Analysis of composite laminates: theories and their applications 1st edition dinghe li - The latest

Page 1


https://ebookmass.com/product/analysis-of-composite-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Theories of development : concepts and applications 6th Edition William Crain

https://ebookmass.com/product/theories-of-development-concepts-andapplications-6th-edition-william-crain/ ebookmass.com

Applied Analysis of Composite Media: Analytical and Computational Approaches Dryga■

https://ebookmass.com/product/applied-analysis-of-composite-mediaanalytical-and-computational-approaches-drygas/

ebookmass.com

Damage Modeling of Composite Structures: Strength, Fracture, and Finite Element Analysis 1st Edition Pengfei Liu

https://ebookmass.com/product/damage-modeling-of-composite-structuresstrength-fracture-and-finite-element-analysis-1st-edition-pengfei-liu/ ebookmass.com

Hábitos dos Milionários: Os segredos por trás das maiores fortunas do mundo Napoleon Hill

https://ebookmass.com/product/habitos-dos-milionarios-os-segredos-portras-das-maiores-fortunas-do-mundo-napoleon-hill-2/

ebookmass.com

Faith, Reason, and Culture: An Essay in Fundamental Theology 1st ed. Edition George Karuvelil

https://ebookmass.com/product/faith-reason-and-culture-an-essay-infundamental-theology-1st-ed-edition-george-karuvelil/

ebookmass.com

Analysis of the Development of Beijing, 2019 1st ed. Edition Zhao Ran

https://ebookmass.com/product/analysis-of-the-development-ofbeijing-2019-1st-ed-edition-zhao-ran/

ebookmass.com

The Kidnap Years David Stout

https://ebookmass.com/product/the-kidnap-years-david-stout-2/

ebookmass.com

Ornamentalism Anne Anlin Cheng

https://ebookmass.com/product/ornamentalism-anne-anlin-cheng/

ebookmass.com

Critical Care Medicine: An Algorithmic Approach 1st Edition Alexander Goldfarb-Rumyantzev

https://ebookmass.com/product/critical-care-medicine-an-algorithmicapproach-1st-edition-alexander-goldfarb-rumyantzev/

ebookmass.com

https://ebookmass.com/product/modular-treatment-approach-for-drinkingwater-and-wastewater-satinder-kaur-brar/

ebookmass.com

ANALYSISOF COMPOSITELAMINATES

ANALYSISOF COMPOSITELAMINATES

TheoriesandTheirApplications

DINGHELI

CollegeofAeronauticalEngineering CivilAviationUniversityofChina Tianjin,China

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands

TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright©2022ChinaSciencePublishing&MediaLtd.PublishedbyElsevierInc.Allrightsreserved.

MATLAB® isatrademarkofTheMathWorks,Inc.andisusedwithpermission.

TheMathWorksdoesnotwarranttheaccuracyofthetextorexercisesinthisbook.

Thisbook’suseordiscussionofMATLAB® softwareorrelatedproductsdoesnotconstituteendorsementor sponsorshipbyTheMathWorksofaparticularpedagogicalapproachorparticularuseoftheMATLAB® software.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicor mechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem,without permissioninwritingfromthepublisher.Detailsonhowtoseekpermission,furtherinformationaboutthe Publisher’spermissionspoliciesandourarrangementswithorganizationssuchastheCopyrightClearanceCenter andtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions.

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher(other thanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenour understanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusingany information,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethodsthey shouldbemindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhomtheyhaveaprofessional responsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliability foranyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceorotherwise,or fromanyuseoroperationofanymethods,products,instructions,orideascontainedinthematerialherein.

ISBN:978-0-323-90804-7

ForinformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: MatthewDeans

AcquisitionsEditor: GlynJones

EditorialProjectManager: NaomiRobertson

ProductionProjectManager: PremKumarKaliamoorthi

Designer: GregHarris

TypesetbyVTeX

Dedication

Ihavemanypeopletothank.IamgratefultoProfessorXiongZhangforacademicguidanceduringmydoctoralstudyatTsinghuaUniversityandhisconstructivesuggestions aboutthisbook,whichaidedmeinwritingthetext.IalsoappreciateProfessorJianxin XuandProfessorGuanghuiQingfortheacademicguidanceinmyearlyresearchat theCivilAviationUniversityofChina.IamgratefultoProfessorYanLiuandProfessorXinmingQiufortheiracademicguidanceduringmydoctoralstudyatTsinghua University.IwishtothankthemembersofmyresearchgrouponcomputationalcompositemechanicsattheCivilAviationUniversityofChina.Ireceivedvaluableassistance frommyM.A.studentsincludingRuipengWang,FengZhang,JiuyueYang,DongXu, ZhengguangXiao,WukuiShan,LiangyiLi,ZhengmingWang,ShuoMa,andZhaoxin Yun.IexpressmydeepestappreciationtoZhengmingWangforherassistanceinediting thetext.Finally,Iwishtoexpressmygratitudeandapologiestomyfamily,LiZhang andYinguangLi,forenduringthispastyearwhenmuchofmytimeandenergyshould havebeendevotedtothemratherthantothisbook.

