Aggregation-induced emission (aie): a practical guide jianwei xu - The full ebook with all chapters

Page 1


https://ebookmass.com/product/aggregation-induced-emissionaie-a-practical-guide-jianwei-xu/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Continuous Emission Monitoring 3rd Edition James A. Jahnke

https://ebookmass.com/product/continuous-emission-monitoring-3rdedition-james-a-jahnke-2/

ebookmass.com

Continuous Emission Monitoring 3rd Edition James A. Jahnke

https://ebookmass.com/product/continuous-emission-monitoring-3rdedition-james-a-jahnke/

ebookmass.com

Chronic Total Occlusions-A Guide to Recanalization, 3e (Nov 29, 2023)_(1119517273)_(Wiley-Blackwell) Ron Waksman

https://ebookmass.com/product/chronic-total-occlusions-a-guide-torecanalization-3e-nov-29-2023_1119517273_wiley-blackwell-ron-waksman/ ebookmass.com

Fanny Hill John Cleland

https://ebookmass.com/product/fanny-hill-john-cleland-3/

ebookmass.com

A Dragon's Wolf (The Hidden Realm Book 1) Heather Renee & Mystics & Mayhem

https://ebookmass.com/product/a-dragons-wolf-the-hidden-realmbook-1-heather-renee-mystics-mayhem/

ebookmass.com

The Decency Code: The Leader's Path to Building Integrity and Trust Steve Harrison

https://ebookmass.com/product/the-decency-code-the-leaders-path-tobuilding-integrity-and-trust-steve-harrison/

ebookmass.com

Core-Shell Nanostructures for Drug Delivery and Theranostics : Challenges, Strategies and Prospects for Novel Carrier Systems Focarete

https://ebookmass.com/product/core-shell-nanostructures-for-drugdelivery-and-theranostics-challenges-strategies-and-prospects-fornovel-carrier-systems-focarete/ ebookmass.com

Wong’s Nursing Care of Infants and Children – E-Book 11th Edition – Ebook PDF Version

https://ebookmass.com/product/wongs-nursing-care-of-infants-andchildren-e-book-11th-edition-ebook-pdf-version/

ebookmass.com

The Phenomenology of Spirit: Translation with Introduction and Commentary G. W. Hegel

https://ebookmass.com/product/the-phenomenology-of-spirit-translationwith-introduction-and-commentary-g-w-hegel/

ebookmass.com

The Skilled Helper: A Problem-Management and OpportunityDevelopment Approach to Helping (11th Edition) Gerard Egan

https://ebookmass.com/product/the-skilled-helper-a-problem-managementand-opportunity-development-approach-to-helping-11th-edition-gerardegan/

ebookmass.com

AGGREGATION-INDUCEDEMISSION(AIE)

AGGREGATIONINDUCEDEMISSION (AIE) APracticalGuide

InstituteofMaterialsResearchandEngineering,AgencyforScience, TechnologyandResearch(A*STAR),Singapore

MING HUI CHUA

InstituteofMaterialsResearchandEngineering,AgencyforScience, TechnologyandResearch(A*STAR),Singapore

BEN ZHONG TANG

SchoolofScienceandEngineering,ShenzhenKeyLaboratoryofFunctionalAggregateMaterials, TheChineseUniversityofHongKong,Shenzhen,Guangdong,China

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands

TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright©2022ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicor mechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem,without permissioninwritingfromthepublisher.Detailsonhowtoseekpermission,furtherinformationaboutthe Publisher’spermissionspoliciesandourarrangementswithorganizationssuchastheCopyrightClearance CenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions.

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher (otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenour understanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecome necessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusing anyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethods theyshouldbemindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhomtheyhavea professionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliability foranyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceorotherwise,or fromanyuseoroperationofanymethods,products,instructions,orideascontainedinthematerialherein.

ISBN:978-0-12-824335-0

ForinformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: MatthewDeans

AcquisitionsEditor: KaylaDosSantos

EditorialProjectManager: IsabellaC.Silva

ProductionProjectManager: AnithaSivaraj

CoverDesigner: MarkRogers

TypesetbySTRAIVE,India

Contributors

MassimoCametti DepartmentofChemistry, MaterialsandChemicalEngineering“Giulio Natta”,PolitecnicodiMilano,Milano,Italy

SijieChen MingWaiLauCentreforReparative Medicine,KarolinskaInstitutet,HongKong, China

XiaojieChen PCFMLab,GDHPPCLab, GuangdongEngineeringTechnologyResearch CenterforHigh-performanceOrganicand PolymerPhotoelectricFunctionalFilms,State KeyLaboratoryofOEMT,SchoolofChemistry, SunYat-senUniversity,Guangzhou,China

ZhenguoChi PCFMLab,GDHPPCLab, GuangdongEngineeringTechnologyResearch CenterforHigh-performanceOrganicand PolymerPhotoelectricFunctionalFilms,State KeyLaboratoryofOEMT,SchoolofChemistry; SchoolofMaterialsScienceandEngineering, SunYat-senUniversity,Guangzhou,China

MingHuiChua InstituteofMaterialsResearch andEngineering,A*STAR(AgencyforScience, TechnologyandResearch),Singapore, Singapore

YoshikiChujo DepartmentofPolymer Chemistry,GraduateSchoolofEngineering, KyotoUniversity,Kyoto,Japan

DanDing StateKeyLaboratoryofMedicinal ChemicalBiology,KeyLaboratoryofBioactive Materials,MinistryofEducation,andCollege ofLifeSciences,NankaiUniversity,Tianjin, China

YongQiangDong BeijingKeyLaboratoryof EnergyConversionandStorageMaterials, CollegeofChemistry,BeijingNormal University,Beijing,China

ZoranDz ˇ olic RuđerBos ˇ kovicInstitute,Zagreb, Croatia

ZhiyuanGao StateKeyLaboratoryofMedicinal ChemicalBiology,KeyLaboratoryofBioactive Materials,MinistryofEducation,andCollege ofLifeSciences,NankaiUniversity,Tianjin, China

XiangyuGe PCFMLab,GDHPPCLab, GuangdongEngineeringTechnologyResearch CenterforHigh-performanceOrganicand PolymerPhotoelectricFunctionalFilms,State KeyLaboratoryofOEMT,SchoolofChemistry, SunYat-senUniversity,Guangzhou,China

MasayukiGon DepartmentofPolymer Chemistry,GraduateSchoolofEngineering, KyotoUniversity,Kyoto,Japan

PengboHan StateKeyLaboratoryof LuminescentMaterialsandDevices, GuangdongProvincialKeyLaboratoryof LuminescencefromMolecularAggregates,AIE Institute,CenterforAggregation-Induced Emission,SouthChinaUniversityof Technology(SCUT),Guangzhou,China

KyoheiHisano DepartmentofApplied Chemistry,RitsumeikanUniversity,Kusatsu, Japan

YuningHong DepartmentofChemistryand Physics,LaTrobeInstituteforMolecular Science,LaTrobeUniversity,Melbourne,VIC, Australia

RongrongHu StateKeyLaboratoryof LuminescentMaterialsandDevices, GuangdongProvincialKeyLaboratoryof LuminescencefromMolecularAggregates,AIE Institute,CenterforAggregation-Induced Emission,SouthChinaUniversityof Technology(SCUT),Guangzhou,China

YangHu StateKeyLaboratoryofLuminescent MaterialsandDevices,GuangdongProvincial

KeyLaboratoryofLuminescencefrom MolecularAggregates,AIEInstitute,Centerfor Aggregation-InducedEmission,SouthChina UniversityofTechnology(SCUT),Guangzhou, China

