Advances in synthesis gas: methods, technologies and applications, volume 1: syngas production and p

Page 1


inSynthesisGas:Methods,Technologies andApplications,Volume1:SyngasProductionand PreparationMohammadRezaRahimpour

https://ebookmass.com/product/advances-in-synthesis-gasmethods-technologies-and-applications-volume-1-syngasproduction-and-preparation-mohammad-reza-rahimpour/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Advances in Synthesis Gas: Methods, Technologies and Applications, Volume 3: Syngas Products and Usages

Mohammad Reza Rahimpour

https://ebookmass.com/product/advances-in-synthesis-gas-methodstechnologies-and-applications-volume-3-syngas-products-and-usagesmohammad-reza-rahimpour/ ebookmass.com

Advances in Synthesis Gas: Methods, Technologies and Applications, Volume 2: Syngas Purification and Separation

Mohammad Reza Rahimpour

https://ebookmass.com/product/advances-in-synthesis-gas-methodstechnologies-and-applications-volume-2-syngas-purification-andseparation-mohammad-reza-rahimpour/ ebookmass.com

Advances in Synthesis Gas: Methods, Technologies and Applications, Volume 4: Syngas Process Modelling and Apparatus Simulation Mohammad Reza Rahimpour

https://ebookmass.com/product/advances-in-synthesis-gas-methodstechnologies-and-applications-volume-4-syngas-process-modelling-andapparatus-simulation-mohammad-reza-rahimpour/ ebookmass.com

Highland Rose (The Clan Sinclair Legacy Book 4) Celeste Barclay

https://ebookmass.com/product/highland-rose-the-clan-sinclair-legacybook-4-celeste-barclay/ ebookmass.com

Until Waverly Tl Reeve & Michele Ryan & Boom Factory Publishing

https://ebookmass.com/product/until-waverly-tl-reeve-michele-ryanboom-factory-publishing/

ebookmass.com

The Kaiju Preservation Society John Scalzi

https://ebookmass.com/product/the-kaiju-preservation-society-johnscalzi/

ebookmass.com

Introduction to the Theory of Complex Systems Stefan Thurner

https://ebookmass.com/product/introduction-to-the-theory-of-complexsystems-stefan-thurner-2/

ebookmass.com

Managing Engineering and Technology 6th Edition, (Ebook PDF)

https://ebookmass.com/product/managing-engineering-and-technology-6thedition-ebook-pdf/

ebookmass.com

Processes in Microbial Ecology Dave Kirchman

https://ebookmass.com/product/processes-in-microbial-ecology-davekirchman/

ebookmass.com

R and Python for Oceanographers: A Practical Guide with Applications Hakan Alyuruk

https://ebookmass.com/product/r-and-python-for-oceanographers-apractical-guide-with-applications-hakan-alyuruk/

ebookmass.com

AdvancesinSynthesisGas: Methods,Technologies andApplications

Volume1:SyngasProductionandPreparation

MohammadRezaRahimpour DepartmentofChemicalEngineering,ShirazUniversity,Shiraz,Iran

MohammadAminMakarem MethanolInstitute,ShirazUniversity,Shiraz,Iran

MaryamMeshksar DepartmentofChemicalEngineering,ShirazUniversity,Shiraz,Iran

Contributors

AmrAbdalla DepartmentofChemicalandPetroleumEngineering,UniversityofCalgary,Calgary, AB,Canada

WaqarAhmad DepartmentofChemicalandBiologicalEngineering,MonashUniversity,Clayton, VIC,Australia

PrakashAryal DepartmentofChemicalandBiologicalEngineering,MonashUniversity,Clayton, VIC,Australia

NooshinAsadi DepartmentofChemicalandBiologicalEngineering,MonashUniversity,Clayton, VIC,Australia

ManuelBailera GraduateSchoolofCreativeScienceandEngineering,WasedaUniversity,Tokyo, Japan;DepartmentofMechanicalEngineering,UniversidaddeZaragoza,CampusRı´oEbro,Bldg. Betancourt,Zaragoza,Spain

IdrisBakare InterdisciplinaryResearchCenterforHydrogenandEnergyStorage,KingFahd UniversityofPetroleum&Minerals,Dhahran,SaudiArabia

AliBakhtyari ChemicalEngineeringDepartment,ShirazUniversity,Shiraz,Iran

MohammadBonyadi DepartmentofChemicalEngineering,FacultyofEngineering,Yasouj University,Yasouj,Iran

FelipeGomesCamacho DepartmentofChemicalandPetroleumEngineering,SchulichSchoolof Engineering,UniversityofCalgary,Calgary,AB,Canada

GuoxingChen FraunhoferResearchInstitutionforMaterialsRecyclingandResourceStrategies IWKS,Alzenau,Germany

CamillaFernandesdeOliveira DepartmentofChemicalandPetroleumEngineering,Schulich SchoolofEngineering,UniversityofCalgary,Calgary,AB,Canada

SilviodeOliveiraJunior PolytechnicSchool,UniversityofSaoPaulo,DepartmentofMechanical Engineering,SaoPaulo,Brazil

MaryamDelshah DepartmentofChemicalEngineering,ShirazUniversity,Shiraz,Iran

MeireEllenGoreteRibeiroDomingos PolytechnicSchool,UniversityofSaoPaulo,Departmentof ChemicalEngineering,SaoPaulo,Brazil

MoisesTelesdosSantos PolytechnicSchool,UniversityofSaoPaulo,DepartmentofChemical Engineering,SaoPaulo,Brazil

SwaritDwivedi DepartmentofChemicalandBiologicalEngineering,MonashUniversity,Clayton, VIC,Australia

RaziehEtezadi MorkFamilyDepartmentofChemicalEngineeringandMaterialsScience,University ofSouthernCalifornia,LosAngeles,CA,UnitedStates

AzharuddinFarooqui DepartmentofChemicalandPetroleumEngineering,UniversityofCalgary; VorsanaEnvironmentalInc,Calgary,AB,Canada

DanielFlo ´ rez-Orrego PolytechnicSchool,UniversityofSaoPaulo,DepartmentofMechanical Engineering,SaoPaulo,Brazil;FacultyofMinas,NationalUniversityofColombia,SchoolofProcesses andEnergy,Medellin,Colombia

AndreaGaleazzi PolitecnicodiMilano,DepartmentofChemistry,MaterialsandChemical Engineering“GiulioNatta”,PiazzaLeonardodaVinci,Milan,Italy

