Advances in quantum chemical topology beyond qtaim juan i. rodriguez - Explore the complete ebook co

Page 1


https://ebookmass.com/product/advances-in-quantum-chemical-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Philosophy Beyond Spacetime : Implications from Quantum Gravity Christian Wüthrich

https://ebookmass.com/product/philosophy-beyond-spacetimeimplications-from-quantum-gravity-christian-wuthrich/

ebookmass.com

Electron correlation in molecules -- ab initio beyond Gaussian quantum chemistry 1st Edition Hoggan

https://ebookmass.com/product/electron-correlation-in-molecules-abinitio-beyond-gaussian-quantum-chemistry-1st-edition-hoggan/

ebookmass.com

Advances in Semiconductor Technologies: Selected Topics Beyond Conventional CMOS An Chen

https://ebookmass.com/product/advances-in-semiconductor-technologiesselected-topics-beyond-conventional-cmos-an-chen/

ebookmass.com

IB French B Course Book Pack: Oxford IB Diploma Programme 2nd Edition Christine Trumper

https://ebookmass.com/product/ib-french-b-course-book-pack-oxford-ibdiploma-programme-2nd-edition-christine-trumper/

ebookmass.com

Open and Closed Economies : Lessons from the Philippines and Vietnam 1st Edition Roderick Macdonald

https://ebookmass.com/product/open-and-closed-economies-lessons-fromthe-philippines-and-vietnam-1st-edition-roderick-macdonald/

ebookmass.com

Pretty Guilty Women Gina Lamanna [Lamanna

https://ebookmass.com/product/pretty-guilty-women-gina-lamannalamanna/

ebookmass.com

New Perspectives on Computer Concepts 2018: Comprehensive 20th Edition – Ebook PDF Version

https://ebookmass.com/product/new-perspectives-on-computerconcepts-2018-comprehensive-20th-edition-ebook-pdf-version/

ebookmass.com

Jamás seré tuya (6.6-Indomables) 1ª Edition Emma G. Fraser

https://ebookmass.com/product/jamas-seretuya-6-6-indomables-1a-edition-emma-g-fraser/

ebookmass.com

Introduction

to

Flight, 9e ISE 9th/ISE Edition John D.

https://ebookmass.com/product/introduction-to-flight-9e-ise-9th-iseedition-john-d-anderson-jr/

ebookmass.com

https://ebookmass.com/product/clinical-veterinary-advisor-dogs-andcats-fourth-edition-leah-a-cohn/

ebookmass.com

ADVANCESINQUANTUMCHEMICAL TOPOLOGYBEYONDQTAIM

ADVANCES INQUANTUM CHEMICAL TOPOLOGY BEYONDQTAIM

InstitutoPolitecnicoNacional,Mexico

FERNANDO CORTE ´ S-GUZMA ´ N

UniversidadNacionalAuto ´ nomadeMexico,Mexico

JAMES S.M.ANDERSON

UniversidadNacionalAuto ´ nomadeMexico,Mexico

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands

TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright©2023ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicor mechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem,without permissioninwritingfromthepublisher.Detailsonhowtoseekpermission,furtherinformationaboutthe Publisher’spermissionspoliciesandourarrangementswithorganizationssuchastheCopyrightClearance CenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions.

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher (otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroaden ourunderstanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecome necessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingand usinganyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformation ormethodstheyshouldbemindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhom theyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeany liabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceor otherwise,orfromanyuseoroperationofanymethods,products,instructions,orideascontainedinthe materialherein.

ISBN:978-0-323-90891-7

ForinformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: SusanDennis

AcquisitionsEditor: CharlesBath

EditorialProjectManager: KathrineEsten

ProductionProjectManager: KumarAnbazhagan

CoverDesigner: GregHarris

TypesetbySTRAIVE,India

Contributors

RicardoAlmada-Monter InstitutodeQuı´mica, UniversidadNacionalAuto ´ nomadeMexico, MexicoCity,Mexico

OmarA.A ´ lvarez-Gonzaga EscuelaSuperiorde Fı´sicayMatema ´ ticas,InstitutoPolitecnico Nacional,MexicoCity,Mexico

JamesS.M.Anderson InstitutodeQuı´mica, UniversidadNacionalAuto ´ nomadeMexico, MexicoCity,Mexico

PaulW.Ayers DepartmentofChemistry, McMasterUniversity,Hamilton,Canada

JoseE.Barquera-Lozada InstitutodeQuı´mica, UniversidadNacionalAuto ´ nomadeMexico, MexicoCity,Mexico

YoshioBarrera InstitutodeQuı´mica, UniversidadNacionalAuto ´ nomadeMexico, MexicoCity,Mexico

GiovannaBruno DipartimentodiChimica, Universita ` degliStudidiMilano,Milano, Italy

PabloCarpio-Martı ´ nez InstitutodeQuı´mica, UniversidadNacionalAuto ´ nomadeMexico, MexicoCity,Mexico

JuliaContreras-Garcı ´ a Sorbonne Universite, CNRS, LaboratoiredeChimieTheorique,Paris, France

FernandoCortes-Guzma ´ n Institutode Quı´mica,UniversidadNacionalAuto ´ nomade Mexico,MexicoCity,Mexico

AuroraCostales DepartamentodeQuı´mica Fı´sicayAnalı´tica,FacultaddeQuı´mica, UniversidaddeOviedo,Oviedo,Spain

EmilianoDorantes-Herna ´ ndez EscuelaSuperiordeFı´sicayMatema ´ ticas,Instituto PolitecnicoNacional,MexicoCity,Mexico

MarkE.Eberhart DepartmentofChemistry, ColoradoSchoolofMines,Golden,CO,United States

AlbertoFerna ´ ndez-Alarco ´ n Institutode Quı´mica,UniversidadNacionalAuto ´ nomade Mexico,MexicoCity,Mexico

EvelioFrancisco DepartamentodeQuı´mica Fı´sicayAnalı´tica,FacultaddeQuı´mica, UniversidaddeOviedo,Oviedo,Spain

MarcoAntonioGarcia-Revilla Departmentof Chemistry,NaturalandExactSciencesDivision,UniversityofGuanajuato,Guanajuato, Mexico

CarloGatti CNR-SCITEC,IstitutodiScienzee TecnologieChimiche“GiulioNatta”;Istituto Lombardo,AccademiadiScienzeeLettere, Milano,Italy

RosaM.Go ´ mez-Espinosa CentroConjuntode Investigacio ´ n en Quı´micaSustentable UAEM-UNAM,Toluca,EstadodeMexico, Mexico

