Aerosols and climate ken s. carslaw - The ebook in PDF format is ready for download

Page 1


https://ebookmass.com/product/aerosols-and-climate-ken-scarslaw/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Climate Future: Averting and Adapting to Climate Change

Robert S. Pindyck

https://ebookmass.com/product/climate-future-averting-and-adapting-toclimate-change-robert-s-pindyck/

ebookmass.com

The Palgrave Handbook of Arctic Policy and Politics 1st ed. 2020 Edition Ken S. Coates

https://ebookmass.com/product/the-palgrave-handbook-of-arctic-policyand-politics-1st-ed-2020-edition-ken-s-coates/

ebookmass.com

Archaeology of Jesus' Nazareth Ken Dark

https://ebookmass.com/product/archaeology-of-jesus-nazareth-ken-dark/ ebookmass.com

Hannah Arendt. A Very Short Introduction Dana Villa

https://ebookmass.com/product/hannah-arendt-a-very-short-introductiondana-villa-2/

ebookmass.com

1775 (The Haunting of Hadlow House Book 3) Amy Cross

https://ebookmass.com/product/1775-the-haunting-of-hadlow-housebook-3-amy-cross/

ebookmass.com

Sea Salt Caramel Murder (Maple Hills Mystery 4) Wendy Meadows

https://ebookmass.com/product/sea-salt-caramel-murder-maple-hillsmystery-4-wendy-meadows/

ebookmass.com

Blackwell's Five-Minute Veterinary Consult: Reptile and Amphibian 1st Edition Javier G. Nevarez

https://ebookmass.com/product/blackwells-five-minute-veterinaryconsult-reptile-and-amphibian-1st-edition-javier-g-nevarez/

ebookmass.com

Launch Your Inner Entrepreneur Charlene Walters

https://ebookmass.com/product/launch-your-inner-entrepreneur-charlenewalters/

ebookmass.com

Performance and Security for the Internet of Things: Emerging Wireless Technologies Haya Shajaiah

https://ebookmass.com/product/performance-and-security-for-theinternet-of-things-emerging-wireless-technologies-haya-shajaiah/

ebookmass.com

The nurse mentor's handbook : supporting and assessing students in clinical practice Third Edition Danny Walsh

https://ebookmass.com/product/the-nurse-mentors-handbook-supportingand-assessing-students-in-clinical-practice-third-edition-danny-walsh/

ebookmass.com

AerosolsandClimate

AerosolsandClimate

SchoolofEarthandEnvironment,UniversityofLeeds,Leeds,UnitedKingdom

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright©2022ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicor mechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem,without permissioninwritingfromthepublisher.Detailsonhowtoseekpermission,furtherinformationaboutthe Publisher’spermissionspoliciesandourarrangementswithorganizationssuchastheCopyrightClearance CenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions. ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher(other thanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenour understanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecome necessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusing anyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethods theyshouldbemindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhomtheyhavea professionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliability foranyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceorotherwise,or fromanyuseoroperationofanymethods,products,instructions,orideascontainedinthematerialherein.

ISBN:978-0-12-819766-0

ForinformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: CandiceJanco

AcquisitionsEditor: AmyShapiro

EditorialProjectManager: AndreaRDulberger

ProductionProjectManager: R.VijayBharath

CoverDesigner: VictoriaPearsonEsser

TypesetbySTRAIVE,India

Symbols

c

topoftheatmosphere

Albedooftheclear(cloud-free)partofthe skyatthetopoftheatmosphere

cloud)atthetopoftheatmosphere

e

Aerodynamic,mobility,optical,volumeequivalentdiameterofaparticle

Saturationvaporpressureofwaterfora particleofdiameter

Cloudyfractionofamodelgridcell

Fractionofachemicalspeciesinthe particlephase

Netradiativeflux(incomingminus outgoing)

Radiativeeffect(netradiativeflux, incomingminusoutgoing)ofaerosol–radiationinteractionsatthetopofthe atmosphere

sky

definedas1750or1850)

Instantaneousradiativeforcingdueto aerosol–cloudinteraction,dueto aerosol–radiationinteractionatthetopof theatmosphere

Instantaneousaerosolradiativeforcingat thetopoftheatmosphere

Effectiveradiativeforcingdueto aerosol–cloudinteraction,dueto aerosol–radiationinteractionatthetopof theatmosphere

Exponentinsupersaturationdependencyof CCNconcentration

k

ExponentinempiricalformofStefanBoltzmannequation

m Massconcentrationofparticles

Refractiveindex

N>3nm, N>50nm, etc. Particlenumberconcentrationlargerthan 3nmdiameter,largerthan50nmdiameter (usuallydrydiameter)

Ni Iceparticlenumberconcentration

Nmode Integralparticlenumberconcentrationina lognormaldistribution“mode”

p PressurehPa P(Θ)Phasefunction(probabilitytobescattered atascatteringangle Θ)

ql Clouddropletmassmixingratioinair (l ¼ liquid)

q

qt Totalwater(vaporplusliquid)massmixing ratioinair

qv Watervapormassmixingratio(specific humidity)

(saturationspecifichumidity)

(scatteringplusabsorption)

r

r

r

Dropleteffectiveradius(area-weighted meanradiusofapopulationofcloud droplets)

Aerosoleffectiveradius(area-weighted meanradiusofapopulationofaerosol particles)

Medianradiusofalognormaldistribution function

Medianradiusofalognormalaerosol particlemode

r

r

fluxatthetopoftheatmosphere

Downwardlongwave(terrestrial)radiative fluxatthetopoftheatmosphere

RLW,cloudy " Upwardlongwave(terrestrial)radiative fluxofthecloudysky

RLW,cloud-free " Upwardlongwave(terrestrial)radiative fluxatthetopoftheatmosphereforthe clear(cloud-free)partoftheskyatthetop oftheatmosphere

Θ Scatteringangle(betweenincidentand scatteredradiation)

θ s Solarzenithangle(withrespecttovertical)Degreeorradian 10,11

θ v Scatteredzenithangle Degreeorradian 11 κ Hygroscopicityparameter – 5,12 λ Climatesensitivityparameter K(Wm 2) 1 2 λ Wavelengthofradiationm