Biography xv

Preface xvii

Acronyms xix

1.Compositeanalysisoverview1

1.1. Introduction 1

1.1.1. Historyofcomposites1

1.1.2. Applicationsofcompositesinaircrafts3

1.2. Compositelaminates5

1.2.1. Definitionandconstituents5

1.2.2. Plies 6

1.2.3. Laminates7

1.3. Analysisschemes9

1.3.1. Basicanalysisschemes9

1.3.2. Basicequations11

1.3.3. Existinganalysistheories14

1.3.4. Challenges16

1.3.5. Futuredevelopments19

1.4. GeneralHooke’slaw20

1.4.1. Hyperelasticmaterials20

1.4.2. Monoclinicmaterials22

1.4.3. Orthotropicmaterials22

1.4.4. Isotropicmaterials24

1.4.5. Planestress-reducedconstitutiverelations24

1.4.6. Transformationofmaterialcoefficients25

1.5. Energyprinciples27

1.5.1. Virtualdisplacementprinciple27

1.5.2. Hamilton’sprinciple30

1.5.3. Mixedvariationalprinciples31 References 33

2.Sheardeformationtheories35

2.1. Introduction35

2.2. Classicallaminatedplatetheory36

2.2.1. Displacementfields36

2.2.2. Kinematicequation38

2.2.3. Constitutiveequations42

2.2.4. Governingequations45

2.3. First-ordersheardeformationtheory47

2.3.1. Displacementfields47

2.3.2. Kinematicequation48

2.3.3. Shearcorrectionfactors50

2.3.4. Constitutiveequations50

2.3.5. Governingequations52

2.4. High-ordersheardeformationtheories53

2.4.1. Second-ordersheardeformationtheory53

2.4.2. Third-ordersheardeformationtheory55

2.4.3. Higher-ordersheardeformationtheories58

2.5. Finiteelementformulations58

2.5.1. CLPT58

2.5.2. FSDT63

2.5.3. TSDT64

2.5.4. Numericalexamples68 References 70

3.Statespacetheory71

3.1. Introduction71

3.2. Hamiltoniancanonicalequationoflaminatedplates72

3.2.1. Hamiltoniancanonicalequationofindividuallayer72

3.2.2. Exactsolutionofsimplysupportsinglelayerplates74

3.2.3. Hamiltoniancanonicalequationoflaminatedplates77

3.3. H-Rvariationalprincipleoflaminatedplates79

3.3.1. H-Rvariationalprincipleinrectangularcoordinatesystem79

3.3.2. H-Rvariationalprincipleincylindricalcoordinatesystem84

3.3.3. Numericalexamples86

3.4. Finiteelementformulationofstatespacetheory87

3.4.1. Hamiltonianisoparametricelement87

3.4.2. Governingequations90

3.4.3. Boundaryconditions91

3.4.4. Precisetime-integration92

3.4.5. Freevibration93

3.4.6. Numericalexamples94

3.5. Meshfreeformulationofstatespacetheory95

3.5.1. Interpolationusingradialbasisfunctions95

3.5.2. Radialbasisfunctions98

3.5.3. Numericalexamples99

3.6. Bondingimperfectionincompositelaminates101

3.6.1. Bondingimperfection101

3.6.2. Statespaceequationofbondingimperfectionproblems102

3.6.3. Numericalexamples104

References 109

4.Layerwisetheories111

4.1. Introduction111

4.2. Integratelayerwisemethods112

4.2.1. Generalizedlaminateplatetheory112

4.2.2. LayerwiseFEM113

4.2.3. OtherILWMs113

4.3. Reddy’slayerwisetheory114

4.3.1. Displacementfields114

4.3.2. Eulerequations116

4.3.3. Constitutiveequations120

4.3.4. Finiteformulations121

4.3.5. Numericalexamples122

4.4. Discretelayerwisetheories127

4.4.1. DevelopmentofDLWM127

4.4.2. Displacement-basedDLWM128

4.4.3. Carrera’sunifiedformulation132

4.4.4. Three-fieldvariablesDLWM134

4.4.5. Multiparticlemodelofmultilayeredmaterials135 References 136

5.Extendedlayerwisemethod139

5.1. Introduction139

5.2. Extendedlayerwisemethodoflaminatedplates140

5.2.1. Displacementsfields140

5.2.2. Descriptionoftransversecrack145

5.2.3. Hamilton’sprincipleandEuler–Lagrangeequations148

5.2.4. Constitutiveequations151

5.2.5. Finiteelementformulations152

5.2.6. Timeintegrations155

5.2.7. Numericalexamples156

5.3. Extendedlayerwisemethodofdoubly-curvedlaminatedshells167

5.3.1. Geometricequationsoflaminatedshells167

5.3.2. Hamilton’sprincipleandEuler–Lagrangeequations170

5.3.3. Constitutiveequations173

5.3.4. Governingequations176

5.3.5. Fullextendedlayerwisemethod179

5.3.6. Numericalexamples182

5.4. Fractureanalysisofcompositelaminates188

5.4.1. Equivalentdomainintegralmethod188

5.4.2. Interactionintegralmethodofisotropicmaterials190

5.4.3. Interactionintegralmethodoforthotropicmaterials191

5.4.4. Interactionintegralmethodofdynamicproblems192

5.4.5. Localremeshingscheme193

5.4.6. Maximumcircumferentialtensilestresscriterion195

5.4.7. VCCTbasedonXLWM196

5.4.8. Determinationofdelaminationfront198

5.4.9. Numericalexamples201

5.5. Fastuniform-griddelaminationscheme208

5.5.1. Thefastuniform-griddelaminationscheme208

5.5.2. Delaminationregionidentification209

5.5.3. Numericalexamples212

5.6. Microfractureanalysisofcompositelaminates220

5.6.1. Force-bearingmechanismsoffibers220

5.6.2. Modelingscheme220

5.6.3. Fibersmodeling222

5.6.4. Governingequations223

5.6.5. Numericalexamples225

References 231

