__MAIN_TEXT__
feature-image

Page 1


“OFFERTE” 14/08/2012 12 004 Bestek Architect gebouw Z CGB UNIVERSITEIT ANTWERPEN Aankoopdienst tav Elio Berardocco Middelheimlaan 1 lokaal A126 2020 Antwerpen


DEMANDS

9030,7 sqm

faculty for ME Antwerp

6050,2 sqm

faculty for ME Antwerp phase 1

5390,2 sqm

primary spaces phase 1

832 sqm

312 sqm

Lab pumps compressors and turbines

390 sqm

Lab HVAC

technological units electromechanics 130 sqm

80 sqm

1248 sqm

technological units building science

workshop area weigh and drying zone

48 sqm

workshop sifting chamber

128 sqm

workshop Climate area

16 sqm 64 sqm

workshop storage and topography room research lab for concrete and concrete production area

48 sqm

Research lab for concrete and cement -mortar lab

128 sqm

Research lab for experimental concrete lab

64 sqm

Research lab for road construction ans asphalt production area

128 sqm

Research lab for road construction and asphalt experimentals

16 sqm 32 sqm 40 sqm 360 sqm

544 sqm

515,2 sqm

480 sqm

96 sqm 1152 sqm

600 sqm

common units for Technology

workshop area and soil storage

48 sqm

48 sqm

403 sqm

Storage area

Research lab for road construction and RHEO Research lab for raod construction and recycle Research lab for EP&B storage area and measurement Didactic lab - PC analysis chamber Didactic lab - didactic chamber

390 sqm

lab materials and machinery

13 sqm

technical area ( compressiond gases

32 sqm 88 sqm

Secretariat entrance // warehouse -Z meeting room / bib1

544 sqm

meeting rooms electromechanics

112 sqm

Research lab road concrete - investigation area

112 sqm

Research lab road construction - investigation area

128 sqm

Research lab EP&B - investigation area

163.2 sqm

Offices -BK

160 sqm

Classroom-1

160 sqm

Classroom-2

160 sqm

Classroom-3

common areas for general use meeting rooms Electromechanics

office areas building technology

multifunctional classrooms

project meeting rooms computer lab

Auxiliary spaces

32 sqm 32 sqm 32 sqm

Project and meeting room 1 Project and meeting room 2 Project and meeting room 3

160 sqm

computer lab 1

160 sqm

computer lab 2

160 sqm

computer lab 3

160 sqm

computer lab 4

160 sqm

computer lab 5

160 sqm

computer lab 6

160 sqm

computer lab 7

32 sqm

office helpdesk employee

600 sqm

entrance circulation space sanitary sanitary disabled network aggregation point central heating Installations ventilation groups storage and maintenance small storage and maintenance per floor elevators with one that operates as a freight elevator shower room for staff cycling

60 sqm

Open Spaces

250 bikes 30 sqm 30 sqm

2035 sqm 2970,5 sqm

faculty for ME Antwerp phase 2

2603 sqm

88 sqm

270 sqm

Auxiliary spaces

273 sqm

Robot lab

160 sqm

lab vision

117 sqm

lab electricity

455 sqm

lab electricity machines

640 sqm

lab automation

390 sqm

lab automotive

240 sqm

lab polytechnic 1 ( expansion space )

240 sqm

lab polytechnic 2 ( expansion space )

270 sqm

circulation space

Technological units electromechanics

primary spaces phase 2

480 sqm

bicycle parking garbage zone // building rest zone for garbage containers // garbage, paper . PMD

Common units for Technology

Common and general areas

sanitary sanitary disabled

97,5 sqm

Open Spaces

97,5 sqm

test area automotive vehicle


faculty for ME Antwerp

distribution by height phase 1 Lab pumps compressors and turbines

312 sqm

9030,7 sqm

2.5m network aggregation point

entrance 3.4.1

faculty for ME Antwerp part B

small storage and maintenance per floor

3.4.5

3.4.9

x sqm

x sqm

x sqm

circulation space

central heating Installations

elevators with one that operates as a freight elevator

x sqm

x sqm

x sqm

sanitary

ventilation groups

shower room for staff cycling

3.4.2

faculty for ME Antwerp part A

3.4.6

2970,5 sqm

3.4.10

3.4.7

6050,2 sqm

Open Spaces

3.4.11

primary spaces part B

Auxiliary spaces

primary spaces part A

Open Spaces Auxiliary spaces 60sqm

97,5 sqm 270 sqm

Lab HVAC

390 sqm

x sqm

x sqm

sanitary disabled

storage and maintenance

x sqm

x sqm

3.4.4

x sqm

600 sqm

3.4.8

600 sqm

2603 sqm

5390,2 sqm

Common and general areas

Common units for Technology Technology

Technological units electromechanics

multifunctional project meeting rooms classrooms

computer lab

88 sqm

office areas building technology

common areas for general use

meeting rooms Electromechanics

96 sqm

technological units building science

common units for Technology

technological units electromechanics

120 sqm

480 sqm

480 sqm

515,2 sqm

403 sqm

544 sqm

832 sqm

Storage area

1152 sqm

130 sqm

1248 sqm

2035 sqm

workshop storage and topography room 3.3.8

technical area ( compressiond gases test area automotive vehicle 3.8.1

workshop area and soil storage

80 sqm

workshop area weigh and drying zone

48 sqm

workshop sifting chamber workshop Climate area

workshop storage and topography room research lab for concrete and concrete production area Research lab for concrete and cement -mortar lab Research lab for experimental concrete lab

48 sqm 128 sqm

16 sqm 64 sqm

2.6m

technical area ( compressiond gases

128 sqm

Research lab for road construction and asphalt experimentals

64 sqm

3.7.2

3.7.1

x sqm

x sqm

3.6.8

3.6.7

240 sqm

240 sqm

lab electricity 3.6.3

zone for garbage containers // garbage, paper . PMD bicycle parking 3.5.1

Robot lab

lab vision 3.6.2

117 sqm

3.6.1

sanitary

3.4.4

3.4.3

circulation space 3.4.2

entrance 3.4.1

3.5.1

250 pcs

x sqm

x sqm

x sqm

x sqm

storage and maintenance

ventilation groups

3.4.8

3.4.7

central heating Installations

network aggregation point

x sqm

x sqm

garbage zone // building rest

160 sqm

3.5.1

273 sqm lab automation

sanitary disabled

30 sqm

3.4.6

3.4.5

3.6.4

x sqm

elevators & shower room for staff cycling freight elevator

640 sqm

455 sqm

3.4.11

3.4.10

3.3.30

x sqm

x sqm

computer lab 2 3.3.30

computer lab 1 3.3.30

Project and meeting room 1 3.3.29

160 sqm

160 sqm

computer lab 5

computer lab 4

160 sqm

160 sqm

160 sqm

3.3.30

Project and meeting room 1 3.3.29

32 sqm

160 sqm computer lab 6 3.3.30

lab electricity machines

3.6.5

computer lab 3

3.4.9

3.3.28

3.3.27

160 sqm

160 sqm

3.3.24

Classroom-2

32 sqm

office helpdesk employee 3.3.31

x sqm

112 sqm Research lab EP&B investigation area

48 sqm 16 sqm 32 sqm

163.2 sqm

160 sqm

Research lab for road construction ans asphalt production area 3.3.12

meeting room / bib1

16sqm

Research lab for EP&B storage area and measurement 3.3.16 Research lab for road construction and RHEO 32 sqm 3.3.14 48 sqm

