Microwave wireless communications from transistor to system level 1st edition crupi

Page 1

Visit to download the full and correct content document: https://textbookfull.com/product/microwave-wireless-communications-from-transistor-t o-system-level-1st-edition-crupi/

transistor to system level 1st Edition Crupi
Microwave wireless communications : from

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Microwave and millimetre-wave design for wireless communications First Edition Chongcheawchamnan

https://textbookfull.com/product/microwave-and-millimetre-wavedesign-for-wireless-communications-first-editionchongcheawchamnan/

Guide

to Wireless Communications Olenewa

https://textbookfull.com/product/guide-to-wirelesscommunications-olenewa/

Optical Wireless Communications: System and Channel Modelling with MATLAB® Ghassemlooy

https://textbookfull.com/product/optical-wireless-communicationssystem-and-channel-modelling-with-matlab-ghassemlooy/

Parameter Extraction and Complex Nonlinear Transistor Models (Microwave) Günter Kompa

https://textbookfull.com/product/parameter-extraction-andcomplex-nonlinear-transistor-models-microwave-gunter-kompa/

New Directions in Wireless Communications Systems: From Mobile to 5G 1st Edition Athanasios G. Kanatas

https://textbookfull.com/product/new-directions-in-wirelesscommunications-systems-from-mobile-to-5g-1st-edition-athanasiosg-kanatas/

System Level Design from HW SW to Memory for Embedded Systems Marcelo Götz

https://textbookfull.com/product/system-level-design-from-hw-swto-memory-for-embedded-systems-marcelo-gotz/

Index Modulation for 5G Wireless Communications 1st Edition Miaowen Wen

https://textbookfull.com/product/index-modulationfor-5g-wireless-communications-1st-edition-miaowen-wen/

5G Mobile and Wireless Communications Technology 1st Edition Afif Osseiran

https://textbookfull.com/product/5g-mobile-and-wirelesscommunications-technology-1st-edition-afif-osseiran/

Propagation Engineering in Wireless Communications 2nd Edition Abdollah Ghasemi

https://textbookfull.com/product/propagation-engineering-inwireless-communications-2nd-edition-abdollah-ghasemi/

MicrowaveWireless Communications

MicrowaveWireless Communications FromTransistorto SystemLevel

UniversityofFerrara,Ferrara,Italy

UniversityofMessina,Messina,Italy

AntonioRaffo GiovanniCrupi
AMSTERDAM • BOSTON • HEIDELBERG • LONDON NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Academic Press is an imprint of Elsevier

AcademicPressisanimprintofElsevier

32JamestownRoad,LondonNW17BY,UK

525BStreet,Suite1800,SanDiego,CA92101-4495,USA

50HampshireStreet,5thFloor,Cambridge,MA02139,USA

TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UK

Copyright # 2016ElsevierLtd.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans, electronicormechanical,includingphotocopying,recording,oranyinformationstorage andretrievalsystem,withoutpermissioninwritingfromthepublisher.Detailsonhowto seekpermission,furtherinformationaboutthePublisher’spermissionspoliciesandour arrangementswithorganizationssuchastheCopyrightClearanceCenterandthe CopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions.

Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyright bythePublisher(otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchand experiencebroadenourunderstanding,changesinresearchmethods,professional practices,ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledge inevaluatingandusinganyinformation,methods,compounds,orexperimentsdescribed herein.Inusingsuchinformationormethodstheyshouldbemindfuloftheirownsafetyand thesafetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors, assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproducts liability,negligenceorotherwise,orfromanyuseoroperationofanymethods,products, instructions,orideascontainedinthematerialherein.

BritishLibraryCataloguinginPublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

ISBN:978-0-12-803894-9

ForinformationonallAcademicPresspublications visitourwebsiteat http://store.elsevier.com/

Publisher: JoeHayton

AcquisitionEditor: TimPitts

EditorialProjectManager: CharlieKent

ProductionProjectManager: JasonMitchell

Designer: VictoriaPearson

PrintedintheUnitedStates

AdAlessandro,l’Amoredipapà AntonioRaffo

AimieicarigenitoriCarmeloeTeresa AimieifratelliVincenzo,Felice,IsodianaeGiuseppe EdamiamoglieGabriella