6.Multiphysicalanalysis235

6.1. Introduction235

6.2. Thermomechanicalanalysis236

6.2.1. Variationalprinciplesconsideringtemperatureeffect236

6.2.2. Displacementfields238

6.2.3. Eulerequations239

6.2.4. Constitutiveequations241

6.2.5. Finiteelementformulations243

6.2.6. Timeintegrations245

6.2.7. EvaluationofSIFforthermomechanicaldynamicproblems247

6.2.8. Numericalexamples248

6.3. Piezoelectricanalysis250

6.3.1. Displacementandpotentialfields250

6.3.2. Electromechanicalvariationalprinciple252

6.3.3. Constitutiveequations253

6.3.4. Finiteelementformulation256

6.3.5. Couplingmodelingoflaminatedplateswithpiezoelectricpatch258

6.3.6. Thermo-electromechanicaldynamicanalysis260

6.3.7. Numericalexamples266

6.4. Chemo-thermomechanicalanalysis276

6.4.1. Chemo-thermomechanicalfields276

6.4.2. HamiltonprincipleandEulerequations277

6.4.3. Constitutiveequations279

6.4.4. Finiteelementformulations282

6.4.5. Timesintegration285

6.4.6. Chemomechanicalanalysis286

6.4.7. Numericalexamples287 References 295

7.Analysisofcomplexcomposites297

7.1. Introduction297

7.2. Layerwise/solid-elementmethodofcompositestiffenedshells299

7.2.1. Modelingscheme299

7.2.2. Finiteelementformulationsofthestiffener300

7.2.3. LW/SEmethod301

7.2.4. Numericalexamples302

7.3. Dynamicthermomechanicalanalysisofstiffenedplates307

7.3.1. Dynamicthermomechanicalthree-dimensionalelements307

7.3.2. DynamicthermomechanicalXLW/SE309

7.3.3. Numericalexamples312

7.4. Analysismethodsofsandwichstructures316

7.4.1. DLWMforthesandwichplates316

7.4.2. Layerwise/solid-elementofcompositesandwichplates316

7.4.3. LW/SEofsandwichplateswithmultilayercores321

7.4.4. Modelingofthesandwichstructures323

7.4.5. Numericalexamples324

7.5. Dynamicthermomechanicalanalysisofsandwichplates332

7.5.1. LW/SEmethodofsandwichplateswithsinglecore332

7.5.2. LW/SEmethodofsandwichplateswithmultiplycores337

7.5.3. Numericalexamples341

7.6. Dynamicthermo-chemomechanicalcouplinganalysisonaeroengineturbine346

7.6.1. Three-dimensionalthermo-chemomechanicalformulations346

7.6.2. Transformationofcoordinatesystem349

7.6.3. ModelingofaeroengineturbinewithTBCs351

7.6.4. Numericalexamples357 References 363

8.Progressivefailureanalysis365

8.1. Introduction365

8.2. Continuousdamagemechanicsanalysisframework366

8.2.1. Damageconstitutive366

8.2.2. Damageinitiation367

8.2.3. Damageevolutionlaw372

8.3. Progressivefailureanalysisoflow-velocityimpact373

8.3.1. Mathematicmodelofimpactproblem373

8.3.2. ContactforcebasedonHertz’slaw375

8.3.3. FEMimplementation376

8.3.4. Numericalexamples377

8.4. Progressivefailureanalysisofcomposites382

8.4.1. Discretedamagezonemodel382

8.4.2. DDZM-XLWM384

8.4.3. FatigueanalysisbasedonDDZM-XLWM389

8.4.4. Fatigueparameters393

8.4.5. Numericalexamples397

8.5. ProgressivethermomechanicalDDZM-XLWM408

8.5.1. Problemsdescriptions408

8.5.2. Interfacialheattransfer408

8.5.3. Governingequations410

8.5.4. Numericalexamples414

References 421

9.Multiscaleanalysis423

9.1. Introduction423

9.2. Layerwisemultiscaleanalysismethod424

9.2.1. MultiscaleanalysisbasedonEST424

9.2.2. Homogenizationmethod425

9.2.3. Layerwisemultiscaleanalysismethod428

9.2.4. Implementation431

9.2.5. Numericalexamples432

9.3. Two-scale C 2 ofalaminatedcurvedbeams434

9.3.1. TSDTofcurvedbeams434

9.3.2. Displacementdecomposition438

9.3.3. Finiteelementformulations440

9.3.4. Nonlocalquadrature443

9.4. Three-scale C 2 oflaminatedcurvedbeams444

9.4.1. Displacementdecomposition444

9.4.2. Finiteelementformulations446

9.4.3. Numericalexamples452

9.5. C 2 oflaminatedplates455

9.5.1. Frameworkof C 2 forlaminatedplates455

9.5.2. Two-scaleanalysisoflaminatedplates459

9.5.3. Three-scaleanalysisoflaminatedplates462

References 467

10.Sensitivityanalysis471

10.1. Introduction471

10.2. SensitivityanalysisbasedonFEM472

10.2.1. Staticresponses472

10.2.2. Frequencyandmodeshape473

10.3. Evaluationmethods475

10.3.1. AM476

10.3.2. FDM476

10.3.3. SAM477

10.3.4. StepsizesofSAMandFDM477

10.4. SensitivityanalysisbasedonSST482

10.4.1. Hybridgoverningequations482

10.4.2. Hybridgoverningequationofbondingimperfectionproblems484

10.4.3. Implementofsensitivityanalysis486

10.4.4. Numericalexamples488

References 493

11.Analysiscodes495

11.1. Overallframework495

11.2. Datastructuresandpre/postprocess496

11.2.1. Matrixstorageformats496

11.2.2. Preprocess497

11.2.3. Post-processtool500

11.3. Solvermodels502

11.3.1. Solver sdt

11.3.2. Solver sst

11.3.3. Solver rlw

11.3.4. Solver xlw

Biography