112 sqm

128 sqm

Research lab road construction - investigation area

Offices -BK

3.3.24

3.3.26

3.3.22

112 sqm 163.2 sqm

meeting rooms Electromechanics

zone for garbage containers //

bicycle parking

3.5.1

distribution by height 2.5m

Lab pumps compressors and turbines 3.3.1

40 sqm

30 sqm

250 pcs

360 sqm

main links & process lines

312 sqm

technological units electromechanics

Lab HVAC 3.3.2

garbage zone // building rest

3.4.1

small storage and maintenance per floor

3.4.5

technical area ( compressiond gases

3.4.9

3.3.20

workshop sifting chamber

48 sqm

48 sqm

workshop Climate area 3.3.7

x sqm

x sqm

central heating Installations

elevators with one that operates as a freight elevator

3.4.6

3.4.10

x sqm

x sqm shower room for staff cycling

x sqm

x sqm

storage and maintenance

meeting room / bib1

3.4.3

3.4.7

x sqm

88 sqm

meeting rooms Electromechanics

x sqm

80 sqm

Research lab for concrete and cement -mortar lab

workshop area weigh and drying zone 3.3.5

3.3.10

Research lab for raod construction and recycle

distribution by height

phase 1

2.5m network aggregation point

3.4.1

small storage and maintenance per floor

3.4.5

3.4.9

x sqm

x sqm

x sqm

circulation space

central heating Installations

elevators with one that operates as a freight elevator

3.4.2

x sqm

3.3.25

3.4.10

x sqm

x sqm

ventilation groups

shower room for staff cycling

x sqm

x sqm

storage and maintenance

x sqm

x sqm

3.4.3

128 sqm Offices -BK

3.4.6

x sqm sanitary disabled

sanitary

3.4.7

3.4.11

3.3.26

3.4.4

112 sqm

160 sqm

160 sqm

3.4.8

Classroom-2 3.3.28

480 sqm 160 sqm

Project and meeting room 1 3.3.29

project meeting rooms

32 sqm

600 sqm

Project and meeting room 1 3.3.29

96 sqm

32 sqm Project and meeting room 1 3.3.29

2.6m

32 sqm

computer lab

computer lab 1

computer lab 4

3.3.30

3.3.30

160 sqm

160 sqm computer lab 5

3.3.30

3.3.30

computer lab 7 3.3.30

Research lab road concrete investigation area

technical area ( compressiond gases 3.3.20

160 sqm

Research lab EP&B investigation area

3.3.23

3.3.25

13 sqm

office helpdesk employee 3.3.31

Secretariat entrance // warehouse -Z 32 sqm

3.3.21

32 sqm 5390,2 sqm

160 sqm

160 sqm

computer lab 3 6050,2 sqm

128 sqm Offices -BK 3.3.26

3.3.22

3.3.30

112 sqm

88 sqm 160 sqm

160 sqm

163.2 sqm

meeting rooms Electromechanics

bicycle parking 3.5.1

250 pcs garbage zone // building rest 3.5.1

entrance

3.3.31

3.4.1

Auxiliary spaces

network aggregation point 3.4.5

30 sqm

small storage and maintenance per floor 3.4.9

zone for garbage containers // garbage, paper . PMD 3.5.1

x sqm circulation space 3.4.2

x sqm sanitary 3.4.3

32 sqm

112 sqm Research lab road construction - investigation area 3.3.24

meeting room / bib1

computer lab 6

1152 sqm

office helpdesk employee

600 sqm

x sqm central heating Installations 3.4.6

x sqm elevators with one that operates as a freight elevator

x sqm shower room for staff cycling

x sqm

x sqm

x sqm storage and maintenance

x sqm

x sqm

3.4.11

1452,2 sqm

3.4.8

3.5m

bicycle parking

Open Spaces

30 sqm

544 sqm

3.4.10

x sqm ventilation groups 3.4.7

sanitary disabled 3.4.4

9030,7 sqm

Didactic lab - didactic chamber

3.5.1

office helpdesk employee 3.3.31

3.3.18

250 pcs

32 sqm

garbage zone // building rest

workshop area and soil storage 3.3.4

3.5.1

60 sqm

workshop area and soil storage 3.3.4

30 sqm zone for garbage containers // garbage, paper . PMD

360 sqm

3.5.1

80 sqm

30 sqm

workshop area weigh and drying zone 3.3.5

Lab pumps compressors and turbines 3.3.1

48 sqm workshop sifting chamber 3.3.6 48 sqm workshop Climate area 3.3.7

312 sqm Lab HVAC 3.3.2

360 sqm

128 sqm

Technological units electromechanics

Robot lab 3.6.1

80 sqm

lab electricity machines 3.6.4

workshop storage and topography room 3.3.8

lab automotive

16sqm

3.6.6

Classroom-2

390 sqm

3.3.29

Storage area 3.3.3 273 sqm lab vision 3.6.2

workshop area weigh and drying zone 3.3.5

455 sqm lab automation

390 sqm 130 sqm

Project and meeting room 1

3.6.5

3.3.29

32 160sqm sqm

Classroom-1 160 sqm

faculty for ME Antwerp part B

primary spaces part B

3.3.27

Project and meeting room 1 3.3.29

lab electricity 3.6.3

32 sqm

2035 sqm

Project and meeting room 1

160 sqm 117 sqm

3.3.29

Classroom-2 32 sqm

3.3.28

640 sqm

computer lab 4 3.3.30

160 sqm research lab for concrete and concrete production area 3.3.9

48 sqm workshop sifting chamber 3.3.6

Common units for Technology Technology

160 sqm computer lab 5 3.3.30

lab polytechnic 1 ( expansion space ) 3.6.7

64 sqm Research lab for concrete and cement -mortar lab 3.3.10

160 sqm computer lab 6

48 sqm 240 sqm

3.3.30

Research lab for experimental concrete lab 3.3.11

lab polytechnic 2 ( expansion space ) 2603 sqm

3.6.8

160 sqm

2970,5 sqm 128 sqm

480 sqm

Research lab for road construction ans asphalt production area 3.3.12

240 sqm

computer lab 7 3.3.30

64 sqm Research lab for road construction and asphalt experimentals 3.3.13

Common and general areas

112 sqm

48 sqm workshop Climate area 3.3.7

312 sqm

160 sqm

Research lab for road construction and RHEO 3.3.14

128 sqm

48 sqm

computer lab 1 3.3.30

Research lab for raod construction and recycle 3.3.15

88 sqm

16sqm Research lab for EP&B storage area and measurement 3.3.16

160 sqm computer lab 2 3.3.30

32 sqm Didactic lab - PC analysis chamber 3.3.17 40 sqm

160 sqm computer lab 3 3.3.30

circulation space

3808 sqm

3.7.1

160 sqm

Lab HVAC 3.3.2

Auxiliary spaces

x sqm sanitary

6.0m

3.7.2

x sqm 270 sqm

sanitary disabled 3.7.3

lab materials and machinery x sqm

112 sqm

128 sqm

3.3.19

390 sqm

Open Spaces

390 sqm

test area automotive vehicle 3.8.1

97,5 sqm

workshop storage and topography room 128 sqm

16sqm

97,5 sqm

phase 2

2.6m

Common and general areas

88 sqm

Classroom-2

390 sqm

88 sqm

3.3.29 lab vision 3.6.2

163.2 sqm

3.5m

lab automation 3.6.5

160 sqm lab electricity machines 3.6.4

Storage area 3.3.3

640 sqm

455 sqm

lab automotive 3.6.6

lab polytechnic 1 ( expansion space ) 3.6.7

circulation space 3.7.1

x sqm sanitary 3.7.2

240 sqm 390 sqm

lab polytechnic 2 ( expansion space ) 3.6.8

x sqm sanitary disabled 3.7.3

240 sqm

Classroom-1 160 sqm

130 sqm

Project and meeting room 1

x sqm

2350 sqm Robot lab 3.6.1

3.3.29

4.0m

273 sqm lab electricity 3.6.3

117 sqm

32 160sqm sqm

Classroom-1

test area automotive vehicle 3.8.1

97,5 sqm

3.3.27

Project and meeting room 1

Classroom-2 160 sqm

3.3.29

32 sqm Project and meeting room 1

160 sqm

Classroom-3 160 sqm

3.3.29

Classroom-2 32 sqm

3.3.28

computer lab 4 3.3.30

32 sqm

160 sqm

32 sqm 32 sqm 160 sqm

research lab for concrete and concrete production area 3.3.9

160 sqm computer lab 5 3.3.30

64 sqm Research lab for concrete and cement -mortar lab 3.3.10

160 sqm

160 sqm

computer lab 6

48 sqm

3.3.30

Research lab for experimental concrete lab 3.3.11

computer lab 3

160 sqm

computer lab 4

160 sqm

computer lab 5

160 sqm

160 sqm 128 sqm Research lab for road construction ans asphalt production area 3.3.12

computer lab 7 3.3.30

64 sqm Research lab for road construction and asphalt experimentals 3.3.13

160 sqm

Research lab for road construction and RHEO 128 sqm 160 sqm

48 sqm

computer lab 1 3.3.30

Research lab for raod 3.3.15 16sqm

160 sqm

Research lab for EP&B storage area and measurement

160 sqm computer lab 2 3.3.30

32 sqm Didactic lab - PC analysis chamber 3.3.17

32 sqm 600 sqm

40 sqm

160 sqm computer lab 3 3.3.30

circulation space sanitary sanitary disabled

160 sqm

network aggregation point

3808 sqm

central heating Installations ventilation groups storage and maintenance small storage and maintenance per floor elevators with one that operates as a freight elevator shower room for staff cycling

6.0m lab materials and machinery

250 bikes

3.3.19

30 sqm 30 sqm

390 sqm

390 sqm

Common and general areas

Robot lab

2.6m 88 sqm

Common and general areas

88 sqm

273 sqm

88 sqm

lab vision

160 sqm

lab electricity

117 sqm

3.5m lab vision 3.6.2

lab electricity machines

455 sqm

160 sqm

lab automation 3.6.5

lab electricity machines 3.6.4

455 sqm

lab automation

640 sqm

640 sqm

lab automotive 3.6.6

lab polytechnic 1 ( expansion space ) 3.6.7

240 sqm 390 sqm circulation space

lab polytechnic 2 ( expansion space ) 3.6.8

3.7.1

sanitary

lab automotive

390 sqm

240 sqm

x sqm sanitary disabled 3.7.3

x sqm

lab polytechnic 1 ( expansion space ) 240 sqm

lab polytechnic 2 ( expansion space ) 240 sqm

2350 sqm

4.0m Robot lab 3.6.1

273 sqm

circulation space

270 sqm

lab electricity 3.6.3

sanitary 117 sqm

sanitary disabled test area automotive vehicle

test area automotive vehicle

97,5 sqm

97,5 sqm

487,5 sqm

3.3.29

160 sqm

160 sqm

273 sqm lab electricity 3.6.3

3.7.3

117 sqm x sqm test area automotive vehicle 3.8.1

97,5 sqm

Project and meeting room 1

3.3.30

3.3.30

3.3.30

640 sqm

3.3.29

3.3.29

32 sqm

lab automotive 3.6.6

160 sqm

160 sqm

computer lab 2

computer lab 5

3.3.30

3.3.30

lab polytechnic 1 ( expansion space ) 3.6.7

160 sqm office helpdesk employee 3.3.31

Project and meeting room 1 32 sqm

160 sqm

160 sqm

computer lab 3

computer lab 6

160 sqm

160 sqm

3.3.30

Research lab EP&B investigation area

112 sqm Research lab road construction - investigation area

3.3.29

3.6.1

3.7.2

x sqm sanitary disabled

455 sqm

computer lab 7

240 sqm

32 sqm

3.3.21

Classroom-2

Robot lab

sanitary

3.6.4

3.6.5

360 sqm computer lab 4

32 sqm

32 sqm

3.3.27

160 sqm lab electricity machines

lab automation

64 sqm Research lab for road construction and asphalt experimentals 3.3.13

computer lab 1

3.3.29

entrance

primary spaces part A

Classroom-2

3.3.27

160 sqm

163.2 sqm

faculty for ME Antwerp part A

Classroom-1

3.3.28

600 sqm

Secretariat entrance // warehouse -Z

Classroom-1

workshop storage and topography room 3.3.8

128 sqm

Classroom-2

360 sqm

88 sqm

faculty for ME Antwerp

16sqm

130 sqm

40 sqm

3.3.20

3.3.24

multifunctional classrooms

Storage area 3.3.3

Project and meeting room 1

3.3.16 32 sqm

Didactic lab - didactic chamber 3.3.18

128 sqm

515,2 sqm

3.7.1

x sqm 88 sqm

390 sqm

40 sqm Didactic lab - didactic chamber

390 sqm

lab polytechnic 2 ( expansion space ) 3.6.8

3.3.30

64 sqm

3.3.19

3.3.23

circulation space

3.6.2

3.3.19

32 sqm Didactic lab - PC analysis chamber 3.3.17

3.3.18

Research lab for road construction and asphalt experimentals 3.3.13

lab materials and machinery

technical area ( compressiond gases

Research lab road concrete investigation area

Common and general areas

lab materials and machinery

Research lab for raod construction and recycle 3.3.15 Research lab for EP&B storage area and measurement 3.3.16

30 sqm

30 sqm

Didactic lab - PC analysis chamber 3.3.17 128 sqm Research lab for road construction ans asphalt production area 3.3.12

48 sqm

Research lab for road construction ans asphalt production area 3.3.12

3.5.1

544 sqm

3.3.15 16sqm

Research lab for experimental concrete lab 3.3.11

3.3.6

128 sqm workshop storage and topography room 3.3.8 16sqm

Research lab for concrete and cement -mortar lab 3.3.10

Research lab for experimental concrete lab 3.3.11

128 sqm

128 sqm

Research lab for EP&B storage area and measurement

48 sqm

48 sqm workshop sifting chamber

48 sqm workshop Climate area 3.3.7

1248 sqm

common units for Technology

Research lab for road construction and RHEO 3.3.14 48 sqm

64 sqm

48 sqm workshop sifting chamber 3.3.6 48 sqm workshop Climate area 3.3.7

390 sqm

4.0m

3.5m

2.6m

6.0m

research lab for concrete and concrete production area 3.3.9

16sqm

312 sqm Lab HVAC 3.3.2

163.2 sqm

zone for garbage containers // garbage, paper . PMD

3.3.14

3.3.22

Lab pumps compressors and turbines 3.3.1

80 sqm workshop area weigh and drying zone 3.3.5 128 sqm

3.3.26

112 sqm

3.5.1

250 pcs

Research lab for road construction and RHEO

48 sqm

64 sqm

meeting room / bib1

3.5m

3.5m Lab pumps compressors and turbines workshop area and soil storage 3.3.4 3.3.1

3.3.25

Offices -BK

3.3.24

bicycle parking

3.5.1

research lab for concrete and concrete production area 3.3.9

workshop area and soil storage 3.3.4

technological units building science

common areas for general use

3.3.18

Research lab EP&B investigation area

112 sqm Research lab road construction - investigation area

3.4.11

3.4.8

garbage zone // building rest

1452,2 sqm

Didactic lab - didactic chamber

3.3.23

3.3.22

sanitary

544 sqm

544 sqm

3.3.21

32 sqm x sqm ventilation groups

x sqm sanitary disabled

128 sqm

120 sqm

88 sqm

Research lab road concrete investigation area

13 sqm

x sqm

Secretariat entrance // warehouse -Z

workshop area weigh and drying zone 3.3.5

3.4.4

390 sqm

13 sqm 32 sqm

phase 1 phase 2

2.6m

lab vision network aggregation point

entrance

circulation space 3.4.2

Storage area 3.3.3

meeting rooms Electromechanics

bicycle parking garbage zone // building rest zone for garbage containers // garbage, paper . PMD

Research lab for raod construction and recycle 3.3.15

360 sqm

office areas building technology

office helpdesk employee entrance

64 sqm

Didactic lab PC analysis chamber 3.3.17

3.3.25

13 sqm

computer lab 7

390 sqm

research lab for concrete and concrete production area 3.3.9

64 sqm

40 sqm

487,5 sqm

1452,2 sqm

3808 sqm

240 sqm

390 sqm

88 sqm

Lab pumps compressors and turbines 3.3.1

130 sqm

Research lab for concrete and cement -mortar lab 3.3.10 48 sqm

128 sqm

Research lab EP&B investigation area

403 sqm

computer lab 6

Research lab for experimental concrete lab 3.3.11

Lab HVAC 3.3.2

3.3.4

80 sqm

Research lab for road construction and asphalt experimentals 3.3.13

3.3.30

390 sqm

computer lab 2

48 sqm

Storage area 3.3.3

Secretariat entrance // warehouse -Z

544 sqm

Project and meeting room 1 Project and meeting room 2 Project and meeting room 3 computer lab 1

48 sqm 128 sqm

390 sqm 544 sqm

128 sqm

computer lab 7

30 sqm

Offices -BK

workshop area weigh and drying zone 3.3.5 workshop area and soil storage

390 sqm

Research lab road concrete investigation area

130 sqm

Research lab EP&B - investigation area

32 sqm

workshop sifting chamber 3.3.6

128 sqm

390 sqm

Research lab road construction - investigation area

3.3.19

3.3.21

88 sqm

3.3.25

3.3.18

130 sqm

Research lab road concrete - investigation area

workshop Climate area 3.3.7

Didactic lab - didactic chamber

Storage area 3.3.3

meeting rooms electromechanics

3.3.22

lab materials and machinery

13 sqm

160 sqm

832 sqm

technical area ( compressiond gases Secretariat entrance // warehouse -Z meeting room / bib1

Secretariat entrance // warehouse -Z

32 sqm

lab automotive 3.6.6

3.3.23

88 sqm

Research lab for road construction and RHEO

lab materials and machinery

3.3.23

112 sqm Offices -BK 3.3.26

3.3.29

meeting room / bib1

3.3.30

x sqm

small storage and maintenance per floor

meeting rooms Electromechanics

32 sqm

Project and meeting room 1 3.3.29

Classroom-1

16sqm

3.3.20

Research lab road concrete Research lab road construction - investigation area investigation area

Classroom-2

128 sqm

Research lab for raod construction and recycle Research lab for EP&B storage area and measurement Didactic lab - PC analysis chamber Didactic lab - didactic chamber

3.7.3

x sqm

lab polytechnic 1 ( expansion space )

13 sqm

32 sqm

Research lab for road construction ans asphalt production area

lab polytechnic 2 ( expansion space )

circulation space

30 sqm 97,5 sqm

3.3.20

48 sqm

sanitary disabled sanitary

2350 sqm 487,5 sqm

312 sqm


EXISTING


EVOLUTION

20000

15000

In 1852 the Jesuit Order founded a college for higher education in commerce and trade in the port city of Antwerp.