λ Slopeoftheexponentialinthegamma

ρa Densityofairmaybeaffectedby condensedwater-Eq.(12.5)

ρl Massconcentrationofcloudliquidwater dropletsinair(liquidwatercontent)

ρp Densityofaparticle kgm 3

ρw Densityofliquidwater 1000kgm 3 12

σ , σ ∗ Stefan-Boltzmann(Planck)constant, empiricalvalueofStefan-Boltzmann constantforplanetaryemission

σ Geometricstandarddeviationofa lognormaldistribution – 4,5,6

^ σ Surfacetension Nm 2 12

σ abs Particlelightabsorptioncrosssectionm2 11

σ ext Particlelightextinctioncrosssection (scatteringplusabsorption) m 2 11

σ sca Particlelightscatteringcrosssectionm2 11

τa Aerosolopticaldepth

τa,anth Aerosolopticaldepthattributedto anthropogenicaerosol

τc Cloudopticaldepth

11

12

ϕs Azimuthangle DegreeorRadian 11

ϕv Scatteredazimuthangle DegreeorRadian 11

χ ViewzenithangleofasatelliteinstrumentDegreeorRadian 10

ω Verticalvelocity(inpressurecoordinates)Pas 1 12

ϖ 0 Single-scatteringalbedo – 11

aThesearetheunitstypicallyusedtoreportquantitiesinatmosphericaerosolscience.

Contributors

JamesAllan

DepartmentofEarthandEnvironmentalSciencesandNationalCentreforAtmosphericScience, UniversityofManchester,Manchester,UnitedKingdom

NicolasBellouin

DepartmentofMeteorology,UniversityofReading,Reading,UnitedKingdom

MassimoA.Bollasina

UniversityofEdinburgh,Edinburgh,UnitedKingdom

TamiC.Bond

DepartmentofMechanicalEngineering,ColoradoStateUniversity,FortCollins,CO,UnitedStates

SimonCarn

MichiganTechnologicalUniversity,Houghton,MI,UnitedStates

KenS.Carslaw

SchoolofEarthandEnvironment,UniversityofLeeds,Leeds,UnitedKingdom

WilliamCollins UniversityofReading,Reading,UnitedKingdom

AnnicaM.L.Ekman

DepartmentofMeteorologyandBolinCenterforClimateResearch,StockholmUniversity, Stockholm,Sweden

JiwenFan

PacificNorthwestNationalLaboratory,Richland,WA,UnitedStates

EdwardGryspeerdt

ImperialCollegeLondon,London,UnitedKingdom

RalphKahn

NASAGoddardSpaceFlightCenter,Greenbelt,MD,UnitedStates

ZbigniewKlimont

InternationalInstituteforAppliedSystemsAnalysis(IIASA),Laxenburg,Austria

HanneleKorhonen

FinnishMeteorologicalInstitute,Helsinki,Finland

BenKravitz

IndianaUniversity,Bloomington,IN,UnitedStates

ZhanqingLi UniversityofMaryland,CollegePark,MD,UnitedStates

XiaohongLiu

DepartmentofAtmosphericSciences,TexasA&MUniversity,CollegeStation,TX,UntedStates

NatalieMahowald

CornellUniversity,Ithaca,NY,UnitedStates

JosephR.McConnell

DivisionofHydrologicSciences,DesertResearchInstitute,Reno,NV,UnitedStates

BenjaminJ.Murray

SchoolofEarthandEnvironment,UniversityofLeeds,Leeds,UnitedKingdom

KirstyPringle

SchoolofEarthandEnvironment,UniversityofLeeds,Leeds,UnitedKingdom

JohannesQuaas

LeipzigUniversity,Leipzig,Germany

PhilipJ.Rasch

PacificNorthwestNationalLaboratory/UniversityofWashington,Seattle,WA,UnitedStates

BjørnHallvardSamset

CICEROCenterforInternationalClimateResearch,Oslo,Norway

JuliaSchmale

SchoolofArchitecture,CivilandEnvironmentalEngineering, EcolePolytechniqueFederalede Lausanne,Lausanne,Switzerland

AnjaSchmidt

InstituteofAtmosphericPhysics(IPA),GermanAerospaceCenter(DLR),Oberpfaffenhofen; MeteorologicalInstitute,LudwigMaximilianUniversityofMunich,Munich,Germany;Yusuf HamiedDepartmentofChemistry,UniversityofCambridge,Cambridge,UnitedKingdom

MichaelSchulz

ResearchDepartment,NorwegianMeteorologicalInstituteandDepartmentofGeosciences, UniversityofOslo,Oslo,Norway

CatherineE.Scott

SchoolofEarthandEnvironment,UniversityofLeeds,Leeds,UnitedKingdom

DuncanWatson-Parris

Atmospheric,OceanicandPlanetaryPhysics,UniversityofOxford,Oxford,UnitedKingdom

LauraJ.Wilcox

NationalCentreforAtmosphericScience,UniversityofReading,Reading,UnitedKingdom

HongbinYu

EarthSciencesDivision,NASAGoddardSpaceFlightCenter,Greenbelt,MD,UnitedStates

Acknowledgments

Wearegratefultomanycolleagueswhoreviewedseveralofthechaptersofthisbook:

JonathanAbbatt,DepartmentofChemistry,UniversityofToronto,Canada; TimAndrews,Met Office,UnitedKingdom; RobertAllen,EarthandPlanetarySciences,UniversityofCalifornia,Riverside,UnitedStates; MianChin,AtmosphericChemistryandDynamicsLaboratory,NASAGoddard SpaceFlightCenter,UnitedStates; PaulDeMott,DepartmentofAtmosphericScience,ColoradoState University,UnitedStates; OlegDubovik,UniversityofLille,Lille,France; DonGrainger,Atmospheric,Oceanic&PlanetaryPhysics,UniversityofOxford,UnitedKingdom; RuthPrice,School ofEarthandEnvironment,UniversityofLeeds,UnitedKingdom; JeffreyPierce,DepartmentofAtmosphericScience,ColoradoStateUniversity,UnitedStates; ZacharyLebo,DepartmentofAtmosphericScience,UniversityofWyoming,UnitedStates; Po-lunMa,PacificNorthwestNational Laboratory,UnitedStates; ThomasPopp,GermanAerospaceCenter(DLR),GermanRemoteSensing DataCenterAtmosphere,Germany; AlanRobock,SchoolofEnvironmentalandBiologicalSciences, RutgersUniversity,UnitedStates; AndrewSayer,NASAGoddardSpaceFlightCenter,UnitedStates; StevenSmith,JointGlobalChangeResearchInstitute,PacificNorthwestNationalLaboratory,United States; IvyTan,DepartmentofAtmosphericandOceanicSciences,McGillUniversity,Canada; MatthewToohey,InstituteofSpaceandAtmosphericStudies,UniversityofSaskatchewan,Canada; HuiWan,PacificNorthwestNationalLaboratory,UnitedStates; HailongWang,PacificNorthwest NationalLaboratory,UnitedStates; AlfredWiedensohler,DepartmentofExperimentalAerosoland CloudMicrophysics,LeibnizInstituteforTroposphericResearch,Germany; RobertWood, AtmosphericSciences,UniversityofWashington,UnitedStates; SabineUndorf,Departmentof Meteorology,StockholmUniversity,Sweden; DanieleVisioni,SibleySchoolforMechanicaland AerospaceEngineering,CornellUniversity,UnitedStates; KaiZhang,PacificNorthwestNational Laboratory,UnitedStates.

Acronymsandabbreviations

ACI Aerosol–cloudinteraction

ACSM AerosolChemicalSpeciationMonitor

ACTRIS Aerosols,CloudsandTracegasesResearchInfraStructureNetwork

AerChemMIP AerosolChemistryModelIntercomparisonProject

AeroCom Anopeninternationalinitiativeofscientistsinterestedintheadvancementofthe understandingoftheglobalaerosolanditsimpactonclimate

AERONET AerosolRoboticNetwork

AGCM Atmosphericgeneralcirculationmodel

AI Aerosolindex

AIRS AtmosphericInfraRedSounder

AMIP AtmosphericModelIntercomparisonProject

AMOC Atlanticmeridionaloverturningcirculation

AMS AerosolMassSpectrometer

AMV Atlanticmultidecadalvariability

AOD Aerosolopticaldepth

AOGCM Atmosphere-oceangeneralcirculationmodel

AR4,AR5,AR6 AssessmentreportsoftheIntergovernmentalPanelonClimateChange

ARI Aerosol–radiationinteraction

ATOFMS AerosolTime-of-FlightMassSpectrometer

ATSR AlongTrackScanningRadiometer

AVHRR AdvancedVeryHighResolutionRadiometer

BB Biomassburning

BC Blackcarbon

BVOC Biogenicvolatileorganiccompound

CALIOP Cloud-AerosolLidarwithOrthogonalPolarization

CALIPSO Cloud-AerosolLidarandInfraredPathfinderSatelliteObservations

CAMS CopernicusAtmosphereMonitoringService

CAPE Convectiveavailablepotentialenergy

CATS Cloud-AerosolTransportSystem

CCN Cloudcondensationnucleus/nuclei

CEDS CommunityEmissionsDataSystem

CFMIP CloudFeedbackModelIntercomparisonProject

CLAW Charlson,LovelockAndreae,Warren(authorsofapublication)

CLE Currentlegislation

CLRTAP ConventiononLong-RangeTransboundaryAirPollution

CMIP CoupledModelIntercomparisonProject

CPC(CNC) CondensationParticleCounter(CondensationNucleusCounter)

CPM Cloud-permittingmodelorconvection-permittingmodel

CPU Centralprocessingunit

CRM Cloud-resolvingmodel

CS Condensationsink

CTM Chemicaltransportmodel

DCC Deepconvectivecloud

DJF DecemberJanuaryFebruary

DMA DifferentialMobilityAnalyzer

DMPS DifferentialMobilityParticleSizer

DMS Dimethylsulfide

DNS Directnumericalsimulation(atmosphericmodel)

DSCOVR DeepSpaceClimateObservatory

EARLINet EuropeanAerosolResearchLidarNetwork

EBAS Adatabasehostingobservationdataofatmosphericchemicalcompositionand physicalproperties

EBC Equivalentblackcarbon(basedonopticalabsorption)

ECS Equilibriumclimatesensitivity

ELVOC Extremelylowvolatilityorganiccompound

EMIC Earthsystemmodelofintermediatecomplexity

ENSO ElNin ˜ oSouthernOscillation

ENVISAT EnvironmentalsatelliteoperatedbytheEuropeanSpaceAgency

EOF Empiricalorthogonalfunction

EOS EarthObservingSystem(NASA)

ERF Effectiveradiativeforcing

ESA EuropeanSpaceAgency

ESM Earthsystemmodel

EUMETSAT EuropeanOrganisationfortheExploitationofMeteorologicalSatellites

FAR FirstAssessmentReport(oftheIntergovernmentalPanelonClimateChange)

FAIR FiniteAmplitudeImpulseResponsesimpleclimatemodel/emulator

FF Fossilfuel

FT Freetroposphere

GAINS GreenhousegasAirpollutionINteractionsandSynergies

GAW GlobalAtmosphereWatch

GCCN Giantcloudcondensationnucleus/nuclei

GCM Generalcirculationmodel(alsoglobalclimatemodel)

GDE Generaldynamicequationofaerosol

GEOS GoddardEarthObservingSystem

GOES GeostationaryEnvironmentalSatellites

GOME GlobalOzoneMonitoringExperiment

GOMOS GlobalOzoneMonitoringbyOccultationofStars

GTP Globaltemperaturepotential

GWP Globalwarmingpotential

HNLC Highnutrient-lowchlorophyll

HS Apparenthydrologicalsensitivity

HSRL HighSpectralResolutionLidar

IAM Integratedassessmentmodel

IASI InfraredAtmosphericSoundingInterferometer

IMPROVE InteragencyMonitoringofProtectedVisualEnvironments

INP Ice-nucleatingparticle

IPCC IntergovernmentalPanelonClimateChange

IR Infrared

ITCZ IntertropicalConvergenceZone

IUPAC InternationalUnionofPureandAppliedChemistry

JJA JuneJulyAugust

LES Large-eddysimulation(atmosphericmodel)

LVOC Lowvolatilityorganiccompound

LW Longwave

M/R Maximum/random(overlap)