ShunichiroIto DepartmentofPolymer Chemistry,GraduateSchoolofEngineering, KyotoUniversity,Kyoto,Japan

ChuenKam MingWaiLauCentrefor ReparativeMedicine,KarolinskaInstitutet, HongKong,China

BingShiLi KeyLaboratoryofNewLithium-Ion BatteryandMesoporousMaterial,Collegeof ChemistryandEnvironmentalEngineering, ShenzhenUniversity,Shenzhen,China

HongkunLi LaboratoryofAdvanced OptoelectronicMaterials,CollegeofChemistry, ChemicalEngineeringandMaterialsScience, SoochowUniversity,Suzhou,China

MengLi CenterforAIEResearch,Shenzhen University,Shenzhen;ShenzhenInstituteof AggregateScienceandTechnology,Schoolof ScienceandEngineering,TheChinese UniversityofHongKong, Shenzhen,Guangdong,China

XiangyuLi InstituteofFineChemicals,East ChinaUniversityofScienceandTechnology, Shanghai,China

Guey-ShengLiou InstituteofPolymerScience andEngineering,NationalTaiwanUniversity, Taipei,Taiwan

YantingLyu InstituteofFineChemicals,East ChinaUniversityofScienceandTechnology, Shanghai,China

JuMei KeyLaboratoryforAdvancedMaterials, FeringaNobelPrizeScientistJointResearch Center,FrontiersScienceCenterfor MateriobiologyandDynamicChemistry,Joint InternationalResearchLaboratoryforPrecision ChemistryandMolecularEngineering, InstituteofFineChemicals,Schoolof Chemistry&MolecularEngineering,East ChinaUniversityofScience&Technology, Shanghai,P.R.China

QiOu MOEKeyLaboratoryofOrganic OptoElectronicsandMolecularEngineering,

DepartmentofChemistry,Tsinghua University,Beijing,China

SupattraPanthai DepartmentofApplied Chemistry,RitsumeikanUniversity,Kusatsu, Japan

SurajKumarPathak CollegeofMaterials ScienceandEngineering,ShenzhenUniversity, Shenzhen,China

QianPeng SchoolofChemicalSciences, UniversityofChineseAcademyofSciences, Beijing,China

AndreaPucci DepartmentofChemistryand IndustrialChemistryoftheUniversityofPisa, Pisa,Italy

AnjunQin StateKeyLaboratoryof LuminescentMaterialsandDevices, GuangdongProvincialKeyLaboratoryof LuminescencefromMolecularAggregates,AIE Institute,CenterforAggregation-Induced Emission,SouthChinaUniversityof Technology(SCUT),Guangzhou,China

SoheilaSabouri DepartmentofChemistryand Physics,LaTrobeInstituteforMolecular Science,LaTrobeUniversity,Melbourne,VIC, Australia

MasakiShimizu FacultyofMolecular ChemistryandEngineering,KyotoInstituteof Technology,Kyoto,Japan

ZhigangShuai MOEKeyLaboratoryofOrganic OptoElectronicsandMolecularEngineering, DepartmentofChemistry,Tsinghua University,Beijing,China

YueSi BeijingKeyLaboratoryofEnergy ConversionandStorageMaterials,Collegeof Chemistry,BeijingNormalUniversity,Beijing, China

KazuoTanaka DepartmentofPolymer Chemistry,GraduateSchoolofEngineering, KyotoUniversity,Kyoto,Japan

BenZhongTang SchoolofScienceand Engineering,ShenzhenKeyLaboratoryof FunctionalAggregateMaterials,TheChinese UniversityofHongKong, Shenzhen,Guangdong,China

HeTian KeyLaboratoryforAdvanced Materials,FeringaNobelPrizeScientistJoint

ResearchCenter,FrontiersScienceCenterfor MateriobiologyandDynamicChemistry,Joint InternationalResearchLaboratoryforPrecision ChemistryandMolecularEngineering, InstituteofFineChemicals,Schoolof Chemistry&MolecularEngineering,East ChinaUniversityofScience&Technology, Shanghai,P.R.China

OsamuTsutsumi DepartmentofApplied Chemistry,RitsumeikanUniversity,Kusatsu, Japan

DongWang CenterforAIEResearch,Shenzhen University,Shenzhen,China

FeiWang MingWaiLauCentreforReparative Medicine,KarolinskaInstitutet,HongKong, China

JiaWang StateKeyLaboratoryofLuminescent MaterialsandDevices,GuangdongProvincial KeyLaboratoryofLuminescencefrom MolecularAggregates,AIEInstitute,Centerfor Aggregation-InducedEmission,SouthChina UniversityofTechnology(SCUT),Guangzhou, China

QiWang InstituteofFineChemicals,EastChina UniversityofScienceandTechnology, Shanghai,China

AlexY.H.Wong MingWaiLauCentrefor ReparativeMedicine,KarolinskaInstitutet, HongKong,China

JianweiXu InstituteofMaterialsResearchand Engineering,A*STAR(AgencyforScience, TechnologyandResearch),Singapore, Singapore

ChuluoYang CollegeofMaterialsScienceand Engineering,ShenzhenUniversity,Shenzhen, China

ZhanYang PCFMLab,GDHPPCLab, GuangdongEngineeringTechnologyResearch CenterforHigh-performanceOrganicand PolymerPhotoelectricFunctionalFilms,State KeyLaboratoryofOEMT,SchoolofChemistry, SunYat-senUniversity,Guangzhou,China

ZhiyongYang PCFMLab,GDHPPCLab, GuangdongEngineeringTechnologyResearch

CenterforHigh-performanceOrganicand PolymerPhotoelectricFunctionalFilms,State KeyLaboratoryofOEMT,SchoolofChemistry, SunYat-senUniversity,Guangzhou,China

BichengYao DepartmentofChemistryand Physics,LaTrobeInstituteforMolecular Science,LaTrobeUniversity,Melbourne,VIC, Australia

Hung-JuYen InstituteofChemistry,Academia Sinica,Taipei,Taiwan

LihuiZhang StateKeyLaboratoryof LuminescentMaterialsandDevices, GuangdongProvincialKeyLaboratoryof LuminescencefromMolecularAggregates,AIE Institute,CenterforAggregation-Induced Emission,SouthChinaUniversityof Technology(SCUT),Guangzhou,China

YiZhang PCFMLab,GDHPPCLab, GuangdongEngineeringTechnologyResearch CenterforHigh-performanceOrganicand PolymerPhotoelectricFunctionalFilms,State KeyLaboratoryofOEMT,SchoolofChemistry, SunYat-senUniversity,Guangzhou,China

YouhengZhang InstituteofFineChemicals, EastChinaUniversityofScienceand Technology,Shanghai,China

YucongZhang BeijingKeyLaboratoryof EnergyConversionandStorageMaterials, CollegeofChemistry,BeijingNormal University,Beijing,China

JuanZhao SchoolofMaterialsScienceand Engineering,SunYat-senUniversity, Guangzhou,China

HuiZhou InstituteofMaterialsResearchand Engineering,A*STAR(AgencyforScience, TechnologyandResearch),Singapore, Singapore

QiangZhu InstituteofMaterialsResearchand Engineering,A*STAR(AgencyforScience, TechnologyandResearch),Singapore, Singapore

Wei-HongZhu InstituteofFineChemicals,East ChinaUniversityofScienceandTechnology, Shanghai,China

Preface

Thediscoveryofaggregation-induced emission(AIE)in2001hasservedasagame changerinthedevelopmentandapplication ofluminogenicfunctionalmaterials.Fundamentalunderstandingofphotophysicalprocessesandpropertiesinorganicluminogens hasbeenreshaped,creatingvastopportunitiesforawiderangeofapplicationsofAIE luminogens(AIEgens).AIEhaseffectively overcomethelimitationsofaggregationcausedquenching(ACQ)commonlyfound intraditionalluminogens.Thisnotonlycontributestoimprovementinmaterialperformanceforexistingapplicationsbutalso leadstotheemergenceofnewapplications. Therefore,researchinterestsandeffortsin theareaofAIEhavesoaredoverthepast twodecades,withanexponentialgrowth ofscientificpublicationsandcitations,servingasatestamenttotheusefulnessof AIEgens.Thisbook,therefore,aimstoprovideaholisticcoverageofbothfundamental principlesandapplicationsofAIEgens,coveringthekeyscientificprogressesintheAIE topicatanintroductory-to-intermediate level,suitableforawiderangeofscientific andacademicaudiences,bothwithinand outsidetheAIEresearchfraternity.

