Advanced methods and mathematical modeling of biofilm mojtaba aghajani delavar - The latest ebook is

Page 1


https://ebookmass.com/product/advanced-methods-andmathematical-modeling-of-biofilm-mojtaba-aghajani-delavar/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Fundamentals of Advanced Mathematics V3 (New Mathematical Methods, Systems and Applications) Henri Bourles

https://ebookmass.com/product/fundamentals-of-advancedmathematics-v3-new-mathematical-methods-systems-and-applicationshenri-bourles/ ebookmass.com

Mathematical Modeling and Applied Calculus Joel Kilty

https://ebookmass.com/product/mathematical-modeling-and-appliedcalculus-joel-kilty/

ebookmass.com

Mathematical Methods of Analytical Mechanics 1st Edition Henri Gouin

https://ebookmass.com/product/mathematical-methods-of-analyticalmechanics-1st-edition-henri-gouin/

ebookmass.com

Profit Maximization

Techniques

for Operating Chemical Plants 1. Edition Sandip K. Lahiri

https://ebookmass.com/product/profit-maximization-techniques-foroperating-chemical-plants-1-edition-sandip-k-lahiri/

ebookmass.com

All the Kingdoms of the World: On Radical Religious Alternatives to Liberalism Kevin Vallier

https://ebookmass.com/product/all-the-kingdoms-of-the-world-onradical-religious-alternatives-to-liberalism-kevin-vallier/

ebookmass.com

Solutions Advanced Workbook 3rd Edition Tim Falla

https://ebookmass.com/product/solutions-advanced-workbook-3rd-editiontim-falla/

ebookmass.com

Knot Your Average Beta (FatedVerse Book 2) 1st Edition

https://ebookmass.com/product/knot-your-average-beta-fatedversebook-2-1st-edition-tana-rose/

ebookmass.com

Islamist Party Mobilization: Tunisia’s Ennahda and Algeria’s HMS Compared, 1989–2014 1st ed. Edition Chuchu Zhang

https://ebookmass.com/product/islamist-party-mobilization-tunisiasennahda-and-algerias-hms-compared-1989-2014-1st-ed-edition-chuchuzhang/

ebookmass.com

Consumer Behavior: Buying, Having, and Being, 13e 13th

https://ebookmass.com/product/consumer-behavior-buying-having-andbeing-13e-13th-edition-michael-r-solomon/

ebookmass.com

Did Jesus Rise from the Dead?: Historical and Theological Reflections Matthew Levering

https://ebookmass.com/product/did-jesus-rise-from-the-dead-historicaland-theological-reflections-matthew-levering/

ebookmass.com

ApplicationsinHealthCare,Medicine,Food, Aquaculture,Environment,andIndustry MojtabaAghajaniDelavar ResearchFellow,AthabascaUniversity,Athabasca, Alberta,Canada

JunyeWang Professor,AthabascaUniversity,Athabasca,Alberta,Canada; ResearchChair,CampusAlbertaInnovationProgram(CAIP), AthabascaUniversity,Athabasca,Alberta,Canada

AcademicPressisanimprintofElsevier 125LondonWall,LondonEC2Y5AS,UnitedKingdom 525BStreet,Suite1650,SanDiego,CA92101,UnitedStates 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom

Copyright © 2022ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicor mechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem,without permissioninwritingfromthepublisher.Detailsonhowtoseekpermission,furtherinformationaboutthe Publisher’spermissionspoliciesandourarrangementswithorganizationssuchastheCopyrightClearance CenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions .

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher (otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthis fieldareconstantlychanging.Asnewresearchandexperiencebroaden ourunderstanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecome necessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusing anyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationor methodstheyshouldbemindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhomthey haveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeany liabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceor otherwise,orfromanyuseoroperationofanymethods,products,instructions,orideascontainedinthe materialherein.

ISBN:978-0-323-85690-4

ForinformationonallAcademicPresspublicationsvisitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: StacyMasucci

AcquisitionsEditor: LindaVersteeg-Buschman

EditorialProjectManager: SamanthaAllard

ProductionProjectManager: KiruthikaGovindaraju

CoverDesigner: MilesHitchen

TypesetbyTNQTechnologies

Preface

Biofilmsareacomplexandheterogeneousaggregationofmicroorganismsheldtogetherby theirexcretingextracellularpolymersubstances.Eventhoughmicroorganismscancause manyseriousissues,suchaschronicinfections,foodcontamination,andequipment corrosion,theycanalsobeusedconstructivelyforthingssuchaswastewatertreatment, heavymetalremovalfromhazardouswastesites,biofuelproduction,andpowergeneration throughmicrobialfuelcells.Becauseofthegreatvarietyofbiofilmapplications,alotof workhasgoneintofiguringouthowbiofilmsformandinteractwiththeirsurroundings. However,biofilmgrowthandevolutionareverycomplexinteractionsamong physicochemicalandbiologicalprocesses.Considerablechallengesexistinunderstanding microbialprocesseswheremacroscopicdynamicsofnutrienttransportmustbecoupled withmicroscopicbacteriagrowthandtheirelementarybiochemicalreactionsatreactiveor enzymaticinterfaces,inadditiontothemicrobiologicaland/orecologicalaspectsofthe “micro”organismsinvolvedinbiofilms.Furthermore,biofilmprocesses’intrinsic interdisciplinarycharacterprovidesaplatformforinterdisciplinaryresearchfromavariety offields,includingbiofouling,soilmicrobialecology,bioremediation,wastewater engineering,tissueengineering,biosynthesis,andchronicinfections.Ifwearetobeableto linkbiofilmfunctiontobiotechnologies,thiswillallowscientistsandengineerstoredesign theirdevicesorprocessestoinhibitharmfulbiofilmsortopromotebeneficialonesin clinical,environmental,orindustrialapplications.Hence,itisessentialforunderstanding andcontrollinghowbacteriainteractwiththeirenvironmentandspaceandaffectthe productionordegradationofavarietyofcompoundsinaninterdependentenvironment, suchasnutrients,temperature,pH,andmoisture.Mathematicalmodelsarecriticalto modernbiotechnology bothinresearchandinengineeringpractice.Thus,manymodelsof biofilmshavebeendevelopedtoincludevariousbiofilmreactormodules.Modelingplaysa similarfunctionin21st-centurymicrobiologyasthemicroscopedidinpreviouscenturies;it isundoubtedlythemostessentialstudytoolforexaminingcomplicatedphenomenaandprocessesinallsectorsofbiofilms,fromindividualcellstomicrobialcommunityecosystems. Webelievethatthemathematicalmodelhasalotofpotentialintermsoffurtheringourunderstandingofhowbiofilmsinteractwiththeirenvironments,aswellashowtheyaretransferredintobiotechnologiesandmicrobiome-baseddiagnosticsandtherapies. However,thebulkoftheengineeringcommunityeitherdoesnotusethereadily availablebiofilmreactormodelsorutilizesthemaseffectivedesigntools.Thisisbecause

thebookofmathematicalbiofilmmodelsisstillscarce,leadingtoinsufficientdocumented knowledgeandformulationsthathavebeenhistoricallyappliedtobiofilmreactordesign. Overthepast25 30years,therehavebeenrapidadvancesinvariousareasofcomputer technologiesandapplications(e.g.,complexprogrammingandalgorithms,lattice Boltzmannmethod,high-resolutionvisualization,andhigh-performancecomputation). Thesenewandemergingtechnologiesareprovidingunprecedentedopportunitiestodevelop modelingframeworksforbiofilmsandtheirapplications.However,thisprogressisscattered inthedifferentdisciplines,suchasbiofuelproduction,biologicalwastewatertreatment, infection,andcontaminatedsoilbioremediation.Itisachallengetohaveanoverviewof biofilmmodelingforthestudents,researchers,andengineersbecausenosuchabookintroducesthisprogress.

Theobjectivesofthebookaretoprovideanintroductiontobiofilmmodeling,includingthe state-of-the-artmodelingmethods.Therefore,thiscanaddresstheneedtoupgradeand updateinformationandknowledgefortheaudience.Thebookpresentsanoverviewof currentmodels,areasofuncertaintyinaccountingfortheimportanceofbulkliquid hydrodynamicsandbiofilmformation,andfuturerequirementsforincreasingtheuseof biofilmmodelsinengineeringdesign.Wewilluseexamplesfromavarietyof microbiologicalandbioengineeringdisciplinestodemonstratetheapplicabilityofintegrated biofilmmodelsformodelingbiofilmformationandgrowth,andwewillilluminatethe benefitsofapplyingdifferentmathematicalapproachestospecificbiofilmsubfields,aswell asthedistinctchallengesthatmathematicalmodelsrequiretoconquer.

Thisbookprovidesanup-to-datebroadreviewofthemanyalgorithmsandmathematical approachesthataregenerallyfoundspreadthroughoutdifferentdisciplinestocoverthatgap foranyonewhoisinterestedinthemostrelevanttopicsandwishestoteachthemselves.As aresult,itprovidesambitiousstudentswithatoolboxoftacticsthatwillservethemwellin modelingissuestakenfromavarietyofareasofmicrobiology.Thiswillassiststudentsin exploringthefundamentalprinciplesofmodeling,includinghowtoformulatemathematical modelsofbiofilmsystemsthataretractabletocomputationalanalysisandwhatthestudent needstousethemeffectively,aswellasreferencesforfurtherreadingonmoreadvanced applicationsofeachapproachcovered.

Authorbios

Dr.MojtabaAghajaniDelavarisaResearchFellowatAthabascaUniversity.Hereceived hisB.Sc.inMechanicalEngineeringfromAmirkabirUniversityofTechnologyin2001, M.Sc.,andPh.D.inMechanicalEngineeringfromMazandaranUniversityin2003and 2010,respectively.HeworkedattheBabolNoshirvaniUniversityofTechnologyinIranas anassociateprofessorfrom2010until2019.ThenhejoinedprofessorWang’sresearch groupatAthabascaUniversity.Dr.Delavarhasover20yearsofexperienceinmodeling variousindustrialandbiologicalsystemsusingdifferentmodelingschemesincludingmathematicalandnumericalanalysisandsimulation.Hehasauthored/coauthoredover100papersincludingmorethan60peer-reviewedjournalpapers.