10000

5000

1900

1880

1840

1820

1800

1800

NSTRAATNAAM VESTIGING ANTWERPEN Posthofbrug 10, Antwerpen tel: 002600 fax: 03/221 55 01 Email: info.be@anteagroup.com www.anteagroup.be Antea Group is gecertificeerd volgens ISO9001 Stad Antwerpen Distrikt Wilrijk Opmeting terrein| Groenenborger ZNA Middelheim Universiteit Antwerpen LEGENDA BESTAANDE TOESTAND MONOLIET GEBOUW AUTO BERGPLAATS/GARAGE LICHTSIGNAAL VOETGANGER GRACHT BENEDENKANT SIGNALISATIE WEGWIJZER BOVENKANT VERKEERSTEKEN ONDERKANT PLAATSNAAM TALUD BOVENKANT TEORISTISCH OMTREK STRUIK BUS/TRAM RAND BOS LAAGSPANNING LOOFBOMEN VERLICHTING RIJ NAALDBOMEN PAAL DIVERSE DRAADGAAS VLAGGEMAST OMHEINING HOUT WATER PRIKKELDRAAD STRAATKAP GAS MUUR ELEKTRICITEIT KABINE/KAST VANGRAIL ENKEL KABINE/KAST TV BETONPLATEN TELEFOON HAAG TELEFOON SCHEIDING VERHARDINGEN DEKSEL/STRAATKAP VOLDIVERSE WITWITT PUTDEKSEL WEGMARKERING STREEP STRAATKOLK BRANDKRAAN BETON MEETPUNT AD-E KASSEI Opdrachtgever: MERKPAAL PRIVAAT BETONKLINKERS KILOMETERPAAL BETONDALS HEKTOMETERPAAL STEENSLAG HOOGTEPEIL MAAIVELD STRUIK Marc Verbruggen GEBOUW LOOFBOOM DORPELPEIL GARAGE NAALDBOOM FRUITBOOM Universiteit Antwerpen Prinsstraat 10 | KWS 2000 Antwerpen Stelsel Referentie Datum X-Y Flepos 12/06 ambert G.P.S. of ref nr de040464 Opgesteld door AnteaCoord. Group Kris Eddy Mertens Lodewyckx Landmeter-expert ,ZLT.A.W. beëdigd door Rechtbank van Eerste Aanleg van Antwerpen Contractmanager infratop Inschrijvingsnummer tableau : LAN AANGEBRACHTE Dos. nr. Antea WIJZIGINGEN Group: 224735 INDEX GET. AARD DATUM A B C Plan D Schaal: FEJI Planopp. m² nr: G H Gemeten: Bestand: 224735.dwg /Users/user/Desktop/Antwerp/Research/UA/UA Timeline.dwg


Alain Verschoren

The RUCA was housed in the buildings of the former Colonial School near the Middelheim Park.

In 2002 UFSIA, RUCA and UIA decided to merge into the University of Antwerp, the first explicitly pluralistic university in Belgium

In the late 1960s the college was granted university status

Craeybeckx Lode

RUCA was established in 1965 relating to the university expansion. strong advocate of the former mayor of Antwerp Craeybeckx Lode

2040

2020

2000

1980

1960

1940

1920

In 2003 three Institutions, each with a rich history and past, were consolidated into a single institution: The University of Antwerp. UA’s dilemma, or perhaps its greatest opportunity, is to develop a singular and unified identity without sacrificing the history and character of the three institutions.


Given its prominent location, Building Z has the potential to be a catalyst for a transformation far beyond the demands of the brief; success resides in the project’s ability to unite departments once separated.


Building Z is NOT solely a container for a lab, but a lab itself. Separating the functions into unique towers and cubes allows for maximum flexibility and change. However, the cubes are linked via shared program; thus the building can perform as one machine, without sacrificing the unique demands of each user. Simultaneously, the building could serve as a catalyst for a larger urban transformation. The laboratory fosters a spirit of innovation that extends itself to the practical functions of the program it supports.


CONTENTS

Concept

04

Content

15

Design

16

Urban Strategy Process Site Constraints Program Site Plan Campus Deck Lab Tower Office Tower Learning Bridge Building Options Landscape Facades

16 32 34 40 44 52 74 82 92 96 102 108

Technical

124

Structure Building Technology and Sustainability Labs Costs Costs Summary Program Summary Phasing

126 135

Drawings

160

Plan Matrix Plans @ 1:250 Sections and Elevations @ 1:250

162 164 170

Credits

187

112

148 150 154 156 158


CITY CAMPUS

MIDDELHEIM CAMPUS

GROENEBORGER CAMPUS

DRIE EIKEN CAMPUS

16


URBAN STRATEGY

CITY CAMPUS

4 CAMPUSES

MIDDELHEIM CAMPUS

GROENEBORGER CAMPUS

DRIE EIKEN CAMPUS

The University’s amalgamation of multiple institutions has resulted in its division between four campuses. Their distribution throughout the city has left the University without a true centre or ‘heart.’ If connected, the University stands to assert its presence throughout the entirety of Antwerp. 17


MIDDELHEIM CAMPUS

BUILDING Z

GROENEBORGER CAMPUS

18


CONNECTION TO SOFT SPINE

MIDDELHEIM CAMPUS

BUILDING Z

GROENEBORGER CAMPUS

19


Building Z negotiates a void between two of UA’s campuses and a proposed ecological zone.

20


MIDDELHEIM CAMPUS

GROENENBORGER CAMPUS

BUILDING Z

21


GROENENBORGER CAMPUS

22


MIDDELHEIM CAMPUS

23


2 BECOME 1

24


UNIVERSITY OF ANTWERP CAMPUS

25


UA CAMPUS

26


4 BECOME 1

CITY CAMPUS

MIDDELHEIM CAMPUS

GROENEBORGER CAMPUS

DRIE EIKEN CAMPUS

Linking the Middelheim and Groenenborger campuses could help create a unified campus for the UA and give the institution its center, literally and symbolically. As a whole, the combined campus holds a value greater than the sum of its parts. 27


UA CAMPUS

Z

28


29


Building Z can be the link, which unites the Middelheim and Groenenborger campuses, creating a true centre for UA, and ultimately generating a larger urban transformation.

? 30


31


PROCESS

34 ET_B30


PROCESS

35 ET_B30


SITE

34


35


SITE

36


37


SITE

38


39


SITE CONSTRAINTS

158.7

88.0

SITE DIMENSIONS - B / TU .25

45 30.0

ROOF SLOPE 45 AFTER 30M 40


35.0

MAXIMUM HEIGHT LIMIT 35M

12.0

12M SETBACK FROM ROAD 41


SITE CONSTRAINTS

8.0

MAXIMUM BUILDING HEIGHT 8M ON SOUTH

30.0

30M SETBACK FROM ADJACENT BUILDINGS 42


ZONING ENVELOPE

43


PROGRAM

7993.2 sqm

faculty for ME Antwerp

5390.2 sqm

base project

option

2603 sqm

44

3547 sqm

primary spaces

1843.2 sqm

services

1805 sqm

primary spaces

798 sqm

services


1700 sqm

LABS

220 sqm

concrete lab

230 sqm

road construction lab

3.3.9. concrete_production 3.3.10. concrete_mortar 3.3.11. concrete_experimental 3.3.24. research space_concrete 3.3.12. road construction_asphalt production 3.3.13. road construction_experimental 3.3.14. road construction_Rheo 3.3.15. road construction_recycle lab 3.3.25. research space_road construction 3.3.16. EP&B_storage lab 3.3.26. research space_EP&B

40 sqm 30 sqm 80 sqm 70 sqm 40 sqm 80 sqm 30 sqm 10 sqm

100 sqm 550 sqm

EP&B lab HVAC & compression lab

70 sqm 20 sqm 80 sqm

3.3.1. lab pumps

240 sqm

577 sqm

OFFICES

workshops

400 sqm

machinery and materials lab

400 sqm 442 sqm

3.3.2. lab HVAC 3.3.20. technical space (gases & compressor) 3.3.4. workshop_storage 3.3.5. workshop_weigh and drying zone 3.3.6. workshop_sifting chamber 3.3.7. workshop_climate area 3.3.8. workshop_storage and topography room

300 sqm 10 sqm

200 sqm

50 sqm 30 sqm 30 sqm

entrance/secretary offices

80 sqm 10 sqm

300 sqm

3.3.19. lab materials & machining

100 sqm 20 sqm

3.3.3. storage 3.3.21. secretary entrance

3.3.23. offices EM 3.3.27. offices BK 3.3.29. project meetingroom 3.3.29. project meetingroom 3.3.29. project meetingroom 3.3.22. meetingroom / bib 1 3.3.17. didactic lab_pc-analysis

340 sqm

1270 sqm

OFFICES

115 sqm

meetingrooms

102 sqm 20 sqm 20 sqm 20 sqm

250 sqm

didactic labs

55 sqm 25 sqm

300 sqm

classrooms

225 sqm

3.3.18. didactic lab_didactic space

100 sqm

3.3.28. classroom

100 sqm

3.3.28. classroom

100 sqm

3.3.28. classroom

100 sqm

3.3.30. computerroom

100 sqm

3.3.30. computerroom

100 sqm

3.3.30. computerroom

100 sqm

3.3.30. computerroom

100 sqm

3.3.30. computerroom

100 sqm

3.3.30. computerroom

100 sqm 20 sqm

3.3.30. ICT-helpdesk computerroom 3.3.31.

250 sqm 30 sqm 30 sqm

3.5.1. bike storage 3.5.2. garbage zone materials 3.5.3. garbage containers

720 sqm

1843.2 sqm

SERVICES

310 sqm

1533.2 sqm

computerrooms

open spaces

auxiliary spaces

X X X X X X X X X X X

3.4.1. entrancehall 3.4.2. circulationspace 3.4.3. sanitary 3.4.4. sanitary disabled people 3.4.5. server 3.4.6. central heathing 3.4.7. ventilation groups 3.4.8. storage and maintenance 3.4.9. smalle storage and maintenance, each floor 3.4.10. elevators, one service elevator 3.4.11. shower room for cycling