GiovanniCrupi

Contributors

G.Avolio

KULeuven,Leuven,Belgium

K.Burger

Qualcomm,SanDiego,CA,UnitedStates

A.Caddemi

UniversityofMessina,Messina,Italy

V.Camarchia

PolitecnicodiTorino,Torino,Italy

W.Chen

TsinghuaUniversity,Beijing,China

X.Chen

TsinghuaUniversity,Beijing,China

E.Cipriani

UniversityofRomeTorVergata,Rome,Italy

P.Colantonio

UniversityofRomeTorVergata,Rome,Italy

G.Crupi

UniversityofMessina,Messina,Italy

S.Farsi

KULeuven,Leuven,Belgium;QualcommInc.,SanDiego,CA,UnitedStates

A.Ferrero

KeysightTechnologies,SantaRosa,CA,UnitedStates

F.Giannini

UniversityofRomeTorVergata,Rome,Italy

E.McCune

RFCommunicationsConsulting,SantaClara,CA,UnitedStates

B.Moser

Qorvo,Inc,Greensboro,NC,UnitedStates

M.Pirola

PolitecnicodiTorino,Torino,Italy

A.Raffo

UniversityofFerrara,Ferrara,Italy

F.Ramirez

UniversityofCantabria,Santander,Spain

xiii

S.Sancho

UniversityofCantabria,Santander,Spain

D.M.M.-P.Schreurs

KULeuven,Leuven,Belgium

A.Suarez

UniversityofCantabria,Santander,Spain

G.Vannini

UniversityofFerrara,Ferrara,Italy

Z.Wang

MicrosoftCorp.,Beijing,China

P.J.Zampardi

Qorvo,Inc,NewburyPark,CA,UnitedStates

S.Zhang

SmarterMicroInc.,Shanghai,China

xiv Contributors

AbouttheEditors

AntonioRaffo isaresearchassociateattheUniversityofFerrara,Italy,wherehe teachescoursesinsemiconductordevicesandelectronicinstrumentationandmeasurement.Hisresearchactivityismainlyorientedtononlinearelectrondevicecharacterizationandmodelingandcircuit-designtechniquesfornonlinearmicrowave andmillimeter-waveapplications.Antoniohascoauthoredover100publications ininternationaljournalsandconferences.HeisamemberoftheTechnicalProgrammeCommitteeoftheIEEEINMMiCconferenceandservesasanassociateeditor ofInternationalJournalofNumericalModelling:ElectronicNetworks,Devices andFields.AntonioisamemberoftheIEEEMicrowaveMeasurementTechnical Committee(MTT-11).

GiovanniCrupi isatenuretrackassistantprofessorattheUniversityofMessina, Italy,whereheteachesmicrowaveelectronics,laboratoryofwirelesstechnologies, bioengineering,andoptoelectronics.Since2005,hehasbeenarepeatvisiting scientistwithKULeuvenandIMEC,Leuven,Belgium.Giovanni’smainresearch interestsincludesmallandlargesignalmodelingofadvancedmicrowavedevices. HeisamemberoftheTechnicalProgrammeCommitteeoftheIEEEINMMiC andTELSIKSconferencesandservesasanassociateeditorof InternationalJournal ofNumericalModelling:ElectronicNetworks,DevicesandFields.Giovanniisthe chairoftheIEEEMicrowaveTheoryandTechniquesSociety(MTT-S)Fellowship program.

xv

Mobilecommunicationsandconnectivityhavedrivenamultitudeofadvancements inRFandmicrowavesemiconductorandcircuittechnology.Whiletheseadvancementshaveenabledthemobilecommunicationrevolution,theyalsopresentcircuit andsystemdesignerswithmanydifferentoptionsandapproachesforproductrealization.ThedaysarelonggonewhendesignerssimplyoptimizedaGalliumArsenideintegratedcircuitforsaturatedoutputpowerandefficiency.Today’scircuitand systemsengineersmustbefarmoreknowledgeableintheoverallproductdevelopmentprocess.Proficiencyindevicephysics,modelingandcharacterization,circuit design,architectureandapplication,signalmodulationformats,measurements,and industrystandardsareallrequiredtosuccessfullydesignmodernreceiveandtransmitcomponents.Manyengineeringanddesigndecisionsmustbeconsideredtobalancecost,performance,andcycletimewhilesimultaneouslymeetingchallenging productspecifications.Specificexampleswouldbeselectinganoptimumsemiconductortechnology,devicecharacterizationandmodeling,circuitarchitecture,linearizationstrategy,andoverallsystem-levelconsiderations.Althoughtherearemany excellentbooksandarticlesthatcoverthesetopicsindepth,itisfarmoredifficultto findacomprehensivesourceofinformation.Inthisbook,“MicrowaveWireless Communications:FromTransistortoSystemLevel,”ateamofwell-knownindustry andacademicexpertshasbeenassembledtoprovideathoroughtreatmentofthese topics.Theauthorsdonotsimplyrepeatstandardexplanationsofthesesubjects,but presentuniqueapproaches,perspectives,andalternatepointsofviewthatgreatly enhanceone’sunderstandingofthesecomplexideas.

Thisbookbeginswithanintroductiontotransistormodelingandextraction, highlightingdevicecharacteristicsandbehavior.Sectionsonlinear,nonlinear,and noisemodelingareincludedalongwithmodelingresultsofactualdevices.

Chapter2 focusesontestandmeasurementsystemsfordevicecharacterization, includingdiscussionsofnonlinearvectornetworkanalyzersandactiveload pull.Blockdiagramsofthesemeasurementinstrumentsareprovidedandexplained indetail.

Chapter3 isthestartofthecircuitdesignportionofthebook,presentingacomprehensivediscussionofoscillators.Thishighlytheoreticaldiscussionisintroduced bywayofsimpleidealizedoscillatorcircuits—tobringthereaderuptospeedwith basicprinciples.Thisisfollowedbyamorerigorousanalysis,applicabletoreal oscillators,alongwithdesignexamplesusingacommerciallyavailabledevice.