Dr.JunyeWangisaProfessorandtheCampusAlbertaInnovationProgram(CAIP) ResearchChairatAthabascaUniversity,Canada.HereceivedhisM.Sc.inThermo-physics fromHarbinShipbuildingEngineeringInstituteandPh.D.inChemicalandMechanicalEngineeringfromEastChinaUniversityofScienceandTechnologyin1989and1996, respectively.ThenhejoinedShanghaiJiaotongUniversityasanassociateprofessorin 1996.From1999till2013,heworkedattheUniversitiesofSheffield,Greenwich,and Loughborough,andScottishCropResearchInstitute,andRothamstedResearch,UK,asa researchassociate,researchscientist,andprincipalresearchscientist,respectively.Dr. Wanghasover30years’experienceinmultiscaleandmultidisciplinarymodelingandisan internationallyrecognizedleaderinmicrobiology,bioenergy,andenvironment.Hehas authored/coauthoredover160papers,includingover120refereedjournalpapers,and servesasassociateeditorandeditorialboardmemberonseveralinternationaljournals.He isalsoareviewerofpapersforover130internationaljournals.

Introduction

1.1Background

Microorganismsareoneofthemostextensivelyspreadandsuccessfulformsoflifeon earth,livinginnaturalhabitats,industrialequipment,andclinicaldevices(Stoodleyetal., 2002).Innaturalhabitats,mostmicroorganismsthriveincommunitiesratherthan planktoniccells.Microorganismstendtogrownotonlyasasinglespeciescommunityof pathogensandnonpathogensbutalsoasmultispeciescommunities(Donlan,2002; Kragh etal.,2016; Melaughetal.,2016).Biofilmscanadheretovarioussolid liquid, air liquid,orliquid liquidinterfaces,suchasimplantedmedicaldevices,livingtissues, industrialorpotablewaterpipes,anddevices,ornaturalaquaticsurfaces.Itiswidely acceptedthatbiofilmsaretheprimarylifestyleofbacteria,withauniquephenotypein termsofgenetranscriptionandgrowthrate.Itwasdiscoveredthat99.9%ofallbacteria adheredtoanaqueoussurfaceandproliferatedtogetherastheircrucialsurvivalstrategy (Geeseyetal.,1977; DonlanandCosterton,2002).Insomesituations,biofilmscanform asswimmingclustersinactivatedslimesinanaquaticenvironmentwheretheyarenot adherenttoasolidsubstratum.Theratioofepilithictoplanktonicmicroorganismsis greaterthan1000 10,000:1(https://www.cs.montana.edu/webworks/projects/stevesbook/ contents/chapters/chapter001/section003/green/page002.html).

Thecharacteristicsofbiofilmsinnaturalhabitatscandiffersubstantially,asevidencedby scanningelectronmicrographsofbiofilmsfromanindustrialwaterdeviceandariver stream(Fig.1.1)(Donlan,2002; Suarezetal.,2019).Asmulticellularcommunitiesof microbialcells,biofilmsareimmersedinaself-producedmatrixofextracellularpolymeric molecules(EPS).Fluorescenceinsituhybridization(FISH)analysesofbiofilm cryosectionsshowedthattheZ400biofilmwaslikelystratified,where Nitrospira was moreabundantinthemiddleofthebiofilmandtheanaerobicanammoxbacteriapresented inthedeeperlayerswhile Nitrosomonas biovolumewasthesamealongthedepthgradient (Fig.1.1AandB)(Suarezetal.,2019).InthethinZ50biofilms,nostratificationwas observedastheammoniaoxidizingbacteria(AOB)andtheoxygenatedwaterandnitrite oxidizingbacteria(NOB)populationswerelocatedsidebyside.Manymicrobial communitieshavecelldensitiesrangingfrom108 to1011 cellspergramofwetmass, comprising1millionto100billioncells(ByrneandDrasdo,2009; Gebreyohannesetal., 2019).Inhoneycombconfigurations,streambiofilmscancohabitwithalgae,EPS,and

Figure1.1

Physicalstructureand“buildingblocks”ofbiofilms:(A)Fluorescenceinsituhybridization(FISH) imagesofaZ400biofilmcryosectionwiththewater biofilminterfaceonthetop(Green:

diatomcells(Battinetal.,2003).Althoughthechemistryandphysiologyofbiofilms mightdifferduetodifferentbacteriaandtheirsurroundingenvironment,thebiomassof biofilmscontainsaround90%EPS,whichaddstotheresemblanceofthemushroom-like structure(Jamaletal.,2018; StewartandFranklin,2008).

Biofilmsinpopulationsaretypicallymadeupofnumerouscoloniesofvariousbacterial species(Vidakovicetal.,2018).Wastewatertreatmentsystemsconsistofthousandsof operatingtaxonomicgroupsatthespecieslevel(Lawetal.,2016; Saundersetal.,2016). Inthenaturalenvironment,biofilmscontainover750distinctspecies(Leyetal.,2006), andoralbiofilmscontainavarietyofthousandsofmicroorganismsasanembraceof bacteriaandeukaryotes.

Microorganismsthrivinginacommunallifestylehavesomebenefitsoverplanktoniccells: (1)increasedrigiditytoerosionbystreamflowstress;(2)enhancedresistanceto antimicrobials;(3)higherbiomassdensityforthetreatmentofvariousinorganicand inorganicsubstratesinbioengineering;(4)improvedcell-to-cellinteraction,genedelivery, andmetabolicworkloadsharing;and(5)providedheterogeneousstructuresfordiffusion andconsumptionofnutrientsbenefits(WangandZhang,2010).

Fig.1.1AandB depictstheheterogeneityoftheEPSmatrixdevelopment(Suarezetal., 2019).Deterministicassemblyinbiofilmsdependsonspecificmechanisms.Forexample, structuredmicroenvironmentsmaylimitthediffusionofelectrondonorsandacceptorsin biofilms,resultinginformsteepgradients.Thethicknessoftheliquidboundarylayerthat limitsdiffusionofsolublesubstrates,includingdissolvedoxygen(DO),fromthebulk liquidtothebiofilmwasdeterminedbycomparingtheammoniumoxidationrates calculatedbythemodeltothosemeasuredduringthenitrogentransformationactivitytests (Suarezetal.,2019).Microorganismsthatliveinsoilaggregatesorhabitatscanadapt theiractivityandcompositioninresponsetothechangesinnutrientandenvironmental circumstances(YoungandCrawford,2004).Thepersistentgradientswerecreatedto enabledistinctlocalhabitatsonafinescale.Microorganismsinanaerobiccopiotrophic biofilmstratifyintermsofoxygenavailability.Becauseoxygenisextractedbyaerobic organismsinthehigherlayersofthebiofilm,alayerofanaerobesdevelopsinthelower layersofthebiofilmduetooxygendepletion.Thiscanbeattributedtothefactthatthe rateofoxygenconsumptionexceedstherateofdiffusion.

Nitrosomonas,Red: Nitrospira.Yellow: Nitrotoga.Blue: Brocadia.Gray:SYTO),(B)FISHimagesofa Z50biofilmcryosectionwiththewater biofilminterfaceonthetop(Green: Nitrosomonas,Red: Nitrospira.Yellow: Nitrotoga.Blue: Brocadia.Gray:SYTO)(Suarezetal.,2019),and(C)SEM (scanningelectronmicrograph)imageofanativebiofilmformedonlowcarbonsteelintersurface inanindustrialwatersystemoveran8-weekperiod,scalebar,20 mm(Donlan,2002).

Flemmingetal.(2016) showedthatbacteriaintheupperlayersofaerobicoligotrophic biofilmsarelikelytoconsumethemajorityofthenutrients,causingstarving microorganismsinthebottomlayers(Fig.1.2).Thesemicrobesadapttosluggishgrowth states,suchasinactivecells,orevencelldeath.Othergradientsinbiofilmsproducedby heterotrophicmetabolismincludepHgradientsandgradientsofsignalingchemicalsthat varywithdistancefromgeneratingcells.

Mostelementsinwater,soil,sediment,andsubsurfaceenvironmentsarecycled biogeochemicallybymicroorganisms(Battinetal.,2008; EhrlichandNewman,2008; Bhanjaetal.,2019; BhanjaandWang,2020, 2021; Meckenstocketal.,2015).The metabolismofterrestrialorganiccarboninfreshwaterenvironmentscontributes significantlytotheemissionofcarbondioxideintotheatmosphere(Battinetal.,2008).

Biofilmsthroughwell-definedinteractionsforspeciallydesignedpurposeshavebeenused inarangeofbioindustries,suchasimprovedsafetyoffoods(Stiles,1996),biosynthesis andbioremediation(Tsoietal.,2019),andinhibitionofpathogenicgrowthin nonfermented,refrigeratedfoods(Gombas,1989).

Biofilmsarefoundnumerouslyinawiderangeofinfectiousdiseasesinbothclinicaland publichealthsettings(Donlan,2002).Theycanpersistentlygrowonbothbioticand abioticsurfaces,suchasahumantoothorlung,acow’sintestine,orrockimmersedina fast-movingstream.Biofilmscancolonizeonvariousmedicaldevices,including

Figure1.2

Biofilmheterogeneitycharacteristics,andsocialcompetitionandcooperation(Flemmingetal., 2016).

intrauterinecontraceptivedevices,prostheticmedicaldevices,catheters,heartvalves, implantdevices,dentalmaterials,andcontactlenses,resultinginavarietyofdeviceassociatedillnesses.Clinicalinvestigationshaveemphasizedthesignificanceofbiofilmsin producinghumanillnesses,accountingforupto60%ofallinfections(ChenandWen, 2011).Biofilmshaveasubstantialinfluenceontheindustrialenvironment,including biofouling,biocorrosion,oilfieldsouring,andeffluent(KlapperandDockery2002).