1532.95 sqm

1750 sqm

55 sqm 798 sqm

LABS

OFFICES SERVICES

560 sqm

robotica + lab electric mach 210 sqm

3.6.1. lab robotica

300 sqm

automotive

350 sqm

3.6.3.lab electric machines

490 sqm

lab electricity + automotion

300 sqm

3.6.5. automotive

90 sqm

3.6.3. lab electricity

100 sqm

400 sqm

3.6.4. automation

150 sqm

lab vision lab mechatronics

100 sqm

3.6.2. lab vision

150 sqm

lab polytechnic

150 sqm

3.6.6. mechatronic

55 sqm 723 sqm

meetingrooms auxiliary spaces

150 sqm

3.6.7. polytechnic lab 3.6.8. meetingroom

55 sqm

X X X

75 sqm

3.7.1. circulationspace 3.7.2. sanitary 3.7.3. sanitary disabled people

723 sqm

open spaces

75 sqm

45

3.8.1. automotive test vehicles


PROGRAM CLUSTERS

BASE OPTION

46


Concrete lab Road Construction lab EP&B lab

LAB

Lab HVAC & Compression Workshops Machinery / Storage

LEARNING

OFFICES

SERVICES

LAB

OFFICES

SERVICES

47


PROGRAM ORGINIZATION

PROGRAM CLUSTERS

SLAB

REDISTRIBUTE GFA INTO SLAB

LEARNING BRIDGE

48


CONSOLIDATE SERVICES

CREATE CAMPUS DECK - CONNECT CAMPUSES

BASE SCHEME

OPTION SCHEME

49


BUILDING Z

50


BASE PROJECT

OPTIONAL

805

2603

PRIMARY SPACES

3547

750

2515

LAB TOWER

1700

2435

210

273

CONCRETE LAB

220

100

160

ROAD CONSTRUCTION LAB

90

117

350

BASE PROJEC

1805

2603

LAB TOWER

1750

2515

304

ROBOT LAB

210

273

230

416

LAB VISION

100

160

EP&B LAB

100

160

LAB ELECTRICITY

90

117

455

HVAC & COMPRESSION LAB

550

715

LAB ELECTRICITY MACHINES

350

455

400

640

WORKSHOPS

200

320

LAB AUTOMATION

400

640

300

390

MACHINERY & MATERIALS

400

520

LAB AUTOMOTIVE

300

390

150

240

OFFICE TOWER

577

923.2

LAB POLYTECHNIC 1

150

240

150

240

OFFICES BK

102

163,2

LAB POLYTECHNIC 2

150

240

55

88

OFFICES EM

340

544

LEARNING

55

88

55

88

PROJECTMEETING ROOMS

115

184

MEETING ROOMS

55

88

798

X

SECRETARY

20

32 1960

X

XX

1270

798

798

LEARNING

360

798

XX

X

250

SERVICES

185

DIDACTIC LABS

480

185

X

X

300

CIRCULATION SPACE

85

CLASSROOMS

1120

85

X

X

720

SANITARY

18

COMPUTER LABS

NETWORK AGGREGATION POINT

18

X

55

X

STORAGE CLEANING

55

X

117

X

ELEVATOR + STAIRS

117

X

338

X

STRUCTURE

338

X

75

97.5

75

97.5

75

97.5

75

97.5

75

97.5

75

97.5

AUXILIAIRE SPACES

PRIMARY SPACES

AUXILIAIRE SPACES

1843.2 SERVICES

1843.2

X

ENTRANCE

100

X

CIRCULATION SPACE

500

X

SANITARY

170

X

NETWORK AGGREGATION POINT

36

X

CENTRAL HEATING

17

X

VENTILATION GROUPS

10

X

STORAGE CLEANING

117

X

ELEVATOR + STAIRS

235

X

STRUCTURE

658

X

5390.2

X

TOTAL

OPEN SPACES

OPEN SPACES

AUTOMOTIVE TEST VEHICLES

322 322

X

BICYCLE STORAGE

262

X

GARBAGE

60

X

51


Building Z will serve as a gateway to the University of Antwerp. Strategically positioned With no front or back, it serves as an entrance to the Middelheim and Groenenborger campuses and mediates a critical moment along the soft spine as an open thoroughfare.

52


53


SITE PLAN

54


55


SITE CIRCULATION

56


faculty

public pedestrians

students

bikes

cars

carsparking

delivery materials

57


58


59


60


61


62


65


66


67


WEST ELEVATION

68


EAST ELEVATION

69


70


71


72


73


The Campus Deck is the hinge between Middelheim and Groenenborger campuses. A plaza for students and faculty from every department, it will be an essential place of gathering and interaction for the entire University.


CAMPUS DECK


CAMPUS DECK

76


77


A registration of its program and an honest display of its process, Building Z is itself an instrument for learning. The functions have been organized into unique towers and cubes, which will allow for maximum flexibility and inevitable changes in lab technology. 78


79


LAB TOWER


The laboratories have been liberated from all other functions, allowing for changes to occur with the least amount of interruption to the operations of the overall building. The generic shape of the plan will also provide the most flexibility for the inevitable evolutions with regards to lab technology.


3.3.9. concrete_production 3.3.10. concrete_mortar 3.3.11. concrete_experimental 3.3.24. research space_concrete 3.3.12. road construction_asphalt production 3.3.13. road construction_experimental 3.3.14. road construction_Rheo 3.3.15. road construction_recycle lab 3.3.25. research space_road construction 3.3.16. EP&B_storage lab

40 sqm 30 sqm 80 sqm 70 sqm 40 sqm 80 sqm 30 sqm 10 sqm 70 sqm 20 sqm 80 sqm

3.3.26. research space_EP&B

3.3.1. lab pumps

240 sqm

80 sqm 10 sqm

3.3.2. lab HVAC 3.3.20. technical space (gases & compressor) 3.3.4. workshop_storage 3.3.5. workshop_weigh and drying zone 3.3.6. workshop_sifting chamber 3.3.7. workshop_climate area 3.3.8. workshop_storage and topography room

300 sqm

3.3.19. lab materials & machining

100 sqm

3.3.3. storage

210 sqm

3.6.1. lab robotica

350 sqm

3.6.3.lab electric machines

300 sqm

3.6.5. automotive

90 sqm

3.6.3. lab electricity

400 sqm

3.6.4. automation

100 sqm

3.6.2. lab vision

150 sqm

3.6.6. mechatronic

150 sqm

3.6.7. polytechnic lab

300 sqm 10 sqm 50 sqm 30 sqm 30 sqm

3.3.20 13 sqm 3.4.7

technical area (compressed gases)

x sqm 3.4.6

x sqm

ventilation groups

central heating Installations

3.3.1

3.3.15

Research lab for raod 16sqm construction and recycle 3.3.14 48 sqm 3.3.13

Research lab for road construction and RHEO 312 sqm

3.3.10 48 sqm 3.3.24

ground program

112 sqm

Research lab for concrete and cement -mortar lab

128 sqm

Research lab for road construction and asphalt experimentals

3.3.25

Research concrete construction - investigation area

112 sqm

Research lab road investigation area

32 sqm

Lab pumps, compressors and turbines

3.3.2

3.3.16 Research lab for EP&B storage area and measurement

3.3.25

128 sqm

Research lab EP&B investigation area

390 sqm

Lab HVAC

3.5.1

30 sqm 3.5.1

30 sqm

garbage zone // building rest zone for garbage containers // garbage, paper . PMD

3.3.8 16sqm workshop storage and topography room 3.3.7

3.3.3

128 sqm 130 sqm

3.3.6

Storage area

workshop Climate area

3.3.19

390 sqm

48 sqm 3.3.5

workshop sifting chamber

48 sqm 3.3.4

workshop area weigh and drying zone

80 sqm

workshop area and soil storage

3.3.11

128 sqm

Research lab for experimental concrete lab

3.3.9

64 sqm

research lab for concrete and concrete production area

Research lab for road construction ans asphalt production area 3.3.12

64 sqm

lab materials and machinery MACHINERY / STORAGE

WORKSHOPS

CONCRETE

ROAD CONSTRUCTION

82

EP & B

LABS COMPRESSORS


LAB PROGRAM

LEVEL 02

LEVEL 03

LEVEL 04

LOWER GROUND FLOOR

CAMPUS DECK

LEVEL 01

COMPR. LAB HVAC LAB EP & B LAB ROAD LAB CONCRETE LAB

WORKSHOPS

83

MACHINE LAB


CONCRETE LAB

40 sqm 30 sqm 80 sqm 70 sqm

84

3.3.9. concrete_production 3.3.10. concrete_mortar 3.3.11. concrete_experimental 3.3.24. research space_concrete


MATERIAL & MACHINERY LAB

300 sqm

85

3.3.19. lab materials & machining


ROAD CONSTRUCTION LAB

40 sqm 80 sqm 30 sqm 10 sqm 70 sqm

86

3.3.12. road construction_asphalt production 3.3.13. road construction_experimental 3.3.14. road construction_Rheo 3.3.15. road construction_recycle lab 3.3.25. research space_road construction


EP & B LAB

87

20 sqm

3.3.16. EP&B_storage lab

80 sqm

3.3.26. research space_EP&B


HVAC LAB

300 sqm 10 sqm

88

3.3.2. lab HVAC 3.3.20. technical space (gases & compressor)


PUMPS, COMPRESSOR & TURBINE LAB

240 sqm

89

3.3.1. lab pumps


OFFICE TOWER


OFFICE PROGRAM

20 sqm

340 sqm 102 sqm 20 sqm 20 sqm 20 sqm 55 sqm 55 sqm

3.3.21. secretary entrance

3.3.23. offices EM 3.3.27. offices BK 3.3.29. project meetingroom 3.3.29. project meetingroom 3.3.29. project meetingroom 3.3.22. meetingroom / bib 1 3.6.8. meetingroom

92


OFFICE TOWER

LEVEL 02

LEVEL 03

LEVEL 04

LOWER GROUND FLOOR

CAMPUS DECK

LEVEL 01

OFFICE OFFICE EM OFFICE

93


The Learning Bridge serves as the link between the office and the Labs. Strategically positioned between the labs and office, the Bridge will be able to function 24 hours while the rest of the building can be securely closed. And due to its central location and shared use, the Bridge is a platform for interaction between departments. 94


LEARNING BRIDGE

95


LEARNING PROGRAM

25 sqm

3.3.17. didactic lab_pc-analysis

225 sqm

3.3.18. didactic lab_didactic space

100 sqm

3.3.28. classroom

100 sqm

3.3.28. classroom

100 sqm

3.3.28. classroom

100 sqm

3.3.30. computerroom

100 sqm

3.3.30. computerroom

100 sqm

3.3.30. computerroom

100 sqm

3.3.30. computerroom

100 sqm

3.3.30. computerroom

100 sqm

3.3.30. computerroom

100 sqm 20 sqm

3.3.30. computerroom 3.3.31. ICT-helpdesk

96


LEARNING BRIDGE

LEVEL 02

LEVEL 03

LEVEL 04

LOWER GROUND FLOOR

CAMPUS DECK

LEVEL 01

COMPUTER COMPUTER DIDACTIC

CLASSROOM

97


24 HOUR ACCESS

LEVEL 02

LEVEL 03

LEVEL 04

LOWER GROUND FLOOR

CAMPUS DECK

LEVEL 01

NORMAL CAMPUS HOURS

24 HOUR STUDENT / FACULTY ACCESS

98


LEARNING BRIDGE

OFFICE

COMPR. LAB

OFFICE

COMPUTER

HVAC LAB

OFFICE

COMPUTER

EP & B LAB

OFFICE

BICYCLE

COMPUTER

CONCRETE LAB

99

DIADACTIC

ROAD LAB

WORKSHOPS

MACHINE LAB


TESTING


LEARNING BRIDGE


BASE

102


BUILDING OPTIONS

103


PHASING

104


BUILDING OPTIONS

105


OPTION

106


BUILDING OPTIONS

107


The presence of the ecological corridor and the existing green areas in close proximity to the site of Building Z leaves only one solution to the landscape: minimal intervention. The strategy is to preserve the verdant surroundings; Building Z is to sit respectfully in the lush landscape.


LANDSCAPE


110


111


FACADES


PRIMARY FACADE

114


115


CAMPUS DECK FACADE

116


SERVICE FACADE

117


118


120


121


TECHNICAL


Antwerp Building Z Introduction The structure of Antwerp Building Z has been designed to be economic and quick to construct. Our key design though was to use simple reinforced concrete elements for the faรงade, internal wall and floors in a creative way so what looks to be a challenging long span building can in fact be built relatively simply. The structure can be extended in a straightforward manner as the faรงade can been designed to be removable at the junction of the later phase.

Figure.1 Antwerp Building Z structure

Stability Two stiff cores of conventional reinforced concrete walls resist wind and other horizontal forces in the first phase and work in conjunction with a further box of walls in the second. The cores move slightly inwards over the height of the building to help limit the span of the internal concrete truss. It may be possible to simplify the core walls in the final design by extending the truss.

Faรงade structure The building includes a clear 40m span at the first floor level of phase 1. This is achieved by using a load-bearing structural faรงade working in together with an internal truss (see later). Once phase 2 has been constructed the faรงade has to support another

126


STRUCTURE perpendicular wing of floors. Many different options for the faรงade structure were tested with the favoured option, a pre-cast/insitu concrete panel vierendeel frame found to have some distinct advantages. Firstly, the structure is most highly stressed in areas away from phase 2. That means that simple, detachable panels could be used in this area to allow the simple construction of the second phase.wing of floors. Many different options for the faรงade perpendicular structure were tested with the favoured option, a pre-cast/insitu concrete panel vierendeel frame found to have some distinct advantages. Firstly, the structure is most highly stressed in areas away from phase 2. That means that simple, detachable panels could be used in this area to allow the simple construction of the second phase.

Figure.2 Fixed pre-cast panel connection to slab

Figure.2 Fixed pre-cast panel connection to slab

127


Figure.3 Detachable pre-cast panel connection to slab Secondly, the adoption of a pre-cast faรงade allows for quick and accurate construction of the faรงade and avoids duplication of the faรงade support structure. Finally we have had recent experience of this type of structure in an office development in London where the entire faรงade was pre-cast in a similar way as proposed for Antwerp Building Z. This building, 40 Grosvenor Place, with HOK Architects, proved to be one of the most cost effective commercial buildings in London at that time due to the use of pre-cast concrete. We have also had experience of this form of construction on a residential building in London. The joints between the panels have to be carefully considered. Some suggestions are included within this document. We have analysed the faรงade structure and both maximum principle stress and deflection under imposed (varying load) are well within allowable limits. The design also takes into account the dynamic design criteria of offices or teaching areas with computer screens.