JoseM.Guevara-Vela Departamentode Quı´micaFı´sicaAplicada,Universidad Auto ´ nomadeMadrid,Madrid,Spain

Jesu ´ sHerna ´ ndez-Trujillo Departamentode Fı´sicayQuı´micaTeo ´ rica,FacultaddeQuı´mica, UNAM,MexicoCity,Mexico

Jesu ´ sJara-Cortes UnidadAcademicade CienciasBa ´ sicaseIngenierı´as,Universidad Auto ´ nomadeNayarit,Tepic,Mexico

SamanthaJenkins KeyLaboratoryofChemical BiologyandTraditionalChineseMedicine ResearchandKeyLaboratoryofResourceNationalandLocalJointEngineeringLaboratory forNewPetro-chemicalMaterialsandFine

UtilizationofResources,CollegeofChemistry andChemicalEngineering,HunanNormal University,Changsha,Hunan,People’s RepublicofChina

LaurentJoubert NormandyUniversity,COBRA UMR,UniversitedeRouen,INSARouen, CNRS,MontStAignanCedex,France

AiriKawasaki DepartmentofChemistry,GraduateSchoolofScience,TokyoMetropolitan University,Tokyo,Japan

StevenR.Kirk KeyLaboratoryofChemical BiologyandTraditionalChineseMedicine ResearchandKeyLaboratoryofResourceNationalandLocalJointEngineeringLaboratory forNewPetro-chemicalMaterialsandFine UtilizationofResources,CollegeofChemistry andChemicalEngineering,HunanNormal University,Changsha,Hunan,People’s RepublicofChina

BrunoLanderos-Rivera Departamentode Fı´sicayQuı´micaTeo ´ rica,FacultaddeQuı´mica, UNAM,MexicoCity,Mexico

CherifF.Matta DepartmentofChemistryand Physics,MountSaintVincentUniversity,Halifax,NovaScotia,Canada

HectorD.Morales-Rodrı ´ guez EscuelaSuperior deFı´sicayMatema ´ ticas,InstitutoPolitecnico Nacional,MexicoCity,Mexico

AmandaMorgenstern ChemistryandBiochemistryDepartment,UniversityofColorado, ColoradoSprings,CO,UnitedStates

AldodeJesu ´ sMortera-Carbonell Departamento deFı´sicayQuı´micaTeo ´ rica,Facultadde Quı´mica,UNAM,MexicoCity,Mexico

XingNie KeyLaboratoryofChemicalBiology andTraditionalChineseMedicineResearch andKeyLaboratoryofResourceNational andLocalJointEngineeringLaboratoryfor NewPetro-chemicalMaterialsandFine UtilizationofResources,CollegeofChemistry andChemicalEngineering,HunanNormal University,Changsha,Hunan,People’s RepublicofChina

EduardoOrozco-Valdespino Institutode Quı´mica,UniversidadNacionalAuto ´ nomade Mexico,MexicoCity,Mexico

A ´ ngel Martı ´ n Penda ´ s Departamentode Quı´micaFı´sicayAnalı´tica,FacultaddeQuı´mica, UniversidaddeOviedo,Oviedo,Spain

DavidI.Ramı´rez-Palma InstitutodeQuı´mica, UniversidadNacionalAuto ´ nomadeMexico, MexicoCity,Mexico

Toma ´ sRocha-Rinza InstitutodeQuı´mica, UniversidadNacionalAuto ´ nomadeMexico, MexicoCity,Mexico

JuanI.Rodrı ´ guez CICATA-Queretaro,Instituto PolitecnicoNacional,Queretaro,Mexico; EscuelaSuperiordeFı´sicayMatema ´ ticas, InstitutoPolitecnicoNacional,MexicoCity, Mexico

ShantShahbazian DepartmentofPhysics, ShahidBeheshtiUniversity,Tehran,Iran

DavidC.Thompson ChemicalComputing Group,Montreal,QC,Canada

VincentTognetti NormandyUniversity,COBRAUMR,UniversitedeRouen,INSARouen, CNRS,MontStAignanCedex,France

IsmaelVargas-Rodrı ´ guez Departmentof Chemistry,NaturalandExactSciencesDivision,UniversityofGuanajuato,Guanajuato, Mexico

TimothyR.Wilson DepartmentofChemistry, ColoradoSchoolofMines,Golden,CO,United States

TianlvXu KeyLaboratoryofChemicalBiology andTraditionalChineseMedicineResearch and KeyLaboratoryofResourceNational andLocalJointEngineeringLaboratoryfor NewPetro-chemicalMaterialsandFineUtilizationofResources,CollegeofChemistry andChemicalEngineering,HunanNormal University,Changsha,Hunan,People’s RepublicofChina

YongYang KeyLaboratoryofChemical BiologyandTraditionalChineseMedicine

ResearchandKeyLaboratoryofResourceNationalandLocalJointEngineeringLaboratory forNewPetro-chemicalMaterialsandFine UtilizationofResources,CollegeofChemistry

andChemicalEngineering,HunanNormal University,Changsha,Hunan,People’s RepublicofChina

20

Photochemistry:Atopological perspective

MarcoAntonioGarcia-RevillaandIsmaelVargas-Rodrı´guez DepartmentofChemistry,NaturalandExactSciencesDivision,UniversityofGuanajuato, Guanajuato,Mexico

1.Introduction

ThestudysubjectsofPhotochemistryarethephenomenaassociatedwiththeabsorption andemissionofelectromagneticradiationbychemicalsystems.Amongsuchprocessesare thefollowing [1]:

•Spectroscopicphenomenonasfluorescenceandphosphorescence.

•Luminescentchemicalreactions,asthecombustionandbioluminescence,forinstancethe planktonluminescenceandtheflashlightsoffireflies.

•Photopromotedchemicalreactions,asthephotosynthesis [1] andtheretinalreactionofthe humanvision [1].

•Nonlinearopticalproperties,relatedtothenonlinearbehavioroftheinducedpolarization ofthechargedistributionbytheinteractionofasubstancewiththeelectromagnetic radiation.Thisphenomenonhasbecomeofgreatimportanceintelecommunications, computing,opticaldevices,microscopy,amongothers.