1.2Historyofbiofilmsstudies

1.2.1Biofilmandbioaggregates

Mostofthehistoryofmicrobiologyhasclassifiedmicrobesasplanktonic,freelyswinging cellsinanutritionallyabundantaquaticenvironmentdependingontheirgrowth environment.However,themajorityofmicrobesinaquaticenvironmentsarenotfreesuspendedmicroorganismsbutinsteaddwellonimmergedsurfaces,wheretheyform organizedcoloniesknownasbiofilms.Untilthe17thcentury,biofilmswerefirst characterizedbyVanLeeuwenhoekfromDelft(1632 1723),whoobservedmicrobial coloniesonshavingsofplaquefromhisteethwithhiscrudemicroscope(Dobell,1932). Thegenestranscribedbybiofilmbacteriadifferfromthosedonebyplanktonic counterparts(Henrici1933).Asearlyas1933,theword“biofilm”wastermedintechnical andenvironmentalmicrobiology(Henrici,1933; ZobellandAllen,1935).

Earlierstudiesofbiofilmsweremainlyinwastewaterfiltering,industrialequipment biofouling,anddentalplaque.LouisPasteur(1822 95)discoveredandsketchedbacterial aggregationastheoriginofaceticwine(Hoiby,2014, 2017).Forbiofilmdescription,much ofthebiofilmstudiesdependonthedevelopmentofinstruments,suchasscanningelectron microscopy(SEM)ortraditionalmicrobialculturetechniques.Twokeyadvancesinbiofilm researchoccurredinthepastfewdecades:thefirstonewastheuseoftheconfocallaser scanningmicroscopetoanalyzebiofilmultrastructure,andthesecondwasthestudyofthe genesrelatedtocelladhesionandbiofilmdevelopment(Battinetal.,2007).

RobertKoch(1843 1910)wasapioneeringmicrobiologistwhoattemptedtoisolateand characterizemicrobesfromtheirnaturalhabitats.Thepureculturetechniqueallowsthe highlevelofreplicationandhandlingtobetterunderstandhowmicroorganismsculture respondtodifferentsituations.Inmicrobiology,thisledtothe“GoldenAge”sinceit providedanopportunitytostudyorganismsinthelabinconsiderabledetailundertightly controlledsettings(suchasgrowthconditions)orwithgeneticmodifications.Because mostbacteriaexistasmultispeciescommunities,pureculturecannotdescribemultispecies communityphenomena.Becauseofthis,biofilmresearchincreasinglyemploysmethods previouslyreservedforstudyingpopulations,suchasmeta-omics-basedmethodologies andhigh-resolutionscanning(Battinetal.,2007).

Thebiofilmresearchwasrevivedinthe1970and1980s.Microorganismsthatgrewona surfacewereconsideredasflatanduniformfilmsofcellsencasedinslime.Thenatureof biofilmsinthehumanhostcanbesignificantlydifferentfromthatatthesurfacesexposedto theenvironment.Inthemid-20thcentury,scientistsdiscoveredthatbiofilmsareprimarily composedofdiversepopulationsofbacteria(Kraghetal.,2016; Melaughetal.,2016).

Environmentalchangesorthemetabolismandmigrationofothercommunitiescause dynamicchangesinnutritionalgradientsforeachpopulation.Thereforeacertainbiofilm community’ssuccessrateishighlydependentontheothermembers’performanceaswell asregulationandcontrolofquorumsensing(QS).Inmedicalmicrobiology, Nickeletal. (1985) introducedtheconceptof“biofilm”growthintheirpioneerresearchintothe physiologicalandbiochemicalfeaturesofbacteria.Theyfoundthatbiofilm-growing bacteriaexhibitedgreaterresistancethanplanktonicallydevelopingbacteria.

Theterm“film”isinsufficienttodescribebacteriallife;hencethename“biofilm”is somehowmisleading.Biofilmcellsdonotjustpileupontopofeachother;instead,they createcomplex,self-organizedstructuresfromthebottomup.Thereareawiderangeof biofilmsthatdifferfromonemicroorganismpopulationtoanother,dependingonthetype ofbacterialcommunityandenvironmentalconditions,suchas“streamers,”“columns,” “mushrooms,”“bioclusters,”“microbialmats,”“microcolonies,”and“bioaggregates” (Atkinsonetal.,1967).Apparently,becausethesetermsarealreadywidelyusedintheir respectivefields,whetherthetermofbiofilmsneedstobereplacedoriscontroversial (Baveye,2020; Flemmingetal.,2021).Asaresult,theword“biofilm”herereferstothe extensivebacterialattachmentonsurfacestodifferentiateaggregatedbacteriafromfree suspended“planktonic”bacteria.Biofilmsrepresentmulticellularmicrobialaggregatesthat arenotlimitedtomicrobialfilmsonsurfaces.

1.2.2Biofilmmodeling

Modelingofbiofilmsdatesbacktothe1970s.Biofilmsweredescribedashomogeneous biomassofasinglemicrobialspecies(AtkinsonandDavies,1974; Williamsonand McCarty1976; Harremoes,1976; RittmannandMcCarty,1980).Thefirst-generation approacheswerequickandeasytoimplement,sometimesusingasimplespreadsheet. However,theydescribeonlyuniformgrowthandcannotcaptureallnonevengrowth. Followingthat,stratifieddynamicmodelsweredevelopedassecond-generationmodels (WannerandGujer,1986).Theselayeredmodelsweredevelopedtorepresentinteractions betweenmultiplesubstratesandspeciesinsidethebiofilm.Theywere,however,unableto accountforthetypicalstructuraldiversity.Therefore,thethird-generationmodelsare developedtorepresentthecharacteristicstructuralheterogeneityinsideabiofilm.

Inthethird-generationmodels,thecoupledmodelofbiomassgrowthsubmodels(e.g., detachment,decay,biomassdivision,andspreading),andtransportsubmodels(e.g.,flow,

substratetransport,andreactions)aresolvedusingthefinitedifferencemethod(FDM)or thefinitevolumemethod(FVM)(Picioreanuetal.,2004).TheNavier Stokesequations, andreactivetransportequationshavebeendevelopedtosimulatebiofilmgrowths (Picioreanuetal.,1998a,b,2001, 2004; Eberletal.,2001; Pizarroetal.,2001; Laspidou andRittmann,2004; Xavieretal.,2005).Bothcontinuummodelsanddiscretemodelsfor biofilmgrowthstartedtobedevelopedtodescribetheformationofmultidimensional biofilmmorphologyinthe1990sandcarrytotodayasthethird-generationmathematical models.Inthecontinuummodels,biofilmgrowthisdescribedusingatransportequation (Eberletal.,2001)andcoupleswithhydrodynamicsandsubstratetransportprocesses.The term“discrete”denotesthatthesystem’sspace,time,andcharacteristicscanonlyhavea finitenumberofstates.Intheearlystage,adomainspaceisdiscretizedintoregulargrid elements,establishingalattice.Thelarge-scaledynamicsofmasstransportand hydrodynamicsaresolvedusingtheFDMortheFVMwhilethebiofilmstructuresaredone usingcellularautomata(CA)orindividual-basedmodel(IbM).

Avarietyofdiscreterulescanresultinfundamentallydiverseandratherrandomstructures forCA.Therulesemployedtosimulateinteractionsatthelocallevelcanbeinspiredonly bybiologicalprinciples,asopposedtoanalysisaccordingtoamathematicalandphysical framework(Alpkvistetal.,2006).IbMwasappliedtodescribebiofilmgrowth(Picioreanu etal.,2004; Yanetal.,2017).Asaresultoftheactionsaswellasinteractionsofthe biomassunitswithoneanotherandtheirsurroundings,thecomplexmorphologyofbiofilms evolves.ThoughCAissimpletobuild,theincreasingbiomasscanonlytravelinarestricted numberoflatticedirections.Additionally,biofilmsaresupposedtobelivingsystemsthat areintrinsicallystochastic.TheCAmodeldescribesstochasticity(Laspidouetal.,2010).

Thethird-generationbiofilmmodelsincludehydrodynamics,masstransfer,and transformations(Eberletal.,2001).Therefore,theyareabletorepresentthe2Dor3D microbialbiofilmmorphologies(Picioreanuetal.,1999; Nogueraetal.,1999a).EPSand QSprocesseshavebeenconsideredinthethird-generationmodels.Biofilmbiomassis madeupofbiologicalgelEPSandwater,accordingtothebiofilm’sconceptualmodelby CoganandKeener(2004).Followingtheconcept, Winstanleyetal.(2011, 2015) developedaconceptualmodeltostudybiofilmblockageinsingleporespace.Later, Kreft andWimpenny(2001) introducedtheIbMtoapproximateEPScreationandspread.The synthesisofEPSwasstoichiometricallyconnectedtothegrowthofbacteria.TheEPS functionedasthefirstlineofprotectionagainsterosionandinvasionofthebacterialcells. Togetherwiththebacterialcells,theexcretedagentEPSwillbeinvolvedintheshoving mechanism(KreftandWimpenny,2001).

QSisacell-to-cellcommunicationfunctionthatbacteriacoordinategeneexpressionand behaviorinthecommunities(Fredericketal.,2011).QSmodelingisrelativelyrecent. Ueckeetal.(2014) developedanIbMforQSsimulationconsideringfluidflow.Ordinary

differentialequationstorepresenttheQSmoleculardiffusionwerecoupledwiththe exteriorflowfieldtosimulatethetimeevolutionoftheinnercells. ZhaoandWang(2017) developedanumerical3DmodelforsimulationsofQSandantibacterialpersistencein heterogeneousmultispeciesbiofilms.