Internal floors The floor slabs are simple exposed reinforced concrete flat slabs. Practical alternatives to this include waffle and ribbed slabs. The

128


width of the building is too far to span using the floor slabs alone width of the building is too far to span using the floor slabs alone without the depth becoming impractically deep hence a row of without the depth becoming impractically deep hence a row of internal columns has been introduced. These split the floors into a internal columns has been introduced. These split the floors into a grid of 7.6m by 9.0m. Where the building is unsupported at ground grid of 7.6m by 9.0m. Where the building is unsupported at ground floor additional structure is needed to support the columns. There floor additional structure is needed to support the columns. There are many different options for this but the simplest, and the option are many different options for this but the simplest, and the option chosen for this scheme, was to incline the central columns and chosen for this scheme, was to incline the central columns and hence create a full height and extremely efficient triangulated truss, hence create a full height and extremely efficient triangulated truss, which is in turn supported by the reinforced concrete cores at which is in turn supported by the reinforced concrete cores at either end of the building. This idea echoes the key theme of the either end of the building. This idea echoes the key theme of the design, namely to design a striking and challenging building from design, namely to design a striking and challenging building from simple, repetitive and economic elements. simple, repetitive and economic elements.

Figure.4 view of internal truss Figure.4 view of internal truss

Below ground Below ground The basement level is to be constructed from conventional The basement level is to be constructed from conventional reinforced concrete retaining walls, columns and slab at ground reinforced concrete retaining walls, columns and slab at ground floor level. Although much of the load of the building is focused floor level. Although much of the load of the building is focused under the building cores the development is of relatively low height under the building cores the development is of relatively low height hence the concentration of forces will not be too high and simple hence the concentration of forces will not be too high and simple piled foundations (subject to a detailed investigation) will be piled foundations (subject to a detailed investigation) will be sufficient. sufficient.

Sequence Sequence of of construction construction The building is to be built in two phases with a short wing, at right The building is to be built in two phases with a short wing, at right angles to the first structure being added at a later date. One of the angles to the first structure being added at a later date. One of the guiding principles of the design was to allow this to happen in the guiding principles of the design was to allow this to happen in the context of a reinforced concrete frame. The key, as mentioned context of a reinforced concrete frame. The key, as mentioned earlier was to design a long span faรงade that was least highly earlier was to design a long span faรงade that was least highly

129


stressed in the middle of the span which could be easily removed once temporary propping had been introduced to support the structure above. The faรงade has also been designed to act as a cantilever in the temporary condition and in the permanent case once the second phase has been built. An appropriate sequence of works could be as below: 1. Construct phase 1 with faรงade panels in the zone of the second phase being designed to be easily removed. 2. Before construction of phase 2 temporarily support the slab edge and faรงade of phase 1 using conventional structural steel propping off the ground floor slab (the slab will be designed for these loads) 3. Unclip the pre-cast panels 4. Construct all of phase 2 except for the part attached to phase 1. 5. Construct the faรงade of phase 2, fixing to the phase 1 structure. 6. Construct the remainder of phase 2

01

02

03

04

05

06

07 130


Figure. 5 Sequence of construction of phases 1 and 2

Structural Analysis results

Figure. 5 Sequence of construction of phases 1 and 2

Structural Analysis results Figure.6 Distribution of Principle stresses in façade vierendeel truss – maximum principle stress 15N/mm2 Figure. 5 Sequence of construction of phases 1 and 2

Structural Analysis results Figure.6 Distribution of Principle stresses in façade vierendeel truss – maximum principle stress 15N/mm2 Figure.7 Global vertical deflection under imposed load – maximum deflection 4.22mm at mid span

Figure.6 Distribution of Principle stresses in façade vierendeel truss – maximum principle stress 15N/mm2 Figure.7 Global vertical deflection under imposed load – maximum deflection 4.22mm at mid span

Figure.7 Global vertical deflection under imposed load – maximum deflection 4.22mm at mid span

131


Figure.8 Forces within internal truss

Precedents

Figure.8 40 Grosvenor Place, London – Construction of pre-cast panel façade

132


Figure. 9 40 Grosvenor Place under construction

Figure.10 Construction details of the 40 Grosvenor Place load bearing facade 133


1. INTRODUCTION 1. INTRODUCTION For the development of the new university building, we propose a holistic approach, For the development thebuilding’s new university building, wewith propose a holistic approach, considering all phasesofthe lifecycle. Starting the phase of planning and considering all phases the building’s lifecycle. Starting with the phase of planning andof all integrating construction, operation as well as demolition and the recycling and reuse integrating construction, operation as well as demolition and the recycling and reuse of all used materials. used materials. 2. ENERGY STRATEGY 2. ENERGY STRATEGY A main target defined by the client is to reduce the energy for the operation of the building to A minimum. main target by the is tostandard reduce the energy for the operation of client. the building to a Indefined this context theclient Belgian K15 has been defined by the a minimum. In this context the Belgian standard K15 has been defined by the client. To reach this level, a four step strategy is proposed. Starting with a standard building as To reach this level, a four strategy is proposed. Starting with a standard building as baseline, the following fourstep steps of optimisation is used: baseline, the following four steps of optimisation is used: Energy concept- optimisation stratergy BASE

STEP 1

STEP 2

STEP 3

typical energy demand

optimisation of building geometry and orientation

optimisation of building envelope (passive)

optimisation of MEP

STEP 4 use of renewable energy (active)

Figure 1: Steps of optimisation Figure 1: Steps of optimisation Step 1: Optimisation of building geometry and orientation Steporientation 1: Optimisation of building geometry and orientation The of the T-shaped building is arranged due to urban design conditions. The orientation of the T-shaped building is arranged due urban design conditions. Nevertheless most parts of the façade are not shaded by to surrounding buildings (also see Nevertheless most parts of the façade are not shaded by surrounding buildings (also see chapter “shading”). The compact structure reaches a sa/vol-ratio of approximately 0,26. chapter “shading”). The compact structure reaches a sa/vol-ratio of approximately 0,26. Step 2: Optimisation of building envelope Step 2: Optimisation of building By using a highly insulated buildingenvelope shell on the level of a passive-house-standard the heat By using a highly insulated building shelltoon the level ofThe a passive-house-standard the heat losses via transmission will be reduced a minimum. air-tightness of the envelope losses via transmission reduceddoor to atest minimum. air-tightness of the .be A blower should The be carried out at the endenvelope of the should be maximum 0,7will h-1 -1 . A blower door test should be carried out at the end of the should be maximum 0,7 h construction to ensure that this targeted air tightness is respected. construction to ensure that this targeted air tightness is respected. Step 3: Optimisation of MEP Step 3: Optimisation MEPbuilding service equipment is the next step. An intelligent The optimisation of theof entire The optimisation of the entire building service the equipment is the due nexttostep. An intelligent Energy-Management-System (EMS) controls MEP system the current user Energy-Management-System (EMS) controls the MEP system due to the current userenergy conditions. Presence-, CO² - and daylight controlled management help to reduce the daylight controlled management helpMEP to reduce the energy conditions. Presence-, ² - and minimise demand. Heat recoveryCO systems the energy losses through systems. demand. Heat recovery systems minimise the energy losses through MEP systems. Step 4: Use of renewable energy Step 4: Use renewable With the first of three steps theenergy remaining energy demand will be reduced to a minimum. With the first three steps the remaining energy demand will be reduced to a minimum. 09/08/2012 09/08/2012

5/19 5/19

134

Building Z, Antwerp Building Z, Antwerp


BUILDING TECHNOLOGY AND SUSTAINABILITY The rest of the remaining demand will be covered my natural energy sources as far as possible. The ground source heat pump technology uses geothermal energy to heat, cool or booth the spaces and seems to be a viable option for the Building Z. An analysis of the soil quality in Antwerp should be carried out to ensure the effectiveness of this technology for the Building Z. If the groundwater on site is reserved for drinking water supplies (what may be the case in Antwerp), a separate water based circle for the heat pump could ensure that the water quality is not affected. The use of photovoltaic panels on the rooftop could generate electricity and cover a part of the electricity needs of the building. Surpluses go to the grid or can be stored thermally by a Summersun 61, 7°

Photovoltaics

Providing energy for building service and heat pump (grid connected)

Wintersun 14,9° Rain water collection Use for toilets & cleaning

Natural Ventilation

special automatic openings in facade offset

underfloor heating

High selectivity glass

very low g - value, high reflexion, minimum solar penetration

concrete core activation

for cooling and heating system

Heat recuvery from exaust air

efficient LED lighting all artificial lights with LED technologie, day-light and presence controlled

Ground sorce Heat Pump (Heating & Cooling)

buffer storage hot water

buffer storage could water

as natural source for regenerative heating and cooling energy via concrete core and underlay heating

geothermal energy

buffer storage feed by the heat pump. Figure 2: Overall Energy Concept

09/08/2012

6/19

135

Building Z, Antwerp


OPAQUE FACADE-

3FORM FACADE PANNEL INSULATION SUBCONSTRUCTION CONCRETE WALL TOTAL U VALUE <0.15W/m <k

NATURTAL VENTIALTION-

automated ventilation openings night cooling and individual vantilation invisuble on facade

UNDERFLOOR HEATING

TRANSPARENT FACADE-

triple Glazing ( with additional 3 form layer u value glas ( glas + frame ) < 0,9W/M<k g value : 0.35 facade offset: 600 mmno external schading internal sun shild recommended

CONCRETE CORE ACTIVATION- heating & cooling- no suspended ceiling- instalations in double floor

Figure 3: section facade

09/08/2012

7/19

136

Building Z, Antwerp


3.

ENERGY CONSUMPTION FOR HEATING

3.1.

PHVP (simplified PHPP tool)

To prove the possible achievement of the K15 standard a simplified calculation with the tool PHVP (provided by the German Passive-House institute) was realised. This tool uses the similar methodology like the tool PHPP (commonly used in Belgium), but offers a simplified data input for preliminary planning phases. 3. ENERGY CONSUMPTION FOR HEATING For the calculation the building envelope was used as shown below. For thisPHVP calculation just one underground level was integrated in the data model. All the 3.1. (simplified PHPP tool) facades are of the same type with a glazing ratio of 33%. To prove the possible achievement of the K15 standard a simplified calculation with the tool PHVP (provided by the German Passive-House institute) was realised. This tool uses the similar methodology like the tool PHPP (commonly used in Belgium), but offers a simplified data input for preliminary planning phases. For the calculation the building envelope was used as shown below. For this calculation just one underground level was integrated in the data model. All the facades are of the same type with a glazing ratio of 33%.

Figure 4: Building geometry used for calculation

The results of this calculation are shown in the following table and also in Appendix A. (Note: This calculation is a first estimation for competition stage. Detailed calculations need to be carried out in further steps.) Table 5 : calculation results and assumed data:

netto energy demand forused heating: Figure 4: Building geometry for calculation

<15

kWh/m²a

The results of this calculation are shown in the following table and also in Appendix A. assumed and u-values: (Note: Thisdata calculation is a first estimation for competition stage. Detailed calculations need External wall 0,15 W/m²K to be carried out in further steps.) Roof 0,15 W/m²K Basement top 0,15 W/m²K Windows u-value results and assumed data: 0,9 W/m²K Table 5 : calculation g-value 0,35 netto energy demand for heating: <15 kWh/m²a heat recovery from exhaust air 80 % internal heat source (value for office 3,5 W/m² build.) assumed data and u-values: External wall Roof Basement top Windows u-value g-value 09/08/2012 heat recovery from exhaust air internal heat source (value for office build.)

0,15 0,15 0,15 0,9 0,35 8/19 80 3,5

137

W/m²K W/m²K W/m²K W/m²K % W/m²

Building Z, Antwerp


4.

SHADING

Figure 6: Shadow Range- Top View, June 21st

Figure 7: Shadow Range â&#x20AC;&#x201C; Top View , December 21st

09/08/2012

9/19

138

Building Z, Antwerp


Figure 8: Shadow range June 21st, perspective view Figure 8: Shadow range June 21st, perspective view

Figure 9: Shadow range 21st Dec, perspective view Figure 9: Shadow range 21st Dec, perspective view

139


5.