Photochemicalreactions(PR)arechemicaltransformationsinwhichanexcitedstateis reachedbecauseoftheincidenceofelectromagneticradiation,inthesereactionstheexcitation degreeofreactantscanbeeasilycontrolledusingamonochromaticbeamoftherequired wavelength.Hence,PRarepreferredoverthethermalreactions,alsoknownasdark reactions.Besides,thermalreactionsdealwithaMaxwell-Boltzmandistributionofground stateenergiesoftranslational,vibrational,rotational,electronic,andnuclearcontributions, forthisreason,theprobabilityofcausingachemicalreactionislowerthaninthephotochemicalcase [2].Inaddition,therearemanynewsyntheticroutestoobtainorganiccompounds whicharenotpossibletobesynthesizedbythermalreactions [3].

TheStark-Einsteinlawofphotochemicalequivalencestablishesthatonelight-quantumis absorbedbyonemoleculepromotingachemicalreaction [4],andthatisall,thereisnotacontinuousmolecularabsorptionoflightduringaphotochemicaltransformation.Theefficient absorptionofalight-quantumcausesanelectronicexcitation,forthisreasonthecharacterizationofthegroundandexcitedstatesisfundamentalfortheunderstandingoftheeffectsof theelectromagneticradiationinasubstance.Anelectronicexcitedstateisasolutionofthe electronicSchr € odingerequationwithasuperiorenergythanthegroundelectronicstate [5],thequalityofthedescriptionoftheexcitedstateisrelatedtothechosenelectronicstructuremethod.Thefollowingareexamplesofprocessesinwhichexcitedstatesarereached fromgroundstates:

•Elementalparticlebombing.

•Alternatecurrentorfireheatingexposure.

•Electromagneticradiationexposure.

Theprocessesexperiencedbysubstancesinducedbyelectromagneticradiationcanbe viewedasthesuccessionoftwophenomena:theexcitationofthegroundstatereachingan excitedstate,andthedeactivationoftheexcitedstate.Somephotochemicalprocessesreturn tothestartingpoint,thegroundstateofthesubstance.Nevertheless,therearesomechemical transformationscausedbydeactivationofexcitedstates.

1.1Excitationofthegroundstate

Anexcitedstateisreachedaftertheabsorptionofelectromagneticradiation,fulfillingthe Frank-Condonprinciple [4] andtheselectionrules [4]. Fig.20.1 showstheJablonskidiagram, whichisageneralschemeoftheelectronicstructurerelatedtophotochemicalprocesses [4]. Themoleculeinitiallyreliesinthegroundstate,let’ssayasingletstate S0,abovethe S0 there aresuccessivesingletexcitedstates S1,S2, …, theconsecutivenumberingisrelatedtotheincreasingorderinenergy.Nevertheless,somemoleculesholdgroundstateswithdifferent multiplicity,thatisthecaseoftheoxygenmoleculeinthegasphaseat1atmand25°C displayingatripletgroundstate, 3Σ.Thesingletexcitedstatesareextremelyrelevantforphotochemicalprocesses,severalmoleculesofchemicalinterestdisplaysingletgroundstates.Besides,selectionrulesstablishedthatthepermittedexcitationsarethosewiththesame

FIG.20.1 Jablonskidiagram.

multiplicity [4].Meanwhile,excitedstateswithmultiplicitiesdifferentthansingletsarelocatedabovethegroundstate,amongsuchexcitedstatesarethetripletstates, T1, T2, , which areofspecialinterestbecauseofthecrucialroleoftripletstatesinphosphorescence.Forthis reason,acommonlyusedJablonskidiagramdisplayS0,S1,S2, …,and T1, T2, … electronic states.Besides,accordinglytoHundrules,thetripletstatesholdlowerenergythantheexcited singletstates.Inaddition,thequantizedvibrationalstructureisembeddedineachelectronic state,thevibrationalnormalmodesarerepresentedassublevelsofeachelectronicstate.

1.2Deactivationmechanismsofexcitedstates

Onceanexcitedstateisreached,deactivationofsuchexcitedstatetakesplace.Deactivation processescanbeclassifiedasexternal(inducedbycollisions),nonradiative(isoenergetic)and radiative(luminescence)displayedin Scheme20.1.

Regardingexternalprocesses,thedeactivationprocesscouldhappenthrough:

I. Vibrationalrelaxation(VR),inwhichthemoleculesintheS1 excitedstatevibrateand collideeachotherdispersingtheenergyofthesystem,arrivingtothelowervibrational stateof S1.Thetimetoperformthisprocessisabout10 12 s.

II. Anexternalconversion(EC),inwhichthemoleculetravelsfromthelowervibrational modeof S1 tothefundamentalsingletstate.

III. ChemicalReaction(CR),inwhichthepotentialenergysurfaceprofileofthesingletand excitedstatechanges,causingbreakingandformingchemicalbonds.

CRdeactivationprocesses,representedin Fig.20.2,showaverticalexcitationreachingan excitedstatewithavibrationalenergylargeenoughtoovercometheactivationenergyto reachasecondaryminimumintheexcitedstateprofile.Thiscoulddrivechangesintheconnectivity(moleculargraph),modificationsinbindingpropertiesandconsequentlychemical

SCHEME20.1 Deactivationprocessesclassification.

FIG.20.2 Energeticprofilesofphotochemicalprocessescausingchemicalreactions.

transformation. Fig.20.2Bshowsthecaseinwhichaverticalexcitationhitsanexcitedstate withnoenergybarrier,insuchcasethechemicaltransformationoccursstraightforward.

Anonradiativeprocesstakesplacethroughanisoenergeticenergytransference,suchprocessesareclassifiedas:

I. InternalConversion(IC),whichhappensthroughanisoenergetictransferencefromthe S1 excitedstatetoahighenergeticvibrationalmodeof S0,followedbyafullvibrational relaxationofthegroundstate.

II. IntersystemCrossing(ISC),whichisperformedthoughanisoenergetictransference fromavibrationalmodeof S1 excitedstatetoavibrationalmodeofatripledstate, let’ssaytothe T1 tripletstate.

Radiativeprocessesareclassifiedas:

I. NormalFluorescence,whichisobservedwhenafullvibrationalrelaxationalongtheS1 vibrationalmodesisfollowedbya S1 ➔ S0 emissivetransition.

II. ResonantFluorescence,whichisobservedthrougha S1➔ S0 emissivetransitionfrom theinitialvibrationalmodeof S1 tothe S0 groundstate. LifetimeofFluorescenceprocessesisabout10 7 s.

III. Phosphorescence,whichisobservedwhenaISCisfollowedbyatransitionbetween electronicstatesofdifferentmultiplicity, T1 ➔ S0.Lifetimeof T1 isabout10 5 sand thetransitionprobabilityto S0 islow.Thisisthereasonwhythisprocessisslowerthan thefluorescence.