MACC MonitoringAtmosphericCompositionandClimate

MAGICC ModelfortheAssessmentofGreenhouseGasInducedClimateChange

MAM MarchAprilMay

MCB Marinecloudbrightening

MERRA Modern-EraRetrospectiveAnalysisforResearchandApplications

MIP ModelIntercomparisonProject

MISR Multi-angleImagingSpectroRadiometer

MME Multi-modelensemble

MOA Marineorganicaerosol

MODIS MODerateResolutionImagingSpectroradiometer

MS Massspectrometer

MXD Maximumlatewooddensity

NDC Nationallydeterminedcontribution

N:P Nitrogen:Phosphorus(nutrientratio)

NIR Near-infrared

NIST NationalInstituteofStandards

NMVOC Non-methanevolatileorganiccompound

NOAA NationalOceanicandAtmosphericAdministration

NOx Nitrogenoxides

NWP Numericalweatherprediction

OA Organicaerosol

OMI OzoneMappingInstrument

OPC(OPS,OPSS) Opticalparticlecounter(spectrometer,sizespectrometer)

OSIRIS OpticalSpectrographandInfraRedImagingSystem

PD Presentday

PDF Probabilitydensityfunction

PDO Pacificdecadaloscillation

PI Preindustrial

POA Primaryorganicaerosol

POLDER POLarizationandDirectionalityoftheEarth’sReflectances

POM Particulateorganicmatter

PPE Perturbedparameterensemble

RCP Representativeconcentrationpathway

RF Radiativeforcing(usuallydefinedasinstantaneousradiativeforcing)

RFMIP RadiativeForcingModelIntercomparisonProject

RGCM Regionalgeneralcirculationmodel

RH Relativehumidity

SAGE StratosphericAerosolandGasExperiment

SAR SecondAssessmentReport(oftheIntergovernmentalPanelonClimateChange)

SCIAMACHY SCanningImagingAbsorptionSpectroMeterforAtmosphericCHartographY

SDG Sustainabledevelopmentgoal

SEMS ScanningElectricalMobilitySpectrometer

SEVIRI SpinningEnhancedVisibleandInfraredImager

SIP Secondaryiceproduction

SLCF Short-livedclimateforcer

SLSTR SeaandLandSurfaceTemperatureRadiometer

SMPS ScanningMobilityParticleSizer

SOA Secondaryorganicaerosol

SON SeptemberOctoberNovember

SP2 SootParticlePhotometer

SRES SpecialReportonEmissionsScenarios

SSA Single-scatteringalbedo

SSP Sharedsocio-economicpathway

SST Seasurfacetemperature

STP Standardtemperatureandpressure

SVOC Semi-volatileorganiccompound

SW Shortwave

TAR ThirdAssessmentReport(oftheIntergovernmentalPanelonClimateChange)

TIR Thermalinfrared

TOA Topoftheatmosphere

TOMS TotalOzoneMappingSpectrometer

TRW Treeringwidth

UAP Ultrafineaerosolparticle

UT Uppertroposphere

UV Ultraviolet

UVAI UltravioletAerosolindex

VEI Volcanicexplosivityindex

VIIRS VisibleInfraredImagingRadiometerSuite

VNIR Visible-near-infrared

VOC Volatileorganiccompound

WBF Wegener-Bergeron-Findeisen

WMGHG Well-mixedgreenhousegas

WHO WorldHealthOrganization

WMO WorldMeteorologicalOrganization

Introduction

SchoolofEarthandEnvironment,UniversityofLeeds,Leeds,UnitedKingdom

1.1 Whatisaerosolandwhyisitimportantforclimate?

Earth’satmospherefromthesurfacetothetopofthestratosphereatabout40kmaltitudecontainsparticlesranginginsizefrommolecularclustersofnanometersindiameteruptoparticlesofseveralmicrometersnearthesurface. Aerosol isthetermusedtodescribethissuspensionofliquidandsolid particlesintheair.ThisbookiscalledAerosolsandClimate(plural)becausetherearemanydifferent typesofaerosolwithvaryingeffectsonclimate.Aerosolisimportantforclimatebecausetheparticles scatterandabsorbsolarandterrestrialradiationandbecausetheyarethenucleiuponwhichclouddropletsandiceparticlesform,whichdominateEarth’salbedo.

Particlesentertheatmospheremainlyatthesurfacebydirectemissionofmateriallikewind-blown seasprayandmineraldust,andfromnaturalandhuman(anthropogenic)combustionsourcesthatproduceparticlescomposedofcomplexmixturesoforganiccarbon,sootandothermaterial.Thereisalsoa tinyinputofparticlesatthetopoftheatmospherefromcosmicdust.Particlesalsoformdirectlywithin theatmospherefromgas-to-particleconversion(nucleation)ofawiderangeofinorganicandorganic gas-phasecompoundsderivedfromnaturalandanthropogenicsources.Theseparticlesstartlifeasmolecularclustersthatcaneventuallygrowuptoseveraltensofnanometersindiameterthroughcoagulationandpartitioningofawiderangeofgas-phasecompoundsintotheparticles.Particles subsequentlyundergomanyphysicalandchemicalchangesduringtransportthroughtheatmosphere, involvinginteractionofparticleswitheachother,furthercondensationofmateriallikesulfateandorganicmaterial,andinteractionwithclouds.Theseprocessesmixparticlestogether,creatingahugely diversearrayofparticlesizes,chemicalcompositions,andnumberconcentrations.

Inalmostanypartofthetropospheresubmicron-sizedparticlesareacomplexmixtureofvarying amountsofinorganicsaltandacidicspecies(sodium,ammonium,sulfate,nitrate,chloride),organic compoundsinwidelyvaryingstatesofoxidation,aswellasinsolublematerialsuchassoot(blackcarbon),mineralmaterial,andotherinclusions.Almostallparticleshaveatleastsomewaterassociated withthem,inamountsthatdependonthechemicalcompositionoftheparticleandambientrelative humidity.Someofthechemicalcomponentswerepresentwhentheparticleswereemittedandsome entertheparticlessometimelaterbycondensationofgas-phasecompoundspotentiallythousandsof kilometersfromwheretheparticlesorgaseswereemitted.Thisspatialvariabilityofsourcescombined withtherelativelyshortlifetimeofparticlesandgasesduetowetanddrydepositionontheEarth’s

https://doi.org/10.1016/B978-0-12-819766-0.00013-4 Copyright # 2022ElsevierInc.Allrightsreserved.

surfacecreatesahighlyheterogeneousdistributionofparticlesinthetropospherethatisfarmorechallengingtosimulateinaglobalmodelthanlong-livedgreenhousegases.