SUMMER INSULATION & OVERHEATING

Summer overheating is an important issue in office and university building and labs. To prove that temperature is not going over a tolerable value a calculation according to DIN 4108 was carried out. This calculation showed that due to the relatively small glazing ratio (33%), the façade offset and by using a g-value of 0,35 there is no need of an external shading device (as preferred by the architects, a shading device on the inside is highly recommended though). However, this calculation only shows that temperatures are tolerable. To get a detailed impression of the temperature in terms of comfort a thermal simulation needs to 5. SUMMER INSULATIONdevelopment & OVERHEATING be carried out in later planning stages. Summer overheating is an important issue in office and university building and labs. For the calculation two spaces/zones in the top storey, facing south were reviewed. One To prove4x5 thatgrid temperature is not going a tolerable value calculation to DIN defining axis as a “space” and over a second defining 2x2agrid axis as aaccording closed “space”. 4108 was carried out. Detailed calculation steps can be found in Appendix B. This calculation showed that due to the relatively small glazing ratio (33%), the façade offset and by using a g-value of 0,35 there is no need of an external shading device (as preferred by the architects, a shading device on the inside is highly recommended though). However, this calculation only shows that temperatures are tolerable. To get a detailed impression of the temperature development in terms of comfort a thermal simulation needs to be carried out in later planning stages. For the calculation two spaces/zones in the top storey, facing south were reviewed. One defining 4x5 grid axis as a “space” and a second defining 2x2 grid axis as a closed “space”. Detailed calculation steps can be found in Appendix B.

Figure 10: Reviewed zones for summer overheating; (left: area with 4x5 grid axis; right: 2x2 grid axis)

Figure 10: Reviewed zones for summer overheating; (left: area with 4x5 grid axis; right: 2x2 grid axis)

09/08/2012

11/19

140

Building Z, Antwerp


6.

PHOTOVOLTAIKS

With the available roof surface of 2166 m² and 1000 solar modules (each 200 W) the local conditions could generate an annual output of ca. 176900 kWh/a. This output could already serve a significant part of the expected electricity demand. net estimated annual PV - output:

191141.8 kWh/a

January

4056.6 kWh;

February

7570.3 kWh;

March

14845.1 kWh;

April

21986.7 kWh;

May

27049.5 kWh;

June

28375.1 kWh;

July

26084.7 kWh;

August

23909.4 kWh;

September

18720.6 kWh;

October

10908.2 kWh;

November

4774.4 kWh;

December

2861.4 kWh;

gross estimated annual output (to grid):

176924.8 kWh/a

Calculation basis: 1000 x 200.00 W = 200.00 kWp Solar module: Bosch · c-Si M 48 - M200 Roof surface: ca. 2166 m²; Module surface: ca. 1340 m², inclination 30° azimuth 0°, no shading ,

Local climate data for Antwerp see Appendix C

09/08/2012

12/19

141

Building Z, Antwerp


7.

MATERIALS, RECYCLING & REUSE

7.1.

Design for Recycling

To fulfil a holistic life cycle approach the demolition has to become an integrated part of the planning process. After the operation phase as many parts of the building as possible should be reused or recycled. Therefore the planners have to think about possible conversions from an early planning stage on. In terms of construction the following â&#x20AC;&#x153;design for recycling principlesâ&#x20AC;? should be addressed:

Design for recycling- main principles Use of recycle materials Use of demoountable joints Reduction of variety of substances Figure 11: DFR principles Recycling compatible groups of materials

Docu

Documentation of materials and recycling pathways

figure 11: principles

09/08/2012

13/19

142

Building Z, Antwerp


7.2.

Material cycles

For all materials used a recycling process in the technical or biological cycle (according to the cradle to cradle principles) should be possible, as shown on the figure below:

raw material

7.2.

dary secon ck feedsto

Material cycles

ial raw mater ain grows ag

material

treatmen t

cycle

biological cycle

technical cycle

cycle

util isat ion

7.3.

withrdawl, disassembly

demolition deconstruction

deg ener atio n

technical cycle

cycle

etic

gical

cycle

energ

biolo

For all materials used a recycling process in the technical or biological cycle (according to product the cradle to cradle principles) should be possible, as shown on the figure below: use materialproductproductmaterial-

withrdawl, disassembly

biological cycle

Material choice

During detailed planning and construction phases, the following process for the choice of the materials should be addressed, in order to ensure a successful recycling process for all substances used in the construction. technical cycle

7.3.

biological cycle construction - task

Material choice

During detailed planning andNO construction phases, the following process for the choice of the basic material materials should be addressed, in order to ensurerecycable a successful recycling process for all ? substances used in the construction. YES

substitution by secondary feedstock

YES BUILT !

YES

mono material element ?

NO

Figure 12: Process for the choice of materials YES

recycling compatible components?

NO divide into recycling compatible components

09/08/2012

14/19

Figure 12: Process for the choice of materials

143

Building Z, Antwerp


144


9.

APPENDIX B - Summer Overheating, Calculated with DIN 4108

1. Nachweis für Raum "2. Example Space, OG, 2x2, Corner"

Erfassungsdaten Zone: Raum: Grundfläche Ag: Außenwandfläche AAW: Dach- o. Deckenfläche AD:

Einzelbüro 2. Example Space, OG, 2x2, Corner 57,76 m² 50,40 m² -

Fenster: Nr. Bezeichnung 1 Fenster 2 Fenster O

Orientierung Neigung > 60° > 60°

Fc * 1 1

Sonnensch utz permanent nein nein

g

gtotal

Fläche [m²]

0,35 0,35

0,350 0,350

7,20 7,20

Berechneter Sonneneintragskennwert

0,087

Maximal zulässiger Sonneneintragswert

Zuschlagswerte: Klimaregion Gebäudebauart Nachtlüftung Sonnenschutzverglasung Fensterneigung Orientierung

( Klimazone C - sommerheiß ) ( mittlere Bauart - 50 bis 130 Wh/(Km²) ) ( Nein ) ( Ja )

Maximal zulässiger Sonneneintragskennwert

: : : : : :

:

0,015 0,051 0,000 0,030 0,000 0,000 0,096

Ergebnis Anforderung erfüllt !

09/08/2012

0,087 < 0,096

17/19

145

Building Z, Antwerp


APPENDIX B - Summer Overheating, Calculated with DIN 4108

2. Nachweis für Raum "1. Example Space, OG 4x5 Grid fields" Erfassungsdaten Zone: Raum: Grundfläche Ag: Außenwandfläche AAW: Dach- o. Deckenfläche AD:

Einzelbüro 1. Example Space, OG 4x5 Grid fields 288,80 m² 163,80 m² -

Fenster: Nr. Bezeichnung 1 Fenster S 2 Fenster O 3 Fenster W

Orientierung Neigung > 60° > 60° > 60°

Fc * 1 1 1

Sonnensch utz permanent nein nein nein

g

gtotal

Fläche [m²]

0,35 0,35 0,35

0,350 0,350 0,350

18,00 14,40 14,40

Berechneter Sonneneintragskennwert

0,057

Maximal zulässiger Sonneneintragswert Zuschlagswerte: Klimaregion Gebäudebauart Nachtlüftung Sonnenschutzverglasung Fensterneigung Orientierung

( Klimazone B - gemäßigt ) ( mittlere Bauart - 50 bis 130 Wh/(Km²) ) ( Nein ) ( Ja )

Maximal zulässiger Sonneneintragskennwert

: : : : : :

:

0,030 0,033 0,000 0,030 0,000 0,000 0,093

Ergebnis Anforderung erfüllt !

0,057 < 0,093

* Legende: Fc = Sonnenschutzfaktor Fc = 1 - Ohne Sonnenschutzvorrichtung Innenliegend und zwischen den Scheiben : Fc = 0,75 - weiß oder reflektierende Oberfläche und geringe Transparenz Fc = 0,80 - helle Farben und geringe Transparenz Fc = 0,90 - dunkle Farben und höhere Transparenz Außenliegend : Fc = 0,25 - drehbare Lamellen bzw. Jalousien u. Stoffe geringer Transp., hinterlüftet Fc = 0,30 - Rolläden, Fensterläden Fc = 0,40 - Jalousien (allgemein) bzw. Markisen (oben und seitlich ventiliert) Fc = 0,50 - Markisen (allgemein) bzw. Vordächer, Loggien, freistehende Lamellen g = Durchlassgrad Verglasung g total = Gesamtdurchlassgrad

09/08/2012

18/19

146

Building Z, Antwerp


10.

APPENDIX C - Climate data , Antwerp

Calculation (hour) Name of site = Antwerp (Anvers) BE Latitude [°] = 51,220, Longitude [°] = 4,420, Altitude [m] = 10 Climatic zone = III, 2 Radiation model = Default (hour); Temperature model = Default (hour) Tilt radiation model = Perez Temperature: New period = 1996-2005 Radiation: New period = 1981-2000 Month Ta

RH

Bh

H_Gh H_Dh FF

DD

N

RR

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

3,8 5,1 7,4 10,1 14,2 17,0 18,3 19,1 15,7 11,5 7,1 4,2

84 80 78 70 70 69 73 73 77 80 85 85

7 13 24 43 64 65 62 61 39 21 8 3

20 36 69 108 145 149 149 132 87 53 25 15

14 23 46 65 81 85 87 71 48 32 17 12

3,6 3,8 3,3 3,1 3,0 3,0 2,8 2,4 2,6 3,3 3,1 3,4

216 191 225 211 201 234 258 251 222 191 218 218

7 6 6 6 5 5 6 5 6 6 7 7

63.0 49.0 37.0 36.0 47.0 38.0 66.0 76.0 65.0 56.0 64.0 68.0

Year

11,1

77

409

988

580

3,1

218

6

665.0

Legend: H_Gh: H_Dh: Ta: RH: N: FF: DD: H_Bh: RR:

Irradiation of global radiation horizontal Leg_H_Dh Air temperature Relative humidity Cloud cover fraction Wind speed Wind direction Irradiation of direct radiation horizontal Precipitation

Radiation in [kWh/m2 m] Temperature in [°C] Pressure in [hPa] Wind speed in [m/s] Luminance in [ lux ] Nearest 3 stations: Gh: Melle (49 km), Uccle (47 km), Vlissingen (63 km) Nearest 3 stations: Ta: ANTWERP/DEURNE (4 km), WOENSDRECHT RNLAFB (26 km), GENT/INDUSTRY ZONE (43 km)

09/08/2012

19/19

147

Building Z, Antwerp


LAB OPTION 01

LAB OPTION 02

148


LAB

LAB OPTION 03

LAB OPTION 04

149


B3 W.673 Lab Antwerpwen budgetraming bouwkundig datum: 10 augustus 2012 Elementcluster

hoev. eenh.

p.p.e.

totale kosten

per m² BVO

per m³ BGI

In % tov elementen (11) t/m (76)

35,00 15,00 5.500,00 275,00 250,00 115,00 115,00

74.881 129.415 11.000 388.035 182.000 83.767 162.269 1.031.367

13,14 22,70 1,93 68,08 31,93 14,70 28,47 180,94

3,39 5,85 0,50 17,55 8,23 3,79 7,34 46,64

0,8% 1,4% 0,1% 4,2% 2,0% 0,9% 1,8% 11,2%

150,00 235,00 205,00 125,00 115,00 105,00 175,00 4,25

311.523 140.937 88.494 37.500 894.835 42.251 176.339 222.496

54,65 24,73 15,53 6,58 156,99 7,41 30,94 39,03

14,09 6,37 4,00 1,70 40,47 1,91 7,97 10,06

3,4% 1,5% 1,0% 0,4% 9,7% 0,5% 1,9% 2,4%

1.914.375

335,85

86,57

20,8%

8,11 23,50 9 60 9,60 9,98 51,18

2,09 6,06 2 47 2,47 2,57 13,19

50,3% 1,5% 0 6% 0,6% 0,6% 52,9%

70,76 37,29 7,89 3,95 1,19 91,09 9,80 2,63 8,78 233,39

18,24 9,61 2,03 1,02 0,31 23,48 2,53 0,68 2,26 60,16

4,4% 2,3% 0,5% 0,2% 0,1% 5,6% 0,6% 0,2% 0,5% 13,2%

NL/SfB Omschrijving 2 2A

2B

2C

2D

2E

2F

2G

(11) (11) (16) (16) (16) (17) (17)

BOUWKUNDIGE WERKEN Fundering Bodemvoorzieningen algemeen Grondwerk ontgraven Funderingsconstructies overig: liftput Funderingsconstructies op staal 600 dik geisoleerd Funderingsconstructies buiten op staal 600 dik Paalfunderingen aanname (hellingbaan en put) Paalfunderingen aanname (gebouw) Totaal fundering

(21) (21) (21) (23) (23) (27) (28) (28) (38) (48)

Skelet Constr. binnenspouwblad bruto oppervlak kelderwand beton 500 geisoleerd kelderwand buiten beton 500 Hellingbaanvloer Verdiepingsvloeren (constructief) Daken (constructief) Hoofddraagconstructies kern beton 300 dik Hoofddraagconstructies staal aanname Inbouwpakketten Afwerkingspakketten Totaal skelet