ThelatticeBoltzmannmodel(LBM)forbiofilmmodelinghasbeendevelopedinthepast fewdecades(DelavarandWang,2021a,b).LBMhasitsrootsinstatisticalphysicsand latticegascellularautomata(LGCA)(Frischetal.,1986).LBMusesdistributionfunctions torepresentparticleparceldynamicsandismoresuitableforcouplingwith nonequilibriuminterfaceswithCAorIbM.InLBM-basedframeworks,thebiomassis describedasdiscretequantitiesusingCAorIbM,assignedeithertonumericalgridblocks ortoparticles.Thisallowsthebiofilmmatrixtospreadinmorethanonedirection. Continuummodelsareusedforthetransportofsubstratesusingreactivetransport equationsorLBM. Eberletal.(2001) indicatedinherentdrawbacksinthediscrete approach,suchasthesmallsetofspreadingdirections,biofilmgrowinginauniform environment,adhoc,orsomewhatarbitraryrulesforpriority.However,becauseofthe fundamentalkineticnatureofLBM,itsinterfaceprocessescouldbecoupledeasily throughthedistributionfunctionsinthemesoscaleincomparisonwithtraditional computationalfluiddynamics(CFD)usingFDMorFVM.Therefore,theLBM-based modelshaveseveraladvantages:(1)nonequilibriumdynamics,suchasdiscontinuous interfaceprocesses,multiphaseflow,andflowinporousmediaorcomplexgeometries,(2) easyparallelization,and(3)norequirementofsolvingPoisson’sequationof pressure velocitycouplingthatiscomputationallyexpensive(DelavarandWang,2020).

Becauseofthesecharacteristics,LBMisagoodchoiceformodelingmicroscopic/ mesoscalebiofilmformationusingsimplifiedkineticmodels.Afewhybridtheoretical frameworksthatlinkedparticle-basedandcontinuum-basedmodelsseamlesslyhavebeen developed(DelavarandWang,2021a):(1)integratedLBMandIbM(LBM-IbM)(Graf vonderSchulenburgetal.,2009; TianandWang,2019)and(2)integratedLBMandCA (LBM-CA)(Picioreanuetal.,1999; Tangetal.,2013; Knutsonetal.,2005; Beniougetal., 2017,2019; DelavarandWang,2020, 2021b).Thesefourth-generationmodelsareusually effectiveinstrumentsformodelingbiofilmsindifferenttypesofsituations(Delavarand Wang,2021a).However,iflarge-scaleheterogeneoussystemsaresimulated,thelevelof detailinbiofilmdescriptioncanbealimitation.Mostnotably,LBM-IbMsneed substantiallygreatercomputerresourcesthanthebiomass-basedmodelsunderthesame spatialresolution.

1.3Problemsandobjectivesofbiofilmresearch

Biofilmsareanaturalphenomenonoftheearth’secology,justasbacteriaandfungiare. Manybiofilmsaredetrimentalbecausetheycausemetalcorrosionorwoundinfections.

Everyyear,biofilmscausethelossesoftheUnitedStatesliterallyhundredsofbillionsof dollarsduetoenergylosses,devicecorrosion,foodpoison,biofouling,andclinical infection.Largeseagoingships’fuelconsumptionisexpectedtoriseby30%asaresultof theviscousdragincreasescausedbybiofouling(deCarvalho,2018).Otherbiofilmsmay beusefulforresolvingmajorissues,particularlyinwastewaterpretreatmentsystemsand bioremediationofcontaminatedsoilswhilenaturalbiofilmscanbeharmfultohuman healthandtheenvironment.Forexample,industrialbiofilmsaremoreefficientandstable intermsofbioconversionsandpollutantdegradation.

Microbialsystembehaviorsresultfromintricateinteractionsbetweenalargenumberof cellsandtheirbioticandabioticsurroundings.However,biofilmsdevelopedonsubmerged sedimentareverydifferentfromthatonourteethorfromtheirplanktoniccousins.Itisa keytopichowbiofilmsservemultipleactivitiesofmicroorganismsandbestowthemwith specificfunctionalitiesfordiverseapplicationsthatareusefultocompaniesandthe environment(Vasudevan,2014).Understanding,controlling,andengineeringbiofilmsare allgoalsdrivenbyscientificandpracticalconsiderationssuchasbioremediation,corrosion andbiofoulingprevention,medicalhealthandpharmaceuticals,andecosystemrespiration.

Becausebiofilmsarepresentthroughoutareasofindustrialsystems,theenvironment,and humanhealth,biofilmresearchnowextendsfromthenotionofbiofilmdevelopmentto biofilmbasetechnologiesandtheirengineeringapplications.Biofilmformationiscriticalin boththeearlyphasesofbiofilmdevelopmentandthelatterstagesofthematuredbiofilm lifecycleviacelldispersalinavarietyofindustries.Anenhancedunderstandingofthe emergentpropertiesofbiofilmsandtheirlifestyleallowsanappreciationofbiofilms’ ecologicalandindustrialsuccess,aswellasthepotentialvalueinecologicalandindustrial applicationstodoenormousgoodforourworldasawholeortocontrolandremovebad biofilmsofindustrialandclinicalconcern(Coganetal.,2016).Itwillbefeasibleto manipulatethegrowthandformationofbiofilmsifthebiofilmfunctioncanmechanistically relatetobiotechnologies.Asaresult,scientistsandengineerscanreconsidertheir techniquesinhandlingbiofilmproblemsandsolutionsthatwerepreviouslyneglectedornot handledeffectivelyoncethepathwaystobiofilmgrowthareunderstood.Theycanmodify theirdevicesorbioprocessesinclinical,environmental,orindustrialapplicationstoblock toxicbiofilmsorstimulatefavorableones(Moonsetal.,2009).

Becausebiofilmactivityandbehaviorarecomplexinteractionsbetweenphysical, chemical,andbiologicalprocesses,theinherentlyinterdisciplinarynaturenecessitates researchcontributionsfromdisparatedisciplinessuchasbiochemistry,engineering, mathematics,andmicrobiology,withapplicationsrangingfrombiofoulingtosoil microbialecologytobioremediationtowastewatertreatmenttochronicbacterial infections(Flemmingetal.,2021).Biofilmsarenotviewedaseitherbeneficialorharmful inthiscontext,butratherasacrucialcomponentoftheecosystemsthatsurroundus.Asa

result,understandingbiofilmsrequiresresearchfrommultipleindustries,environments, anddisciplinesonhowbacteriainteractwiththeirsurroundingsandhowtheyimpactthe creationorbreakdownofawiderangeofchemicals. Fig.1.3 depictsthethreemajor domainsofbiofilmsinscienceandengineering.

Clinicalandhealth: Biofilmscanbeharmfultohumanhealthduetomicroorganism infectionsinpatients.Everyyear,millionsofpeoplesufferfromchronicdiseasessuchas cysticfibrosispneumonia,long-standingwounds,chronicinflammation,andimplant-and catheter-associatedinfections,andmanyofthemloseone’slifeasaresult(Bjarnsholt 2013; Sonderholmetal.,2017; TorrettaandPignataro,2018).Indeed,numeroushost environments,suchasblood,tears,saliva,intervascularfluid,andrespiratorysecretions, canbesuitableforbacteriagrowth.Microbialcorrosion,medicaldevice-relatedillnesses, andpersistentwoundsareallcausedbybiofilmsembeddedinhostmaterialastiny aggregates.Foodcontaminatedbybiofilmbacteriaisalsoaglobalpublichealthconcern (Sreyetal.,2013).Asaconsequence,biofilmsareregardedastheprimarycauseof infectioninpublichealth.

Microorganismsmaybenaturallyresistanttoantimicrobialsandantibiotics.Biofilmassociatedorganisms,inparticular,candevelopresistancedeterminantstowithstand antibiotics.Microorganismsinabiofilmare1000 1500timesmoreresistanttodrugsthan

Figure1.3

Problemsandobjectivesofthreemainareasofbiofilms.

theirplanktonicmicroorganisms(SocranskyandHaffajee,2002).Antibioticresistanceisa criticalconcernduetorisingmorbidity,mortality,andhealthcarecosts.Antimicrobial resistancecanalsosignificantlyinfluencehealthcaresettingsandhumanhealthbycauseof contaminationofindwellingmedicaldevicesandthesubsequentspreadofinfections relatedtothesedevices.Themechanismsofthisincreasedresistancedifferfromspeciesto species,antibioticstoantibioticsindifferenthabitats.Thisantibioticresistanceinbiofilms isconsiderablyinfluencedbytheirnutritionalconditions,species,temperature,pH,and exposuretimetoeffectiveconcentrationsofantimicrobialagents.Furthermore,bacterial speciesinabiofilmthatarelesssusceptivetoantibioticsleadtoslowergrowth.Biofilms canbeimpervioustothediffusionofantibioticsandchangethetranslationaland therapeuticpotentialduringinfection.Forexample,thebiofilmcanbeusedasanion exchangerinremovingsuchmoleculesfromthesolutionbecausestronglychargedor chemicallyhighlyreactiveagentsmayberesistedtoreachitsdeeperzones.Asaresult,it isstillunknownhowtoelucidatetheuniquegeneexpressionofbiofilm-associated organisms,evaluatevariousantimicrobialagentsandantimicrobiallocks,andanalyzethe efficiencyofnewhandlinginpreventingorremediatingbiofilmcolonizationofmedical devices.Biofilmsinmedicaldevicesareextremelydifficulttodealwithsincetheirgrowth involvesavarietyoffeatures,phases,andreducedantimicrobialsusceptibility.Hence,new tacticsforcontrollingbiofilmformationinmedicaldevicesarenecessary,suchasthe functionofbiofilmsinantimicrobialresistance,biofilmsasahostforpathogenic organisms,andbiofilmsasacauseofchronicdiseases.