XingyuanGao DepartmentofChemistryandMaterialScience,GuangdongUniversityofEducation, EngineeringTechnologyDevelopmentCenterofAdvancedMaterials&EnergySavingandEmission ReductioninGuangdongCollegesandUniversities,Guangzhou,People’sRepublicofChina; DepartmentofChemicalandBiomolecularEngineering,NationalUniversityofSingapore,Singapore, Singapore

JonathanHarding DepartmentofElectricalEngineeringandElectronics,UniversityofLiverpool, Liverpool,UnitedKingdom

BaishaliKanjilal Bioengineering,UniversityofCalifornia,Riverside,CA,UnitedStates

MilanpreetKaur DepartmentofChemistry,FacultyofScience,UniversityofCalgary,Calgary,AB, Canada

SibudjingKawi DepartmentofChemicalandBiomolecularEngineering,NationalUniversityof Singapore,Singapore,Singapore

MohammadHasanKhademi DepartmentofChemicalEngineering,CollegeofEngineering, UniversityofIsfahan,Isfahan,Iran

ParvinKiani DepartmentofChemicalEngineering,ShirazUniversity,Shiraz,Iran

SoheilaZandiLak DepartmentofChemicalEngineering,FacultyofEngineering,YasoujUniversity, Yasouj,Iran

PilarLisbona DepartmentofMechanicalEngineering,UniversidaddeZaragoza,CampusRı´oEbro, Bldg.Betancourt,Zaragoza,Spain

MohammadLotfi-Varnoosfaderani DepartmentofChemicalandPetroleumEngineering,Sharif UniversityofTechnology,Tehran,Iran

NaderMahinpey DepartmentofChemicalandPetroleumEngineering,SchulichSchoolof Engineering,UniversityofCalgary,Calgary,AB,Canada

MohammadAminMakarem MethanolInstitute,ShirazUniversity,Shiraz,Iran

ZuhairOmarMalaibari ChemicalEngineeringDepartment;InterdisciplinaryResearchCenterfor RefiningandAdvancedChemicals,KingFahdUniversityofPetroleum&Minerals,Dhahran,Saudi Arabia

FlavioManenti PolitecnicodiMilano,DepartmentofChemistry,MaterialsandChemical Engineering“GiulioNatta”,PiazzaLeonardodaVinci,Milan,Italy

AramehMasoumi Bioengineering,UniversityofCalifornia,Riverside,CA,UnitedStates

MaryamMeshksar DepartmentofChemicalEngineering;MethanolInstitute,ShirazUniversity, Shiraz,Iran

MasoumehMohandesi DepartmentofChemicalEngineering,ShirazUniversity,Shiraz,Iran

GalalNasser InterdisciplinaryResearchCenterforHydrogenandEnergyStorage,KingFahd UniversityofPetroleum&Minerals,Dhahran,SaudiArabia

FrancescoNegri PolitecnicodiMilano,DepartmentofChemistry,MaterialsandChemical Engineering“GiulioNatta”,PiazzaLeonardodaVinci,Milan,Italy

RafaelNogueiraNakashima PolytechnicSchool,UniversityofSaoPaulo,Departmentof MechanicalEngineering,SaoPaulo,Brazil

ImanNoshadi Bioengineering,UniversityofCalifornia,Riverside,CA,UnitedStates

AlirezaPalizvan DepartmentofChemicalEngineering,CollegeofEngineering,Universityof Isfahan,Isfahan,Iran

SongWonPark PolytechnicSchool,UniversityofSaoPaulo,DepartmentofChemicalEngineering, SaoPaulo,Brazil

VirginiaPerez CentrefortheDevelopmentofRenewableEnergy-CentreforEnergy,Environment andTechnologyResearch(CEDER-CIEMAT),Soria,Spain

KristianoPrifti PolitecnicodiMilano,DepartmentofChemistry,MaterialsandChemical Engineering“GiulioNatta”,PiazzaLeonardodaVinci,Milan,Italy

ShuxianQiu DepartmentofChemistryandMaterialScience,GuangdongUniversityofEducation, EngineeringTechnologyDevelopmentCenterofAdvancedMaterials&EnergySavingandEmission ReductioninGuangdongCollegesandUniversities,Guangzhou,People’sRepublicofChina

HamidRezaRahimpour DepartmentofChemicalEngineering,ShirazUniversity,Shiraz,Iran

MohammadRezaRahimpour DepartmentofChemicalEngineering,ShirazUniversity,Shiraz,Iran

FatemehSalahi DepartmentofChemicalEngineering,ShirazUniversity,Shiraz,Iran

MohammedSanhoob InterdisciplinaryResearchCenterforHydrogenandEnergyStorage,King FahdUniversityofPetroleum&Minerals,Dhahran,SaudiArabia

AkshatTanksale DepartmentofChemicalandBiologicalEngineering,MonashUniversity,Clayton, VIC,Australia

TheodoreTsotsis MorkFamilyDepartmentofChemicalEngineeringandMaterialsScience, UniversityofSouthernCalifornia,LosAngeles,CA,UnitedStates

XinTu DepartmentofElectricalEngineeringandElectronics,UniversityofLiverpool,Liverpool, UnitedKingdom

LuisD.Virla DepartmentofChemicalandPetroleumEngineering,SchulichSchoolofEngineering, UniversityofCalgary,Calgary,AB,Canada

NiWang DepartmentofElectricalEngineeringandElectronics,UniversityofLiverpool,Liverpool, UnitedKingdom

YaolinWang DepartmentofElectricalEngineeringandElectronics,UniversityofLiverpool, Liverpool,UnitedKingdom

ShabnamYousefi DepartmentofChemicalEngineering,ShirazUniversity,Shiraz,Iran

SamiraZafarnak DepartmentofChemicalEngineering;MethanolInstitute,ShirazUniversity, Shiraz,Iran

ZahraZarei ChemicalEngineeringDepartment,UniversityofSistanandBaluchestan,Zahedan,Iran

FatemehZarei-Jelyani DepartmentofChemicalEngineering,ShirazUniversity,Shiraz,Iran

LinghaoZhao MorkFamilyDepartmentofChemicalEngineeringandMaterialsScience,University ofSouthernCalifornia,LosAngeles,CA,UnitedStates

SaraZolghadri DepartmentofChemicalEngineering,MarvdashtBranch,IslamicAzadUniversity, Marvdasht,Iran

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands

TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright©2023ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicor mechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem,without permissioninwritingfromthepublisher.Detailsonhowtoseekpermission,furtherinformationaboutthe Publisher’spermissionspoliciesandourarrangementswithorganizationssuchastheCopyrightClearance CenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions.