Theradiativeprocessesdiscussedabovearethebasisofthefluorescencespectroscopyin instrumentalanalysis [6],greenfluorescentproteinasinvivomarkeringenetics [7],tumor markersinanticancertreatment [8],amongothers.

AnotherrelevantphenomenonistheChemiluminescence,whichisthelightemission causedbyachemicalreactionformingaexcitedstatefollowedbythedeactivationofthisexcitedstatetothegroundstate [9].Thebioluminescencephenomenaarethoseinwhichbiochemicalreactionsareinvolvedintheformationofthereferredexcitedstates,suchreactions arecommonlycatalyzedbyenzymes [10].Thereareseveralapplicationsofchemiluminescence,forinstance,theluminolreactioninforensicchemistry,theunderstandingofluciferase activityinfireflies,theuseofoxidationreactionsoftetraceneinlightbars,amongothers.

2.Theory

Asemiclassicalapproachisusefultostudythephotophysicalphenomenacausingchemicaltransformationsinasubstancebytheinteractionwithelectromagneticradiation.The mentionedapproachdealswiththesubstanceinquestionusingthequantummechanics, meanwhile,theelectromagneticradiationistreatedthroughtheclassicelectromagnetism theory.

Fromthewave-behaviorapproach,theelectromagneticradiationisdefinedasanelectromagneticoscillatingfieldwhichpropagatesasawave.Theclassicpicturestatesthat anelectromagneticradiationisproducedwhenacharge q experiencesacceleration,forinstance,analternatecurrentcircuitandtheco llisionofaprotonbeam.Theelectricandmagneticfieldsgeneratedbyanychargeandcurrentdistributionaredeterminedbythe Maxwellequations [4] ,

where F and B representtheelectricandmagneticvectors,respectively; E0 and μ0 arethepermittivity(E0¼ 8.85 * 10 12 C2N 1 m 2)andpermeability(μ0 ¼ 1.25 * 10 6 NS2C 2)vacuum constants,respectively.TheGausslawsforelectricandmagneticfieldsarepresentedin Eqs. (20.1)and(20.2).Eq. (20.1) showsthatanelectricfieldisproducedbyachargedistribution,meanwhile,Eq. (20.2) showsthatthenetmagneticfluxofaspaceenclosedbyasurfaceis zero.Theconsequenceofthislawisthattherearenotmagneticmonopoles,atvariancewhit electriccounterpartinwhichtheelectricmonopoleispossible.TheFaradayelectromagnetic inductionlawisplacedinEq. (20.3),whichstatesthatatemporaryvariationofamagnetic fieldgeneratesanelectricfield.Finally,Eq. (20.4) istheAmpereLaw,whichindicatesthat anelectriccurrentandthevariationofanelectricfieldgeneratesamagneticfield.ThesolutionsofthefourMaxwellequationsareelectromagneticwaves,inwhichtheenergyis transportedthroughthespace.Theelectricandmagneticfieldareperpendiculareachother andoscillateduringpropagationformingarightanglewiththepropagationdirection.

Electromagneticplanewaves(Fig.20.3)areofspecialinterestbecauseitssimplicity,they propagateinasingledirectionhavingaplanewavefront,thepointsofthewavepacket areinthesamephaseformingaplane.Inaddition,theelectricandmagneticfieldsoscillate eachoneinaplaneaswell,formingalinearpolarizedelectromagneticwave.

Theexpressionsfortheelectricandmagneticfieldofsuchawaveare

where F0x and B0y aretheamplitudesoftheelectricandmagneticfield,respectively,and w and k arethewavefrequencyandwavenumber,respectively.Anextrasimplificationcanbe made,thespatialcontributionoftheelectricfieldandtheentiremagneticcomponentcanbe neglected,

forthecaseofinteractionofelectromagneticwaveswithorganiccompounds.Suchapproximationisbasedon(a)thefactthatthemagnitudeoftheelectricfieldislargerthanthemagnitudeofthemagneticfield.Thecorrelationbetweenelectricandmagneticfieldmagnitudes isgivenby F(E) ¼ cB,wherecisthespeedoflight;and(b)thewavelengthsoftheelectromagneticradiationare3ordersofmagnitude,103 A ˚ ,largerthanthesizeofamolecularsystem. Nevertheless,suchapproximationisnotvalidformetallicsystems,inwhichtheelectric bands,andthereforetherespectivewavelengths,areclosetothesizeofthemetal.

Therearetwocorrelatedphenomenaexperiencedbyamoleculeduringtheinteraction withanelectromagneticwave:theverticalexcitation,andthechargedensitypolarization. QCTisausefultooltostudysuchphenomena.

Thequalityofthewavefunctiondescribingthegroundandexcitedstatesisrelatedtothe choiceoftheelectronicstructuremethodtosolvetheelectronicSchrodingerequation.There isalargevarietyofmethodstoaddresssuchissue.Asamatteroffact,themulticonfigurational(MC)methodsdisplaythebestagreementwithexperimentalmeasurements.

FEðÞ¼ iFx ¼ iF0x cos wt kz ðÞ,(20.5)
FEðÞ¼ iFx ¼ iF0x cos wt ðÞ,(20.7)
FIG.20.3 Planeelectromagneticwave.

Nevertheless,MCimplementationsscaling,andtheresultingcomputationalcostbecomes prohibitiveforthecharacterizationofsystemsofchemicalinterest,however,MCresults areusedasareference.Forlargesystemswithchemicalinterest,awaytoaffordthisproblem isusingtheTimeDependingDensityFunctionalTheory [11].

Twoissuesmustbestudiedduringaphotochemicalprocess:

1. Polarizationofthechargedensity.

2. Transitionprobabilitiesbetweenpossibleexcitedstates.

2.1Polarization

Theelectricfield, F,ofthephotonicincidentbeaminteractwiththesubstancechargedistributionandproducetheforces fi ¼ qiE [12],where q isthecharge.Theinducedpolarization duringtheelectricfieldinteractionisobservedin Fig.20.4A.Thepolarizationcanbedefined asthechangeinthechargedistributioninasubstanceduetotheinteractionwiththeelectromagneticradiation.Anymodificationinthechargeconfigurationbetweennucleiandthe electrondensityinamolecularsysteminducespolarization(Fig.20.4B).Therearetwotypes ofpolarizationthatcanbeobserved:linear(Fig.20.4),andnonlinear(Fig.20.5).Thelinear polarizationhappenswhenthepolarizationbehavesasalinearfunctionoftheelectricfield (Fig.20.4C).Besides,inducedpolarizationinmacroscopicscalecanbeexpressedas [12,13]:

,(20.8) where P istheinducedpolarization, F istheelectricfieldand χ (1) isthecoefficientoflinear susceptibility.

