem,IEEE,2020,pp.1 6.

[42] G.Huo,H.Guo,Y.Zhang,Q.Zhang,W.Li,B.Li,AneffectivefeaturedescriptorwithGaborfilteranduniformlocalbinarypatterntranscodingforIrisrecognition,PatternRecognitionandImageAnalysis29(4)(2019)688 694.

[43] R.Jayavadivel,P.Prabaharan,Investigationonautomatedsurveillancemonitoringforhumanidentificationandrecognitionusingfaceandiris biometric,JournalofAmbientIntelligenceandHumanizedComputing(2021)1 12.

[44] A.Noruzi,M.Mahlouji,A.Shahidinejad,Robustirisrecognitioninunconstrainedenvironments,JournalofAIandDataMining7(4)(2019) 495 506.

[45] H.K.Rana,M.S.Azam,M.R.Akhtar,J.M.W.Quinn,M.A.Moni,Afastirisrecognitionsystemthroughoptimumfeatureextraction,PeerJ ComputerScience5(2019)e184.

[46] N.Ahmadi,M.Nilashi,S.Samad,T.A.Rashid,H.Ahmadi,Anintelligentmethodforirisrecognitionusingsupervisedmachinelearningtechniques,Optics&LaserTechnology120(2019)105701.

[47] E.Sujatha,J.S.J.Sundar,P.Deivendran,G.Indumathi,Multimodalbiometricalgorithmusingiris,fingervein,fingerprintwithhybridGA, PSOforauthentication,DataAnalyticsandManagement,Springer,2021,pp.267 283.

[48] R.Vyas,T.Kanumuri,G.Sheoran,Crossspectralirisrecognitionforsurveillancebasedapplications,MultimediaToolsandApplications78 (5)(2019)5681 5699.

[49] J.J.Winston,D.J.Hemanth,Performancecomparisonoffeatureextractionmethodsforirisrecognition,InformationTechnologyandIntelligent TransportationSystems323(2020)62.

Chapter2

Anovelcrypt-intelligentcryptosystem

PratyusaMukherjeeandChittaranjanPradhan

2.1Introduction

Computationalintelligence(CI) [1] isaparadigmofnaturalenvironment inspiritedcomputationalmethodologies, whichprovidessolutionstostrenuousreal-lifeproblemswheremathematicalandtraditionalmodelingarerendereduseless.Itmaybeimpossibletotranslateseveralreal-lifeproblemsintothebinary(0or1)formatduetotheirstochastic natureortheuncertaintiesassociatedwiththem [2].ItisinthesescenarioswhereCIcomesasarescuetoresearchers. CIistheextensiveumbrellaunderwhichthreecoretechnologiesarepresent,namelymachinelearning(ML),genetic algorithms(GAs),andneuralnetworks(NNs),amongseveralothers [3].Thesetechnologieseitherindividuallyorin combinationcanbeeffectivelyutilizedtofixcrucialreal-lifeissues.Oneessentialdilemmainourdailylivesisprotectingandensuringtheconfidentiality,integrity,andauthenticityoftheinformationbothintransitandstoragefromintrusionsbyunauthorizedadversaries.CIhasthepotentialtoprovetobeoneoftheobviouschoicestocontribute extensivelytothefieldofcryptography.ThesecontributionsofCIinthefieldofcryptographyhavebeenstudiedelaboratelyinthischapter.

Intherelatedworksurvey,thefirstCIcomponentconsideredisML [4,5] whichisasubcategoryofartificialintelligenceandusesasystemthatlearnsfromitspastexperiencesandmodifiesitsbehaviorbyadaptingtochanges.Asa result,itgiganticallyminimizestheeffortsandtimespentonaparticulartaskthathasnotbeenexplicitlyperformed. MLcansortmillionsoffilesrapidly,thusdiagnosingthepotentiallyhazardousonesandautomaticallyextinguishing anythreatsbeforeitwreakshavoc.SeveralanalogiesthathavebeendeterminedbetweenthetasksofMLandtheircorrespondingcounterpartsincryptographyarehighlightedinthischapter.Next,theliteraturereviewofthechapterdelves intotheapplicationofGAs [6] tocryptography.Cryptographickeysplayapivotalroleinprotectingtheunderlying cryptosysteminbothsymmetricandasymmetrickeycryptography.ItwasobservedthatGAshaveamassivecontributioninstrengtheningthecryptographickeyswithselection,crossover,andmutationsothattheyareimmuneto detectionandthreats.AnothervitalCIcomponentisneuralnetworks.Anartificialneuralnetwork(ANN) [7] isadatatransformingmodelthatisinfluencedfromthebiologicalnervoussystems.TheseveralapplicationsofANNhavebeen demonstratedinthischaptertodesignneuralcryptosystems.

ItwasnotedthatCIhasavidutilizationinthecryptanalysisdomainwithminimalapplicationindesigningtheentire cryptosystem.MoreimportanceisleviedonCImethodstodetectfraudsandintrusion,instantbruteforceattacks,and theeffectivedecryptionofciphertextswithoutothervalidinformation.TheuseofCItechniquesfordesigningencryptionschemeshasnotreceivedmanyaccolades.Thustowardtheendofthechapter,anovelMLandDNAcryptography basedmessageencryptionschemehasbeenproposed.DNAcryptography [8] isanotherpropitioustechnologythat hidestheoriginaldatausingacombinationofthefournitrogenousbasesthatconstitutehumanDNA.Theutilizationof fournitrogenousbases,namelyAdenosineA,ThymineT,CytosineC,andGuanineG,insteadofthebinarycounterparts0and1,maketheDNAcryptosystemsmoreimmuneandstrongerthanthetraditionalones.Theprofferedtechniquewillcatertotheencryptionofanytypeofmessage,textorimage,intermsofDNAsequencesratherthanbeing restrictedtoonlyaparticulartypeofinput.Intraditionalcryptosystems,theobviousrequirementofthedecryption machineistobetheexactreversemodeloftheencryptionscheme.Ifanintrudercangetholdoftheencryption machinerythroughmasqueradingattacks,theycanassuredlydesignthecorrespondingdecryptionmachinery.This chaptersuggestsatechniquethatwilldecrypttheciphertextusingNNs,henceeliminatingtheage-oldpracticeof cryptosystems.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.