Weseektofindawayhowtoeffectivelyinhibitorregulatebiofilmgrowth,whichissafe andsimpletobeimplementedinclinical,food,water,andenvironmentalmicrobiology. Thekeytosuccessinbiofilmpreventionandcontrolmaybeabetterunderstandingof whatdistinguishesthebiofilmphenotypefromtheplanktonicphenotype(Donlan,2002). Hence,themostpromisingtechniquesaretounderstandhowtopreventbiofilmgrowthas wellashowtodealwiththeseverediseasesrelatedtobiofilminfections(Nogueraetal., 1999b).Forexample,incomplexenvironments,theminimumeffectiveinhibitory concentrationofanymedicineshouldbeidentifiedineliminating,preventing,or destroyingbiofilmswhilebeingresistanttomicrobialresistance(Vasudevan,2014).New treatments,suchastheuseofantiadhesionchemicalsortheutilizationofbacterially createdsignalstopromotebacterialdispersal,shouldbeinvestigatedforexcitingfastacting,effective,andbioavailablemethods(Kostakiotietal.,2013).Bacteriacanalsobe inhibitedbyenvironmentalfactors(OfekandDoyle,1994).Understandingthesignificance ofbiofilmsininfectionshouldimproveclinicaldecision-making(Donlan,2001).Thebest clinicalpracticeswillbeincludedinregulatoryscienceandchoicesbecauseofthe comprehensivescientificexpertconsultprocess,educationaltraining,andstandardization. Thisreducesthelikelihoodofinfectionandencouragestheformationofbiofilm-inhibiting products.

Environmentalprotection: Industrialandagriculturalproductionraisessevereworries aboutcontaminatedsoilandwater.Livestockproductionisthemainsourceof eutrophicationduetophosphorusrunoffanddepletionoftheoxygenintheaquatic systems.Biofilmsareimportantinself-purificationprocessesinsoil,water,andsediments, aswellasinthenaturalattenuationoforganicmatterandpollutants,suchas contaminants,phenols,andspilledoils(LofflerandEdwards,2006).Thetechnologiesof biofilmshaveilluminatedtheirutilityintheremovalofnutrients,pollutants,andheavy metalsfromwastewater,waterdetoxification,andspilledoildegradationbypromoting naturallyoccurringorimportedmicrobiomes.Sincetheendofthe18thcentury,biofilms havebeenusedforbioremediationincontaminatedsitesbybreakingdownundesired materialcreatedbydeadfishandplantresiduals,andbyabsorbingheavyionsfromthe wastewaterwithoutreducingtheoxygenlevel(Nicolellaetal.,2000).Asaresult,biofilms haveenormouspotentialforcleaninguphazardouswastesites,filteringmunicipaland industrialwaterandwastewater,buildingbiobarrierstoavoidpollutionofsoiland groundwater,andmaintainingecologicalbalance.Furthermore,soilmicrobiomesin biofilmsalsoplayacriticalroleinecosystemrespirationandsoilcarbonsequestrationin climatechange(Bhanjaetal.,2019; BhanjaandWang,2020, 2021).Microorganismscan contributefavorablytotheecologicalbalancetoconferthedetrimentalconsequencesof theecosystemandclimatechange.

Microbiologyhastraditionallyconcentratedonsinglespeciescommunities,whichhas tremendouslyaidedourunderstandingofmicrobialgrowth,adaptability,andbiofilm formation.However,inthenaturalenvironment,mostbiofilmsaremultispecies communitiesratherthansinglespeciescommunities.Biofilmsystemsarenotrandomly distributed,butrathertailoredtocertainniches(EliasandBanin,2012).Interspeciescan collaborateandcompetewithoneanother.Interspeciescooperationhasbeendemonstrated toincreasetolerancetohazardouscompoundssuchasantibiotics,antimicrobials,chlorine, anddetergents(Costertonetal.,1994).Multispeciescommunitiesinbioremediationare recognizedtobemoreadaptivetomorecomplexconditionsindecontaminatingpolluted environments.Indeed,bioremediationofcontaminatedwaterandsoilhasbecomean appealingmethod,asorganicpollutants,suchasphenols,areconvertedtoinnocuous compoundsandsecondarymineralwastesbytheprocess.Theeffectivenessof bioremediation,ontheotherhand,isdependentonthesurvivalandpersistenceof microorganismswithinamultispeciesbiofilm.Cooperationandcompetitionamongthese complexcommunitiesarecriticalforincreasingtheresilienceandsurvivalofthevarious species(Moonsetal.,2009).Althoughresearchonmultispeciesbiofilmsisstillinitsearly stages,ithasbeendiscoveredthattheadditionofawell-selectednutritionsupplyor additionalspeciesmicroorganismscansteerthecommunitiestowardmoreefficient bioremediation.Forexample, Juangetal.(2008) showedthatphenolmaybedegraded moreeffectivelyinthepresenceoftetrasodiumpyrophosphatebyutilizingbiofilmsof

Pseudomonasputida BCRC14365.Furthermore,thepresenceofironpromotesthe degradationoftheisothiazolinonebiocide(5-chloro-2-methyl-4-isothiazolin-3-one).Asa result,biofilmtechnologyhasenormouspotentialinremediatinghazardoussites,filtering municipalandindustrialwastewater,buildingbiobarrierstoavoidpollutionofsoiland water,andmaintainingecologicalconservation.

Bioengineeringandtechnology: Theabilitytopromotethegrowthofgoodbiofilmsor inhibitthegrowthofbadbiofilmshasbeenwidelyrecognizedinthefieldsofclinic treatment,biologicalproduction,andenvironmentalprotection.Bioproducts,soluble organicmolecules,andEPSsubstancesconvertedbybacteriaareexamplesofmicrobial productsofinterest(Nogueraetal.,1999b; DelavarandWang,2021a).Many bioconversiontechnologies,includinganoxic/oxygenicphotosynthesisanddark/photo fermentation,havebeendevelopedforbiofuelandbiohydrogenproduction(Delavarand Wang,2021a,b),aswellaswastewatertreatment(DelavarandWang,2020).Theyallare dependentoninteractionsbetweenmicrobialmetabolismandphysical chemical processes.Theprimarygoalsofbioengineeringandbiotechnology,suchasbioconversion, biosynthesis,bioremediation,carbonsequestration,andwastetreatment,aretoincrease efficiency,optimizeresourceutilization,decreaseenvironmentalload,andlowerproduct costs.Variousbioreactors,suchasmovingbedbiofilmreactors(MBBRs),integratedfixedfilmactivatedsludge(IFAS)processes,andmembrane-supportedbiofilmreactors (MBfRs),aretheprimarymeansofconstructingmicrobiomesfortheuseofbiofilmsin recoveringvaluableresourcesfromwastewatertreatmentorsynthesizingbioproducts (Mccartyetal.,2011; Torresietal.,2016).Biofilmformationsinthebioreactorsarethe primarymechanismfororganicpollutantbioconversion(e.g.,organicmatter,nitrogen,and phosphorus).However,usingorganismsinbiofilmreactorsmustbemorecost-effective.To designabioreactororacompleteplant,inwhichbiofilmsconvertsubstrates,exact knowledgeofthebiofilmgrowthprocessesismandatorytoensurethegreatestefficiency andthelowesttotalcosts.Newmetabolicpathwaysorbioreactorstructureshavebeen exploredtoimprovetheefficiencyofbiofilmreactorsandtoincreasetheireconomic potential.Forexample, Roeselersetal.(2008) discoveredtheanaerobicammonium oxidation(anammox)processinapilot-scaledenitrifyingfluidizedbedbiofilmreactor.A significantlyenrichedmicrobialcommunitycollectedfromthisenvironmentwas dominatedbyasingledeep-branchingplanctomycete, CandidatusBrocadia anammoxidans (Roeselersetal.,2008).Weneedtoimprovemicrobialprocessesformore efficientbioconversion,biosynthesis,orbiodegradation,orweneedtofindstrategiesto combatbacteriatoproducecleanenergy.

Microorganismsofmultiplespeciescancontributetohighermetabolismthroughtwoto fourspeciesthansinglespecies,buttheyaresubstantiallymorecomplicatedsystems.A numberofemergentfeatureshavebeenobservedinbothdefinedandundefined populations,includingimprovedstresstolerance,greaterbiomassyield,QSsignaling,and

metaboliccooperation(Tsoietal.,2019).Thehighestprocessingcapacitiesaregenerally consideredasconversionratespertotalreactorvolume,andthespatialstructurehasa significantimpactonsubstratedistribution-relatednutrienttransferandavailabilityfor bacteriauptake(Battinetal.,2016).Naturalhabitatsorindustrialbiofilmshavespatial variabilityrangingfromnanoscalesignalstomicroscalenutritionalgradientstomillimeter structuralsurfacecharacteristicsthatdrivepopulation-levelactivities(HolandDekker, 2014).Thesinglespeciesandhomogenousevaluationsmayexploretimelynoveltraits connectedwithmultispeciescommunities.Furthermore,smartbioengineeringwillbe essentialforenhancingefficiency.Togetherwithspeciesselection,geneticengineeringcan increaseunderstandingofbiofilmformationbetweendiverseorganismsandimprove reactorperformance(Liuetal.,2008).Asaresult,thegenuinepotentialexistsinmixedspeciescommunitiestoachievehighefficiencyonawiderangeofsubstrates.Research datafrompilot-scaleplantsandmodelingcanbehighlybeneficialforassessingthe performanceofprojectedfull-scaleplantsfordesigningandtestingnewtypesofbiofilm processesorreactorstructures.Evenifthereisnofullunderstandingofbiofilmprocesses forsuchacomplexsystemofbioreactors,biofilmresearchmaybecriticalindetermining howabiofilmformsordevelopsinbioreactorsandwhetheranadequatedesignwould encouragethestudyofcertainbiofilmactivities.