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher (otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenour understanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecome necessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusing anyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethods theyshouldbemindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhomtheyhavea professionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliability foranyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceorotherwise,or fromanyuseoroperationofanymethods,products,instructions,orideascontainedinthematerialherein.

ISBN:978-0-323-91871-8

ForinformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: SusanDennis

AcquisitionsEditor: AnitaKoch

EditorialProjectManager: MicaEllaOrtega

ProductionProjectManager: SruthiSatheesh

CoverDesigner: MarkRogers

TypesetbySTRAIVE,India

Preface

Vol.1:Syngasproductionandpreparation

Synthesisgas(syngas)anditsproductssuchashydrogenareindispensableinchemical,oil, andenergyindustries.Theyareimportantbuildingblocksandserveasfeedstockforthe productionofmanychemicalcompoundssuchasammoniaandmethanol.Hydrogenis expectedtobecomeacommonenergycarriernolaterthanthemiddleofthe21stcentury sinceitoffersconsiderableenergydensityandreleasesnegligiblepollutants.Itisalsoutilized inpetroleumrefineriesforproducingcleantransportationfuels,anditsconsumptionis expectedtoincreasedramaticallyinthenearfutureasrefineriesneedtointensifyproduction capacities.Manypublicationshavehithertofo cusedonsyngasproductionandpurification methods,aswellasitsapplicationsinindust rialproductionunits.Despitethefactthat extendedstudieshavebeenundertaken,thereisstillroomforimprovement.Thefour volumesofthisbookseriesexplaintheconventio nalandstate-of-the-arttechnologiesforthe production,purification,andconversionofsyngasmeticulously.

Thedevelopmentofdifferenttechnologiesforproducingsyngashasattractedtheattention ofmanyacademics,researchers,andindustr iesowingtotheinnatebenefits.Inthecurrent scenario,anumberofconventionalprocessesexistforproducingsyngasincluding,butnot limitedto,steamreforming,dryreforming,partialoxidation,andgasification.Selecting thesyngasproductionmethodismainlyb asedonfeedstocktypeandthedesired compositionfordownstreamutilization.Foll owingthenecessitytoaddressthechallenges ofproducingsyngassuchasdeactivationofcatalystswithcokedepositionandsintering, thisengagingtexttouchesona llthecutting-edgestrategiesservingasalinkbetweenthe scientistsintheresearchlaboratoriesandthe operatorsinindustrialplantstosolvethese problems.

Thebookhastwosections,thefirstofwhichintroducescommonsyngasproduction methodsandtechnologiesincludingsteamreforming,gasification,partialoxidation,and pyrolysis,aswellasnoveltechnologiessuchaselectrolysis,plasma,andmicrochannelsin separatechapters.Inthesecondsection,syngasproductionsourcessuchascoal,black liquor,foodandplasticwastes,lignin,andm icroalgaearedescribedindetail.Thesetwo sectionstogetherprovideinsightsintothecurrentstatusandtheprospectofsyngas generationonalargescale.

Theeditorsfeelobligedtosincerelyappreciatetheauthorsofthechaptersfortheir contributions,hardwork,andgreatassistanceinthisproject.Furthermore,theauthors,aswell astheeditors,aregratefultoalltheElsevierstafffortheirinvaluableandirreplaceable step-by-stepassistanceinpreparingthisbook.

MohammadRezaRahimpour

MohammadAminMakarem

MaryamMeshksar

ReviewerAcknowledgments

Theeditorsfeelobligedtoappreciatethededicatedreviewers(listedbelow)whowereinvolved inreviewingandcommentingonthesubmittedchaptersandwhosecooperationandinsightful commentswereveryhelpfulinimprovingthequalityofthechaptersandbooksinthisseries.

Dr.MohammadHadiSedaghat

SchoolofMechanicalEngineering,ShirazUniversity,Shiraz,Iran

Dr.AliBakhtyari ChemicalEngineeringDepartment,ShirazUniversity,Shiraz,Iran

Dr.JavadHekayati DepartmentofChemicalEngineering,ShirazUniversity,Shiraz,Iran

Ms.ParvinKiani

DepartmentofChemicalEngineering,ShirazUniversity,Shiraz,Iran

Ms.SamiraZafarnak DepartmentofChemicalEngineering,ShirazUniversity,Shiraz,Iran

AbouttheEditors

Prof.MohammadRezaRahimpour isaprofessorin

ChemicalEngineeringatShirazUniversity,Iran.Hereceived hisPhDinChemicalEngineeringfromShirazUniversityin cooperationwiththeUniversityofSydney,Australia,in 1988.Hestartedhisindependentcareerasassistantprofessor atShirazUniversityinSeptember1998.Prof.Rahimpourwas aresearchassociateattheUniversityofCalifornia,Davis, from2012to2017.DuringhisstintattheUniversityof California,hedevelopeddifferentreactionnetworksand catalyticprocessessuchasthermalandplasmareactorsfor upgradingligninbio-oiltobiofuelwiththecollaborationof UCDAVIS.HehasbeenachairoftheDepartmentof ChemicalEngineeringatShirazUniversityfrom2005to2009andfrom2015to2020.Prof. Rahimpourleadsaresearchgroupinfuelprocessingtechnologyfocusedonthecatalytic conversionoffossilfuelssuchasnaturalgasandrenewablefuelssuchasbio-oilsderived fromlignintovaluableenergysources.Heprovidesyoungdistinguishedscholarsfrom developingcountrieswithperfecteducationalopportunitiesinbothexperimentalmethodsand theoreticaltoolstoundertakein-depthresearchinthevariousfieldsofchemicalengineering includingcarboncapture,chemicallooping,membraneseparation,storageandutilization technologies,noveltechnologiesfornaturalgasconversion,andimprovingtheenergy efficiencyintheproductionanduseofnaturalgasinindustries.

Dr.MohammadAminMakarem isaresearchassociateat MethanolInstitute,ShirazUniversity.Hisresearchinterests arefocusedongasseparationandpurification,nanofluids, microfluidics,catalystsynthesis,reactordesign,andgreen energy.Inthegasseparationfield,hisfocusisonexperimental andtheoreticalinvestigationandoptimizationofthepressure swingadsorptionprocess,andinthegaspurificationfield,heis workingonnoveltechnologiessuchasmicrochannels. Recently,hehasinvestigatedmethodsofsynthesizing bio-templatenanomaterialsandcatalysts.Hehascollaborated inwritingandeditingvariousbooksandbookchaptersfor famouspublisherssuchasElsevier,Springer,andWiley,in additiontoguesteditingjournalspecialissues.