Inthecleanestpartsoftheatmosphereremotefromsourcesofparticlesorgasesthatcannucleateto formnewparticles,theparticlenumberconcentrationcanbelowerthan1cm 3 andthemassconcentrationlessthanafractionofamicrogrampercubicmeter.Inthemostpollutedregionswithstrong sourcesorslowremovalprocesses,numberconcentrationscanexceed105 cm 3 andmassconcentrationscanreachseveralhundredmicrogramspercubicmeter.Inthemajorityofenvironments,mostof theparticlemassresidesinthelargestsuper-micronparticlesandmostofthenumberliesinparticles smallerthanabout100nmdiameter.Theparticlesmostrelevantforclimatearethoseatintermediate sizesofseveraltensofnanometersuptoaboutamicrometer,whichreadilyformclouddropletsand scatterandabsorbsolarradiationefficiently.

Humanactivitieshaveprofoundlyalteredaerosolemissionstotheatmosphereprimarilythrough combustionoffossilfuels,butalsothroughagriculture,changesinlanduse,andalterationofnatural processeslikewildfires.Anthropogenicemissionsofsomeimportantaerosolspecieslikeblackcarbon andsulfurdioxide(whichformssulfateaerosol)exceednaturalemissions,resultinginsubstantialincreasesinaerosolparticlemassandnumberconcentrationsoverlargepartsoftheplanetwithimplicationsforEarth’sradiativeenergybalanceandclimate.Asweshowin Chapter2 andinalaterchapter onsatelliteobservations,continental-scaleplumesofaerosolfromhumanactivitiesarevisibleinsatelliteimagesthousandsofkilometersdownwindofsources.

TheeffectsofaerosolonEarth’sclimate arediverseandcomplexmainlybecausetheydependon manymorepropertiesoftheparticlesthanjustthenumberormassconcentration.Thescatteringand absorptionofradiation,whichalterEarth’sradiativeenergybalance(Fig.1.1),dependonthesizeofthe particles,theirchemicalcomposition,therefractiveindexofthematerial,andtheparticleshape,as wellasseveralenvironmentalfactorssuchasthehumidityoftheair(whichcontrolstheamountof waterabsorbedbytheparticles),thenatureofthesurfacesthattheyoverly,andtheirlocationrelative toclouds.Whenwereferto‘changesinaerosol’fromhumanactivitiesasadriverofclimatechangewe arereferringtochangesinanyoralloftheseparticlepropertiesaswellaschangesintheirhorizontal andverticaldistributionintheatmosphere.

Aerosolparticlesarealsothenucleiuponwhichclouddropletsandiceparticlesform.Clouddropletsaretypicallyseveraltensofmicrometersindiameter – 2–3ordersofmagnitudelargerthanthe aerosolparticlesuponwhichtheyform,sogloballytheyreflectconsiderablymoresolarradiationthan aerosolparticles.Changesinaerosolalterthenumberconcentrationandsurfaceareaofclouddroplets aswellasseveralotherclimaticallyimportantcloudpropertieslikewatercontent,thickness,andareal coverage.Theseaerosol-inducedchangestocloudpropertiesalterthereflectionandabsorptionofsolar radiationandtheabsorptionandemissionofterrestrialradiationbyclouds,withconsequenteffectson Earth’senergybalanceandclimate.Atinyfractionofaerosolparticleswithconcentrationsaslowas 10 4 cm 3 possessspecialpropertiesthatenablethemtoinitiatetheformationoficeinclouds,which canprofoundlyalterthebehaviorofcloudsbelow0°C.

Changesinaerosolcausedbyhumanactivitiesand naturalvariabilityaffectclimatebyaltering energyflowswithintheatmosphereandbetweenthesurface,atmosphere,andspace.Scatteringof solarradiationbacktospaceandtheabsorptionof radiationwithintheat mospherealterthenet amountofradiativeenergyintheclimatesystem(Fig.1.1).Thefirst-orderresponsetothischange inradiativeenergyisachangeinEarth’sglobalaveragetemperature,althoughthethermalinertiaof theoceanmeansthatittakesmanydecadestocenturiestore-establishanewequilibriumglobal

FIG.1.1

Themainwaysinwhichanincreaseinaerosolfromanthropogenicactivitiesaffectstheclimate.Scatteringand absorptionofsolarradiationbyaerosolandmodificationofcloudpropertiesresultsinanetlossofradiativeenergy fromtheplanet,andhenceacoolingeffectonclimate.Othereffects(notshown)includechangesinthe temperaturestructureandstabilityoftheatmosphere,changesintheabsorptionandemissionofradiationinthe terrestrial(infrared)spectrum,darkeningofsnowandicesurfaces,changesiniceparticleformationinclouds, andeffectsonthecarboncyclefromdepositionofnutrientsrequiredbybiota. 3 1.1

temperatureafteraerosolhasbeenperturbed.Regional-andhemispheric-scalechangesinatmosphericcirculationandlandtemperaturescanocc uronmuchshortertimescales,withregionally importantimpactsonclimate.

Changesinaerosolalsoaffectprecipitation.Thedistributionofprecipitationcanbeaffectedlocally andregionallyonthetimescaleofhourstodaysbychangesincloudmicrophysicalprocessestriggered bychangesindropletandiceparticleconcentrations.Thetotalamountofprecipitationcanalsobe affectedonregionalandglobalscalesonthetimescaleofdaystomonthsbychangesintheradiative energydepositedintheatmosphere,whichdeterminestheamountofwaterthatcancondense.Ultimately,onthetimescaleofdecadestocenturiesaerosol-inducedchangesinsurfacetemperaturefurther alterthehydrologicalcycleandprecipitation.