1.3.1Objectivesofbiofilmmodeling

Thegoalsofbiofilmmodelingaretogainabetterknowledgeofbiofilmprocesses,reduce experimentaltesting,andscaleup.Amathematicalmodelisasystematictesttotransfera real-worldsystem’sconceptualknowledgeintoamathematicalformulaandlinkvarious processesandweightheirrelativecontributionstostructuralformationandgrowthof biofilms(Wanneretal.,2006).Amathematicalmodelcanbeusedtocombinemany mechanismsthatoperateatdistinctspatialandtemporalscales,suchastransport, metabolic,chemical,mechanical,andgeneticactivitieswithinbiofilms.Biofilmmodeling canhelpresearchersbetterunderstandbiofilmstructure,function,andpopulation dynamics,aswellasthetransition(structureandbehavior)ofbiofilmsgrowingunder variousenvironmentalconditions,potentiallyopeningupnewbiotechnologyapplications (Nogueraetal.,1999b).Innovativesolutionscanbedevelopedbycombiningscientific discoveryinscienceandengineeringforsustainablenaturalresourcemanagementand humanandanimalhealth.

Scale-upisabottleneckinbioprocessdesignanddevelopment.Optimalbiofilmcontrolis achallengeincomplexclinicaltherapy.Thebiomass,structures,andthicknessinbiofilms interactwithhydrodynamics.Ifonepartischanged,itispossiblethattheotherpartswill bechanged.Theinteractionofhydrodynamicsandbiofilmchangecanresultinerratic performance,whenachievingapseudo-steadystate,ataspecifiedtimeandspatialscales.

Theabilitytomonitor,modify,andsimulatebiofilmsfromfirstprinciples,frommolecules toindividualstopopulations,communities,andecosystems,maygomuchbeyondthe explanationoftheecologyandevolutionarytheory.Fromsamplesinshakeflaskstothe finalproductandclinicaltreatment,screeningtrialsinearly-stagedevelopmentof microbialprocessestakealongtime.Nevertheless,itischallengingtoconnectthe naturallyestablishedmultispeciescommunitieswiththefinalproduct.Modelingisto analyzequalitativelyandquantitativelytheeffectsofvariousfactorsonbiofilmformation andgrowth.

Whenexploringavarietyofbiofilm-relatedphenomena,biofilmmodelscanbeappliedfor qualitativeandquantitativeassessmentofexperimentaldataonhowpopulationsfunctionin theirnaturalconstructedconditions(Nogueraetal.,1999b).Athoroughanalysisof experimentalresultsprovidesaninsightintoreal-timecontrolofbiofilmactivitiesandthe potentialtomodifybiofilmformandfunction(Chevalieretal.,2018).Thisusually decreasesthenumberofexperimentaldesignsandteststhatallowtheunderlyinghypothesis tobetested,aswellasextractconceptualandinnovativeknowledgethatpromotes microbiomeresearch,leadingtonovelbiologicalprocessdesigns.Themodelingapproach, inparticular,allowsonetodefinetherelationshipsunderinvestigationandquantifiesthe relativequantitiesofspeciesinthepopulation,individualversusgeneralactivity,andsoon. Themodelingapproachalsoexaminesifbiofilmfunctionsaddresspracticalconcernsthat areintractablethroughfieldobservationsofcommunitiesoflargerspecies.Indeed,studies ofsocialbehaviorssuchascooperationandcompetitionareshiftingfromsingle-species systemstoincreasinglycomplexmultispeciessystems,suchasthoseinvolving host microbeinteractionsandmicrobialconsortia(DelavarandWang,2020).

Finally,despitetheuncertainties,theuseofmechanisticbiofilmmodelsinbiofilmreactor designandmanufacturingisubiquitousinconsultation,anditiscurrentlyhighlybeneficial inbioengineering.Forcomplexsystemswithnumerousinteractingphenomena,modelingis oneofthemostsuccessfulapproachesinacceleratingbothscientificadvancementand translationintonovelsolutions.Modelingcanbeappliedtoexplorenovelprocessdesigns without/atlowexpense,effort,orriskofimplementingallthestrategiestofindoptimal ones,comparedtoexperimentaltesting.Therefore,modelingallowsresearchersand practitionerstoefficientlyscreenalargenumberofdesignoptionstodiscardthosethatfail toachieveperformanceobjectives,suchasdesignedoperatingconditionsandnovel therapeutictechniques.Inbioengineeringandbiotechnology,aniterative design build test learn(DBTL)cyclecanbeusedformicrobiomedevelopment(Lawson etal.,2019).ThisDBTLcoversthelifecycledevelopmentofamicrobiome,fromaninitial microbiomedesigntoengineeringgoals,modelsystems,andexpectedoutcomes.The microbiomeiscreatedsothatitsfunctioncanbetestedagainstasetofmetricstoexamine ifthedesign buildoutcome(s)meetsthedesigngoal(thatis,establishcausation).Thiswill allowexaminingwhatworkedandwhatdidnot(andwhy).Thisisutilizedtoassist decision-makinginsubsequentDBTLdesigncycles.Thismethodcouldacceleratethe

developmentofproductsfromdesignconceptsforharnessingmicrobiomestorealproducts bygivingnovelsolutionsandexpandingscientificunderstandingthroughmodeling.

Biofilmmodelsarealsousedintheeducationandtrainingofprospectivescientistsand engineers(Nogueraetal.,1999b).Modelingapproachesallowstudents,researchers,and scientiststounderstandthemechanismofbiofilmdevelopmentanditsfunctionality,andto examinetheimpactofbiofilmformation,inducedcorrosion,andfoulingonsurfacesof devices.Understandinghowbiofilmsformandfunctionthroughsimulationisoneofthe mostefficientlearningsandtrainingwaysforachievingtheintendedresults.A combinationoffundamental(mechanistic)anddata-oriented(empirical)biofilmreactor designmodelsisrequiredforlearningandtrainingalthoughpredictingtheinteraction amongrelevantscalesisstilladifficulty.Environmentalcharacteristicssuchaslocalized gradientsinpH,dissolvedoxygen,redoxpotential,nutrient,andmetabolicproduct concentrationscanallbeinvestigatedtoexaminetheireffectsonbiofilmformationand development,whetherthebiofilmisalreadybuiltorstillintheconceptualstage(Noguera etal.,1999a; Flemmingetal.,2021).

Thereareseveralprioritiesthatrequiretobeconsideredwhileemployingmodeling approaches:(1)microorganismactivitywithinabiofilm,(2)elucidationofbiofilm deposition,formation,anddetachmentmechanisms,(3)assessmentofthemechanical propertiesofEPSandpreservationofextracellularenzymes,(4)identificationofkeydrivers andparameters,andecologicalinteraction(s)amongdifferentmicroorganisms,(5)increased resistancetoantibioticsandbiocides,(6)geneticexchange,recombination,thereunionof nucleicacidsinintercellularcommunication,andcollectivebehaviorsuchascooperation andcompetitioninresponsetothestressfulandchangingenvironment,(7)waterretention andpreventiontodehydration,and(8)real-timecontrolofbiofilmsystemsforthemost effectivebiologicaltreatmentmethods(Nogueraetal.,1999a; Flemmingetal.,2021).

References

Alpkvist,E.,Picioreanu,C.,vanLoosdrecht,M.C.,Heyden,A.,2006.Three-dimensionalbiofilmmodelwith individualcellsandcontinuumEPSmatrix.Biotechnol.Bioeng.94(5),961 979.

Atkinson,B.,Swilley,E.L.,Busch,A.W.,Williams,D.A.,1967.Kinetics,masstransferandorganismgrowth inabiologicalfilmreactor.Trans.Inst.Chem.Eng.45(6),T257 T264. Atkinson,B.,Davies,I.J.,1974.Theoverallrateofsubstrateuptake(reaction)bymicrobialfilms.PartI-A biologicalrateequation.Trans.Inst.Chem.Eng.52,260 268.

Battin,T.J.,Kaplan,L.A.,Newbold,J.D.,Cheng,X.,Hansen,C.,2003.Effectsofcurrentvelocityonthe nascentarchitectureofstreammicrobialbiofilms.Appl.Environ.Microbiol.69(9),5443 5452.

Battin,T.J.,Sloan,W.T.,Kjelleberg,S.,Daims,H.,Head,I.M.,Curtis,T.P.,Eberl,L.,2007.Microbial landscapes:newpathstobiofilmresearch.Nat.Rev.Microbiol.5(1),76 81.

Battin,T.J.,Kaplan,L.A.,Findlay,S.,Hopkinson,C.S.,Marti,E.,Packman,A.I.,Sabater,F.,2008. Biophysicalcontrolsonorganiccarbonfluxesinfluvialnetworks.Nat.Geosci.1(2),95 100.

Battin,T.J.,Besemer,K.,Bengtsson,M.M.,Romani,A.M.,Packmann,A.I.,2016.Theecologyand biogeochemistryofstreambiofilms.Nat.Rev.Microbiol.14(4),251 263.

Baveye,P.C.,2020.Soilbiofilms:misleadingdescriptionofthespatialdistributionofmicrobialbiomassin soils.SoilEcol.Lett.2,2 5.

Bhanja,S.N.,Wang,J.,Shrestha,N.K.,Zhang,X.,2019.Modellingmicrobialkineticsandthermodynamic processesforquantifyingsoilCO2 emission.Atmos.Environ.209,125 135.

Benioug,M.,Golfier,F.,Fischer,P.,Oltean,C.,Bue ` s,M.A.,Yang,X.,2019.Interactionbetweenbiofilm growthandNAPLremediation:Apore-scalestudy.Adv.WaterResour.125,82 97.

Benioug,M.,Golfier,F.,Olte ´ an,C.,Bue ` s,M.A.,Bahar,T.,Cuny,J.,2017.Animmersedboundary-lattice Boltzmannmodelforbiofilmgrowthinporousmedia.Adv.WaterResour.107,65 82.

Bhanja,S.N.,Wang,J.,2020.Estimatinginfluencesofenvironmentaldriversonsoilheterotrophicrespiration intheAthabascaRiverBasin,Canada.Environ.Pollut.257,113630.

Bhanja,S.N.,Wang,J.,2021.Influenceofenvironmentalfactorsonautotrophic,soilandecosystem respirationsinCanadianborealforest.Ecol.Indicat.125,107517.