MaryamMeshksar isaresearchassociateatShiraz University.Herresearchisfocusedongasseparation,clean energy,andcatalystsynthesis.Inthegasseparationfield,sheis workingonmembraneseparationprocesses,andintheclean energyfield,shehasworkedondifferentreforming-based processesforsyngasproductionfrommethaneexperimentally. Shehasalsosynthesizednovelcatalystsfortheseprocesses, whichhavebeentestedforthefirsttime.Shehasreviewed noveltechnologiessuchasmicrochannelsforenergy production.Recently,shehaswrittenvariousbookchaptersfor famouspublisherssuchasElsevier,Springer,andWiley.

Syngascharacteristics:Physical andchemicalproperties

DepartmentofChemicalEngineering,ShirazUniversity,Shiraz,Iran

1.Introduction

Theusageoffuelshasevolvedsincethediscoveryoffire,withmantransitioningfromtimberto coal,thentooil,andeventuallytonaturalgas,whilesimultaneouslyincreasingtheworldwide useoffuelsbyanorderofmagnitude [1].TheensuingCO2 emissionsincreased,greaterthan 400ppmconcentrationintheatmosphere(ppm),whichmaybetheprimarydriverofclimate changeasaresultofglobalwarming [2].Asaresult,thedemandforalternativeandclean energyisamajorsubjectofinterestforacademicsaroundtheworldworkingtodevelop sustainableenergysources.Whenitcomestoproducingsustainableenergy,syntheticgashas enormouspromise.Itcanmeettherisingdemandforliquidandgaseousfuelsandpowerwhile alsoreducinggreenhousegasemissions.Synthesisgasisapromisingtechnologyforimproving energyefficiency,fuelproduction,electricitygeneration,andpollutantelimination,while servingasatransitionalstepfromcarbon-basedtohydrogen-basedfuels.Carbonmonoxide, hydrogen,andothergasesinsmallquantitiesaremixedtogethertoformsynthesisgas,whichis alsoknownassyngas.

Gasderivedfromnaturalgasandotherhydrocarbonsisusedtocreatethisgas.Theproductionof syngasisaccomplishedthroughthereformingprocessthatinvolveseitheranendothermicoran exothermicreaction,dependingonthechemicaltechniquethatisusedtoimplementthemethane catalyticreformingprocess.Biomasscanalsobeusedtogeneratesyntheticgas [3].Thiscanbe accomplishedthroughavarietyofprocessesincludingbiomassgasification [4,5] andbio-oil reformingusingsteam [6–9].Everyyear,approximately6EJofsyngasisproducedaroundthe world,about2%oftheglobaltotalprimaryenergyconsumptionatpresent.Manyapplications requirethegenerationofsynthesisgas,suchastheproductionofhydrogenfromnaturalgasfor useinfuelcelloperations.Fischer–Tropschisusedtogeneratelightsyntheticcrudeoilorheavy

waxyhydrocarbons,aswellasthesynthesisofmethanolandammonia [3,10,11].Onthe worldwidesyngasmarket(mostlyderivedfromfossilfuelssuchasnaturalgas,coal,andoil/ residues),theammoniaindustryholdsadominantposition [12].Otherimportantapplications includethecreationofhydrogenintendedforuseinrefineries,aswellashydrogensynthesisand theproductionofmethanol. Fig.1 depictssyngaspresentmarketusageatthetimeofwriting [13]. Amoreecologicallyfriendly,adaptable,andcost-effectivealternativewouldbetosynthesize higheralcoholsdirectlyfromsyngas(CO+H2),ratherthanrelyingonfermentationofsugars (ethanolandisobutanol)orhydrationofalkenesproducedfrompetroleum(heavieralcohols). Sinceitsinceptioninthe1930s,thisreaction’sresearchefforthasfluctuatedwiththepriceofoil, ithasincreasedsignificantlyinthelastdecadeduetoanincreasedfocusonshalegasandother renewableresourcesassuppliesofgaseousfeedstocks [14].Tofurtherboosttheperformanceof theinternalcombustionengine,syngashaslatelybeguntobeusedinthetransportationsector.

2.Productionofsyngas

Asyngasprocesscanbebrokendownintothefollowingfundamentalcomponents(Fig.2):

Fig.2

Processphaseinsyngaspowerplants [15].

Fig.1
Currentglobalmarketforsyngas [3].

Where:

• Feedpreparationincludesunitoperationssuchasheating,purifyingthefeedstock,and addingadditivessuchassteam,CO2,etc.

• Reactionsincludesteamreforming,gasification,pyrolysis,etc.

• Purificationsareunitoperationsthatchangethecompositionoftheproducttomeet downstreamneedsandremovethingsthataren’tgoodfortheproduct,suchaswaterifthe productneedstobedry,H2S,CO2,etc.

Syngasprocessesareoftendefinedbythefollowing:

• Hugemanufacturingvolumes

• Catalyticreactionsinthegaseousphase

• Highpressure(upto100bar)

• Temperaturesrangingfrom0°Cto2500°Cduringcondensationandcombustion

• Generationofsteam,superheatingofsteam,andcondensationofsteamaswater

• Extremelyenergy-efficientprocesseswithfeedconsumptionsofseveralhundredMW [15].

2.1Thereactionofmethanereforming

Whenitcomestoproducingsyngas,reformingisthemostcommonmethodusedinboth industryandlaboratoryresearch.Thisincludesasteamreformingofmethane(SRM),dry reformingofmethane(DRM),andpartialoxidationofmethane(POM),aswellas,bireforming ofmethane(BRM)andautothermalreformingofmethane(ARM) [16–18].Theadvantageof SRMisthatitgeneratessyngaswithalargeconcentrationofhydrogen,whichisadvantageous becausemethaneisdistinguishedtohavethehighestH/Cratioofallofthehydrocarbonsinuse. Additionally,themethodisbasedoninexpensivenickel-basedcatalysts.Heatisessentialfor thecreationofbothsteamandtheprogressionoftheendothermicreaction.Theheatfrom coolingsyngascanbeusedtomakeheatwithoutneedingtoburnmethane,whichisoftenused asaheatsource.Ataround900°C,afullconversionofmethanecanbeachieved.Theuseof hydrogenseparationduringtheprocess,suchasmembraneutilization,allowstoachieve100% methaneconversionatalowertemperature,andfocusedsolarheatmightbeusedtosubstitute methaneburning,therebyloweringtheprocess’scarbonoutput.Highpressureisdetrimentalto theprogressionofthereactionduetotheincreasedmolenumber.Butwhencompressed hydrogenisrequired,pressuresupto30bararebeingusedtoreducethecapacityofthereactor, aswellastheamountofelectricityrequiredforthecompression [18].