Ithasprovenextremelychallengingtoaccuratelyquantifythemagnitudeofaerosoleffectsonclimatedrivenbyanthropogenicemissions.Itisknownthattheneteffectofanthropogenicaerosolisan enhancementofreflectionofsolarradiationfromtheatmosphereandcloudsandthereforeanincrease inplanetaryalbedo.This radiativeforcing hascausedacoolingeffectonclimateovertheindustrial periodthatiscommensuratewiththewarmingeffectofanthropogenicgreenhousegases.Thefactthat

Earthhaswarmedovertheindustrialperiodindicatesthattheaerosolcoolingeffectissmallerthanthe greenhousegaswarming(unlessothermajorforcingshavenotbeenaccountedfor).Theradiativeforcingrelativetopreindustrialconditionshasbeenpersistentlyuncertaininclimatemodelsimulationsand observations,andthereisevenlessconfidenceinhowtheforcinghasaffectedglobalandregional temperaturesandweatherpatterns.Thedifficultystemsfromthemanywaysinwhichaerosolaffects climate,thehugediversityofaerosolpropertiesthatmatter,andtheenormousvariationsinaerosol propertiesaroundtheplanet.Subsequenteffectsonclouds,weatherpatterns,andregionalclimate drivenbychangesinaerosol,radiation,andtemperatureaddfurthercomplicationsthatchallenge ourunderstandingofmeteorologyandclimatedynamics.

Asidefromaerosoleffectsonthephysicalclimate(radiation,clouds,precipitation,temperature), therearealsonumerouseffectsinvolvingchangesinEarth’sbiotaintheoceanandonlandcausedby altereddepositionofnutrientspecieslikeiron,phosphorus,andnitrogen.Changesinbiotahavethe potentialtoaffectthecarboncycleandhencecarbondioxideconcentrations.

1.2 Aimsandscopeofthebook

Thisbookhasbeenwrittenforscientistsenteringwhathasbecomeahugelydiversefieldofscience. WhenSeanTwomey’sseminalbook AtmosphericAerosols (Twomey,1977)waspublished,theroleof aerosolinclimatechangedeservedoneshortchapterinabookfocusedonaerosoldynamics,optics, andelectricalproperties.Atthattime,whenthepotentialroleofanthropogenicaerosolinclimate changewasbeginningtobestudied(see Chapter2),aknowledgeofphysicsandsomebasicchemistry wassufficienttoinvestigatetheprocessesthatwereconsideredtobeimportantatthetime.Intheintervening40yearsorso,aerosol-climatesciencehasgrowntoencompassmanyaspectsofmeteorology,climatedynamics,cloudandradiationphysics,biogeochemistry,andotherdisciplines.Italso stimulatedandnowreliesheavilyonavastarrayofmeasurementsfromsatellitesandinsituinstrumentationaswellasnumericalmodelingfromthescaleofindividualcloudstoglobalEarthsystem models.Thechallengefornewentrantstothefieldofaerosol-climatescienceisthatmanyofthe bigquestionsneedtobetackledincollaborationsthatspanmanyorallofthesedisciplines.Asaconsequence,mostatmosphericaerosolscientistsnowfindthemselvesneedingtounderstandatleastthe basicsofawiderangeoftopicsoutsidetheirimmediatespecialism.

Afurtherchallengefornewentrantsisthatdiversificationofaerosolsciencehasalsoledtothe emergenceofseveralsubdisciplines,whichhasinevitablyledtothedevelopmentofspecializedterminology,concepts,definitions,andnomenclature.Suchspecializationmakesaerosol-climatescience increasinglyinaccessibletonewentrantsaswellastoscientistswhoseresearchdiversifies.Atthevery leastitmakesitchallengingtoswitchbetweenparallelsessionsatamajoraerosolconferenceorto participateactivelyinacollaborativeproject.Theaimofthisbookistoconnectthesediverseareas ofaerosolscienceandpresentthestateofknowledgeinaconsistentway.

Oneofthemainmotivationsforpursuingaresearchcareerinaerosol-climatescienceisthatthe climaticeffectsofaerosolarehighlyuncertain,asituationthathaspersistedsincethefirstattempts inthe1990stoevaluatetheseeffectsinaconsistentway.However,newentrantstothisfieldsoon appreciatethatanunderstandingofaerosolfundamentalsaloneisinsufficienttounderstandandtackle theuncertainty.Thisisbecausetheuncertaintystemsfromhowthefundamentalprocessesinteract, howtheyareappliedinmodels,andwhatassumptionsaremadebecauseofalackofprocess-level

understandingorlimitedcomputationalpowertorunlarge-scalemodels.Indeed,perhapsthegreatest separationofsubdisciplinesinaerosolscienceisbetweeninvestigationsofaerosolandcloudprocesses inever-increasingdetailandthedevelopmentoflarge-scalemodelsthatareultimatelyusedtodefine ouroveralllevelofunderstandingandtoinformclimatepolicy.Toaddressthisdisconnection,thebook includesadedicatedchapteronmodelingandeachofthesubsequenttopicchaptersincludesasection onmodelswiththeaimto‘liftthelid’onhowvariousprocessesarehandledinmodelsandwhatis neglectedortreatedinadequately.

Thisisnotabookaboutaerosolphysicalandchemicalfundamentals.Forthatthereareseveralother excellenttextbooksaimedatscientistsworkingwithinsubdisciplinesofaerosol-climatescience.Some fundamentalconceptsareintroducedineachchapter,especiallywherewethinktheconceptsmaybe difficulttoassembleinacoherentwayfromothersourcesorwheretheterminologyhasbeguntodeviatefromwhathasbeenusedinthesubdisciplines.Rather,thebookisabouthowfundamentalconceptsinaerosolsciencearebeingappliedinclimatescienceandhowtheconceptsareultimately translatedintobetterclimatemodels.

Thetopicscoveredinthebookreflectthemajorchallengesinthefieldofaerosol-climatescience. Indesigningthechapters,wewerealsoawareoftheneedtoprovideaprimerontopicsthathavebeen vitaltothedevelopmentofourunderstandingofglobalaerosol,includingthedevelopmentofemission inventories,ambientandremoteaerosolmeasurements,andmodeling.Wehavetriedtoavoidstructuringthechaptersaroundaerosolchemicalspeciesthatareimportantresearchfoci,suchasdust,black carbon,andorganicaerosols.Instead,theseareincorporatedintherelevantchaptersonprocesses, emissions,radiation,andobservations.ChaptersonvolcanicandArcticaerosolmightappeartobe theexceptions,butthesearealsoassociatedwithparticularregionsoftheatmosphere,sowedescribe theprocessesinthecontextoftheenvironmentsinwhichtheyoccur.