Thisbookbeginswiththeintroduction offundamentalconcepts,principles,and mechanismsofAIEin Chapter1.Todate,a largenumberofnovelAIEgenshavebeen designedandsynthesized,andthereforethe firstpartofthebookseekstodisplaythestructuraldiversitiesofAIEgens. Chapter2 highlightsnovelAIEgenswithboroncomplexes while Chapter3 summarizesnumerousAIEactivepolymersdevelopedthusfarforvarious

applications.Thereafter,chiralAIEgenswith circularlypolarizedluminescenceandhelical self-assemblypropertiesaredescribedin Chapter4,followedbyAIEsupramolecular gelsystemsin Chapter5

Thesecondpartofthebookseekstoshowcasetheapplicationdiversityandusefulnessof AIEgens.AIEgenscanbebroadlycategorized intofourkeydomainsintermsoftheirmainapplications:(i)stimuli-responsiveAIEsystems, (ii)optoelectronics,(iii)biomedicalsensing, and(iv)chemicalsensing.Thesubsequent chaptersarethereforearrangedinaccordance withtheirapplicationsintherespective domains.Forstimuli-responsiveAIEsystems, Chapter6 discussesmechanochromicAIEgens, whereas Chapter7 reviewsAIEgenswithphotochromicandthermochromicproperties.

AIEgensareexcellentcandidatesforoptoelectronicapplications,notablyorganic light-emittingdiodes(OLEDs)andliquid crystal(LC)opticaldisplays,duetotheir amplificationofluminescenceintensitiesin thesolidstates. Chapters8and9 introduce pureorganicAIEgensthatexhibit(aggregationandcrystallization-induced)phosphorescenceandthermallyactivateddelayed fluorescence(TADF)properties,respectively,bothofwhichexhibitimportant solid-stateluminescencepropertiesparticularlyforthedevelopmentofOLEDs.This leadsusto Chapter10,inwhichtheapplicationofAIEgensinOLEDsissummarized. TheuseofAIEgensinothernotableoptoelectronicapplicationssuchasLCopticaldisplays,electrofluorochromicdevices,and photovoltaicsisdiscussedseparatelyin Chapters11–13.

Next,thebookconcentratesonAIEgens forbiomedicalapplications,includingbiosensingandbioimaging,diagnostics,therapy,anddrugdelivery.AIEgensmaybe directlyusedasmolecularfluorescent probes(mainlyforbiosensingandimaging) orbefurtherpreparedasfluorescent nanoparticles(FNPs)andbioconjugatesto enhanceluminescenceintensity,sensitivity, andbiocompatibility.TheuseofAIE-active molecularprobes,FNPs,andbioconjugates foraspectrumofdifferentbiomedicalapplicationsiscollectivelydiscussedin Chapters 14–16,respectively.

Inadditiontobiosensing,chemicalsensingencompassesenvironmentalmonitoring ofharmfulsubstancestosafeguardpublic healthandthedetectionoftracechemicals forproductqualityassurance. Chapter17 thereforesummarizesAIE-basedfluorescent chemosensorsforexplosivedetectionwhile thedevelopmentofanAIE-basedvapor

sensortodetectanalytesinthevaporstate isdiscussedin Chapter18.Thereafter, Chapter19 highlightstheuseofAIEgensin sensingfoodstuffhazardsaswellasafluorescentthermometer.Finally, Chapter20 summarizestheluminescencemechanism ofAIEgensutilizingcomputationalsimulationandmodelingmethods,whichprovide anotherwaytohavein-depthandintrinsic understandingofthenatureofAIE.

Throughthisbook,itisenvisagedthat readerswillgainknowledgeandunderstandingaboutnotonlythefundamental principlesofAIEbutmoreimportantly howAIEluminogenscanbeincorporated invariousmolecularandpolymericmaterialstospecificallycatertotargetedneeds andapplications.

Finally,theeditorswishtoexpresstheir immenseappreciationtoallauthorsfor theirdedicatedeffortsincontributing high-qualityworktothisbook.

FundamentalprinciplesofAIE

PengboHana,JiaWanga,AnjunQina,andBenZhongTangb

aStateKeyLaboratoryofLuminescentMaterialsandDevices,GuangdongProvincialKey LaboratoryofLuminescencefromMolecularAggregates,AIEInstitute,CenterforAggregationInducedEmission,SouthChinaUniversityofTechnology(SCUT),Guangzhou,China bSchoolof ScienceandEngineering,ShenzhenKeyLaboratoryofFunctionalAggregateMaterials, TheChineseUniversityofHongKong,Shenzhen,Guangdong,China

1Introduction

Luminescentmaterialswithaggregation-inducedemission(AIE)featureshaveattracted tremendousattentionfortheirpotentialpracticalapplications.TheconceptofAIEwascoined in2001byTangetal.whentheyobservedauniquephenomenoninasilolederivative,which isnonemissiveindilutesolutionbutemitsbrightlywhenformingaggregates [1].

DecipheringtheunderneathmechanismsofAIEiscrucialfortheenrichmentoffundamentalphotophysicalknowledge,constructionofnewluminogens,andexplorationofpractical applications [2–4].Inprinciple,amatterabsorbinglightenergywillbepromotedtothe excitedstate,whichwillfallbacktolowerenergystatesthroughphotophysicalorphotochemicalprocesses [5].Thesephotophysicalprocessesmainlyincluderadiativetransition andnonradiativetransitionpathways,whereasthephotochemicalpathwaymainlyincludes achemicalreaction.Inthesolutionstate,theexcited-statedecayofAIEluminogens(AIEgens) ismainlythroughnonradiativephotophysicalorphotochemicalprocesses.Meanwhile,in aggregatestates,thenonradiativedecaypathwaysareblockedandtheradiativeonesare opened.ThecombinationeffectsreadilyresultintheuniqueAIEfeature.

NumerouseffortshavebeendevotedtodecipheringtheAIEworkingprincipleanda numberofpossiblemechanismshavebeenproposed,suchasJ-aggregation,conformational planarization,E/Zisomerization,twistedintramolecularchargetransfer(TICT),andexcitedstateintramolecularprotontransfer(ESIPT),butmostofthemwereonlyapplicabletolimited AIEsystems.

FIG.1 (A)Tetraphenylethene(TPE)isnonemissivewhenmolecularlydissolvedbutbecomesemissivewhen aggregatedduetotherestrictionofintramolecularrotations(RIR).(B)Cyclooctatetrathiophene(COTh)shows AIEactivityduetotherestrictionofintramolecularvibration(RIV)intheaggregatestate. Reproducedwithpermission fromZ.Zhao,H.Zhang,J.W.Y.Lam,B.Z.Tang,Aggregation-inducedemission:newvistasattheaggregatelevel,Angew. Chem.Int.Edit.59(2020)2.Copyright2020Wiley-VCHVerlagGmbH&Co.KGaA.