IntheDRM,theinteractionbetweenCH4 andCO2 isthemostimportantoneamonganumber ofotherreactions.Apartfromthefeedratioandpressure,thermodynamicpropertieshavean effectontheoptimaltemperatureforthereactionandthenumberofoccurredsidereactions. Additionally,withregardtotemperatureandCO/H2Oratio,thereactionsystemadjusts [19].In mostcases,gasification(coal,heavyhydrocarbons)andreformingaretheprimarysourcesof

thisH2/COcombination(lighthydrocarbons) [20].Carbonsourcesarereactedathigh temperaturesbysteam,oxygen,orcarbondioxidemixes.Thereactionconditionsandthe contentofthegeneratedsyngasmightsubstantiallyvarydependingontheagentusedin differenttechnologies.Adifferentmixtureisneededforeachapplication.Formethanoland Fischer–Tropschsynthesis,themostfrequentH2/COratiois2,buthigherratiosareneededfor thehydrogenproduction [18].LowerH2/COratiosofroughly1areusedintheproductionof ethanolandotheralcohols,aswellasdimethyletherandoxo-alcohols.Furtherloweringofthe ratioresultsinpurecarbonmonoxide,whichisatoxicgaswhenbreathedin.Formicacidand aceticacidaretwoexamplesoftinyorganicmoleculesthatcanbesynthesizedusingthisgas alone,withouttheassistanceofhydrogen [21]. Table1 depictsvarioustypesofreforming procedures,aswellassomeinformationabouteachmethod.

Toillustratehowdifferentfuelsreactindifferentprocessingsteps, Table2 includesequations forfourrepresentativefuels:naturalgas(CH4)andliquefiedpropanegas(LPG)forstationary use,liquidhydrocarbonfuels(CmHn),methanol(MeOH)formobileuse,andcoalgasification forlarge-scaleindustrialusetoproducesyngasandhydrogen [23].

2.2Gasificationofbiomass/coalfortheproductionoffuelsandchemicals

Whenusingasolidmaterialsuchasbiomassorcoalasastartingpoint,thefeedstockmustbe gasifiedbeforeitcanbeused.Theparticlesizedistributionisdeterminedbythekindof gasification [24].Aftergasification,theendresultisagasreferredtoasproducergas,which containsimpuritiesandmustbecleanedupbeforeitcanbeutilized.Priortosynthesis,thegas producertypicallyrequiresaratioofH2 toCO [13].

2.2.1Gasification

Aspreviouslymentioned,synthesisgascanbeproducedfromanyhydrocarbonfeedstock,such ascoal,heavyoil,orcombustiblebiomass,viagasification.Lowpressure(1–20bar)andhigh temperature(800–1000°C)arerequiredforasuccessfulreaction,andaccordingtothe technologies,theH2/COratiorangesbetween0.5and1.8.O2,H2O,air,oracombinationof theseagentsisusedtopartlyoxidizethesolidcarbon.CxHyOz isprimarilycomposedof methanewithtraceamountsofhydrocarbonssuchasethaneandethylene(Table3).Inthe majorityofgasifiers,gasmayalsocontainheavierhydrocarbonssuchastoluene,naphthalene, andbenzeneaccordingtothefeedstockandoperationalconditions.Hydrocarbonsthatare greaterinweightthanbenzenearefrequentlyreferredtoas“tars” [3]

Inmostcases,thegasificationefficiencyiscalculatedonthebasisofthelowerheatingvalue.In ordertocomputetheefficiency,thetotalamountofenergycontainedintheproducergas (practicalaswellaschemical)isexpressedasapercentageofthetotalenergycontainedinthe

Table1Compareandcontrasttheconventionalmainstreammethanereformingprocedures[22].

Reforming type Reaction conditionsH2/COratio

SRM P ¼ 3–25atm

T ¼ 250–1000°C CH4/H2O ¼ 1.5 3228

1.Agreaterconcentration oftheactiveingredient intheproduct

2.Highoperational efficiency

3.Maturityofindustry

POM P ¼ 100atm

¼ 950–1100°C

¼ 2 2 22.6

ARMCH4/H2O/ O2 ¼ 1/1/0.5 1or2based Onfeed Composition Negative value Depended onfeed Composition

1.Enhancedsusceptibility tosulfides

2.Shortdurationof contact

3.Moreenergyefficient

4.Highconversion/ selectionefficiency

1.Moreenergyefficient

2.Reducedcontact duration

3.Decreasedcoke deposition

4.Adjustableand adaptablecomposition ofthefeed

1.Relativelyinefficient energyuse

2.Relativelyhighreactionunit requirement

3.Inappropriateproductsfor F-Tsynthesis

1.ExpensivepureO2 feedstock

2.Possibilityofuncontrolled combustion

BRMCH4/H2O/ CO2 ¼3/2/1 T ¼ 650–900°C

2220 1.Lowerlevelsofcoke deposition

2.Flexibleand customizable compositionofthefeed

1.DecreasedH2 yield

2.AmaximumH2O/O2 ratio

3.Possibilityofuncontrolled combustion

1.Relativelyhighreactionunit requirement

2.ExpensiveseparatingofCO2 fromtargetgoods Continued

Table1Compareandcontrasttheconventionalmainstreammethanereformingprocedures—cont’d

Reforming type Reaction conditionsH2/COratio ΔH(KJ/mol)AdvantagesDisadvantages

DRM P ¼ 1atm

T ¼ 650–900°C

CH4/CO2 ¼ 1

Plasmaassisted T ¼ 400 ° C

Photoassisted T ¼ 400 ° C

Microwaveassisted T ¼ 800 ° C

1.Theprocessof convertingtwo greenhousegases simultaneously

2.Generationofclean powerandfuel

3.OptimumH2/COfor thesynthesisofF-T

1.Highionization activationenergy efficiency

2.Mildthermodynamic circumstancesrelative toothers

1.Breakingbeyondthe thermodynamicslimit anddecreasingenergy usage

1.Instantaneousheat generation

2.Relatively straightforward experimentaldesign

1.Difficultiesassociatedwith catalystdeactivationasa resultofcokeandmetal sintering

2.Extremelystringent requirementsforCO2 activation

1.Overpricedglowdischarge systems

2.Ambiguousmechanismof reaction

1.Availablecatalystsin photocatalyticmaterials

2.Fewcomparativeresearch

1.Inadequatemanagementofa scaldinghotzone

2.Difficultyinmonitoringthe temperatureofthecatalyst

Table2Equationsfortheprobablereactionsthatoccurduringthevariousprocessingsteps [23].