Linearpolarizationisobservedwhenamaterialinteractswithamoderateelectricfield, nevertheless,whentheintensityoftheelectricfieldisrelativelylarge,thepolarizationcould behaveinanonlinearlymanner.Observethenonlinearbehaviorininducedpolarizationasa functionoftime(Fig.20.5A),modificationsinthechargedistribution(Fig.20.5B)andinthe inducedpolarizationasafunctionoftheappliedelectricfield(Fig.20.5C),incomparisonwith thelinearcounterpart.

FIG.20.4 Linearpolarization,(A)lightbeamelectricfield(solidcurve)asafunctionoftime,inducedpolarization (solidcurve)asafunctionoftime,(B)polarizationofamaterialasafunctionoftime,(C)linearinducedpolarizationas afunctionoftheappliedelectricfield. ReprintedwithpermissionfromM.Pinnow,Materialsfornonlinearoptics:Chemical perspectives.ACSsymposiumseriesno.455.EditedbyS.R.Marder,J.E.SohnandG.D.Stucky.ISBN0-8412-1939-7.AmericanChemicalSociety,Washington,DC,1991.US $ 129.95.ActaPolym.44(1993)112–112. https://doi.org/10.1002/actp.1993. 010440216.Copyright2022AmericanChemicalSociety.

FIG.20.5 Nonlinearpolarization,(A)lightbeamelectricfield(solidcurve)asafunctionoftime,nonlinear-induced polarization(solidcurve)asafunctionoftime,(B)polarizationofamaterialwithnonlinearopticalactivityasafunctionoftime,(C)nonlinear-linearbehaviorofsecondorderinducedpolarizationasafunctionoftheappliedelectric field. ReprintedwithpermissionfromM.Pinnow,Materialsfornonlinearoptics:Chemicalperspectives.ACSsymposiumseries no.455.EditedbyS.R.Marder,J.E.SohnandG.D.Stucky.ISBN0-8412-1939-7.AmericanChemicalSociety,Washington, DC,1991.US $ 129.95.ActaPolym.44(1993)112–112. https://doi.org/10.1002/actp.1993.010440216.Copyright2022AmericanChemicalSociety.

Themathematicalexpressionofthemacroscopicnonlinearpolarizationisunknown.Nevertheless,thefollowingTaylorseriesexpansioncanbeusedbecausetheinducedpolarization isacontinuousfunctionoftheelectricfield [13],

where χ (1) , χ (2) and χ (3) arethesusceptibilitycoefficientsoffirst,secondandthirdorder,respectively. F istheelectricfield, P istheinducedpolarizationand P0 isthechargedistribution polarizationintheabsenceoftheelectricfield.Linearopticalproperties(refraction,reflection, andabsorption,amongothers)arerelatedtothemagnitudeof χ (1).Secondordernonlinear opticalproperties(secondharmonicgeneration,frequencymixing,amplification,electroopticeffect)arerelatedtothemagnitudeof χ (2).Third-ordernonlinearopticalproperties (thirdharmonicgeneration,frequencymixing,opticbio-stability)arerelatedtothemagnitudeof χ (3),andsoon.Someexamplesinwhichthenonlinearopticalpropertiesareapplied intechnologyfollow:lithiumniobatethirdorderpropertiesintelecommunications [14], processingofopticalsignaling [15],opticaldevices [16].Furthermore,inabiologicalsystem thephasechangesareproportionaltotheradiativeintensitychanges,gettingaclearcellimagingwithouttheuseofstainingsubstances [17],thisphenomenonisusedtovisualizethe heatwavesproducedbymaterials.

Fromthemicroscopicperspective,thequantumanalogtotheinducedpolarizationisthe induceddipolarmoment μ [12,13] givenbyaTaylorseriesexpansionas

,(20.10)

where μ istheinduceddipolarmoment, μ0 isthedipolarmomentinabsenceoftheelectric field F, α isdefinedasthepolarizability, β isthefirsthyperpolarizabilityand γ isthesecond hyperpolarizability.Comparingexpressionsofmacroscopicandmicroscopicframeworks, α, β and γ arethemicroscopicanalogstothefirst χ (1),second χ (2)andthird χ (3) ordersusceptibilitycoefficients,respectively.

TheapplicationoftheQuantumChemicalTopologytothecharacterizationofthelinear andnonlinearopticalpropertiesneedsadeepunderstandingofthemicroscopicpolarizabilitiesandhyperpolarizabilities.Theenergyoftheinteractionofachargedistribution ρ(r)with anelectricpotential Φ(r)canbecalculatedasfollows [18]:

Theelectricfield,definedas F ¼ ∂Φ ∂r ,isuniformatthemolecularframework,forthisreasontheenergycanbeexpressedbythemultipolarexpression

where q isthenetchargeormonopole, μ isthedipolarmomentand Q isthequadrupolemoment.Usingthelastequation,thedipolarmomentcanbeexpressedas

Intheabsenceofanexternalelectricfield,thedipolarandquadrupolemomentsarecalculatedfromthewavefunction |ψ i,

where r isthepositionvectorand r t isitstranspose.Moreover,thepresenceofanelectricfield conducestoaninduceddipolarmoment,whichisexpressedwithEq. (20.10).Besides,fora homogeneouselectricfieldthetotalenergyisexpressedasaTaylorseries,wherethederivativesareevaluatedin F ¼ 0.

thisexpressioncanbeusedtoevaluatetheinduceddipolarmomentas

ComparingwithEq. (20.10),thefollowingexpressionarededuced:

2.2Theoryoftransitionprobabilities

Theinteractionoftheelectricfieldofanelectromagneticradiationcanbestudiedasaperturbationofthetime-independentHamiltonian,suchperturbationisafunctionofthepositionandtime.Thisenablesustousethetime-independentSchr € odingerequationinthestudy ofthemater-radiationinteraction,atime-dependentphenomenon.Let

b H 0 ðÞ betheelectronic Hamiltonianofamoleculeand ψ n (0) thewavefunctionofthe nthstationarystateofsuchsystem,theresulteigenvaluesetofequationsare

where En(0) istheelectronicenergyofthe nthstate.ThezerosuperindexstablishestheequivalenceoftheelectronicHamiltonianwiththeunperturbedHamiltonianofthisapproach,for thisreason ψ n (0) isthewavefunctionofthe nthunperturbedsystemand En(0) theenergyofthe unperturbed nthstate.TheinclusionoftheperturbationgetstheHamiltonian

Ifthesysteminitiallyisinthestate ψ n (0)(r)and,overtheeffectofelectromagneticradiation representedbytheperturbation,evolvestoadifferentelectronicstate ψ m (0)(r)thetransition probability Pn!m(t)isarelevantquantitytocalculate,becausethemostprobabletransitions arethoseobservedinaspectroscopicexperiment.