Withgreatandpersistentefforts,therestrictionofintramolecularrotation(RIR)mechanismhasbeenproposed.However,asthefamilyofAIEactivemoleculesgrows,someAIE systemswithnorotatableunitscannotfullybeexplainedbytheRIRmode.Therefore,the restrictionofintramolecularvibrations(RIV)wasraisedtoexplaintheseAIEcases.Ithas becomeclearthatRIRandRIVhavebeenrationalizedasthemaincausefortheAIEeffect. Therefore,theyareintegratedintoamorecomprehensiveAIEmechanism,i.e.,restriction ofintramolecularmotion(RIM)(Fig.1) [6]

2Restrictionofintramolecularrotations

TheRIRmechanismwasproposedbasedonacarefulandsystematicstudyofanarchetype ofAIEgenofhexaphenylsilole(HPS, 3) [7].HPSissolubleinorganicsolvents,suchas dichloromethane,acetone,THF,andmethanol,butinsolubleinwater.Therefore,theaggregationofHPSmoleculescanbeinducedbyaddingwaterinHPSacetonesolution,andthe photoluminescence(PL)quantumyield([Fcy]F)wasexploredinacetone/watermixtures withdifferentwaterfractions(fw).Asshownin Fig.2A,HPSisnonemissiveindiluteacetone

FIG.2 Plotsof(A)PLquantumyieldofHPSvswaterfractioninacetone/watermixturesand(B)itsPLpeakintensityvsglycerolfractioninglycerol/methanolmixtures.(C)PLspectraofHPSin1,4-dioxaneatdifferenttemperatures.(D)EffectoftemperatureonthepeakintensityofthePLofHPSindioxaneandTHF.Concentration ¼ 10 μM. ReproducedwithpermissionfromJ.Chen,C.C.W.Law,J.W.Y.Lam,Y.Dong,S.M.F.Lo,I.D.Williams,etal.,Synthesis,light emission,nanoaggregation,andrestrictedintramolecularrotationof1,1-substituted2,3,4,5-tetraphenylsiloles,Chem.Mater. 15(7)(2003)1535–1546.Copyright2003AmericanChemicalSociety.

solutionwithalow [Fcy]F ( 0.1%),whichremainsalmostunchangeduntilthe fw reaches 50vol%butstartstoincreaseswiftlyafterward.Whenthe fw increasesto90%,the [Fcy]F value isboostedto22%,whichis 200timeshigherthanthatoftheacetonesolution.Thehigher [Fcy]F valueofHPSintheaggregatestatethanthatindilutesolutionsdemonstratesits AIEeffect,whichisattributedtotheRIRmechanism.Insolution,theperipheralphenylrings ofHPScandynamicallyrotatearoundthecentralsilolering,whichmayeffectivelyconsume

theenergyoftheexcitedstate,makingtheHPSnonemissive,whileintheaggregatestatethe intramolecularrotationsarerestrictedbecauseofthephysicalconstraint.Therefore,the nonradiativechannelofdeexcitationisblockedandtheradiativedecayisactivated, makingtheHPSemitstrongly.

2.1Externalphysicalcontrolexperiments

2.1.1Viscosityeffect

TofurtherverifytherationalityoftheRIRmechanism,severalcontrolexperimentswere designedandconducted [7–9].StrongemissionisenvisionedforHPSinthemoreviscous mediabecausethehighviscositywouldretardtheintramolecularrotations.Theviscosity ofglycerol(934cPat25°C)is1720timeshigherthanthatofmethanol(0.544cPat25°C), andtheviscosityofmediawillbeenhancedbyincreasingtheglycerolpercentagein methanol.Therefore,thePLmeasurementsofHPSwereperformedinsuchmixtures.As shownin Fig.2B,thePLintensityincreasedlinearlyastheglycerolfraction(fG)increased intherangeof0–50vol%at25°C.Theemissionenhancementinthisregionshouldbepredominantlyascribedtotheviscosityeffect.When fG isfurtherincreased,thepeakintensity increasedsharplyduetotheformationofnanoaggregates.

2.1.2Temperatureeffect

Sincedecreasingthesolutiontemperaturecanalsohampertheintramolecularrotations, thetemperatureeffectsontheHPSemissionwerethusstudied.Whenthedioxanesolution ofHPSwascooled,itsPLintensityincreasedaccordingly(Fig.2C).Thisisbecausethedioxanesolutionchangedtoaglassystatewhenthetemperaturecooledbelowitsmeltingpoint (11.8°C).Therefore,theintramolecularrotationofthephenylringsofHPSwouldberestricted bytherigidenvironments.Inaddition,theemissionofHPSdecreaseddrasticallywhenthe solutionwasheatedabovethemeltingpointofdioxane(Fig.2D).

TofurtherverifytheRIRprocessrestrictedatlowtemperatures,dynamicNMRexperimentswerealsocarriedout.Theveryfastconformationalexchangescausedbythestrong intramolecularrotationsgavesharpNMRsignalsatroomtemperature.However,the NMRpeakswerebroadenedatalowertemperaturebecausetheslowrotationsledtothe slowerexchanges.Therefore,bothincreasingthesolutionviscosityanddecreasingthesolutiontemperaturewouldhampertheintramolecularrotationsofphenylringsofHPS.Asa result,theradiativetransitionsofAIEgenswouldbeopenedandtheemissionintensity wouldbeboosted.

2.1.3Pressureeffect

Inadditiontoviscosityandtemperature,pressurewillalsoinfluencetheemissionofHPS [8,10].Atraditionalluminophore,tris(8-hydroxyquinolinato)-aluminum(III)(AlQ3)wasused asacontrast.AlQ3 ishighlyemissiveindilutesolutionbutlessluminescentwhenaggregated (Fig.3A).Whenapplyingdifferentpressures,theemissionofHPSbecomesmorecomplicated (Fig.3B).ThePLintensityofHPSincreasedswiftlybyincreasingitspressure.However,furtherincreaseofthepressureledtothedecreaseinPLintensity.Theoretically,theexternal pressurizationdecreasestheintermoleculardistanceofHPS,thusimposingantagonistic

FIG.3 (A)ChangesinPLintensitiesofHPSandAlQ3 solutionswithwaterfractionsofaqueousmixtures.Solution concentration:10mM.(B)EffectsofpressureonthePLintensitiesofHPSandAlQ3 films.(C)Time-resolvedfluorescenceofHPSinsolutionwithdifferentfractionsofwaterandDMF.Theidenticalconcentrationforthemixturesis 1.3 10 5 mol/L.(D)Time-resolvedfluorescenceofDMFsolutionofHPS(2wt%)atdifferenttemperatures.Inset:PL decayat30Kata5nstimescale,whichshowstheslowdecaycomponentofPLatthelowtemperature. (B)Reproduced withpermissionfromX.Fan,J.Sun,F.Wang,Z.Chu,P.Wang,Y.Dong,etal.,Photoluminescenceandelectroluminescenceof hexaphenylsiloleareenhancedbypressurizationinthesolidstate,Chem.Commun.26(2008)2989.Copyright2008RoyalSocietyofChemistry.(D)ReproducedwithpermissionfromY.Ren,J.W.Y.Lam,Y.Dong,B.Z.Tang,K.S.Wong,Enhancedemissionefficiencyandexcitedstatelifetimeduetorestrictedintramolecularmotioninsiloleaggregates,J.Phys.Chem.B109(2005) 1135.Copyright2005AmericanChemicalSociety.

effects.Ontheonehand,theappliedlowpressureincreasestheintermolecularinteractionbut haslittleeffectontheintermoleculardistance.Asaresult,thefreedomofthemolecular rotationsisinhibitedandtheemissionisenhanced.Ontheotherhand,thedistancesbetween thegroupswithintheHPSmoleculewouldbeshortened,andtheformationofexcimers,etc. wouldbepromotedathighpressures,thusweakeningtheemission.Thequenchingeffect wasfoundinAlQ3 anditsPLintensitywasweakenedmonotonouslywithinthepressure rangeof1–650atm,indicatingthatthepressurizationenhancedtheunfavorablemutual interferencebetweenmolecules.