Nameofreactions Possiblereactions

SRM

POM

ARM

Gasificationofcarbon(coal,coke)

CH4 +H2O $ CO+3H2

CmHn +mH2O $ mCO+(m+n/2)H2

CH3OH+H2O $ CO2 +3H2

CH4 +O2 $ CO+2H2

CmHn +m/2O2 $ mCO+n/2H2

CH3OH $ CO+2H2

CH4 +1/2H2 +1/2O2 $ CO+5/2H2

CmHn +m/2H2O+m/4O2 $ mCO+(m/2+n/2)H2

CH3OH+1/2H2O+1/4O2 $ CO2 +2.5H2

C+H2O $ CO+H2

C+O2 $ CO2

C+0.5O2 $ CO

C+CO2 $ 2CO

CarbonformationCO+H2O $ CO2 +H2

CO2 +H2 $ CO+H2O(reversewatergasshift)

Selectiveco-oxidationCO+O2 $ CO2

H2 +O2 $ H2O

Table3Syngasfuelcompositionbycoalandgasifiertype [25]. Typeofcoal

feedstock(theheatingvalue).Mechanicalgasifierefficiencycanrangefrom60%to75%, dependentonthegasifier’skindandconstructionandalsothefuelquality.Thegasification efficiency(percent)utilizedinengineapplicationscanbedefinedasfollows:

where ηm_mdenotestheefficacyofgasification(percentage)(mechanical), Hg indicatesthe gas’sheatingvalueofthegas(kJ/m3), Qg representsthegas’svolumeflow(m3/s), Hs isthe gasifierfuel’slowerheatingvalue(kJkg 1),and Ms definesthesolidfuelconsumptionofthe gasifier(kg/s) [13,26].

3.Thepropertiesofasynthesisgas

3.1Abriefdescriptionofsynthesisgasphysicalandchemicalproperties

SyngasisablendofCOandH2.SyngasmayalsohaveCO2 plusotherconstituentssuchas H2O.Duetothefactthatsyngasistypicallyutilizedatgreaterpressurestosynthesizechemicals andfuels,theN2 levelofsyngasmusttypicallybekepttoaminimum [27].

Hydrogenisachemicalelementthatcanbeusedinavarietyofapplications.However,despite thefactthatitisnearlyexclusivelyfoundinamixedformonearth,itmightbecreatedfromany mainresourcebyseparatingitfromH2Oorothercompounds,whichincludestheelementand convertedintoelectricityandotherlow-pollutionenergyforms [24,28].Therehavebeena varietyoftechnologiesusedtocreatehydrogen(Table4),includingSRM,POM,water electrolysis,andbiomassgasification,amongothers.Whenitcomestoproducinghydrogen fromwater,electrolysisandphotocatalyticwatersplittingaretwoofthemostprevalent methods.However,inordertoproducebothhydrogenandoxygenatthesametime,further separationandpurificationofhydrogenfromoxygenarerequired.Additionally,electrolysisof wateris [30] expensive,andphotocatalyticwatersplittingislimitedbyphotoconversion efficiency.SRMandPOMofhydrocarbonsandcarbon-basedfeedstockssuchasnaturalgas, petroleum,andcoalarethemainwaystomakehydrogenforcommercialuse [31–33].

Table4Themostcommonmethodsofhydrogensynthesis [29].

Process

Coalgasification Coal Water/coal

HydrocarbonspartialoxidationHydrocarbonsWater/hydrocarbons

Hydrocarbonsreforming

Kvaernerprocess Fossil/nuclear/renewableMethane

Electrolysis Water

Thermolysis Nuclear/renewable

Photoelectrolysis Sun

Photosynthesis Water/biomass

Biomassgasification

Biomassanaerobicdigestion

Reactionwater/hydride Chemicalhydride Water/hydride

Syngascharacteristics:Physicalandchemicalproperties11

Hydrogeniscolorless,odorless,andtasteless;itisalmostinsolubleinwater;itisextremely combustible;anditisharmless(simpleasphyxiate).Hydrogenisadiatomicmolecule containingcovalentbonds,withprotonshavingeitherparallel(ortho-hydrogen)orantiparallel (para-hydrogen)spins.Themolecularweightofthiscompoundis2.016amu.Atoraboveroom temperature,H2 seemstobemix(75%ortho-hydrogen,25%para-hydrogen),whichisreferred toasnormal-hydrogen [29].Severalotherpropertiesofhydrogenarelistedin Table5.

Carbonmonoxideisacolorless,odorless,combustiblegasthatislighterthanair.While increasingamountsofCOareenteringtheatmosphereascivilizationadvances,ithasalways beenpresent,mostlyasaresultofvolcanicactivity.Unfortunately,becausetherearesomany naturalsourcesofCOintheatmosphere,itisimpossibletoaccuratelyfigureouthowmuchCO isreleasedintotheair.Inmetropolitanlocations,highlevelsofbreathedCOcanhavea detrimentaleffectonindividualshealth.Itisfrequentlygeneratedbyincompletecombustionof carbon-containingsubstances,mostnotablyininternalcombustionengines.Additionally,it canbekeptandtransportedcompacted,andcloseassociationwithfireorhightemperaturescan resultincontainerexplosions [35].COisaverypoisonousmolecule,andinhalationof significantamountsfrequentlyresultsincentralandperipheralnervoussystemand cardiovascularsystemdiseases.Theseverityofsymptomsisdose-dependentandrangesfrom mildheadachestoquickdeath:COconcentrationsgreaterthan1000ppmaredeemed life-threatening. Table5 containsasummaryofsomefeaturesofcarbonmonoxide [34]. Table5 alsodescribesthepropertiesofothergasesinsynthesisgas,suchascarbondioxideand nitrogen.

Table5Hydrogen,carbonmonoxide,carbondioxide,andnitrogencharacteristics [29,34].