Followingthisintroduction,thebookisorganizedasfollows:

Chapter2 providesanoverviewofthe effectsofaerosolonclimate,includingchangesinradiative energyfluxes,temperature,andprecipitationonaglobalscale.Itintroducestheimportantconceptof aerosolradiativeforcing(theradiativeenergyimbalancedrivingclimatechange),atmosphericandradiative“adjustments”totheforcingthathaveproveddifficulttoquantify,long-termclimateresponse, andtheimportanceofaerosolinclimatesensitivity.Thischapteralsoprovidesabriefhistoryofour understandingofaerosoleffectsonclimate.

Chapter3 extendsthediscussionofaerosolclimaticeffectstothe roleofaerosolintheEarthsystem,inparticularthewaysinwhichaerosolaltersbiogeochemicalprocessesonlandandintheocean leadingtochangesinthecarboncyclethatalterclimate.Wealsodescribehowbiologicalprocesseson landandintheoceangenerateaerosolsandprecursorgasesthataffectclimateandare,inturn,affected byclimatechange.

Chapter4 describesthe propertiesanddistributionofaerosol.Thechapterdefinesthefundamental propertiesofaerosolparticlesthatdeterminetheeffectsonclimate – theparticlesizedistributionand chemicalcomposition – andhowthesepropertiesvaryspatiallyonthescaleofmeterstothousandsof kilometersandtemporallyonthetimescaleofhourstoyears.

Chapter5 describesthe aerosolphysicalprocesses thatshapetheaerosolphysicalandchemical properties,coveringparticleformationfromgas-phaseprecursors,particlegrowth,coagulation,exchangeofchemicalspecieswiththegasphase,wateruptake,anddryandwetdeposition.Weemphasizethetimescalesoftheseprocessesandhowtheyshapeparticlepropertiesduringtheirshort residencetimeintheatmosphere.

Chapter6 summarizestherepresentationof aerosolinclimatemodeling. Ouraiminthischapteris to‘liftthelid’onhowaerosols,clouds,andradiationarehandledinthewiderangeofmodelsusedin climatescience.Thisisavasttopic,sowefocusonhighlightingthemanyassumptionsthataremade, whytheyaremade,andhowtheyaffecttherealismandreliabilityofmodels.Modelingisoftenseenas adownstreamactivity,whichoughttoplaceitattheendofthebook.However,the“anatomy”ofa modeldescribedheresetsthesceneforthemore-detaileddescriptionsofmodelprocessesineach ofthesubsequentchapters.

Chapter7 describesthe historicalvariationsinaerosol asrecordedinicecoresandfromdirectand indirectmeasurementssincethe1960s.Itisthesechangesinaerosolthathavecausedchangesinclimate.Themeasurementrecordsarepatchyandoftendifficulttointerpretdirectlyintermsofatmosphericaerosolabundance,buttheypaintaconsistentpictureoflong-termclimaticallyimportant variations.

Chapter8 followsdirectlyfrom Chapters6and7 bydescribing aerosolandprecursorgasemissions,whichareavitalinputtoclimatemodelsandkeytounderstandinglong-termaerosoltrends.We explainhowemissionratesaredefinedandhowtheyaredevelopedforinputintomodels.Emissions derivefromhumanactivities(oftenreferredtoasanthropogenic)andfromnaturalsourceslikesea spray,fires,andthebiosphere.Weaddresshowemissionsareestimatedfromdataonhumanactivity andfrommeasurementsandmodelsofnaturalprocesses.

Chapter9 describesthe measurementofambientparticleproperties. Aerosolsciencemakesextensiveuseofambient(insitu)measurementstounderstandprocessesandtoconstrainthestateandbehavior ofmodels.Inthischapterwedescribemeasurementsofparticlenumberandmassconcentration,size distribution,wateruptake,opticalproperties,chemicalcomposition,andinteractionwithclouds.

Chapter10 describes satellitemeasurementsofaerosol. Satellitesprovidetheonlywaytoviewthe distributionofaerosolonaglobalscaleandtheyhavebeenacriticalpartofassessmentsoftheglobal radiativeeffectsofaerosolaswellastheeffectsonclouds.Inthischapterwedescribethekeyinstruments,measurementtechniques,andmethodsofretrievingaerosolpropertiesfromradiative measurements.

Chapter11 focuseson aerosol-radiationinteractions,includingthescatteringandabsorptionof solarandterrestrialradiationbyparticles,theneteffectaerosolonEarth’sradiativeenergybudget, andtheeffectthatanthropogenicemissionshavehadontheseprocesses.Afterdefiningsomefundamentalprocesses,estimatesofthemagnitudeofradiativeforcingfromsatellitemeasurementsand modelsarepresented,withfurtherdetailonhowsatellitemeasurementsaremadein Chapter10

Chapter12 focuseson aerosol-cloudinteractionsinshallowliquidclouds.Thechapterintroduces somefundamentalaspectsofcloudphysicsrequiredtounderstandhowcloudprocessesandproperties areperturbedbychangesinaerosol.Thechapterfocusesonshallowliquidcloudslikestratusandstratocumulusthatdominatethecloudradiativeeffectonclimate.Weoutlinehowperturbationofcloud propertiesbychangesinaerosolisquantifiedandaddresssomeofthereasonswhythemagnitudeof radiativeeffectsremainsverychallengingtoquantify.

Chapter13 addresses large-scaledynamicalresponsestoaerosol. Thischapterexplainshownonuniformcoolingandheatingintheatmosphereandatthesurfacecausedbyaerosolaffectregional-scale energyflows,resultinginchangesintheatmosphericcirculationonscalesrangingfromsubcontinental tohemispheric-widepatterns,withsubsequentimpactontemperatureandprecipitation.