TheaggregationofamoleculecannotonlyenhanceitsemissionbutalsoinfluenceitsPL lifetime [9].Therefore,thetime-resolvedfluorescenceofHPSwasfurthermeasuredto exploretheAIEmechanism.Asshownin Fig.3C,therelaxationoftheexcitedstateof HPSisasingle-exponentialdecayindilutesolutionanditsPLlifetimeisonly40ps.The lowemissionefficiencyandshortPLlifetimeindicateastrongnonradiativerecombination process.Increasing fw causestworelaxationpathwaysofdecayduetotheformationof nanoaggregates,whichresultsinthedecayofmoremoleculesradiativelybyaslowerchannel.Inthemixturesolutioncontaining90%water,theexcitedstatemainlydecaysthroughthe slowpathwayandthePLlifetimeoftheslowcomponentrisesto 7ns.Therapidrotationof thephenylringsgreatlyconsumestheenergyoftheexcitedstateindilutesolutions,resulting inaps-scalelifetime.However,therotationsofphenylringsarelargelyrestrictedwhen aggregatesareformed,andtheradiativedecaychannelsareactivatedwithannslifetime. Inaddition,decreasingthetemperatureandincreasingthemediumviscositycanalsoenhancethePLlifetimeofHPS(Fig.3D).Theseresultssuggestthat(a)therotationofphenyl ringsconsumestheexcitedstateenergyandincreasesthenonradiativedecayrates,resulting inanonemissionstateofHPSindilutesolution,and(b)therestrictionofrotationalmotions activatestheradiativedecayprocess,thusintensifyingtheiremissioninanaggregatestate.

2.2Chemicalmodification

AllthecontrolexperimentsdescribedabovehavegreatlyproventheRIRmechanism. Moreover,theseresultsalsoconfirmthattheluminescenceofcompoundscanbecontrolled byphysicalorengineeringencapsulation.Theseobservationsimplythattheemissionof compoundsmightalsobeinfluencedbycontrollingtheirintramolecularrotationprocesses atthemolecularlevel [11–15].

2.2.1Stericeffect

Theisopropyl(iPr)groupswereattachedtothephenylringsofHPStostudyhowthesteric effectwouldaffectitsAIEbehavior [11].AseriesofHPSderivativeshavebeendesignedand synthesized(Fig.4A).UnlikeHPS,regioisomers 4–6 areluminescentindilutesolutions, althoughtheiremissionintensityvariesdramatically.Inacetone,theregioisomers 4–6 exhibit ablue-greenemissionwithincreased [Fcy]F valuesintheorderof 6 > 5 > 4 (Fig.4B).Similar resultswerealsoobtainedinothersolventssuchasTHF,whichfurtherconfirmedtheconclusionoftheorderofobservedemissionintensityinacetone.The ΦF valuesof 4–6 arehigher thanthatofHPSbecausethehigherrotationbarriersinhibittheintramolecularrotation processofthephenylrings.Itwaswellunderstoodthatamorerigidchromophoreemitsa strongeremission.Therefore,thestructuralrigidificationplaysacrucialroleinmakingthe regioisomersmoreemissivethanHPSindilutesolutions.

TofurtherverifythattheRIRprocessofAIEgenscanbeactivatedatthemolecularlevelvia facilechemicalmodification,analogousworkshavealsobeendoneinTPEsystems [12,13].The multiplemethylgroupswereintroducedattheorthopositionsofTPEtocheckhowtheintramolecularstericeffectswouldinfluenceitsphotophysicalproperties [12].TPE,atypical AIEgen,showsweakemissioninTHFsolutionduetotheactiveintramolecularrotationsof peripheralphenylrings.Whenthestericallyhinderedmethylgroupwasintroduced,the

FIG.4 (A)Chemicalstructuresandfluorescentphotographsand(B)PLspectraofsolutionsofsiloles 4–6 inacetone (10 μM).(C)Chemicalstructuresandfluorescentphotographs.(D)Plotsof I/I0 ofTPE, 7 and 8 versuswaterfractions inTHF/watermixtures(10 μM),where I0 and I arethePLintensitiesinTHFsolutionandaTHF/watermixture,respectively.Inset:fluorescencephotographsofTPE, 7 and 8 inTHFsolutions. (AandB)Reproducedwithpermissionfrom Z.Li,Y.Dong,B.Mi,Y.Tang,M.Haussler,H.Tong,etal.,Structuralcontrolofthephotoluminescenceofsiloleregioisomers andtheirutilityassensitiveregiodiscriminatingchemosensorsandefficientelectroluminescentmaterials,J.Phys.Chem.B109 (2005)10061.Copyright2005AmericanChemicalSociety.(C)ReproducedwithpermissionfromG.Zhang,Z.Chen,M.P. Aldred,Z.Hu,T.Chen,Z.Huang,etal.,Directvalidationoftherestrictionofintramolecularrotationhypothesisviathesynthesisofnovelortho-methylsubstitutedtetraphenylethenesandtheirapplicationincellimaging,Chem.Commun.50(2014) 12058.Copyright2014RoyalSocietyofChemistry.

luminescenceoftheTPEderivativeswasfurtherenhanced.The ΦF ofcompound 8 inTHF solutionishigherthanthatofTPEandcompound 7 (Fig.3C).Thecompound 8 showedabright cyanluminescenceinTHFsolution,whileweakfluorescencewasobservedbythenakedeye forbothTPEand 7.SimilartoTPE,compound 7 exhibitsobviousAIEcharacteristics.Incontrast,asthesterichindranceisfurtherenhancedbyincreasingthenumberofmethylgroups, thestericallycrowdedcompound 8 losesitsAIEfeature.Theintroductionoftetra(orthomethyl)groupsinTPEgreatlysuppressedtherotationalmotionofintramolecularphenyl rings,andthusinhibitedthenonradiativedecay,furtherverifyingtheRIRmechanism.

2.2.2Electronicconjugationeffect

Besidesthestericeffect,theelectronicinteractioncanmakeacontributiontotheRIR processofAIEgens [14,15].TostudyhowelectronicconjugationaffectstheAIEbehavior

FIG.5 (A)Chemicalstructuresand(B)plotsof I/I0 of 9, 10, and 11 versuswaterfractionsinTHF/watermixtures (10 μM),where I0 and I arethePLintensitiesinTHFsolutionsandTHF/watermixtures,respectively.Inset:fluorescencephotographsof 10 and 11 inTHFsolutions.(C)Chemicalstructuresofsilolederivatives 12, 13,and 14 and (D)plotsoftheirfluorescenceintensityversuswaterfractionsinTHF/watermixtures.Inset:Fluorescentphotographs of 13 and 14 inTHF/watermixtures(fw ¼ 0,99vol%). (AandB)ReproducedwithpermissionfromE.Zhao,J.W.Y.Lam,Y. Hong,J.Liu,Q.Peng,J.Hao,etal.,Howdosubstituentsaffectsiloleemission?J.Mater.Chem.C1(2013):5661.Copyright2013 RoyalSocietyofChemistry.(CandD)ReproducedwithpermissionfromB.Chen,H.Nie,P.Lu,J.Zhou,A.Qin,H.Qiu,etal., Conjugationversusrotation:goodconjugationweakenstheaggregation-inducedemissioneffectofsiloles,Chem.Commun. 50(2014)4500.Copyright2014RoyalSocietyofChemistry.