Dr.LiisaProfessorandVicePresidentattheCollegeofAeronauticalEngineering, CivilAviationUniversityofChina,andhasbeenfeaturedamongtheWorld’sTop2% ScientistsListcreatedbyStanfordUniversity.HefinishedhisMScattheCivilAviation UniversityofChinaonthesensitivityanalysisofcompositestructuresinthestatespace framework,andgraduatedoneyearaheadofschedule.HisPhDwasdevotedtothe impactdamageanalysisandrefinedtheoriesofthecompositestructures.Hewasthe firstdoctortograduatein2.5yearsintheSchoolofAerospaceEngineering,Tsinghua University.HehasworkedwithProfessorJacobFishonmultiscaleanalysisproblems ofcompositelaminatesatColumbiaUniversityinNewYorkCity.Dr.Lifocusedon solvingthebasicmechanicalproblemsinthecompositeengineeringstructures,involvingthehigh-precisionlaminatedplateandshellanalysistheories,advancednumerical method,fractureanddamagemechanicsofanisotropicmaterial,multiphysicalfieldand multiscaleanalysistheoriesofcompositestructures.In2015,Dr.Liwasselectedasthe secondlevelcandidateoftheTianjin“131”innovativetalenttrainingprojectandthe “YouthBlueSky”scholaroftheCivilAviationUniversityofChina.In2019,hewas selectedasthehigh-leveltalentsupportplanoftheCivilAviationUniversityofChina. Dr.Liistheauthorofnearly60journalpapers.Hehasobtainedtwosoftwarecopyrightsandwrittenonebook(Compositerepairofaircraftstructures:theory,design,and applications).Dr.Liisayoungeditorialboardmemberof AviationScienceandTechnology andaspeciallyinvitedreviewerofthe JournalofComputationalMechanics.

Acronyms

AM analyticalmethod

C2 computationalcontinua

CLPT classicallaminatedplatetheory

CCC carbon-carboncomposite(carbonmatrix)

CDM continuumdamagemechanics

CTDM centraldifferencemethod

CFRP carbonfiberreinforcedplates

CMC ceramicmatrixcomposite

CUF Carrera’sunifiedformulation

CUC computationalunitcell

DCB doublecantileverbeam

DDZM discretedamagezonemodel

DLWM discretelayerwisemethods

DNS directnumericalsimulation

DOF degree-of-freedom

EST equivalentsingle-layertheory

IIM interactionintegralmethod

ILWM integratedlayerwisemethods

LMAM layerwisemultiscaleanalysismethod

LSM levelsetmethod

LWT layerwisetheory

LW/SE laywise/solid-element

FDM finitedifferencemethod

FWDM forwarddifferencemethod

Full-XLWM fullextendedlayerwisemethod

FSDT first-ordersheardeformationtheory

FEM finiteelementmethod

HSDT high-ordersheardeformationtheory

HrSDT higher-ordersheardeformationtheory

GLPT generalizedlaminateplatetheory

GFRP glassfiberreinforcedplates

PMC polymermatrixcomposite

MMC metalmatrixcomposite

MCEP minimumcomplementaryenergyprinciple

MCTSC maximumcircumferentialtensilestresscriterion

MPEP minimumpotentialenergyprinciple

MQ modifiedmultiquadrics

RBF radialbasisfunctions

RLWT Reddy’slayerwisetheory

RPIM radialpointinterpolationmethod

SAM semianalyticalmethod

SDT sheardeformationtheories

SIF stressintensityfactor

SERR strainenergyreleaserate

SSDT second-ordersheardeformationtheory

SST statespacetheory

TPS thinplatespline

TSDT third-ordersheardeformationtheory

ZZT zig-zagtheory

XLWM extendedlayerwisemethod

XLW/SE extendedlayerwise/solid-element

XFEM extendedfiniteelementmethod

VCCT virtualcrackclosuretechnique

VDP virtualdisplacementprinciple

Preface

Nowadayscompositematerialsplayaveryimportantroleinalltypesofengineering structures,suchasaerospace,automotive,underwaterstructures,medicalproductions, electronic,andsportsequipments.Computationalmechanicanalysisisthebaseofthe dramaticdevelopmentofcompositematerials.Compositestructurescanbestudied byusingtwobasicanalysisschemes:micromechanicalmethodsandmacromechanical methods.Ingeneral,micro-mechanicalanalysisisaimedatpredictingandunderstanding theaveragepropertiesintermsofthedetailedmicroscopicbehaviorofthematerial,ratherthangeneratingaccuratedesigndata;whilemacromechanicalanalysisdraws mainlyontheresultsobtainedfromphysicalandmechanicaltestingofunidirectional composites.Ifweneedtoanalyzethemacroandmicroresponsesimultaneously,multiscaleanalysismethodsarenecessary.Thisbookisfocusedonthemacromechanical analysisandmultiscaleanalysisofcompositeengineeringstructures.Intheearlydays oflaminatedcomposites,thetechniqueusedforanalyzingconventionalplateswasextendedtoanalyzethesenewstructures.Thezig-zageffectsand C 0 z -Requirementsposes aseriouschallengetotheearlytraditionalanalyticalmethods.Althoughthecompositeanalysistheorieshavemadegreatprogress,therearestillmanychallengesbecause ofthecomplexcharacteristicsandwideapplicationsofcomposites:theircomplexintegratedmoldingprocess,complexanisotropicconstitutiverelations,complexdamage mechanism,complexmultiphysicalloading,andcomplexmultiscaleeffective,namely C 5 challenges.Unfortunately,itisalmostimpossibletoaccuratelyconsiderallthechallengesusingtheexistingrefinedanalysismethods.