Chapter14 describesourunderstandingof aerosoleffectsondeepconvectiveclouds.Theprocesses andclimaticeffectsindeepcloudsreaching10–15kminthetropospherearemorevariedandcomplex

thaninshallowcloudsowingtothecascadeofwaterandice-phaseprocessesthatoccurwithinacomplexdynamicalenvironment.Theeffectofchangesinaerosoloncloudvigorandthecreationofextensive,radiativelyimportantanvilcloudsisconsequentlyincompletelyunderstoodandregionally variable.

Chapter15 addresses aerosoleffectsoniceformationinclouds,whichisanotherimportantwaythat aerosolcanaffectcloudsandclimate.Thechaptercoversthepropertiesofice-nucleatingparticles,how iceisformedinclouds,andourcurrentunderstandingfrommodelsandobservationsoftheeffectsof theseparticlesonshallowmixed-phasecloudsinthelowertroposphereandcirruscloudsintheupper troposphere.

Chapter16 describesthe aerosolprocessesinpolarandhigh-latituderegions.Aerosoleffectsat highlatitudesdeservespecialtreatmentbecauseoftheirpotentialroleinthestronglyamplifiedrateof climatechangeintheArcticinparticular.Wedescribesomeoftheuniqueaerosolpropertiesandprocessesinthisregion,includingtheinteractionswithcloudsandthewaysinwhichthesedifferfrom otherregions.

Chapter17 exploresthe effectsofvolcanicaerosolonclimate.Volcaniceruptionsstandoutinthe climaterecordassubstantialperturbationstosurfacesolarradiation,globaltemperature,andprecipitationpatternscausedbysubstantialincreasesinmainlysulfuricacidaerosolinthestratosphere. Degassingvolcanoesandeffusiveeruptionsarealsoanimportantsourceofaerosoltotheglobaltroposphere.Wedescribehowthesedifferenteruptionstylesaffectaerosolinthetroposphereand stratosphere.

Chapter18 addressestheroleof aerosolinclimateengineering. Twoofthemostprominentproposalstodeliberatelymodifytheclimateinvolveaerosol – injectionofparticlesintothestratosphereto mimictheeffectsofvolcaniceruptions,andinjectionofseasprayparticlesintoshallowmarineclouds toincreasetheirreflectionofsolarradiation.Thischapterdescribestheprinciplesofthesetwomethods ofclimateengineering,includingpotentialinadvertenteffectsonaspectsofregionalclimate.

Chapter19 outlinestheroleof aerosolinclimateandairqualitypolicy. Manyofthechangesin aerosolabundanceovertheindustrialperiodhaveoccurredasaresultofpoliciesrelatedtoimproving airqualityandpreventingenvironmentaldegradation.Wedescribethesepoliciesaswellaswaysin whichfutureclimatechangepoliciessuchastheParis1.5degreetargetaccountforaerosoleffects.We alsooutlinehowairqualityandclimatearecoupledproblemsinwhichchangesinclimatecanalso affectaerosolandairquality.

1.3 Terminology,symbols,andunits

Aerosolscienceisaverybroaddisciplinewithrootsinfundamentalscienceslikephysicsandchemistry,establishedscienceslikemeteorologyandinstrumenttechnology(metrology),andsciencesthat haveexistedforonlyafewdecades,suchasclimatemodeling,airpollution,andpolicy.Thisbreadth bringswithitavastrangeofterminologies,acronyms,andsymbolstodescribephysicalquantities,as wellasadiverserangeofunits.Wehaveaimedforconsistencythroughthebook,butthereareafew areasofdivergence.

“Aerosol” isitselfinconsistentlyusedinaerosolscience.Inthisbookwerefertoaerosolasasuspensionofparticlesinair,sowemostlyrefertoitinthesingular.Thepluralisusedwhenreferring specificallytomultipletypesofaerosol,sodustandseasprayareaerosols.Thewordaerosolis

increasinglyusedasasynonymofparticlesuchas“aerosolgrowth”or“theaerosols,”meaningthe particles.Weavoidthisusage.

Diametersandradii areusedofteninterchangeablyinaerosolscience.Particlemeasurementsare almostalwaysreportedintermsofdiameter(althoughlesscommoninthestratosphere),whilethe equationsofparticlemicrophysics(growth,coagulation,etc.)almostalwaysuseradius:nobody learnedinschoolthatthevolumeofasphereis 1 6 π d 3 .Wehavenotattemptedtounifytheuseofradius anddiameterthroughthebook.

Acronymsandsymbols. Aerosolscienceisrifewithacronyms.Wehavetriedtokeeptheirusetoa minimum,butmanyarenowsodeeplyingrainedthattheyareoftennotdefinedinpublications.Alist ofacronymsisprovided.

Ithasbecomecommontouseacronymsandsymbolsforphysicalquantities,oftenwithasymbol usedinanequationbutanacronymforthesamequantityinthetext.ProminentexamplesareAOD (aerosolopticaldepth)andradiativeforcing(RF)inphrasessuchasRF ¼ 2Wm 2.Weavoidthisusage,whichisinconsistentwithIUPACguidelines(Cohenetal.,2006).InkeepingwithIUPAC,weuse singlelettersforphysicalquantities,suchas τa foraerosolopticaldepthand △ F forradiativeforcing, where △ indicatesthatitisachangeinradiativeflux F.Likewise,althoughCCNisanappropriate acronymforcloudcondensationnuclei,weuse NCCN fortheassociatedphysicalquantityofCCNnumberconcentration.TheonlycasewherewedivergefromthisusageiswithPM(particulatematterconcentration),whichisdeeplyembeddedinourfieldinrelationtoairqualityregulations.Werecognize thatourapproachmaymakesomeofthechaptersalittleunfamiliartospecialistswhoareusedtotheir acronyms,butwefeltthatconsistency(orsomethingapproachingit)wasthemoreimportant consideration.

References

Cohen,E.R.,Cvitas ˇ ,T.,Frey,J.G.,Holmstr€ om,B.,Kuchitsu,K.,Marquardt,R.,Mills,I.,Pavese,F.,Quack,M., Stohner,J.,Strauss,H.L.,Takami,M.,Thor,A.J.,2006.Quantities,UnitsandSymbolsinPhysicalChemistry. In:InternationalUnionofPureandAppliedChemistry,thirded. Twomey,S.,1977.AtmosphericAerosols,DevelopmentsinAtmosphericScience.ElsevierScientificPublishing Company,Amsterdam.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.