of1,1,3,4-tetraphenylsilole(TPS, 9),compounds 10 and 11 withthetrimethylsilylethynylphenyl(TMSEP)grouponits2,5positionsweredesignedandprepared(Fig.5A) [14] WeakemissionwasobservedinbothsolutionandaggregatestatesduetothepoorconjugationofTPS.Incontrast,compounds 10 and 11 showeddistinctlydifferentemissionbehaviors. Theyarenonemissiveindilutesolutionsbutexhibitabrightblue-greenemissionataggregate states,clearlydemonstratingtheAIEproperty(Fig.5B).The ΦF of 10 insolidstatewas measuredtobe54.80%,whilegreatlyintensifiedluminescencewasfoundintwo substituent(s)atthe2,5positionsofTPS(11)witha ΦF of90.88%initssolidstate.Thesteric effectinfluencestheemissionbehaviorofTPSfortheformer(10),whiletheelectroniceffect affectstheemissionefficiencyandwavelengthofTPSforthelatter(11).

Inaddition,similarworkhasalsobeenperformedtoexaminethecontributionofelectronic effect [15].Polycyclicaromaticgroupswereattachedatthe2,5-positionsofsilole 12 and naphthyl-andanthracyl-substitutedsilolederivatives 13 and 14,respectively(Fig.5C). Compound 13 exhibitedweakemissioninthesolutionstatewitha ΦF of2.4%,whilestrong luminescencewasobservedfor 14 inthesolutionstatewitha ΦF of11.0%.Theseresultssuggestthattheemissionof 12 wasenhancedinthesolutionstatewithanincreasedconjugation effect.Luminescenceof 13 (ΦF ¼ 37.0%)inthesolidthinfilmstatewasgreatlyintensified, whilethatof 14 (ΦF ¼ 14.0%)wasbarelyenhancedrelativetoitssolutionstate.Compound 14 sufferedfromquenchinginsolidstatedueto π–π stacking,thusweakeningitsAIEeffect (Fig.5D).Theseresultsalsoindicatethatthereisalsoacompetitiverelationshipbetweenthe electronicconjugationeffectandtheintramolecularrotationprocesses.

2.2.3Effectoflockingthephenylrings

LockingthephenylringsofAIEgensandkeepingitstwistedconformationareeffective waystoobtainhighemissionefficiencythroughtheactivationoftheRIRprocess [16–19].Relatedstudieswereperformedwithcompounds1OTPE(15)and2OTPE(16)wherethephenyl ringsofTPEarelockedwiththe“O”atombridge(Fig.5A) [16] TPEisnonemissiveindilute solutionwithanegligible ΦF,whilethe ΦF of 15 and 16 insolutionswereincreasedto4.6%and 30.1%,respectively.ThisimpliesthatlockingthephenylringwithObridgescanrestrictthe intramolecularrotationandfurtherblockthenonradiativedecayprocess,thusmakingthe TPEderivativesemissiveinsolutionstates.Theemissionefficiencyofluminogensinsolution graduallyincreasedwiththestepwiselockingofphenylringsofTPE,thusverifyingtheRIR mechanismagain.

Asshownin Fig.6B,AIEgen 17 canalsobechangedtoanACQfluorophore(ACQphore) byblockingitsphenylring [18].Diphenyldibenzofulvene(17)isAIEactive,givingavery weakemissionindilutesolutionbutbrightbluelightinsolidstate.Thederivativeof 17, i.e., 18,inwhichamethoxylgroupwasattachedinaphenylringisalsoAIEactive.Unlike 17 and 18,itslockedformof 19 isanACQphore.Brightemissionwasobservedfor 19 in solution(ΦF ¼ 38.0%)butweakemissioninsolidstate(ΦF ¼ 5.5%).Inthesolutionstate, theintramolecularrotationof 19 isaninvalidwaytoconsumetheexcitedstateenergy.Meanwhile,thestrong π–π interactionbetweentheflatbenzo[e]acephenanthrylenestatorswas observedin 19,whicheffectivelyquencheditsemissioninthesolidstate.

2.3Supramolecularinteraction

Intramolecularrotationscanalsoberestrictedthroughsupramolecularinteractions [20–22].Forexample,aseriesofTPEderivatives 20–22 wasusedfordetectingproteinand DNA(Fig.7A) [21].Theirincreased ΦF valuesintheiraggregatestatesdemonstratedtheir AIEfeature(Fig.7B).Compounds 20–22 arenonemissiveindilutesolutionsbutshowbright fluorescenceuponadditionoftheDNAandBSA(Fig.7C).Similarworkhadbeendoneforthe coordinationinteractionofanotherTPEderivative 23 andcations.Nearlynoemissionwas observedforcompound 23 indilutesolution,whilethefluorescencewasturnedonafter theadditionofHg2+ cations(Fig.7D).Moreover,theemissionofcompound 23 canalsobeenhancedbythesubsequentadditionofHSO4 intothemixtureof 23 andHg2+ (Fig.7E) [22].

FIG.6 (A)StructuresofTPEanditsderivativeswith“O”bridges(15 and 16),and fluorescentphotographsoftheirsolutions andcrystals.(B)StructuresofTPEderivatives(17, 18,and 19),andfluorescentphotographsoftheirsolutionsandcrystals. (A)ReproducedwithpermissionfromJ.Shi,N. Chang,C.Li,J.Mei,C.Deng,X.Luo,etal., Lockingthephenylringsoftetraphenylethenestep bystep:understandingthemechanismof aggregation-inducedemission,Chem.Commun. 48(2012)10675.Copyright2012RoyalSociety ofChemistry.(B)Reproducedwithpermission fromH.Tong,Y.Dong,Y.Hong,M.H € aussler, J.W.Y.Lam,H.H.Y.Sung,etal.,Aggregationinducedemission:effectsofmolecularstructure, solid-stateconformation,andmorphological packingarrangementonlight-emittingbehaviors ofdiphenyldibenzofulvenederivatives,J.Phys. Chem.C111(2017)2287.Copyright2007 AmericanChemicalSociety.

HSO4–Hq2+ Aggregation of 23 with Hg2+ Aggregation of 23 with Hg2+-HSO4–

FIG.7 (A)Chemicalstructuresoftetraphenylethenederivatives 20–22.(B)Dependenceoffluorescencequantum yieldsofsolutionsof 20 and 21 onthesolventcompositionofacetonitrile(AN)-watermixtures.(C)Plotsoffluorescenceintensitiesofbuffersolutionsof 22 at463nmversusconcentrationsofctDNAandBSA.(D)Schematicillustrationsofcoordination-inducedrestrictionofintramolecularrotationsbasedonluminogen 23.(E)Fluorescencespectra of1(10 μMinDMF)withHg2+ andafteradditionof1.0–16.0equiv.HSO4 1.Inset:fromlefttoright:photosofsolutions of1,1+4.0equiv.Hg2+,1+8.0equiv.HSO4 1,1+4.0equiv.Hg2+ +8.0equiv.HSO4 1 underUVlightillumination. (B andC)ReproducedwithpermissionfromH.Tong,Y.Hong,Y.Dong,M.Haußler,J.W.Y.Lam,Z.Li,etal.,Fluorescent“lightup”bioprobesbasedontetraphenylethylenederivativeswithaggregation-inducedemissioncharacteristics,Chem.Commun. 35(2006)3705.Copyright2006RoyalSocietyofChemistry.(DandE)ReproducedwithpermissionfromG.Huang,G. Zhang,D.Zhang,Turn-onofthefluorescenceoftetra(4-pyridylphenyl)ethylenebythesynergisticinteractionsof mercury(II)cationandhydrogensulfateanion,Chem.Commun.48(2012)7504.Copyright2012RoyalSocietyofChemistry.