Theauthorandhisresearchteamhavefocusedonsolvingthebasicmechanicalproblemsincompositeengineeringstructures,especiallythetheoriesofcompositelaminated beams,plates,andshells;theyarecalledthecompositelaminatedtheoriesinthisbook. Theresearchteamhasdevelopedacompositestructureanalysissoftwaresystem,with atotalcodeofmorethan200,000lines.Thesoftwaresystemhasalargenumberof solversbasedonsheardeformationtheories,statespacetheory,thelayerwisemethod, extendedlayerwisemethod,computationalcontinua,multipointmultilevelgridrefinementmethod,andtakingthefracture,damage,multiscaleandmultiphysicsanalysis problemsasitsadvantages.Analysisobjectsofthissoftwaresysteminclude:beams, plates,shells,stiffenedplatesandshells,sandwichplatesandshells,andmultilayersandwichplatesandshells.Loadingtypesinclude:mechanic,thermal,electric,chemical,and theircouplingloading.Thesoftwaresystemadoptsadvancedstorageandsolutiontechnologies,andrequireslessmemoryandharddiskthancommercialsoftware.Forsome specificchallengingengineeringproblems,theefficiencyandaccuracyoftheproposed softwarearebetterthantheseofthecommercialsoftwareaswell.

Asthereisadramaticincreaseintheuseofcompositematerials,thenumberof studentstakingcoursesincompositemechanicshassteadilyincreasedinrecentyears, andthestudentsaredrawntothesecoursesfromavarietyofdisciplines.Thecourses offeredatuniversitiesandthebookspublishedoncompositematerialsareofthreetypes: materialscience,mechanics,anddesign.Thepresentbookbelongstothemechanics category.Themotivationforthepresentbookhascomefrommanyyearsoftheauthor’s researchinlaminatedcompositestructuresandfromthefacttheredoesnotexistabook thatcontainsadetailedcoverageofvariouslaminatetheories,analyticalsolutions,finite elementmodels,andtheirapplicationsinstructuralengineeringproblems.Thebookis largelybasedontheauthor’soriginalworkonrefinedtheoriesoflaminatedcomposite platesandshells,andtheanalyticalandfiniteelementsolutionsheandhiscollaborators havedevelopedoverthelasttwodecades.Thenoveltyofthisbookisthattheexisting mostimportantanalysismethodsandtheircodesareintroduced,andmainlyfocuson fractureanddamageanalysis,togetherwithmultiscaleanalysisandmultiphysicsanalysis. Thistextbookisuniqueinthreerespects:

• Theoryandimplementation.Thetextprovidesadetailedexpositionofthestate-ofthe-artcompositeanalysistheoriesandtheirinsertionintoengineeringapplications oftypicalstructureformsandproblems;

• Hands-onexperience.Includedwiththistextbookisanacademicversionofthe compositeanalysiscodes,whichincludesmorethan200,000linesofcode;

• Engineeringproblems.Manystructuralengineeringproblemsarestudiednumerically.Alotofbenchmarkexamplesaredesignedanddetailednumericalresultsare presented.

Duetoabroadspectrumofapplicationareas,thiscourseisintendedtobeofinterest andusedtoavariedaudience,including:

• Graduatestudentsandresearchersinacademiaandgovernmentlaboratorieswho areinterestedinacquiringfundamentalskillsthatwillenablethemtoadvancethe state-of-the-artinthefield;

• Practitionersincivil,aerospace,andautomotiveindustrieswhoareengagedinanalysis,design,andoptimizationofcompositestructures;

• Commercialsoftwarevendorswhoareinterestedinextendingtheirproductportfoliosandtappingintonewmarkets.

DingheLi Tianjin

CHAPTER1

Compositeanalysisoverview

1.1.Introduction

1.1.1Historyofcomposites

Thehistoryofcompositematerialscanbetracedbacktoancienttimes.Straworwheat strawreinforcedclayandreinforcedconcrete,whichhavebeenusedformanyyears, arecomposedoftwodifferentmaterials.Theycanberegardedasthetypicalcomposite materials.However,themoderncompositematerialshavebeendevelopedforabout80 years.In1940s,inordertoimprovethedesignofmilitaryvehicles,suchasairplanes, helicopters,androckets,thehighstrengthandlightweightmaterialswereatapremium comparedwiththetraditionalmetal.Sincethepolymerindustrieswerequicklydeveloping,thelightweightpolymersprovidedapossiblesolutionforthischallenge.Onthe otherhand,theextremelyhightheoreticalstrengthofglassfiberswasdiscovered,but howtouseithasbecometheobstacleforthestructuralengineeringproblems.Based onabovetwodrivingforces,themoderncompositematerialsmadeupbytwoormore differentphases,wereinventedandbeingextensivelyadoptedinvariousstructuralengineeringfields,includingaerospace,automotive,andcivilengineeringjustnameafew. Ingeneral,thedevelopingprocessofmoderncompositematerialscanbedividedinto fourgenerationsorstagesfor80years.

Thefirstgenerationistheglassfiberreinforcedmaterials.Inthe1940s,theglass fiberswereimmersedintolightweightandlowerstrengthpolymers,andastrongernew materialwasobtained.Thepolymerisregardedasamatrixandprotectsthefibersfrom scratchesthatmightresultintofractureunderlowstresslevel.Thefibersareregarded asreinforcementandimprovethestrengthoffragilepolymersbyshoulderingmostof thestresstransferredfromthepolymerthroughthefiber/matrixinterface.Thefibers cansignificantlystopthepropagationofmicrocracksinthematrixduetothebridge effect.Thefirstglassfiberlaminatedstructurewasproducedin1942.Theearliestapplicationsofglassfiberreinforcedplates(GFRP)wereinthemarineindustrytoreplace thetraditionalwoodormetalcomponents.ThelightweightandstrongGFRPwasnot subjectedtorottingorrustingoftheirmetalcounterparts,andeasytomaintain.Until now,theGFRPcontinuestobeamajorcomponentofboatsandships;furthermore,it comprisesabout90% ofthecomposites’market.