1)141.86010.11232.912Noncombustible CASnumber1333-74-0630-08-0124-38-97727-37-9

3.2Syngasbasiccombustionproperties

Itiscriticaltounderstandthebasiccombustionefficiencyofsyngasfuelinordertouseit effectivelyincombustionequipment.Themosteffectivecombustiondevicesgenerate significantturbulence,whichresultsinimprovedblendofgaseousairandfuelpriortoignition, sothecombustionprocessiscategorizedaspremixedinmanyapplications.Differentsyngas propertiescanhaveaneffectonthecombustionprocedureinengineswithinternalcombustion (IC).ThelimitofflammabilityofsyngasisacriticalpropertyforICenginesafetyandfuel efficiency [36].Additionally,burningvelocityisavitalfactorthatgovernstheblended combustionprocess.Dependingonthenatureoftheburningvelocityoftheflowfield,which mightbelaminarorturbulent,itmaybeusedtomanagethepremixedcombustionprocess.The followingsectionsdiscussthesyngas’sflammabilitylimit,proceduresformeasuringits burningvelocity,thesyngas’scomposition,anditscalorificvalue [3].

3.2.1Limitsontheflammabilityofsyngas

Theflammabilityrestrictionisfrequentlyusedasaproxyfortheflammabilityofthegas.When appliedtoagiventemperatureandpressure,thisphrasereferstoavarietyoffuelcontentsinthe fuelandairmixturethatallowtheflametospreadandmaintaintheflammabilitylimitations. Thesearecommonlyreferredtoasthefuel–airareasthatallowflamepropagationandthose thatdonotallowfirepropagation.Thefuel,thedirectioninwhichitspreads,thesizeandshape ofcombustionchamber,aswellasthetemperaturesandpressuresthereinareallsignificantly affected.Besides,therearetwouniqueflammabilityboundariesforthefuel–airmixture;the smallestpossiblefuellimitacrosswhichflamescanspreadisreferredtoasthelowerlimitof flammability,whileitisregardedastheupperflammabilitylimitfortherichest.Duetothefact thathydrogenandcarbonmonoxidearetheprimarycomponentsofsyngasthatare heat-resistant,thesegases’propertiesareinherited.Inertgasessuchasnitrogenandcarbon dioxidecanbeaddedtogasmixturestomakethemlessflammable [37].

3.2.2Thevelocitiesofsyngaslaminarflames

Thefrequencyoflaminarflashesistherateatwhichaflamespreadsinthedirectionitispointed oftheexpansionwavesurfacesunderalaminarflowscenariousingunbrandedsilentfuel–oxidantmixtures [38].Becauselaminarflamevelocityisextremelysensitivetotheoperationof thecombustionchamberandtheperformanceoftheemissionsystem,itiscriticaltoconduct combustionchamberoperationinvestigations.Itisaffectedbythefuelconcentration,the equivalencyratioofmixtures,thepressure,andthetemperature.

3.2.3Syngasignitiondelaytimes

Syngasignitiondelaytimesareimportantcombustionvariablesthataffectboththe performanceandoperationofburnersandgasturbines.Usingpreignitionwhilethesupplyis lowcouldcausedamagetotheequipment,makingitcriticaltoaccuratelycharacterizeignition

Syngascharacteristics:Physicalandchemicalproperties13

delaydurations.Additionally,ignitiondelaytimesarefrequentlyusedtovalidatereaction mechanisms.Generally,machinesforfastcompressionandfacilityforshocktubeareusedto determineignitiondelaytimesunderavarietyofthermodynamiccircumstances [3,39].

3.3Compositionofsyngasanditscalorificvalue

Themanufacturer’sgascompositionisdeterminedbythegasflowrate,feedstock,flowof feedstock,particlediameter,designsofreactors,catalyst,operatingcircumstancesor gasificationprocess,gasificator,anddurationofgasresidence.However,itismostly influencedbythereactor’stemperature,whichisaffectedbytheenergyratingvalue. Additionally,thequantitiesofhydrogen,carbonmonoxide,andmethaneinproducergasare regulatedbychemicalprocessesoccurringthroughoutthegasificationprocess [37].Asaresult, thetypeofchemicalagentthatoxidizesusedingasificationhasabigimpactonthegas’s calorificvaluethatcomesoutofit.

4.Conclusionandfutureoutlook

Inordertoproducesustainableenergy,expertsfromaroundtheworldareincreasinglyfocused onfurtherinnovativeandcleanenergysources.Synthesisgashassignificantpotentialforusein theproductionofsustainableenergy,whichcanhelptomeetthegrowingneedforliquidand gaseousfuels,aswellasforelectricity.Thesynthesisgasisdescribedasagascontaining primarilyhydrogenandcarbonmonoxideasfuelcomponents,withthelimitationof flammabilityandthevelocityoflaminarflameservingastheprimarysyngasparameters. Syngascanbecreatedinavarietyofways,includingbiomassorcoalgasification,aswellas naturalgasreforming.Thefutureuseofsyngasandhydrogenwillnecessitatethedevelopment ofmoreefficienthydrogenplants,lower-costlarge-scalesyngasplantsforgas-to-liquidsplants, andsmall-scaleapplicationsofsyngastechnologiesforfuelcells,whetherforstationaryor automotiveapplicationsinthefuture [18].

Abbreviationsandsymbols

ARM autothermalreformingofmethane

BRM bireformingofmethane

CO2 carbondioxide

CO carbonmonoxide

CH4 methane

DRM dryreformingofmethane

H2 hydrogen

IC internalcombustion

POM partialoxidationofmethane

SRM steamreformingofmethane

References

[1] D.Bessarabov,P.Millet,BriefHistoricalBackgroundofWaterElectrolysis.PEMWaterElectrolysis, AcademicPress,Cambridge,MA,2018,pp.17–42.

[2] C.Wang,etal.,RecentadvancesduringCH4dryreformingforsyngasproduction:aminireview,Int.J. Hydrog.Energy46(7)(2021)5852–5874.

[3] A.Arman,etal.,SyngasproductionthroughsteamandCO2reformingofmethaneoverNi-basedcatalyst—a review,in:IOPConferenceSeries:MaterialsScienceandEngineering,IOPPublishing,2020.

[4] M.P.Aznar,etal.,Hydrogenproductionbybiomassgasificationwithsteam—O2mixturesfollowedbya catalyticsteamreformerandaCO-shiftsystem,EnergyFuel20(3)(2006)1305–1309.

[5] R.Radmanesh,J.Chaouki,C.Guy,Biomassgasificationinabubblingfluidizedbedreactor:experimentsand modeling,AICHEJ.52(12)(2006)4258–4272.

[6] P.N.Kechagiopoulos,etal.,Hydrogenproductionviasteamreformingoftheaqueousphaseofbio-oilina fixedbedreactor,EnergyFuel20(5)(2006)2155–2163.