Bjarnsholt,T.,2013.Theroleofbacterialbiofilmsinchronicinfections.Apmis121,1 58.

Byrne,H.,Drasdo,D.,2009.Individual-basedandcontinuummodelsofgrowingcellpopulations:a comparison.J.Math.Biol.58(4),657 687.

Chen,L.,Wen,Y.M.,2011.Theroleofbacterialbiofilminpersistentinfectionsandcontrolstrategies.Int.J. OralSci.3(2),66 73.

Chevalier,M.,Ranque,S.,Pre ˆ cheur,I.,2018.Oralfungal-bacterialbiofilmmodelsinvitro:areview.Med. Mycol.56(6),653 667.

Cogan,N.G.,Keener,J.P.,2004.Theroleofthebiofilmmatrixinstructuraldevelopment.Math.Med.Biol.21 (2),147 166.

Cogan,N.G.,Harro,J.M.,Stoodley,P.,Shirtliff,M.E.,2016.Predictivecomputermodelsforbiofilm detachmentpropertiesin Pseudomonasaeruginosa.mBio7(3),e00815 e00816.

Costerton,J.W.,Lewandowski,Z.,DeBeer,D.,Caldwell,D.,Korber,D.,James,G.,1994.Biofilms,the customizedmicroniche.J.Bacteriol.176(8),2137 2142.

deCarvalho,C.C.,2018.Marinebiofilms:asuccessfulmicrobialstrategywitheconomicimplications.Front. Mar.Sci.5,126.

Delavar,M.A.,Wang,J.,2021a.LatticeBoltzmannmethodinmodelingbiofilmformation,growthand detachment.Sustainability13(14),7968.

Delavar,M.A.,Wang,J.,2021b.NumericalinvestigationofpHcontrolondarkfermentationandhydrogen productioninamicrobioreactor.Fuel292,120355.

Delavar,M.A.,Wang,J.,2020.Modelingcombinedeffectsoftemperatureandstructureoncompetitionand growthofmultispeciesbiofilmsinmicrobioreactors.Ind.Eng.Chem.Res.59(37),16122 16135.

Dobell,C.,1932.AntonyvanLeeuwenhoekandHis“LittleAnimals”:BeingSomeAccountoftheFatherof ProtozoologyandBacteriologyandHisMultifariousDiscoveriesinTheseDisciplines.Harcourt,Barace andCompany,NewYork.

Donlan,R.M.,2001.Biofilmformation:aclinicallyrelevantmicrobiologicalprocess.Clin.Infect.Dis.33(8), 1387 1392.

Donlan,R.M.,2002.Biofilms:microbiallifeonsurfaces.Emerg.Infect.Dis.8(9),881.

Donlan,R.M.,Costerton,J.W.,2002.Biofilms:survivalmechanismsofclinicallyrelevantmicroorganisms. Clin.Microbiol.Rev.15(2),167 193.

Eberl,H.J.,Parker,D.F.,Vanloosdrecht,M.C.,2001.Anewdeterministicspatio-temporalcontinuummodelfor biofilmdevelopment.Comp.Math.MethodsMed.3(3),161 175.

Ehrlich,H.L.,Newman,D.K.,2008.Geomicrobiology,fifthed.CRCpress. Elias,S.,Banin,E.,2012.Multi-speciesbiofilms:livingwithfriendlyneighbors.FEMSMicrobiolRev36(5), 990 1004.

Flemming,H.C.,Wingender,J.,Szewzyk,U.,Steinberg,P.,Rice,S.A.,Kjelleberg,S.,2016.Biofilms:an emergentformofbacteriallife.Nat.Rev.Microbiol.14(9),563 575.

Flemming,H.C.,Baveye,P.,Neu,T.R.,Stoodley,P.,Szewzyk,U.,Wingender,J.,Wuertz,S.,2021.Whoput thefilminbiofilm?Themigrationofatermfromwastewaterengineeringtomedicineandbeyond.NPJ BiofilmsMicrobiomes7(1),1 5.

Frederick,M.R.,Kuttler,C.,Hense,B.A.,Eberl,H.J.,2011.Amathematicalmodelofquorumsensing regulatedEPSproductioninbiofilmcommunities.Theor.Biol.Med.Model.8(1),1 29. Frisch,U.,d’Humieres,D.,Hasslacher,B.,Lallemand,P.,Pomeau,Y.,Rivet,J.P.,1986.Latticegas hydrodynamicsintwoandthreedimensions(No.LA-UR-87-2524;CONF-8610281-2).LosAlamos NationalLab.,NM(USA);ObservatoiredeNice,06(France);EcoleNormaleSuperieure,75-Paris(France). Gombas,D.E.,1989.Biologicalcompetitionasapreservingmechanism.J.FoodSaf.10(2),107 117. Gebreyohannes,G.,Nyerere,A.,Bii,C.,Sbhatu,D.B.,2019.Challengesofintervention,treatment,and antibioticresistanceofbiofilm-formingmicroorganisms.Heliyon5(8),e02192.

Geesey,G.G.,Richardson,W.T.,Yeomans,H.G.,Irvin,R.T.,Costerton,J.W.,1977.Microscopicexamination ofnaturalsessilebacterialpopulationsfromanalpinestream.Can.J.Microbiol.23(12),1733 1736. GrafvonDerSchulenburg,D.G.,Pintelon,T.R.R.,Picioreanu,C.,VanLoosdrecht,M.C.,Johns,M.L.,2009. Three-dimensionalsimulationsofbiofilmgrowthinporousmedia.AIChEJ.55(2),494 504. Harremoe ¨ s,P.,1976.Thesignificanceofporediffusiontofilterdenitrification.J.WaterPollut.ControlFed. 377 388.

Henrici,A.T.,1933.Studiesoffreshwaterbacteria:I.Adirectmicroscopictechnique.J.Bacteriol.25(3), 277 287.

Høiby,N.,2014.Apersonalhistoryofresearchonmicrobialbiofilmsandbiofilminfections.PathogensDis. 70(3),205 211.

Høiby,N.,2017.Ashorthistoryofmicrobialbiofilmsandbiofilminfections.Apmis125(4),272 275. Hol,F.J.,Dekker,C.,2014.Zoomingintoseethebiggerpicture:microfluidicandnanofabricationtoolsto studybacteria.Science346(6208),1251821.

Jamal,M.,Ahmad,W.,Andleeb,S.,Jalil,F.,Imran,M.,Nawaz,M.A.,etal.,2018.Bacterialbiofilmand associatedinfections.J.Chin.Med.Assoc.81(1),7 11.

Juang,R.S.,Chung,T.P.,Wang,M.L.,Lee,D.J.,2008.Experimentalobservationsontheeffectofadded dispersingagentonphenolbiodegradationinamicroporousmembranebioreactor.J.HazardMater.151 (2 3),746 752.

Klapper,I.,Dockery,J.,2002.Fingerformationinbiofilmlayers.SIAMJ.Appl.Math.62(3),853 869.

Knutson,C.E.,Werth,C.J.,Valocchi,A.J.,2005.Pore-scalesimulationofbiomassgrowthalongthetransverse mixingzoneofamodeltwo-dimensionalporousmedium.WaterResour.Res.41(7).

Kostakioti,M.,Hadjifrangiskou,M.,Hultgren,S.J.,2013.Bacterialbiofilms:development,dispersal,and therapeuticstrategiesinthedawnofthepostantibioticera.ColdSpringHarb.PerspectMed.3(4),a010306.

Kragh,K.N.,Hutchison,J.B.,Melaugh,G.,Rodesney,C.,Roberts,A.E.,Irie,Y.,Bjarnsholt,T.,2016.Roleof multicellularaggregatesinbiofilmformation.mBio7(2)e00237-16.

Kreft,J.U.,Wimpenny,J.W.,2001.EffectofEPSonbiofilmstructureandfunctionasrevealedbyan individual-basedmodelofbiofilmgrowth.WaterSci.Technol.43(6),135.

Laspidou,C.S.,Kungolos,A.,Samaras,P.,2010.Cellular-automataandindividual-basedapproachesforthe modelingofbiofilmstructures:prosandcons.Desalination250(1),390 394.

Laspidou,C.S.,Rittmann,B.E.,2004.Modelingthedevelopmentofbiofilmdensityincludingactivebacteria, inertbiomass,andextracellularpolymericsubstances.WaterRes.38(14 15),3349 3361.

Law,Y.,Kirkegaard,R.H.,Cokro,A.A.,Liu,X.,Arumugam,K.,Xie,C.,Williams,R.B.,2016.Integrative microbialcommunityanalysisrevealsfull-scaleenhancedbiologicalphosphorusremovalundertropical conditions.Sci.Rep.6(1),1 15.

Lawson,C.E.,Harcombe,W.R.,Hatzenpichler,R.,Lindemann,S.R.,Loffler,F.E.,O’Malley,M.A., McMahon,K.D.,2019.Commonprinciplesandbestpracticesforengineeringmicrobiomes.Nat.Rev. Microbiol.17(12),725 741.

Ley,R.E.,Harris,J.K.,Wilcox,J.,Spear,J.R.,Miller,S.R.,Bebout,B.M.,Pace,N.R.,2006.Unexpected diversityandcomplexityoftheGuerreroNegrohypersalinemicrobialmat.Appl.Environ.Microbiol.72 (5),3685 3695.

Liu,Z.,Li,H.,Liu,J.,Su,Z.,2008.Effectsofinoculationstrategyandcultivationapproachontheperformance ofmicrobialfuelcellusingmarinesedimentasbio-matrix.J.Appl.Microbiol.104(4),1163 1170.

Loffler,F.E.,Edwards,E.A.,2006.Harnessingmicrobialactivitiesforenvironmentalcleanup.Curr.Opinion Biotechnol.17(3),274 284.

McCarty,P.L.,Bae,J.,Kim,J.,2011.Domesticwastewatertreatmentasanetenergyproducer canthisbe achieved?Environ.Sci.Technol.45(17),7100 7106.