3Restrictionofintramolecularvibrations

Inthesesystems,beforetheadditionofcations,theexcitedstateenergycanbeconsumed throughtheintramolecularrotations,makingitnonemissiveinthesolutionstate.However, theadditionofcationsformscoordinationcomplexes,generatingahigherrotationalbarrier fortherotatorygroupsintheligands,thusleadingtothedistinctlightemission.

2.4Theoreticalstudies

Besidesexperimentalapproaches,theoreticalstudiesoftheAIEmechanismwere performed [23–33].ItisdocumentedthatDCDPP(24)isanAIEgen,whileitslocked-form DCPP(25)isanACQphore.Shuaietal.modeledtheAIEgenof 24 anditslocked-form 25 byusingquantummechanicsandmolecularmechanics(QM/MM)approaches [26,27,29]. Thisprovidescrucialinsightsintotheirphotophysicalbehaviorsindifferentstates. Huang-Rhys(HR)factorsatdifferentnormalmodesareshownin Fig.8AandB.Threemodes withlargeHRfactorsofisolated 24 werefoundinthelowfrequencyregion,andthusthese normalmodesarethemainchanneltoconsumeitsexcitedstateenergy(Fig.8A).However, smallerHRfactorsof 24 clusterswereobservedinthehigherfrequencyregion,signifyingthat excited-stateenergyisreducedsubstantiallybythelow-frequencyvibrations,suchasthe twistingofphenylrings.Incontrast, 25 inisolatedandclusterstatesdidnotshowlowfrequencynormalmodes,butmuchsmallerHRfactorswerefoundinamuchhigherfrequencyregion(Fig.8B).TheseresultsprovideaclearsupporttoRIR.

Furthermore,resonanceRamanspectroscopy(RRS)wasalsousedtostudythemicroscopic mechanismofAIEincombinationwiththecomputationalstudies [34].TakingHPDMCb(26) asanexampleandnon-AIEactiveDCPPforcomparison,theintensitiesoflow-frequency peaksof 26 clusterinRRSobviouslydecreasedcomparedwiththehigh-frequencypeaks. However,theRRSofDCPPremainedunaffectedafteraggregation.Theseresultscanbe attributedtotheRIRofAIEgen,suchasthelow-frequencyphenylringtwisting.Therefore, theRRSwasalsoadirectapproachtoexplaintheabovetheoreticalstudiesontheRIR mechanism.

Alltheresultsabove,fromexperimentalmeasurementstotheoreticalcalculations,from externalphysicalandengineeringcontrolstointernalstructuralandchemicalmodification, providestrongevidencetoconfirmthatRIRistheworkingmechanismofAIEgenswith rotatablearomaticrings.

3Restrictionofintramolecularvibrations

UndertheguidanceofRIR,manyAIEgenshavebeendesigned,prepared,andappliedin diverseareas.However,partofthemoleculeswiththeAIEfeaturecannotbefullyexplained bytheRIRmechanism,suchasBDBA(27)andTHBDBA(28)displayedin Fig.9[35,36].They possessnorotatableunitsbecausethetwopairsofphenylringsofBDBAandTHBDBAare lockedthroughvinyllinkagesandethylenetethers,respectively.Thesemoleculesshouldbe emissiveevenindilutesolutionsbasedonthemechanismofRIRbecausetheexcited-state energyisnolongerconsumedbynonradiativepathways.However,theyshowAIEproperty. Nearlynoflorescencewasobservedinsolutionbutbrightemissionwasrecordedin

FIG.8 CalculatedHuang-Rhys(HR)factorsversusnormalmodewavenumbersfor(A)isolatedDCDPP(24)and clusterand(B)DCPP(25)cluster.(C)ChemicalStructureofHPDMCb(26).(D)ResonanceRamanspectroscopy(RRS) intensityinbothsolutionandsolidphasesforHPDMCb. (AandB)ReproducedwithpermissionfromQ.Wu,C.Deng,Q. Peng,Y.Niu,Z.Shuai,Quantumchemicalinsightsintotheaggregationinducedemissionphenomena:aQM/MMstudyfor pyrazinederivatives,J.Comput.Chem.33(2012)1862.Copyright2012Wiley.Copyright2013ElsevierB.V.(D)Reproduced withpermissionfromT.Zhang,H.Ma,Y.Niu,W.Li,D.Wang,Q.Peng,etal.,Spectroscopicsignatureoftheaggregationinducedemissionphenomenacausedbyrestrictednonradiativedecay:atheoreticalproposal,J.Phys.Chem.C119(2015)5040. Copyright2015AmericanChemicalSociety.

aggregatestates(Fig.9AandB).Similartotherotationofphenylrings,thevibrationalmotionsshouldalsoconsumeexcitonenergy.Inotherwords,restrictionofintramolecularvibrations(RIV)isthecauseoftheAIEeffectofBDBAandTHBDBA.Computationalanalyseswere alsoemployedtoexplaintheAIEphenomenon.Asdepictedin Fig.9C,QM/MMmodeling resultsshowthattherearemainlysixnormalmodesforTHBDBAinasinglemoleculeconsumingtheenergyoftheexcitedstate.Amongthese,everyreorganizationenergyexceeded 200cm 1,resultinginatotalenergyof5679cm 1.Incontrast,THBDBAclustersonlyhave threesignificantnormalmodefrequenciesinthevicinityofthelow-frequencyrange ( 4016cm 1 ; Fig.9D).Intheclusters,thecombinationofadecreaseinthetotalreorganization energyandvibrationalchannelswaslikelythecauseoftheobservedAIEeffectofTHBDBA.

FIG.9 (A)PLspectraofBDBA(27)inTHF/watermixtureswithdifferent fw and(B)changeinthePLintensityof BDBAandTHBDBAwith fw (20 μM).Plotsofreorganizationenergyversusnormalmodewavenumbersforexcited statesof(C)molecularand(D)clusteredspeciesof 28 ReproducedwithpermissionfromN.L.C.Leung,N.Xie,W.Yuan,Y. Liu,Q.Wu,Q.Peng,etal.,Restrictionofintramolecularmotions:thegeneralmechanismbehindaggregation-inducedemission, Chem.Eur.J.20(2014)15349.Copyright2014Wiley-VCHVerlagGmbH&Co.KGaA.