Thesecondgenerationisthehighperformancecompositematerials.TheGFRP technologieswasrapidlyappliedintomanyengineeringfieldsduringthe1950s,butthe newdemandsfrommilitaryspaceprogramspromptedageneralnotionofcomposite materials.SpacecraftrequiresevenlighterandstrongercomponentsthanGFRP.The AnalysisofCompositeLaminates https://doi.org/10.1016/B978-0-32-390804-7.00009-1

heatgeneratedduringthereentryofaspacecraftcouldexceed1500◦ C,whichisbeyond thetemperaturelimitsofanymonolithicorcompositematerial,especiallylow-melting pointpolymers.In1956,anasbestosfiberwasaddedintoaphenolicresinasapossible reentrynoseconematerial,andthecompositesofmetalmatrixwasalsoregardedasa solution.Inthesecompositematerials,theinorganic,ceramicfiber,orparticulatephase wereemployedtoimprovetheheatresistanceoflightweightmetalsandtolowertheir thermalexpansioncoefficient.Thespaceraceprovidedanimpetusforthedevelopment ofcarbonandboronfibersaswell.Theyweredevelopedaroundthesametime,but thecarbontooktheleadinthe1960sduetoitssuperiorprocessingcapabilitiesand lowercost.Thegraphitefiberswereofuseonlyinpolymermatricesatthistime. Becauseofthereactivityofcarbonwithaluminumandmagnesium,theuseofgraphite fibersasreinforcementformetalmatriceswasnotpossible.Thestrengthofboronfibers exceededthatofcarbonfibers,anditismoresuitabletomilitaryapplicationswherethe costwasnoconcern,andmadenoextensionintootherindustries.Thecompoundof aramidfiberswasdevelopedin1964.Aramidsbelongtothenylonfamilyofpolymers; thekeystructuralfeatureisaromaticringslinkedbyamidegroups.

Thethirdstageissearchingfornewapplicationfieldsandsynergyofproperties, whereasthespacecraftandaircraftdemandspromptednewhighmodulusfibersinthe 1960s.Thecompositesmadewiththeaforementionedexpensivefibershadtofindcivil applicationsinthe1970swhenthespaceandmilitarydemandsdeclined.Thesportsand automobileindustriesbecamemoreimportantmarkets.Atthesametime,theanalysis anddesignmethodsbasedonthecomputationalcompositemechanicsdrovefurther applications,suchasthecivilianandmilitaryaircraft.Thecarbonfiberswereusedextensivelyinsportingproductsbeginninginthe1970s,withgraphitetennisracketsand golfclubsreplacingthewoodenandsteelmaterials.Duringthesameperiod,thecompositesofaceramicmatrixwasdevelopedandapplied.Itmustbereinforcedbyhigh temperaturefibers,suchasSiC,becauselow-meltingfiberswouldbedestroyedatthe highprocessingtemperaturesrequiredforceramicsintering.Ontheotherhand,the brittleceramicsneedareinforcingphasetoimprovethetoughness.

Thefourthgenerationisthehybridmaterials,nanocomposites,andbiocomposites (green-composites).Inthe1990s,bothacademicandindustrialresearchersstartedto extendthecompositeparadigmintosmallerandsmallerscales.Fromthemacroscopic scaletothemolecularscale,itresultsintohybridmaterials.Theyareanintentional andcomplimentingcombinationoftwoormorematerialswithnewproperties.Accordingtotheircriterion,thedifferencebetweenhybridmaterialsandcompositesis theirfunctionsand/orproperties.Towardthenanoscale,itresultsintonanocomposites. Nanocompositesaresolidmaterialsthathavemultiplephasedomainsandatleastoneof thesedomainshasananoscalestructure.Abiocompositeisamaterialcomposedoftwo ormoredistinctconstituentmaterials(onebeingnaturallyderived),whicharecombinedtoyieldanewmaterialwithimprovedperformanceoverindividualconstituent

materials,namely,thenaturalfiber-reinforcedbiopolymers.Thesecompositematerials havebeendevelopedasanalternativetoconventionalmaterialsthatmaybenonrenewable,recalcitrant,ormanufacturedbypollutionemittingprocesses.Becausethese compositematerialsarenotstudiedinthisbook,moredetailedinformationwillnot presented.

1.1.2Applicationsofcompositesinaircrafts

Theapplicationsofcompositesincivilianandmilitaryaircraftfollowedthetypical stagesofeverynewtechnology.Inthebeginning,thelimitedapplicationonsecondary structureminimizedriskandimprovedunderstandingbyscientificresearchandservice experience.Thislimitedusagewasfollowedbywiderapplicationsfirstinsmalland militaryaircrafts.Morerecently,withtheincreasedrequirementonefficiencyandlow operationcosts,thecompositematerialswerebeingappliedwidelyinlargercivilian aircraft.

Intheaircraftindustry,thehelicopterdesignengineerswereamongthefirsttorecognizethepotentialofcompositematerialsandusethemonprimarystructures.From theseatsandenginebaydoortothefuselageandtailplane,anintegralpartofhelicopters wasmadefromthecompositematerials.However,therotorbladehasperhapsbenefited mostsignificantlyfromtheuseofcompositematerials.Themostcriticalproblemsof traditionalwood,steel,oraluminumbladecanbehugelyreducedbythecompositematerials,togetherwithmanyotherdesigndrawbacks.Inaddition,thestrength-to-density ratioofcompositesmaterialsisfourtosixtimesgreaterthanthoseofsteeloraluminum, leadingtocompositebladesthatareupto45% lighterthanmetalones.