[7] L.A.Garcia,etal.,Catalyticsteamreformingofbio-oilsfortheproductionofhydrogen:effectsofcatalyst composition,Appl.Catal.AGen.201(2)(2000)225–239.

[8] C.Rioche,etal.,Steamreformingofmodelcompoundsandfastpyrolysisbio-oilonsupportednoblemetal catalysts,Appl.Catal.BEnviron.61(1–2)(2005)130–139.

[9] S.Czernik,etal.,Hydrogenbycatalyticsteamreformingofliquidbyproductsfrombiomassthermoconversion processes,Ind.Eng.Chem.Res.41(17)(2002)4209–4215.

[10] K.Asimakopoulos,H.N.Gavala,I.V.Skiadas,Reactorsystemsforsyngasfermentationprocesses:areview, Chem.Eng.J.348(2018)732–744.

[11] H.Ebrahimi,M.Rahmani,Modelingchemicalloopingsyngasproductioninamicroreactorusingperovskite oxygencarriers,Int.J.Hydrog.Energy43(10)(2018)5231–5248.

[12] J.A.Dı´az,etal.,CobaltandironsupportedoncarbonnanofibersascatalystsforFischer–Tropschsynthesis, FuelProcess.Technol.128(2014)417–424.

[13] R.A.El-Nagar,A.A.Ghanem,Syngasproduction,properties,anditsimportance,in:A.Inayat,C.Ghenai (Eds.),SustainableAlternativeSyngasFuel,IntechOpen,2019,pp.1–408.

[14] J.R.Rostrup-Nielsen,Syngasinperspective,Catal.Today71(3–4)(2002)243–247.

[15] J.Rostrup-Nielsen,L.J.Christiansen,ConceptsinSyngasManufacture,Vol.10,WorldScientific,2011.

[16] C.Chong,etal.,RobustNi/dendriticfibrousSBA-15(Ni/DFSBA-15)formethanedryreforming:effectofNi loadings,Appl.Catal.AGen.584(2019)117174.

[17] N.A.K.Aramouni,etal.,Catalystdesignfordryreformingofmethane:analysisreview,Renew.Sust.Energ. Rev.82(2018)2570–2585.

[18] J.R.Rostrup-Nielsen,Newaspectsofsyngasproductionanduse,Catal.Today63(2–4)(2000)159–164.

[19] B.Abdullah,N.A.AbdGhani,D.-V.N.Vo,RecentadvancesindryreformingofmethaneoverNi-based catalysts,J.Clean.Prod.162(2017)170–185.

[20] D.M.Alonso,etal.,ProductionofliquidhydrocarbontransportationfuelsbyoligomerizationofbiomassderivedC9alkenes,GreenChem.12(6)(2010)992–999.

[21] J. Falbe,CarbonMonoxideinOrganicSynthesis,Vol.10,SpringerScience&BusinessMedia,2013.

[22] A. Abdulrasheed,etal.,Areviewoncatalystdevelopmentfordryreformingofmethanetosyngas:recent advances,Renew.Sust.Energ.Rev.108(2019)175–193.

[23] K.Liu,C.Song,V.Subramani,HydrogenandSyngasProductionandPurificationTechnologies,JohnWiley& Sons,2010.

[24] X.Yu,etal.,Fischer-TropschsynthesisovermethylmodifiedFe2O3@ SiO2catalystswithlowCO2 selectivity,Appl.Catal.BEnviron.232(2018)420–428.

[25] E.Jithin,etal.,Areviewonfundamentalcombustioncharacteristicsofsyngasmixturesandfeasibilityin combustiondevices,Renew.Sust.Energ.Rev.146(2021)111178.

[26] C.G.Visconti,etal.,CO2hydrogenationtolowerolefinsonahighsurfaceareaK-promotedbulkFe-catalyst, Appl.Catal.BEnviron.200(2017)530–542.

[27] V.N.Nguyen,L.Blum,SyngasandsynfuelsfromH2OandCO2:currentstatus,Chem.Ing.Tech.87(4)(2015) 354–375.

[28] S.Bahri,A.M.Venezia,S.Upadhyayula,UtilizationofgreenhousegascarbondioxideforcleanerFischerTropschdieselproduction,J.Clean.Prod.228(2019)1013–1024.

[29] D.Candelaresi,G.Spazzafumo,Introduction:thepower-to-fuelconcept,in:PowertoFuel,Elsevier,2021,pp. 1–15.

[30] H.F.Abbas,W.W.Daud,Hydrogenproductionbymethanedecomposition:areview,Int.J.Hydrog.Energy 35(3)(2010)1160–1190.

[31] Y.Li,D.Li,G.Wang,MethanedecompositiontoCOx-freehydrogenandnano-carbonmaterialongroup8–10 basemetalcatalysts:areview,Catal.Today162(1)(2011)1–48.

[32] J.N.Armor,ThemultiplerolesforcatalysisintheproductionofH2,Appl.Catal.AGen.176(2)(1999) 159–176.

[33] M.Pen,J.Gomez,J.G.Fierro,Newcatalyticroutesforsyngasandhydrogenproduction,Appl.Catal.AGen. 144(1–2)(1996)7–57.

[34] W.Adach,M.Błaszczyk,B.Olas,Carbonmonoxideanditsdonors-chemicalandbiologicalproperties,Chem. Biol.Interact.318(2020)108973.

[35] V.D.Hahnke,S.Kim,E.E.Bolton,PubChemchemicalstructurestandardization,J.Cheminform.10(1)(2018) 1–40.

[36] E.Esmaili,E.Mostafavi,N.Mahinpey,Economicassessmentofintegratedcoalgasificationcombinedcycle withsorbentCO2capture,Appl.Energy169(2016)341–352.

[37] F.Jiang,etal.,Insightsintotheinfluenceofsupportandpotassiumorsulfurpromoteroniron-basedFischer–Tropschsynthesis:understandingthecontrolofcatalyticactivity,selectivitytolowerolefins,andcatalyst deactivation,Catal.Sci.Technol.7(5)(2017)1245–1265.

[38] S.Mandal,etal.,SynthesisofmiddledistillatethroughlowtemperatureFischer-Tropsch(LTFT)reactionover mesoporousSDAsupportedcobaltcatalystsusingsyngasequivalenttocoalgasification,Appl.Catal.AGen. 557(2018)55–63.

[39] S.Wang,G.Lu,G.J.Millar,Carbondioxidereformingofmethanetoproducesynthesisgasovermetalsupportedcatalysts:stateoftheart,EnergyFuel10(4)(1996)896–904.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.