Meckenstock,R.U.,Elsner,M.,Griebler,C.,Lueders,T.,Stumpp,C.,Aamand,J.,vanBreukelen,B.M.,2015. Biodegradation:updatingtheconceptsofcontrolformicrobialcleanupincontaminatedaquifers.Environ. Sci.Technol.49(12),7073 7081.

Melaugh,G.,Hutchison,J.,Kragh,K.N.,Irie,Y.,Roberts,A.,Bjarnsholt,T.,Allen,R.J.,2016.Shapingthe growthbehaviourofbiofilmsinitiatedfrombacterialaggregates.PLoSOne11(3),e0149683.

Moons,P.,Michiels,C.W.,Aertsen,A.,2009.Bacterialinteractionsinbiofilms.Crit.Rev.Microbiol.35(3), 157 168.

Nickel,J.C.,Ruseska,I.,Costerton,J.W.,1985.TobramycinresistanceofcellsofPseudomonasaerogenosa growingasabiofilmonurinarycathetermaterial.Antimicrob.AgentsChemother.27,610 624.

Nicolella,C.,VanLoosdrecht,M.C.M.,Heijnen,J.J.,2000.Wastewatertreatmentwithparticulatebiofilm reactors.J.Biotechnol.80(1),1 33.

Noguera,D.R.,Pizarfo,G.,Stahl,D.A.,Rittmann,B.E.,1999a.Simulationofmultispeciesbiofilm developmentinthreedimensions.WaterSci.Technol.39(7),123 130.

Noguera,D.R.,Okabe,S.,Picioreanu,C.,1999b.Biofilmmodeling:presentstatusandfuturedirections.Water Sci.Technol.39(7),273 278.

Ofek,I.,Doyle,R.J.,1994.Principlesofbacterialadhesion.BacterialAdhesiontoCellsandTissues.Springer, Boston,MA,pp.1 15.

Picioreanu,C.,VanLoosdrecht,M.C.,Heijnen,J.J.,1998a.Mathematicalmodelingofbiofilmstructurewitha hybriddifferential-discretecellularautomatonapproach.Biotechnologyandbioengineering58(1), 101 116.

Picioreanu,C.,vanLoosdrecht,M.C.,Heijnen,J.J.,1998b.Anewcombineddifferential-discretecellular automatonapproachforbiofilmmodeling:Applicationforgrowthingelbeads.Biotechnol.Bioeng.57 (6),718 731.

Picioreanu,C.,VanLoosdrecht,M.C.M.,Heijnen,J.J.,1999.Discrete-differentialmodellingofbiofilm structure.WaterSci.Technol.39(7),115 122.

Picioreanu,C.,Kreft,J.U.,VanLoosdrecht,M.C.,2004.Particle-basedmultidimensionalmultispeciesbiofilm model.Appl.Environ.Microbiol.70(5),3024 3040.

Picioreanu,C.,VanLoosdrecht,M.C.,Heijnen,J.J.,2001.Two-dimensionalmodelofbiofilmdetachment causedbyinternalstressfromliquidflow.Biotechnol.Bioeng.72(2),205 218.

Pizarro,G.,Griffeath,D.,Noguera,D.R.,2001.Quantitativecellularautomatonmodelforbiofilms.J.Environ. Eng.127(9),782 789.

Rittmann,B.E.,McCarty,P.L.,1980.Modelofsteady-state-biofilmkinetics.Biotechnol.Bioeng.22(11), 2343 2357.

Roeselers,G.,VanLoosdrecht,M.C.,Muyzer,G.,2008.Phototrophicbiofilmsandtheirpotentialapplications. J.Appl.Phycol.20(3),227 235.

Saunders,A.M.,Albertsen,M.,Vollertsen,J.,Nielsen,P.H.,2016.Theactivatedsludgeecosystemcontainsa corecommunityofabundantorganisms.ISMEJ.10(1),11 20.

Socransky,S.S.,Haffajee,A.D.,2002.Dentalbiofilms:difficulttherapeutictargets.Periodontology28(1), 12 55.

Sønderholm,M.,Kragh,K.N.,Koren,K.,Jakobsen,T.H.,Darch,S.E.,Alhede,M.,Bjarnsholt,T.,2017. Pseudomonasaeruginosa aggregateformationinanalginatebeadmodelsystemexhibitsinvivo-like characteristics.Appl.Environ.Microbiol.83(9),e00113 e00117.

Srey,S.,Jahid,I.K.,Ha,S.D.,2013.Biofilmformationinfoodindustries:afoodsafetyconcern.FoodControl 31(2),572 585.

Stewart,P.S.,Franklin,M.J.,2008.Physiologicalheterogeneityinbiofilms.Nat.Rev.Microbiol.6(3),199 210. Stiles,M.E.,1996.Biopreservationbylacticacidbacteria.AntonieVanLeeuwenhoek70(2),331 345.

Stoodley,P.,Sauer,K.,Davies,D.G.,Costerton,J.W.,2002.Biofilmsascomplexdifferentiatedcommunities. Annu.Rev.Microbiol.56(1),187 209.

Suarez,C.,Piculell,M.,Modin,O.,etal.,2019.Thicknessdeterminesmicrobialcommunitystructureand functioninnitrifyingbiofilmsviadeterministicassembly.Sci.Rep.9,5110.

Torresi,E.,Fowler,S.J.,Polesel,F.,Bester,K.,Andersen,H.R.,Smets,B.F.,Christensson,M.,2016.Biofilm thicknessinfluencesbiodiversityinnitrifyingMBBRsimplicationsonmicropollutantremoval.Environ. Sci.Technol.50(17),9279 9288.

Tang,Y.,Valocchi,A.J.,Werth,C.J.,Liu,H.,2013.Animprovedpore-scalebiofilmmodelandcomparison withamicrofluidicflowcellexperiment.WaterResour.Res.49(12),8370 8382.

Tian,Z.,Wang,J.,2019.LatticeBoltzmannsimulationofbiofilmcloggingandchemicaloxygendemand removalinporousmedia.AIChEJ.65(9),e16661.

Torretta,S.,Pignataro,L.,2018.Theroleofbiofilmsinupperrespiratorytractinfections.In:Infectionsofthe Ears,Nose,Throat,andSinuses.Springer,Cham,pp.31 43.

Tsoi,R.,Dai,Z.,You,L.,2019.Emergingstrategiesforengineeringmicrobialcommunities.Biotechnol.Adv. 37(6),107372.

Uecke,H.,Muller,J.,Hense,B.A.,2014.Individual-basedmodelforquorumsensingwithbackgroundflow. Bull.Math.Biol.76(7),1727 1746.

Vasudevan,R.,2014.Biofilms:microbialcitiesofscientificsignificance.J.Microbiol.Exp.1(3),00014.

Vidakovic,L.,Singh,P.K.,Hartmann,R.,Nadell,C.D.,Drescher,K.,2018.Dynamicbiofilmarchitecture confersindividualandcollectivemechanismsofviralprotection.Nat.Microbiol.3(1),26 31.

Wang,Q.,Zhang,T.,2010.Reviewofmathematicalmodelsforbiofilms.SolidStateCommun.150(21 22), 1009 1022.

Wanner,O.,Eberl,H.J.,Morgenroth,E.,Noguera,D.R.,Picioreanu,C.,Rittmann,B.E.,Van Loosdrecht,M.C.M.,2006.MathematicalModelingofBiofilms.IWAScientificandTechnicalReportNo. 18IWATaskGrouponBiofilmModeling.

Wanner,O.,Gujer,W.,1986.Amultispeciesbiofilmmodel.Biotechnol.Bioeng.28(3),314 328. Williamson,K.,McCarty,P.L.,1976.Amodelofsubstrateutilizationbybacterialfilms.J.WaterPollut. ControlFed.9 24.

Winstanley,H.F.,Chapwanya,M.,McGuinness,M.J.,Fowler,A.C.,2011.Apolymer solventmodelof biofilmgrowth.Proc.R.Soc.Math.Phys.Eng.Sci.467(2129),1449 1467.

Winstanley,H.F.,Chapwanya,M.,Fowler,A.C.,O’Brien,S.B.G.,2015.A2Dchannel-cloggingbiofilmmodel. J.Math.Biol.71(3),647 668.

Xavier,J.B.,Picioreanu,C.,VanLoosdrecht,M.C.,2005.Aframeworkformultidimensionalmodellingof activityandstructureofmultispeciesbiofilms.Environ.Microbiol.7(8),1085 1103.

Yan,Z.,Liu,C.,Liu,Y.,Bailey,V.L.,2017.Multiscaleinvestigationonbiofilmdistributionanditsimpacton macroscopicbiogeochemicalreactionrates.WaterResour.Res.53(11),6898 8714.

Young,I.M.,Crawford,J.W.,2004.Interactionsandself-organizationinthesoil-microbecomplex.Science304 (5677),1634 1637.

Zhao,J.,Wang,Q.,2017.Three-dimensionalnumericalsimulationsofbiofilmdynamicswithquorumsensing inaflowcell.Bull.Math.Biol.79(4),884 919.

Zobell,C.E.,Allen,E.C.,1935.Thesignificanceofmarinebacteriainthefoulingofsubmergedsurfaces. J.Bacteriol.29(3),239 251.

Furtherreading

Gerlach,R.,Cunningham,A.B.,2010.InfluenceofBiofilmsonPorousMediaHydrodynamics.PorousMedia: ApplicationsinBiologicalSystemsandBiotechnology,pp.173 230.

Hajishengallis,G.,2015.Periodontitis:frommicrobialimmunesubversiontosystemicinflammation.Nat.Rev. Immunol.15(1),30 44.

Hibbing,M.E.,Fuqua,C.,Parsek,M.R.,Peterson,S.B.,2010.Bacterialcompetition:survivingandthrivingin themicrobialjungle.Nat.Rev.Microbiol.8(1),15 25.

Horn,H.,Lackner,S.,2014.Modelingofbiofilmsystems:areview.Prod.Biofilms53 76.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.