Inthe1970s,withthecompositesapplicationsonsailplanesandhelicoptersincreasing,thefirstall-compositeplanesappeared,buttheseweresmallrecreationalor aerobaticplanes,andjustcocuredandbondedconstructionswithverylimitednumbersoffasteners.Inthe1970sandearly1980s,thefirstall-compositeairplaneoflarger sizebeganwiththeLearFan2100andsoughtFAAcertification(FAR,Part23).The guidelinesoftheAdvisoryCircularoncompositestructurewereobservedthroughout thisprogram,andAdvisoryCircular20–107wasusedasaguideforthecertification procedures.

Withfuelpricesrising,thecompositematerialsbecameaveryattractivealternativeforthelargecivilaircraftstoreducedweightcomparedwiththetraditionalmetal structure.Applicationsinthelargeciviliantransportcategorystartedintheearly1980s withthesandwichhorizontalstabilizerofB737.Meanwhile,thehorizontalandvertical stabilizersoftheA320weremadeofcompositematerialsaswell.Thenextsignificant applicationofcompositematerialsonaprimaryaircraftstructurewastheB777in1990s, theempennage,controlsurfaces,andmainfloorbeamsweremadefromcompositematerials.However,thecostofcompositestructureswasnotattractiveenoughtoleadto anevenwildlyapplicationatthattime.

Withdecadesofdevelopment,thecompositematerialshavebeencalledtheshape ofaerospace’sfuture.Inthecivilaviationindustry,A380,A350,andB787representthe applicationofcompositematerials.TheA380isthefirstaircraftthathasacentralwing boxwithcarbonfiberreinforcedplates(CFRP),representingaweightsavinguptoone andahalftonnescomparedtothemostadvancedaluminumalloys.Themainchallenge isthewingrootjoint,wherecompositecomponentscouldbeupto45mmthick. Forthisspecificapplication,AirbusreapsalargebenefitfromtheA340-600CFRP keelbeams(16meterslongand23mmthick),eachofwhichcarriesaforceof450 tonnes.AmonolithicCFRPdesignhasalsobeenadoptedforthefinboxandrudder, aswellasthehorizontalstabilizerandelevators.ThesizeoftheCFRPhorizontal tailplaneisclosetothesizeofwingsoftheA320,sothemainchallengebecomes thesizeofthecomponents.Asforthecenterwingbox,thesizeofthecomponents justifiestheintensiveuseofautomatedtape-layingtechnology.Furthermore,theupper deckfloorbeamsandtherearpressurebulkheadismadeoftheCFRP.Theadvanced glass/aluminumcompositeswasusedontheupperportionoffuselage,anditiscalled theglarelaminate.Theglarelaminateisafibermetallaminatecomposedofseveralvery thinaluminumlayersinterspersedwithglassfiberprepreglayers,andtheyarebonded togetherwithamatrixsuchasepoxy.Thisnewaerostructurematerialiswidelyused infatiguedpartsduetoitsoutstandingfeaturesinanticrackingandtension.

BoeingwasthefirsttocommittoacompositefuselageandwingfortheB787.Such extendedapplicationsofcompositematerials(about50% ofthestructure)wouldgive theefficiencyimprovementneededbytheairlineoperators,suchasabout20% more fuelefficientand20% feweremissions.TheB787isthefirstmajorcommercialairplane tohaveacompositefuselage,wings,andmostotherairframecomponents.EachB787 containsapproximately35metrictonsofCFRP,madewith23metrictonsofcarbon fiber.Thefuselageisconstructedintubularsegments,whicharethenjoinedtogether duringthefinalassembly.TheapplicationsofcompositesintheB787saves50,000rivets perplane;andeachrivetsitewouldhaverequiredmaintenancecheckingasapotential failurelocation.Otheradvantagesofusingcompositematerialsisthatatypicalbonded repaironthestandardaluminumairframesometimesrequiresmorethan24hoursof downtime,butBoeinghascreatedanewwayofrepairingcompositematerialsinless thananhour.Thisleadstoquickerturnaroundsandofferstheopportunityforaquick in-and-outforminordamagethatmightmakeanaluminumairplaneunabletofly.

TheA350isthefirstAirbusairplanewithbothfuselageandwingstructuresmade primarilyoftheCFRP.TheA350alsohasaslightlyhigherproportionofcomposites (about52% ofthestructure)initsconstructionthanthatoftheB787.Mostpartsofthe aircraftareamixtureofcompositeandalloy.Inthewings,themainmetalcomponents areintersparribs(thesparsbeingthesupportingstructuresandrunningalongthewing fromtiptoroot;theribsrunningacrossthewidthofthestructure).Inthefuselage,the outerskinpanelsareconstructedbyCFRP,andtheframeincludesaluminumstripsto ensurethatlightningstrikescanbedissipated.

1.2.Compositelaminates

1.2.1Definitionandconstituents

Acompositematerialisamaterialmadefromtwoormoreconstituentmaterialsata macroscopicscale,andtheseconstituentmaterialshavesignificantlydifferentphysicalor chemicalproperties.Thiscombinationproducesanewmaterialwithmoreusefulcharacteristicsthantheindividualcomponents.Theindividualcomponentsremainseparate anddistinctwithinthefinishedstructure.Intypicalcomposites,thematrixsurrounds thefibers,andtheyaremustbeproperlybondedtogetherasasinglematerialsystem [1].Thereforethefiber,matrix,andinterfacearethecontrolledfactors.