Infirstplace,thesolutionofthetime-dependentSchrodingerequationforthisperturbed systemisneeded,usingawavefunction Ψ(r, t)theequationtosolveis

Expandingthewavefunction Ψ(r, t)asalinearcombinationoftheunperturbedsystems ψ n (0) ,

Andsolvingforaparticular m statewithasmallperturbationthetransitionprobabilityis

where b H 0 mn ¼ ψ 0 ðÞ m j b H 0 r, t ðÞjψ 0 ðÞ n DE and ωmn ¼

.Theperturbationconsideredintheinteractionofelectromagneticradiationwithmaterisjustthetemporalcontributionoftheelectric field,andtheinteractionofsuchelectricfieldisgivenby: V int ¼ μ F,(20.27) wherethe μ istheelectricdipolarmomentofthemolecule(μ ¼ P i qi ri )andFisthetemporal contributiontotheelectricfield(F ¼ Fox cos (wt)).Forthisreason,intheframeworkofthedipolarapproximation,theperturbativeHamiltonianiswrittenas

b H 0 t ðÞ¼ μx Fox cos wt ðÞ,(20.28)

where μx ¼ Pi qi xi .Substitutingthisexpressioninthetransitionprobability,weget

ItisofspecialinterestfortheQCTcommunitytocomputethefunctionalgroupcontributionsofsuchprobabilities.

3.QTAIM-photochemistry

3.1Polarizabilitiesandtransitionprobabilities

Baderandco-workers [19,20] addressthepartitionofthepolarizability,transitionprobabilitiesanddipolarmomentofdiatomicandpolyatomicmoleculesthroughtheQuantumtheoryofAtomsinMolecules.Suchworkisbasedontheperturbationtheoryapproach, demonstratingthatthepolarizability,transitionprobabilitiesanddipolarmomentcanbe expressedasafunctionofchargetransferenceandpolarizationcomponents.Inaddition, theshapeandvolumeoftheatomicbasinismodifiedfortheelectricfieldbecauseofthe chargetransference.Themainconclusionofthisworkisthatthetotalpolarizability,transitionprobabilitiesanddipolarmomentaredeterminedbytheatomicpolarizabilityandthe chargetransferencebetweentopologicalatoms.Furthermore,isdemonstratedthatafunctionalgroupcontributiontothetotalopticalpropertiesstudiedcanbedefined.Amoredetaileddescriptionofthiscontributionfollows.

Withinthedipoleapproximationandconsideringaweakfield,thetransition Pn!k probabilitybetween n and k statesisdefinedbyEq. (20.29),asimplerearrangementoftheequationis

wherethetime-independentcontributiontothetransitionprobabilityisthefirsttermofthe product, Pn!k.Followingwiththetime-independentterm,itcanbewrittenintheintegral form

where( eri)isthedipoleoperatorofthe ithelectronandthesumisoverallthe N electronsof thesystem.Duetothemultiplicativepropertiesofthedipolarmomentoperator,theprobabilitycanbewrittenas

wheretheintegrationisoverall N electroniccoordinates.Definingatransitiondensity

wheretheprimedintegrandmeansanintegrationoverallspinandspatialcoordinatesexcept forthespatialcoordinatesofelectron1.Theprobabilityiswrittenas

where Mnk isthetransitionmoment.

Consideringtheunperturbedandfirstperturbativecorrectiontothewavefunction, ψ n (0) and ψ n (1),respectively,theexpressionstothefirstandsecondenergycorrectionstoanatomic basin, Ω,energyare

where Hn(1)(r)and Hn(2)(r)arethefirst-andsecond-orderperturbationdensities,respectively. Thisperturbationmodifiestheinteratomicsurfaceofanatominamolecule,forthisreason itisimportanttoconsiderthisshiftinthesurface, δS,intheevaluationofthesecondorder energy.Whitthisregard,theenergycontributiontothesecondorderenergyduetothefirstorderchangedensityshouldbeevaluated,

Thefirst-orderchangeinthedensityisevaluatedby

Hence,thefirstpolarizability, αn(r),usingthedipolarapproximation,consideringtheperturbation b H 0 ¼ eF r,iswrittenintermsofthefirstorderchangeinthedensityas

Integrationofsuchpolarizabilityinanatomicbasingivestheatomicpolarizability α b n Ω ðÞ¼ ðΩ αn r ðÞdr,(20.41)

Thesumofallatomicfirstpolarizabilitiesisthemolecularpolarizability

n r ðÞ¼ X Ω α b n Ω ðÞ,(20.42)

Oneofthemainproblemsoftheatomicpolarizabilities, αn(r),istheorigindependencebecauseofthepositionvector r.Nevertheless,tosolvethisorigindependenceasubstitutionof r 5 rΩ +XΩ isusedtobuildthefollowingexpressionofthetotalfirstpolarizability α r ðÞ¼ X Ω e ð Ω drrΩ

wheretheatomicpolarizationisdefinedas

p Ω ðÞ¼ e ð Ω drrΩ ρ 1 ðÞ

Theintegrationofovertheatomicbasingives

wheretheatomicmoment Mnk(Ω)isobtainedwiththefollowingintegration:

Besides,itispossibletoregroupthenuclearcoordinatetermsintocontributionsproportionaltothechargetransferredfromanatomicbasing(Ω)toaneighboringatomicbasin(Ω0 ). Withthisregard,theatomicpolarizabilitygetstwocontributionsonethatcomesfromthe polarization, αp(Ω),andthesecondonebythechargetransferencebetweenneighboring atomicbasins, αc(Ω).