(27) (37) (47) (47) (47)

Daken Dakafbouwconstructies: luifel hoofdentree Dakopeningen glasdak vide 4/5e verd. Dakafwerkingen entree D k f Dakafwerkingen ki 4 4e verd d Dakafwerkingen platte daken Totaal daken

(21) (31) (31) (31) (31) (41) (41) (41) (41) (41)

Gevels Buitenwandafbouwconstructies Buitenwandopeningen gevelkozijnen Buitenwandopeningen vliesgevel Buitenwandopeningen tourniquet Buitenwandopeningen toeslag garaged. 5x5 Buitenwandafwerking om techn. Ruimte/liftschacht Buitenwandafwerkingen buitenblad panelen Buitenwandafwerkingen buitenbl. Terras 4e Buitenwandafwerkingen buitenblad betonbak. Buitenwandafwerkingen buitenblad beeindiging hor. Totaal gevels

(22) (32) (42)

Binnenwanden Binnenwanden niet constructief bruto Binnenwandopeningen (glaswand t.p.v. viden) Binnenwandafwerkingen Totaal binnenwanden

(23) (33) (33) (43) (43)

Vloeren Vloerafbouwconstructies Vloeropeningen, begane grond Vloeropeningen, verdiepingen Vloerafwerkingen, kelder: hellingbaan Vloerafwerkingen, kelder: buiten toeslag Totaal vloeren

(24) (24) (24) (34) (34) (34)

Trappen en hellingen Trappen en hellingen: noodtrap Trappen en hellingen: hoofdtrap Trappen en hellingen: hellingen fietsenberging Balustrades en leuningen trappen Balustrades en leuningen viden buiten Balustrades en leuningen viden Totaal trappen en hellingen

2.139 8.628 2 1.411 728 728 1.411

2.077 600 432 300 7.781 402 1.008 52.352

m² m³ pst m² m² m²BO m²BO

m² m² m² m² m² m² m² kg pst pst

71 864 476 813

excl. m² m² m²² m²

650,00 155,00 115 00 115,00 70,00

46.202 133.937 54 692 54.692 56.911 291.742

645 386 3 3 34 2.077 447 300 334

m² m² stuks stuks m² m² m² m² m²

625,00 550,00 15.000,00 7.500,00 200,00 250,00 125,00 50,00 150,00

403.357 212.546 45.000 22.500 6.768 519.205 55.884 15.018 50.030 1.330.307

806 m²

405 460 300 428

m² m² m² m² m²

excl. 9 verd. 4 st incl. 122 m 50 m

150

475,00

35,00 55,00 85,00 155,00

6.500,00 5.000,00 450 00 450,00 450,00

382.722 382.722

67,14

17,31

4,2%

67,14

17,31

4,2%

14.160 25.300 25.500 66.340 131.301

2,48 4,44 4,47 11,64 23,04

0,64 1,14 1,15 3,00 5,94

0,2% 0,3% 0,3% 0,7% 1,4%

58.500 20.000

10,26 3,51

2,65 0,90

0,6% 0,2%

54 720 54.720 22.320 155.540

9 60 9,60 3,92 27,29

2 47 2,47 1,01 7,03

0 6% 0,6% 0,2% 1,7% 1/5


COST W.673 Lab Antwerpwen budgetraming bouwkundig datum: 10 augustus 2012 Elementcluster

hoev. eenh.

p.p.e.

totale kosten

NL/SfB Omschrijving

2H

3B

3C

per m³ BGI

In % tov elementen (11) t/m (76)

(45) (45) (45) (45)

Plafonds Plafondafwerkingen binnen niet verlaagd Plafondafwerkingen binnen verlaagd Plafondafwerkingen buiten 4e verd (overdekt) Plafondafwerkingen buiten entree (overdekt) Totaal plafonds

in afwerkpakket in afwerkpakket 66 m² 150,00 864 m² 275,00

9.853 237.630 247.483

1,73 41,69 43,42

0,45 10,75 11,19

0,1% 2,6%

(38) (38) (38) (38) (38) (38) (38) (38) (38) (38) (38) (38) (38) (48)

Inbouwpakketten Afwerkingspakketten Kantoren Afwerkingspakketten Conrete lab Afwerkingspakketten Road Construction lab Afwerkingspakketten EP&B lab Afwerkingspakketten Lab HVAC & Compression Afwerkingspakketten Workshops Afwerkingspakketten Machinery / Storage Afwerkingspakketten Didactic labs Afwerkingspakketten leslokalen Afwerkingspakketten Computerlabs Afwerkingspakketten algemene verkeers ruimten Afwerkingspakketten algemene ruimten overig Afwerkingspakketten fietsenstalling Afwerkingspakketten sanitaire units Totaal inbouwpaketten

577 190 260 100 550 200 400 250 300 720 749 274 262 170

129.825 28.500 39.000 17.500 96.250 35.000 40.000 43.750 52.500 126.000 205.975 45.210 26.200 55.250 940.960

22,78 5,00 6,84 3,07 16,89 6,14 7,02 7,68 9,21 22,11 36,14 7,93 4,60 9,69 165,08

5,87 1,29 1,76 0,79 4,35 1,58 1,81 1,98 2,37 5,70 9,31 2,04 1,18 2,50 42,55

1,4% 0,3% 0,4% 0,2% 1,0% 0,4% 0,4% 0,5% 0,6% 1,4% 2,2% 0,5% 0,3% 0,6% 10,2%

6.425.797

1.127,33

290,59

69,9%

95.205 222.250 595.000 107.651 -

16,70 38,99 104,39 18,89

4,31 10,05 26,91 4,87

1,0% 2,4% 6,5% 1,2%

1.020.106

178,97

46,13

11,1%

129.825 285.750 782.000 215.302 -

22,78 50,13 137,19 37,77

5,87 12,92 35,36 9,74

1,4% 3,1% 8,5% 2,3%

247,87

63,89

15,4%

m² m² m² m² m² m² m² m² m² m² m² m² m² m²

225,00 150,00 150,00 175,00 175,00 175,00 100,00 175,00 175,00 175,00 275,00 165,00 100,00 325,00

TOTAAL BOUWKUNDIGE WERKEN

3 3A

per m² BVO

(50) (50) (50) (50) (50) (52) (53) (54) (55) (56) (57) (58) (59)

INSTALLATIES Werktuigbouwkundig Werktuigbouwkundig kantoor functie Werktuigbouwkundig onderwijs functie Werktuigbouwkundig lab functie Werktuigbouwkundig algemene ruimten Werktuigbouwkundig facade gevel Afvoeren Water Gassen Koude-opwekking en distributie Warmtedistributie Luchtbehandeling Regeling klimaat en sanitair Sprinkler Totaal werktuigbouwkundig

(60) (60) (60) (60) (60) (61) (62) (63) (64) (65) (67)

Elektrotechnisch Elektrotechnisch kantoor functie Elektrotechnisch onderwijsfunctie Elektrotechnisch lab functie Elektrotechnisch algemene ruimten Elektrotechnisch facade gevel Centrale elektrotechnische voorzieningen Krachtstroom Verlichting Communicatie Beveiliging Gebouwbeheersvoorzieningen Totaal elektrotechnisch

(66) (66) (66)

Lift en transport Transport: liftinstallatie basis Transport: liftinstallatie toeslag per stopplaats Transport: goederenlift Totaal lift en transport

577 1.270 1.700 2.153

577 1.270 1.700 2.153

m²bvo m²bvo m²bvo m²bvo m²bvo incl incl incl incl incl incl incl incl

165,00 175,00 350,00 50,00

m²bvo m²bvo m²bvo m²bvo m²bvo incl incl incl incl incl incl

225,00 225,00 460,00 100,00

2 st 11 st excl.

TOTAAL INSTALLATIES

151

-

1.412.877 45.000,00 1.000,00

90.000 11.000 101.000

15,79 1,93

4,07 0,50

1,0% 0,1%

17,72

4,57

1,1%

2.533.982

444,56

114,59

27,6%

2/5


B3 W.673 Lab Antwerpwen budgetraming bouwkundig datum: 10 augustus 2012 Elementcluster

hoev. eenh.

p.p.e.

totale kosten

per m² BVO

per m³ BGI

In % tov elementen (11) t/m (76)

234.000

41,05

10,58

2,5%

234.000

41,05

10,58

2,5%

9.193.779

1.612,94

415,76

100,0%

27.038 10.000 38.080 21.760

4,74 1,75 6,68 3,82

1,22 0,45 1,72 0,98

0,3% 0,1% 0,4% 0,2%

96.878

17,00

4,38

1,1%

9.290.657

1.629,94

420,14

101,1%

NL/SfB Omschrijving 4 4A (71) (72) (73) (74) (75) (76)

VASTE INRICHTINGEN Vaste verkeersvoorzieningen Vaste gebruikersvoorzieningen Vaste keukenvoorzieningen Vaste sanitaire voorzieningen Vaste onderhoudsv: gevelreinigingsinst. Vaste opslagvoorzieningen Totaal vaste inrichtingen

excl. excl. excl. incl 1 pst. excl.

234.000,00

Totaal elementen (11) t/m (76) 5 5A (90) (90) (90) (90) (90) (90) (90) (90) (90)

TERREIN Grondvoorzieningen Opstallen Omheiningen Terreinafwerkingen; bestrating op grond Terreinvoorzieningen; verw. Hellingbaan Terreinvoorzieningen; werktuigkundig Terreinvoorzieningen; elektrotechnisch Terreininrichtingen; standaard Terreininrichtingen; bijzonder Totaal terrein

361 1 1.088 1.088

Totaal directe projectvoorzieningen (11) t/m (90) 6 (0-)

excl. excl. excl. m² pst m² m² excl. excl. proj

75,00 10.000,00 35,00 20,00

INDIRECTE VOORZIENINGEN Onvoorzien Algemene bouwplaatskosten Algemene kkosten Al t Winst en Risico CAR-verzekering Prijsstijging tot start bouw Afkoop tijdens de bouw

8,50% 5 00% 5,00% 2,00% 0,30% excl. excl.

789.706 504 018 504.018 211.688 32.388

138,54 88 42 88,42 37,14 5,68

35,71 22,79 22 79 9,57 1,46

8,6% 5,5% 5 5% 2,3% 0,4%

TOTAAL BOUWKUNDIG GEBOUW INCL. TERREIN (excl. BTW)

10.828.457

1.899,72

489,68

117,8%

TOTAAL BOUWKUNDIG GEBOUW EXCL. TERREIN (excl. BTW)

9.990.163

1.752,66

451,78

116,5%

m² bvo totaal m³ bgi totaal

5.700 m² 22.113 m³

exclusief: - btw - losse en vaste inrichting - terreininrichting - bijkomende kosten: honoraria, leges onderzoekskosten e.d.

152

3/5


W.673 Lab Antwerpwen budgetraming bouwkundig datum: 10 augustus 2012 Elementcluster

hoev. eenh.

p.p.e.

totale kosten

NL/SfB Omschrijving

per m² BVO

per mÂł BGI

In % tov elementen (11) t/m (76)

35,84

9,24

2,2%

101,94 43,16 94,90

26,28 11,13 24,46

6,3% 2,7% 5,9%

163,57 13,77 7,41 69,97 119,89 67,14 6,92 13,52 8,11 155,39 113,49

42,16 3,55 1,91 18,04 30,90 17,31 1,78 3,48 2,09 40,05 29,25

10,1% 0,9% 0,5% 4,3% 7,4% 4,2% 0,4% 0,8% 0,5% 9,6% 7,0%

16,11

4,15

1,0%

43,42 43,08 9,69 178,97

11,19 11,10 2,50 46,13

2,7% 2,7% 0,6% 11,1%

247,87

63,89

15,4%

17,72

4,57

1,1%

41,05

10,58

2,5%

17,00

4,38

Tabel naar elementen, algemeen (10) (11) (13) (16) (17) (21) (22) (23) (24) (27) (28) (31) (32) (33) (34) (37) (38) (41) (42) (43) (44) (45) (47) (48) (50) (51) (52) (53) (54) (55) (56) (57) (58) (60) (61) (62) (63) (64) (65) (66) (67) (71) (72) (73) (74) (75) (76) (90)