Accordingtotheformoffiber,thecompositematerialscanbedividedintotwo categories:continuousanddiscontinuousfibercomposites.Thelongcontinuousfibers areconsideredtobehighperformancesincetheirmechanicalpropertiesaremaximized, thisformisthemostcommontypeforaircraftstructures.Thediscontinuousfibershave reducedpropertiesbecausetheloadpathofthefiberisdisrupted.Theyarenotusually suitableforprimaryaircraftstructures,thoughthereareexceptions,theymayalsobe consideredforsomesecondarystructures.Thecompositematerialsalsocanbeclassified bythetypeofmatrixaspolymermatrixcomposites(PMC),ceramicmatrixcomposites (CMC),metalmatrixcomposites(MMC),andcarbon-carboncomposites(CCC).

Ingeneral,thematerialinfiberformhassuperiorpropertiescomparedtothebulk form.Theamountandseverityofdetrimentalimperfectionsdecreaseasthediameteroffiberisreduced,andfibercanberapidlycooled;sotherearefewerdefectsin fiberform.Thefiberscanbestretchedalongtheiraxisduringprocessingtoincrease itsstrengthaswell.Forexample,thesuddenfractureofglasssheetscanresultfroma smallflaworlowenergyimpact,buttheglassfibercompositesarelesssusceptibleto theimpactdamage;thisistrueforcarbonfibersandcarbonfibercomposites.Therefore thecompositionoffibersandmatrixissuperiortoabulkmaterial.Inthecomposites,thematrixcantransfertheloadtotheadjacentfibersifanindividualfiberfails. Amatrixcanalsoresistthedamageintroducedbyimpactsandotherthreatsduetothe reinforcementoffibers,sothecompositeisnotexcessivelybrittle.Ingeneral,thefiber isthemajorloadcarryingcomponent,andcanbemadefrommaterialssuchascarbon, graphite,glass,boron,aramid,orquartz.Eachofthesefibershasitsownadvantagesand disadvantages.Stiffness,staticstrength,impactstrength,fatigueperformance,electrical conductivity,electricalpermeability,andthermalpropertiesareamongtheproperties thatareconsideredforselectingafiber.

Comparedwiththefiber,thematrixissofterandoflowerstrength,andholdthe fiberstogetheranddistributetheloads;whilethefunctionoffibrousreinforcementisto carrytheexternalloads.Thematrixallowsthecompositestobearcompressionloading andprotectsthefibersfromphysicalandenvironmentalthreats.Exceptfortheaforementionedloadingtransfer,thematrixalsoprovidesanenergy-absorbingmechanism; thiscanimproveimpactdamageresistanceandalsosoftenthestressconcentrations.

Thefiber/matrixinterfaceisknownastheinterphase.Thepropertiesofmatrixand thebondoffiber/matrixinterfacedominatethemechanicalpropertiesofcomposite materials.Thematrixandmatrix/fiberinteractionalsohaveasignificanteffectonthe crackpropagationofthecompositematerials.Ifthematrixshearstrengthandmodulus andthefiber/matrixbondstrengtharetoohigh,acrackmaypropagatethroughthe fiberandmatrixwithoutturning,sothecompositematerialswillbehaveasabrittle materialandshowcleanfracturesurfaces.Ifthebondstrengthistoolow,thematrix willactasafiberbundleandthecompositematerialswillbeweak.Fortheintermediate bondstrength,thecrackspropagatinginresinorfiberwouldturnatthematrix/fiber interfaceandextendalongthefiber.Thecompositematerialsthatfailedinthismode willshowconsiderablefiberpull-outandthefracturesurfacewillbeveryrough.This resultsinconsiderableenergyabsorption.

Iftheintactfibersareavailablebehindthecracktipsandconnectatthecrackfaces, thecrackbridgingmechanismisoperative.Hence,theloadwouldbesharedbythe bridgingfibersandcracktips,andthestressintensityfactor(SIF)onthecracktipwould bereducedsignificantly.AhigheramountofbridgingfibersleadstothelowerSIFon thecracktip,andtheresistancetocrackgrowthincreaseswithcracklengthincreasing. Theextensionofatransversecrackbridgedbytheintactfibersleadstothedebonding andfiberspull-out.Thiswillincreasethefracturetoughnessofcompositematerials. Thestrengthandfracturetoughnessoffiberreinforcedcompositesisdeterminedbythe interplaybetweenthedamageprocessesindifferentelementsofcompositematerials. Thereforethefiberbridgingeffectoftransversecrackanddelaminationisaveryimportantandchallengingproblemtounderstandthedamagemechanismofcomposite materials,andmanyanalyticmethodshavebeenestablished[2,3].

1.2.2Plies

Aply,whichconsistsoffibersandmatrixandalsoknownasalaminaorlayer,isshown inFig. 1.1.Thecontinuousfibersinthepliescanbeorientedinasingledirection, ormultipledirectionsforthewovencomposites.Intheaircraftstructures,theplies canbeinaprepregformordryfabricform.Theprepregisacommonform.Itis preimpregnatedbythefibersandaresininasemicuredstate,wherethefibersandresin arecombinedbutarestillflexibleenoughtobelaidintooling.Thelaminateisfully curedprepreglayers,andthenthecuredresinisreferredtoasthematrixmentioned inprevioussection.Theprepregformsalsoinclude:tape,slittape,fabric,sheet,and tow/roving.Theprepregsarecommonusedforlargeaircraftstructuresandcanconsist ofdryfabriclayersthatareimpregnatedwithanuncuredandlowviscosityresin.This isknownasawetlayup,asitmaybeconsideredforrepairsbutarenotcommonlyused fortheoriginalstructuresinlargeaircraft.

Foraunidirectionalindividualply,thefibersareallalignedinasingledirection.In tapeform,itmayalsobecalledaunitapeoratapeply.Fabricsmaybeinprepregordry

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.