ThetransitionprobabilitydensitycanbeconstructedinanalogywithEqs. (20.38)and (20.44),

!k r ðÞ¼ Mnk Mkn r ðÞ¼ Mkn ∙ er ðÞρnk r ðÞ,(20.49)

where Mkn(r)isdeterminedbytherespectivetransitiondensity.Onceagain,thesubstitution of r 5 rΩ +XΩ andsubsequentintegrationgivestheexpression

where Mnk(Ω)istheatomictransitiondipole,and qnk Ω ðÞ¼ e Ð Ω dr ρnk r ðÞ istheinducedatomic

chargeproducedbychargedensitypolarization.Asinthecaseofthepolarization,itispossibletosolvetheorigin-dependentproblemreplacingthesumofnuclearcoordinatesbyaset oftermsdescribingthedipolarcontributiontothecharge, qnk(Ω),whichisinducedbythe polarizationbetweenaneighboringatomicbasin, Ω0

Atfirstorder,theelectronicpolarizabilityiswrittenintheform

Whichcanberearrangedas

Consideringasystemofasystemwithnuclearcharges Za andpositionvectors Xa thedipolemomentiswrittenas

ImposingtheQTAIMpartitioningthedipolarmomentiswrittenas

wherethe XΩ isthepositionvectorofthenuclearattractorofthetopologicalatom Ω, μc and μp arethechargetransferandpolarizationterms,respectively.Inaddition,theatomicchargeis definedas

andthefirstmoments M(Ω)arecalculatedwiththefollowingequation:

wheretheelectronicpositionvectorwithoriginatthenuclearattractorofthetopologicalatom Ω is rΩ 5r XΩ.Hence,thechangeinthedipolarmomentofsuchsystemiscalculatedby

wherethetopologicalexpressionof μ and 4μ areindependentofthechoiceoftheoriginfora neutralmolecule.WiththecorrespondingformusingtheQTAIMpartitioning

AsinthecaseofPolarizabilitiesandtransitionprobabilitiesitispossibletosolvetheorigin dependenceconsideringregroupingtermsinvolvingnuclearpositionvectors,asaresultthe dipolarmomentoriginindependentiscalculatedasthesumofatomicdipolarmomentcontributionsinthefollowingmanner:

4.QTAIMapplicationsinphotochemistry

Arelevantcorrelationbetweentheellipticityandthephotophysicalpropertieswas reportedbyPresseltandco-workers [21],wheretherelationbetween π -conjugationandexcitationefficiencyisusedtostudyopticalefficiencyofPhenyl-TerpyridineRu(II)andZn(II) complexes(Fig.20.6).Presseltandco-workersanalyzedthecorrelationbetween π -conjugation,ellipticityandelectronictransitionenergiesofpyridyl-phenylligandsofsuchcomplexes,thelowesttransitionsarerelatedtoaMetal-to-ligandchargetransferdominatedby HOMO-LUMOexcitations.Thechangesintheellipticityareperformedchangingthesubstituent(R)atthe para positionofphenylgroup.TheconclusionwasthattheHOMO-LUMOenergygapdecreaseswithincreasingpyridyl-phenylellipticity,thereforeitispossibletogeta desirablephotophysicalpropertiestunningpyridyl-phenylellipticity.

In2012,J.N.Latosinskaandco-workers [22] analyzedthephotodegradationofnifedipine (NIF),anantihypertensivedrug,suchmoleculeishighlysensitivetotheelectromagneticradiationanddegradestonitrosoniphelipine(NO-NIF),whichisnotanantihypertensivemoleculebutanantioxidativeagent.Inacombinedexperimental-computationalstudy,

FIG.20.6 Schematicrepresentationoftheligands(tpy-ph-R,left),thehomolepticZn(II)complexes([Zn(tpy-phR)2]2+,middle),andtheheterolepticRu(II)complexes([(tert-butyl-tpy)Ru(tpy-ph-R)]2+,right)aswellasthevarious substituentsRinthe4-phposition. ReprintedwithpermissionfromM.Presselt,B.Dietzek,M.Schmitt,S.Rau,A. Winter,M.J € ager,etal.,Aconcepttotailorelectrondelocalization:applyingQTAIManalysistophenylterpyridinecompounds. J.Phys.Chem.A114(50)(2010)15163–74.Copyright2021AmericanChemicalSociety.

Latosinskaandco-workersdetectednifedipinephotodegradationproductsbymeansof 1H-14NNuclearQuadrupoleDoubleResonance(NQDR).Besides,aDFT/QTAIMstudy wasperformedtovalidatethecomputationalcapabilitytopredictsuchphotodegradation products.ThecomputationalreactivitycriterionwasbasedonthetopologicalQTAIM ChargesandtheLaplacianoftheelectrondensityatthebondcriticalpointr2 ρ(r)bcp,and theelectrondensityatthebondcriticalpoint ρ(r)bcp.Arelevantobservationisthat r2 ρ(r)bcp, ρ(r)bcp displaythelargestvaluesatthebondsthatbreakbecauseofirradiation.Hence, r2 ρ(r)bcp, ρ(r)bcp areproperdescriptorsofthebondsusceptibilitytobebrokenbyirradiation.

Inarecentpublication,Chavez-CalvilloandHerna ´ ndez-TrujillostudiedthetemporalevolutionoftheelectrondensitytopologicalpropertiesintheQTAIMframework [23].Themolecularweavefunctionisrepresentedasacombinationofelectronicstates,inagreementwith thesuperpositionofsatesprinciple,

where χ i(X, t)isthetime-dependentnuclearwavepacket,and χ i(X, t)isthe ithelectronicstate. Ψ(X, x, t)iscalculatedthroughthesolutionofthetime-dependentSchrodingerequation,at thesametimethesetofadiabaticstates{ψ i a}isobtainedtogetherwiththeirrespectiveeigenvalues,{Eia},andnuclearwavepackets{Xia}.ThetimeevolutionoftheaverageofsomepropertiesoftheelectrondensityischaracterizedbymeansoftheQTAIMpartitioning.Thetime evolutionoftheelectrondensityitselfcanbeexpressedas

where ρX ij (r)isthetransitiondensitybetween ithand jthstates.Inthesameway,thetimeevolutionoftheatomicchargeiscalculatedwiththeexpression

Thereactivescatteringof H3 + andthephotodissociationofLiFisstudiedbasedonthetime evolutionoftheatomiccharges.Animportantconclusionisthatthetimeevolutionofthe atomicchargesisconsistentwiththeadiabaticanddiabaticnatureofthestudiedprocesses.