TheRIVmechanismhasbeenfurtherconfirmedinotherAIEgensystems [37–42].Goel etal.reporteda5,6-dihydro-2H-pyrano[3,2-g]indolizine(DPI)derivative 29 whichexhibits auniquesolution/soliddualemissionbehaviorwithastrongeremissioninthesolidstate (Fig.10A) [41].TochecktheAIEfeatureof 29,thePLwasrecordedinTHF/watermixtures withvarying fw.Asshownin Fig.10B,thePLintensityof 29 wasremarkablyenhancedupto 20-foldhigherthanthatofitssolutionwhenthe fw reached99%.Consideringthestructural characteristicof 29,theRIVofC2-flexuremightberesponsibleforitsAIEfeature.Fromthe perspectiveofthecrystalstructure,twostrongnoncovalentC

FIG.10 (A)Chemicalstructureof 29.(B)PLspectraof 29 inTHF/watermixtures.Inset:Fluorescentphotographsof 29 inTHF/watermixtures(fw ¼ 0, 99vol%).(C)IllustrationofcyclooctatetrathiopheneCOThthatshowstheAIEactivityduetotherestrictionofintramolecularvibration(RIV)intheaggregatestate.(D)PLspectraofCOTh-TMSinTHFsolution (emptytriangles) andsolidstates (fulltriangles).Concentration:10 μM,excitationwavelength: 365nm.Inset:thefluorescencepicturesof 30 inTHFsolution(left, dark)andsolidstates(right, greenfluorescence)takenunderanexcitationwavelengthof 365nmbyaportableUVlamp.(E)PLspectraofCOThinTHFsolution (emptytriangles) andsolidstates (fulltriangles).Concentration:10 μM,excitation wavelength:350nm.Inset:thefluorescencepicturesofCOThinTHFsolution(left, dark)andsolidstates(right, greenfluorescence)takenunderanexcitation wavelengthof365nmbyaportableUVlamp. (B)ReproducedwithpermissionfromA.Raghuvanshi,A.K.Jha,A.Sharma,S.Umar,S.Mishra,R.Kant,etal., Anonarchetypal5,6-dihydro-2H-pyrano[3,2-g]indolizine-basedsolution-soliddualemissiveAIEgenwithmulticolortunability,Chem.Eur.J.23(2017)4527.Copyright2017Wiley-VCHVerlagGmbH&Co.KGaA.(E)ReproducedwithpermissionfromZ.Zhao,X.Zheng,L.Du,Y.Xiong,W.He,X.Gao,etal.,Non-aromatic annulene-basedaggregation-inducedemissionsystemviaaromaticityreversalprocess,Nat.Commun.10(2019)1.Copyright2019NaturePublishing Group.

interactionswerefoundbetweentheadjacentmolecules.Theseinteractionseffectively restrictedthemolecularvibrationalmotionofC2-flexure,thusleadingtostrongemission insolidstate.

Cyclooctotetraene(COT)derivativessuchasCOThandCOTh-TMS(30)werealsofoundto beAIE-active(Fig.10C) [42].Weakemissionwitha ΦF of0.7%andbrightgreenluminescence witha ΦF of10%wererecordedforCOTh-TMSindilutesolutionandsolidstate,respectively (Fig.10D).Initially,theTMSgroupswereproposedtopossiblyactasrotorstoconsumethe excitonenergy.However,afurtherstudyindicatedthatCOThwithoutTMSgroupsalsoexhibitanAIEfeature,inwhichthe ΦF insolutionwasonly0.4%butenhancedto11%initssolid state(Fig.10E).TheseresultsindicatethattheAIEactivityoftheCOThsystemiscaused throughthemolecularvibrationratherthantherotationofTMSgroups.TogainadeeperinsightintotheAIEactivityofCOThderivatives,theircrystalstructureswereanalyzed.No obviousintermolecular π–π interactionwasfoundduetotheirnoncoplanarandsaddle-type conformations.Furthermore,multipleintermolecularC H ⋯ π andS ⋯ π interactionswere observedinthecrystals,whichcanrigidifythemolecularconformationresultinginsolidstateemission.Inthesolutionstate,thevibrationalmolecularmotionwouldoccurforthe COThderivativesduetothelackofaromaticitystabilization,makingthemnonemissive. However,thearomaticityoftheCOThderivativesisstabilizedbecauseoftheRIVprocess insolidstateandtheactivationoftheradiativechannel,makingthemoleculesemitbrightly. Thereversalfromthegroundstatetotheexcitedstateofaromaticityservesasadrivingforce toinducetheexcited-stateintramolecularvibrationandleadstotheAIEphenomenon.

Theexamplesabovethereforeindicatethatmolecularvibrationalmotions,including in-plane/out-of-planebending,flapping,stretching,scissoring,wagging,twisting,rocking, etc.,canalsoconsumetheexcitonenergy.SimilartoRIR,restrictionofintramolecularvibrationcanalsoturnonthefluorescenceofthemoleculeintheaggregatestates.Theproposalof theRIVmechanismcannotonlyoffernewperspectivesforphotophysicalfundamentalsbut alsoopennewwaysforthedesignanddevelopmentofnewAIEgensystems,whichwill furtherbroadenthescopeofAIEresearch.

4Restrictionofintramolecularmotions

Accordingtotheabovediscussion,itbecomesclearthatRIRandRIVhavebeenrationalizedasthemaincausefortheAIEeffect.Thus,RIRandRIVcouldbeunifiedasrestrictionof intramolecularmotion(RIM).

Interestingly,insomeAIEsystems,bothRIRandRIVareinvolved,andtheworkingmechanismcanonlybeascribedtoRIM [43–46].TworepresentativeexamplesofsuchAIEgensare shownin Fig.11.Maetal.reportedabutterfly-shapedphenothiazinederivative 31 (Fig.11A), whichisnotemissiveinsolution,butbrightredfluorescenceintheTHF/watermixtureswith fw 70vol%wasobserved,indicatingitsAIEeffect [43].Thetheoreticaloptimizedgroundstategeometryshowedthatthephenothiazineunitexhibitsanonplanarbutterfly-like structurewithalargeC S N Cdihedralangleof142degrees.Moreover,thereisalarge twist-linkeddistortedangleof145degreesbetweenthephenothiazineandbenzothiadiazole groups.Inthesolutionstate,itsexcited-stateenergyismainlyconsumedthroughthe

FIG.11 (A)Chemicalstructureandtheoreticallyoptimizedgeometryof 31.Tosimplifythecalculation,thehexyl groupwasreplacedwithamethylsubstituent.KGaA.(B)Chemicalandcrystalstructureof 32.Hydrogenatomswere omittedforclarity. (A)ReproducedwithpermissionfromL.Yao,S.Zhang,R.Wang,W.Li,F.Shen,B.Yang,etal.,Highly efficientnear-infraredorganiclight-emittingdiodebasedonabutterfly-shapeddonor-acceptorchromophorewithstrongsolidstatefluorescenceandalargeproportionofradiativeexcitons,Angew.Chem.Int.Ed.53(2014)2119.Copyright2014WileyVCHVerlagGmbH&Co.(B)ReproducedwithpermissionfromC.Zhang,Z.Wang,S.Song,X.Meng,Y.Zheng,X.Yang, etal.,Tetraphenylethylene-basedexpandedoxacalixarene:synthesis,structure,anditssupramoleculargridassembliesdirected byguestsinthesolidstate,J.Org.Chem.79(2014)2729.Copyright2014AmericanChemicalSociety.

vibrationalmotionsofthephenothiazinecoreandtherotationalmotionsofthe benzothiadiazoleandphenylrings.Theseintramolecularmotionswere,however,confined intheaggregatestate.Asaresult,theRIMprocessisthecauseoftheAIEeffectof 31. Inadditiontothetypicalluminogensincludingrotatableperipheryphenylringsand vibratablecores,manymacrocyclesalsoexhibittheAIEfeaturecontrolledbytheRIMprocess [47–50].Forexample,aTPE-basedoxacalixarene(32)exhibitsthetypicalAIEeffect.Itisalmostnonemissiveindilutesolution,whileemitsbrightemissionafteraggregation(Fig.11B) [47].TherotationsofphenylringsanddiphenylmethyleneunitsinTPEunitsconsumethe excitonenergy.Inaddition,theasymmetricallylinkedpyrazineunitsinthecrystalstructure of 32 adoptslantedconformations,whichallowflap-likevibratorymotionsoccurringtofurtherdissipatetheexcited-stateenergy.Asaresult,therotationandvibrationconsumethe excitonenergy,whichinturnleadstoemissionquenchingindilutesolution.However,upon theformationofaggregates,theintramolecularmotionisrestricted,andhenceitsluminescenceisturnedon.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.