Sloopwerk Bodemvoorzieningen Vloeren op grondslag Funderingsconstructies Paalfunderingen Buitenwanden Binnenwanden Vloeren, galerijen Trappen en hellingen: hoofdtrap Daken Hoofddraagconstructies Buitenwandopeningen gevelkozijnen Binnenwandopeningen Vloeropeningen Balustrades en leuningen Dakopeningen Inbouwpakketten Buitenwandafwerkingen Binnenwandafwerkingen Vloerafwerkingen Trap- en hellingafwerkingen Plafondafwerkingen Dakafwerkingen Afwerkingspakketten Werktuigbouwkundig totaal Warmte-opwekking Af Afvoeren Water Gassen Koude-opwekking en distributie Warmtedistributie Luchtbehandeling Regeling klimaat en sanitair Elektrotechnisch totaal Centrale elektrotechnische voorzieningen Krachtstroom Verlichting Communicatie Beveiliging Liften en transport Gebouwbeheersvoorzieningen Vaste verkeersvoorzieningen Vaste gebruikersvoorzieningen Vaste keukenvoorzieningen Vaste sanitaire voorzieningen Vaste onderhoudsvoorzieningen Vaste opslagvoorzieningen Terrein

204.295 581.035 246.036 540.954 932.335 78.500 42.251 398.835 683.403 382.722 39.461 77.040 46.202 885.710 646.904 91.840 247.483 245.540 55.250 1.020.106 1.412.877 101.000 234.000 96.878

Totaal directe projectvoorzieningen (11) t/m (90)

9.290.657

153

1.629,94

420,14

100%

4/5


B3 W.673 Lab Antwerpwen budgetraming bouwkundig datum: 10 augustus 2012 Elementcluster

hoev. eenh.

p.p.e.

totale kosten

per m² BVO

per mÂł BGI

In % tov elementen (11) t/m (76)

Sloopwerk Onderbouw Bovenbouw Afbouw Afwerkingen Totaal elementen (11) t/m (48)

1.031.367 1.992.875 1.151.787 2.249.768 6.425.797

180,94 349,63 202,07 394,70 1.127,33

46,64 90,12 52,09 101,74 290,59

11,2% 21,7% 12,5% 24,5% 69,9%

Werktuigbouwkundig installaties Elektrotechnisch installaties Vaste inrichtingen Totaal elementen (11) t/m (76)

1.020.106 1.513.877 234.000 9.193.779

178,97 265,59 41,05 1.612,94

46,13 68,46 10,58 415,76

11,1% 16,5% 2,5% 100,0%

Terrein Totaal directe projectvoorzieningen (11) t/m (90.8)

96.878 9.290.657

415,76

105,4% 205,4%

NL/SfB Omschrijving

Tabel naar elementengroepen, algemeen

1.612,94

Tabel naar elementengroepen, functioneel Sloopwerk Lokatievoorzieningen Funderingen Vloeren Gevels Bi Binnenwanden d Trappen Daken Bouwkundig overig Totaal bouwkundig

450.332 581.035 1.311.119 1.871.262 382 722 382.722 155.540 333.993 1.339.795 6.425.797

79,01 101,94 230,02 328,29 67 14 67,14 27,29 58,60 235,05 1.127,33

20,36 26,28 59,29 84,62 17 31 17,31 7,03 15,10 60,59 290,59

4,9% 6,3% 14,3% 20,4% 4 2% 4,2% 1,7% 3,6% 14,6% 69,9%

Werktuigbouwkundig installaties Elektrotechnisch installaties Vaste inrichtingen Totaal elementen (11) t/m (76)

1.020.106 1.513.877 234.000 9.193.779

178,97 265,59 41,05 1.612,94

46,13 68,46 10,58 415,76

11,1% 16,5% 2,5% 30,1%

Terrein Totaal directe projectvoorzieningen (11) t/m (90.8)

96.878 9.290.657

1.612,94

415,76

105,4% 135,5%

154

5/5


COST SUMMARY W.673 Lab Antwerpwen budgetraming bouwkundig datum: 10 augustus 2012 TOEVOEGING VAN OPTIONEEL DEEL AAN BASIS PROJECT

uitgangspunt Voor de bouwkosten van de uitbreiding is de m2 BVO prijs van de het basis gebouw gehanteerd.

optie uitbreiding ten tijde van basisgebouw Kosten uitbreiding minderkosten aansluitgevel minderkosten gevelkozijnen minderkosten betonnen keerwand in kelder Totaal kosten uitbreiding ten tijde van basisgebouw

m2 BVO m2 m2 m2

à à à à

1.752,66 400,00 625,00 235,00

5.406.591 32.00010.00039.950€ 5.324.640,54

3084,8 m2 BVO

à

1.752,66

5.406.591 50.000 35.000 20.000 200.000 10.000 114.432 € 5.836.022,35

3084,8 -80 -16 -170

Voordeel: bouwtijd wordt bijna niet langer. geen sloopkosten optie uitbreiding na voltooiing basisgebouw kosten uitbreiding extra kosten stabilisatie bestaand gebouw extra kosten sloopwerk kelderwanden en gevel extra kosten waterdicht maken kelderniveau extra bouwtijd met bouwplaatsinrichting extra kosten afscherming en waterdicht maken prijsstijgingen 2% tgv latere start bouw Totaal kosten uitbreiding ten tijde van basisgebouw Nadeel: Bijna verdubbeling van bouwtijd en bijbehorende kosten overlast huidige gebruikers

155


Clusters

1. LAB TOWER

Space description

Space

Netto

Research lab for concrete and concrete production Research lab for concrete and cement -mortar lab Research lab for experimental concrete lab Research lab for road construction ans asphalt production area

3.3.9 3.3.10 3.3.11 3.3.12

40 30 80 40 190

Building Z

Bruto

190

64 48 128 64 304

260

112 128 48 16 112 416

100

32 128 160

550

312 390 13 715

200

80 48 48 128 16 320

Concrete lab

Road Construction lab Research lab road concrete - investigation area Research lab for road construction and asphalt experimentals Research lab for road construction and RHEO Research lab for road construction and recycle Research lab road construction - investigation area

3.3.24 3.3.13 3.3.14 3.3.15 3.3.25

70 80 30 10 70 260

EP&B lab Research lab for EP&B storage area and measurement Research lab EP&B - investigation area Lab HVAC & Compression Lab pumps compressors and turbines Lab HVAC Technical area (compressiond gases)

3.3.16 3.3.26

3.3.1 3.3.2 3.3.20

20 80 100 240 300 10 550

Workshops Workshop area and soil storage Workshop area weigh and drying zone Workshop sifting chamber Workshop klimate area Workshop storage and topography room

3.3.4 3.3.5 3.3.6 3.3.7 3.3.8

Machinery / Storage Lab materials and machinery Storage area

2. OFFICE TOWER

400 1700 LAB

3.3.21

20

20

32

Offices

Offices EM Offices BK

3.3.23 3.3.27

340 102

442

88 544

Meeting room / bib1 Project and meeting room 1 Project and meeting room 2 Project and meeting room 3

3.3.22 3.3.29 3.3.29 3.3.29

55 20 20 20 577

115 577 OFFICE

Didactic lab - PC analysis chamber Didactic lab - didactic chamber

3.3.17 3.3.18

25 225

250

40 360

Classroom-1 Classroom-2 Classroom-3

3.3.28 3.3.28 3.3.28

100 100 100

300

160 160 160

Computerlab-1 Computerlab-2 Computerlab-3 Computerlab-4 Computerlab-5 Computerlab-6 Computerlab-7 Office helpdesk employee

3.3.30 3.3.30 3.3.30 3.3.30 3.3.30 3.3.30 3.3.30 3.3.31

100 100 100 100 100 100 100 20 1270

Classrooms

Computerlabs

NETTO TOTAL Services

Entrance Circulation space Sanitary Sanitary disabled Network aggregration point Central heating installations Ventilation groups Main storage cleaning Storage cleaning Elevators

Construction

Walls Colomns Stairs TOTAL

3547 3.4.1 3.4.2 3.4.3 3.4.4 3.4.5 3.4.2 3.4.7 3.4.8 3.4.9 3.4.10

OPEN SPACES

x x x x x x x x x x x x x 1843,2

BRUTO TOTAL BASE

720 1270 LEARNING

3547

5. LAB TOWER

3.5.1 3.5.2 3.5.3

260 30 30

Robot lab

3.6.1

210

273

Lab vision

3.6.2

100

160

Lab electricity

3.6.3

90

117

Lab electricity machines

3.6.3

350

455 640

Lab automation

3.6.4

400

Lab automotive

3.6.5

300

390

Lab polytechnic 1

3.6.7

150

240

Lab polytechnic 2

3.6.7 3.6.8

TOTAL

1805

3.7.1

x

185

3.7.2 3.7.3

x x

incl. in sanitary

Network aggregation point

x

18

x

55

Elevator + stairs

x

117

x 798

2603

Automotive test vehicles

3.8.1

TOTAL PROJECT incl. Open spaces

88

85

Storage cleaning

BRUTO TOTAL OPTION OPEN SPACES

1805

Circulation space

Structure TOTAL

2515 88

55 LEARNING

Sanitary Sanitary disabled

Services

240 1750 LAB

55 55

NETTO TOTAL Services

150 1750

Meeting rooms

3. SERVICES

5390,2

5770,2

TOTAL

6. LEARNING

160 160 160 160 160 160 160 32 2032

642,2 8 105 1843,2 SERVICES

5390,2 5390,2

Bicycle storage Garbage zone // building rest Zone for garbage containers // garbage, paper . PMD

163,2 32 32 32 923,2

100 508 170 incl. in sanitary 36 17 10 117 incl. in main storage 130

TOTAL PROJECT incl. Open spaces

7. SERVICES

390 130 520 2435

Secretariat entrance // warehouse -Z

Didactic labs

4. SERVICES

300 100 400 1700

Secretariat

Meetingrooms

3. LEARNING

3.3.19 3.3.3

50 30 30 80 10 200

338 798 SERVICES

2603

2603 75 2678

156


PROGRAM SUMMARY

1. LABS 1700 M2

2. OFFICES 577 M2

3. LEARNING 1270 M2

5. LABS 1750 M2 6. LEARNING 55 M2

7. SERVICES 798 M2

4. SERVICES 1843.2 M2

BASE 5390.2 M2

OPTION 2603 M2

157


158

ONTWERPFASE REALISATIEFASE

Oplevering

Realisatie/uitvoering

Voorbereiding uitvoering

Aanbesteding+gunning

Bouwvoorbereidingsfase

Definitief Ontwerpfase

Voorlopig Ontwerpfase

Kalendermaanden

1

2

3

4

6

11 Maanden

5

10 augustus 2012 PLANNING ONTWERP- EN REALISATIEFASE gebouw "Z" basisvariant 7

8

9

10

11

12

13

14

15

16

17

18

19

20

22

20 Maanden

21

23

24

25

26

27

28

29

30

31

SCHEDULE


159

lowerground level 0 level 1 level 2 level 3 level 4

totale bouwtijd

oplevering

afbouw stroom stroom stroom stroom stroom stroom stroom stroom stroom stroom

dakafwerking

1 2 3 4 5 6 7 8 9 10

gevelsluiting lowerground level 0 level 1 level 2 level 3 level 4

ruwbouw

onderbouw inrichten bouwterrein damwanden bemaling grondwerk heiwerk keldervloer

kalendermaanden werkbare weken

10 augustus 2012 PLANNING BOUWTIJD

1

2

3

3 5 6

7

3 maanden

4

gebouw "Z" basisvariant

8

5 maanden

20 MAANDEN

5 maanden

7 maanden

5 5 7 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69


DRAWINGS


162


PLAN MATRIX

163


LOWER GROUND FLOOR

164


CAMPUS DECK

165


LEVEL 01

166


LEVEL 02

167


LEVEL 03

168


LEVEL 04

169


SECTION AA

170


WEST ELEVATION

171


SECTION BB

172


NORTH ELEVATION

173


SECTION CC

174


EAST ELEVATION

175


SECTION DD

176


SOUTH ELEVATION

177


Claus en Kaan Architecten Boompjes 55 3011 XB Rotterdam The Netherlands T: + 31 010 206 00 00 F: + 31 010 206 00 01 info@ckr.nl www.clausenkaan.com contact: Mitesh Dixit m.dixit@ckr.nl + 31 6 341 320 84


DOMAIN OFFICE Dante Borgo Mitesh Dixit Miles Gertler Sven Jansse Kees Kaan Loes Martens Exequiel Mulder Jan Van Maanen Vincent Panhuysen

Ramboll London Tom Foley Hari Lewis Stephen Mellville

Werner Sobek Malte Groner Valentin Brenner

B3 Ruud Raaphorst Patrick Lakerveld Patrick Bronwasser

CES Erwin Braekeleire

Dr. Heinekamp Peter van Heesewijk


DOMAIN

Profile for DOMAIN Office

Building Z  

The University of Antwerp’s amalgamation of multiple institutions has resulted in four detached campuses and their distribution throughout t...

Building Z  

The University of Antwerp’s amalgamation of multiple institutions has resulted in four detached campuses and their distribution throughout t...

Advertisement

Recommendations could not be loaded

Recommendations could not be loaded

Recommendations could not be loaded

Recommendations could not be loaded