5.Alternativetopologicalapproaches

AmoleculargraphMGisdefinedasthesetofcriticalpointsandfluxlinesconnectingthese criticalpoints [24],amongsuchsetisthebondpathwhichistheconjunctionofbondcritical points(BCP)andfluxlinesconnectingsuchBCPwithnonboringnuclei.Thecharacterization oftheevolutionofthemoleculargraphalongachemicaltransformationisacommonlyused tooltogetinsightofachemicalreaction.Besides,thequantityandtypeofcriticalpointsand

pathslinkingsuchcriticalpointsserveasaqualitativecharacterizationoftheconnectivityina molecule.Changesinmoleculargraphsalongachemicalreactiondisplayqualitativeinformationaboutbreakingandformingchemicalinteractions.Inaddition,inQTAIMitispossibletoquantitativelymeasurethebond-pathcurvature(BPC)separatingtwobondednuclei usingtheratio

whereBPListhebondpathlengthandGBListhegeometricbondlengthdefinedasthe internuclearseparation.Nevertheless,moleculargraphsandBPCdidnotshowsignificant changesduringelectronicstateexcitations,MGandBPCarequalitativelythesameinthe groundandexcitedstatesataparticularmolecularconfiguration.Forthisreason,molecular graphscannotbeusedtotracktheevolutionofamoleculethatexperiencesphotochemical transformations,asimilarsituationhappensforsomechemicaldescriptorsofQTAIM.For instance,theLaplacianoftheelectrondensityatthebondcriticalpoint(r2 ρ(r)bcp)getanaverageofthetotalcurvatureoftheelectrondensity,collapsinginascalartheinformationofthe chargeaccumulationofeachspatialdirection.So,2-D(MG)and1-D(r2 ρ(r)bcp)topological descriptorsareunsuccessinthestudyofphotochemicaltransformations,therearesomeapproachestosolvethisproblem:theNewGenerationQTAIMandthestresstensorapproaches. TheNewGenerationQTAIMmethods(NG-QTAIM)ispresentedasare-interpretationof topologicalaspectsofthechemicalbonding,a“bond-pathframeworkset” (B) isdefinedand itcanbeusedtodifferentiatethetopologyoftheelectrondensityofexcitedstatesfromthe groundstate.Suchsetisbuiltbythreelinkages p, q and r,whicharerelatedtotheeigenvalues ofthehessianmatrixe1,e2 ande3,respectively.Thepath r istheorthodoxQTAIMbondpath wheree3 istheeigenvectorwiththepositiveeigenvalue,thedirectionofdepletionofcharge density.Furthermore, e1, e2 arethesecondandfirstpreferreddirectionsinwhichthechargeis accumulated,respectively.The p and q pathsareconstructedasthecollectionoftippath pointsdefinedbytheexpressions

where ri isthe ithpointatthe r path, εi istheellipticityevaluatedin ri, e1, i and e2, i arethe eigenvectorsoftheaccumulativechargedensityat ri.Sucheigenvectorsareweightedby theellipticity εi,thispermittotrackthechangesinthechargeaccumulationpatternnotonly attheBCP,butinallthebondpath.Thereisnosensetodefinethepath r intermsoftheellipticitybecausetheeigenvector e3 isindependentoftheeigenvaluesdefiningtheellipticity. ThisapproachisanalternativetothecharacterizationoftheLaplacianoftheelectrondensity, inwhichtheinformationofeachcurvaturecollapsesatthemomentoftheevaluationofthe traceofthehessianmatrixattheBCPoratanypointalongthebondpath.Animportantobservationisthat p, q and r pathsareorthogonaleachotherbecauseareconstructedusingorthogonaleigenvectors e1,i, e2,i and e3,i.The p and q areusedtodefinethepathlengths

Thepathlengthsarerelatedtothebehaviorofthechargeaccumulationalongthebond path.Inthelimitofzeroellipticity, H pathlengthisequaltothebondpathlengthof r. Thesimplicityofthisapproachisusefultocharacterizebondinginexcitedstatesofphotochemicalprocesses.

Anusefulquantitytocharacterizethecovalencyofachemicalbondisthelocalenergydensitydefinedas [24]:

where G(rb)and V(rb)arethelocalkineticandpotentialenergydensitiesatthebondcritical point,respectively. H(rb) < 0ofclosedshellinteractions(r2 ρ(rb) > 0)showacovalentinteraction,forthesameclosedshellinteraction H(rb) > 0meansalackofcovalentcharacter.Astrong sharedshellinteractiondisplays r2 ρ(rb) < 0and H(rb) < 0,forexample,suchsituationcorrespondstoC CandC Hbonds.

5.1Stresstensor

Stresstensorconnects,throughVirialtheorem,thequantuminformationandtheclassicalpictureofmechanicalforcesequilibriainamolecularsystem.Suchforcesarethe Ehrenfestforcesexperiencedbyasystem,this approachgivesajustificationofthesmall frequenciesofthenormalmodesrelatedtointramolecularrearrangements [24] .Thecharacterizationoftheeigenvectorsofthestresstensorisausefultooltocharacterizethe changesintheelectrondistributionduringphotochemicalprocesses,suchchangesare notobservedintraditionalQTAIMapproaches(moleculargraph,Laplacianofelectron densityatthebondcriticalpoint,etc.).In theQTAIMframework,thestresstensorisdefinedas

,(20.70)

where γ (r, r0 )isthefirstorderdensitymatrix.Theprincipalelectronicstresses, Πxx, Πyy and Πzz,areobtainedbythediagonalizationof σ (r),whichareequivalenttothestresstensoreigenvalues λ1σ , λ2σ and λ3σ relatedtothecorrespondingeigenvectors e1σ , e2σ and e3σ .Anegative stresstensoreigenvalue λ1σ meansacompressioninthedirectionofthe e1σ eigenvector.Besides,thestresstensoreigenvectortrajectories Tσ (s)areconstructedasthesetofshifts dr(s) withstep s ataBCP [25].Theorderedsetofshiftsintheeigenvectorprojectionspace Uσ are directionvectorsdefinedby dr0 (s) ¼ {dr e1σ , dr e2σ , dr e3σ },relatedtothedirectionvectorsin therealspace dr(s) ¼ {dr e1, dr e2, dr e3}whicharerelatedtothefollowoftheIntrinsicReactionCoordinate(IRC)fromthetransitionstatetotherelatedminima.Therespectivetrajectory lengthinthestresstensorprojectionspace Uσ isdefinedas

σ ¼ X s¼0 dr0 s +1 ðÞ dr0 s ðÞ jj,(20.71)

HrbðÞ¼ GrbðÞ + VrbðÞ,(20.69)

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Advances in quantum chemical topology beyond qtaim juan i. rodriguez - Explore the complete ebook co by Education Libraries - Issuu