Chapter4 coversthetopicofpoweramplifiers,andstartswithparameterdefinitions andfiguresofmerit.Thisisfollowedbyanintuitivediscussionofloadlineanalysis andpoweramplifiermodesoperation.Circuitarchitectures,implementation,and amplifierlinearityarealsodescribedinthissection.

For Chapter5,thebookreviewshowsystem-levelconstraintsimpactcircuit designdecisions.Aspectssuchasbatterylife,probabilityfunctionsfortransmit power,amplifierlinearizationtechniques,andpoweramplifiermodulearchitectures

xvii

arediscussedatahighlevel.Thisisfollowedbyadiscussionofavailabledevices, passivesandboardtechnologies,andhoweachrelatestoperformance,costand schedule. Chapter6 coverspoweramplifierdesign,includingarchitectureandlinearizationtechniques.TheDohertyamplifierconceptisthoroughlyreviewedaswell asbroadbandanddigitalimplementations.Thisisfollowedbyapresentationofpopularlinearizationapproaches,includingenvelopemethods(envelopetracking(ET) andenvelopeeliminationandrestoration(EER))andlinearamplificationwithnonlinearcomponents(LINC)approaches(Chireix,multilevelandmode-multiplexing).

Thefinaltwochaptersfocusontheanalysisofpoweramplifierlinearizationand efficiencyenhancementmethods.Theauthorof Chapter7 takesaninteresting approachtoinvestigatingtheeffectivenessofefficiencyenhancementmethods. Usingtransistorpowercompressioncurves,threeoperationalmodesaredefined (L,P,andCmodes)basedonthehowdeepthedeviceisingaincompression.Simple circuitmodelsforeachmodearedevelopedwhich,alongwiththetransistorIVcurves,areusedtoanalyzeoutputpowerandefficiencyofadevicesubjectedto envelopetrackingandpolarmodulation. Chapter8 coverstechniquesforthecharacterizationandanalysisofnonlinearcircuits.Nonlinearcircuittransferfunctions andVolterraseriesarereviewed,includingsystemswithandwithoutmemory.Then, standard2-tonecharacterizationtechniquesareexpandedtomoresophisticatedmultisineandoffsetmultisineapproaches.Theresultsareappliedtotheanalysisand modelingofanactualpoweramplifiertoillustratevariousnonlineareffects.

HopefullyIhavesuccessfullyhighlightedthecontentofthisbookandconvinced youtoexamineitpersonally.Practicingmobilecommunicationengineers,aswellas thosewhosimplyseekabetterunderstandingofthiscomplexsubject,willbenefit fromthecontentofthiswork.Theauthorsandeditorsshouldbecongratulatedfor sharingtheirknowledgeandperspectiveofthistopicwiththeengineering community.

xviii ForewordbyCharlesF.Campbell

ForewordbyRameshK.Gupta

Systemsengineeringenablestherealizationofcomplexsystemfunctionsthrough carefulchoice,andacombinationofinteractingsystemelementsassembledto achievespecificanddefinedobjectives.RFandmicrowavesystemsaredesigned forapplicationssuchasradioastronomyandspaceexploration,navigation,radars, wirelessterrestrialandsatellitecommunications,remotesensing,RFidentification, electronicwarfare,medicalimaging,monitoringandsensing,automotivecollision avoidancesystems,etc.Typically,theseRFsystemsareintegratedwithvarioussubsystemsandelements,suchaslow-noiseamplifiersandfrontends,frequency sources,frequencyconverters,intermediateandhighpoweramplifierswithtransmit and/orreceiveantennas,andradiatingelements.RealizationoftheseRFsubsystems oftenrequireshighfrequencyRFtransistorsanddevicesthatareembeddedand assembledwithpassivecircuitsofmicrostriplinesprintedonasubstrate,and/or coaxialorwaveguideelements,usedinthedesignandparticularwirelesscommunicationapplication.

EffectiveRFandmicrowavesystemsengineeringrequiresanin-depthunderstandingofinteractionsbetweendevices,circuits,andsystemsfordeveloping solutionsthatcanbemanufacturedcost-effectively,andwithrequiredperformance, repeatability,andreliability.Thisisparticularlyimportantforhighvolumedeploymentandproductionofwirelesssystemsanduserequipment,includinghand-held andwearabledevices(eg,smartphones,tablets,smartwatches,etc.)whereconsumersdemandthehighestperformance,functionality,andrepeatableperformance atthelowestpossibleprice.Ithasbeenachallengeforpracticingwirelesscircuit, devicedesign,andsystemengineerstofindtherequisiteinformationfortheirdesign anddevelopmentefforts.Therefore,IbelievethatDr.AntonioRaffoandDr.GiovanniCrupi,theeditorsofthebook“MicrowaveWirelessCommunications:From TransistortoSystemLevel ,”havedoneagreatservicetothemicrowaveandRFcommunitybyputtingtogetherimportantandrelevantinformationonsystems,circuits, anddevicesinasinglevolumewithcontributionsfromauthorsthathaveextensive researchexperienceandexpertiseinthespecifictechnicalareasandtopicsincluded ineachoftheeightchapters.

Goingthroughthetableofcontentsforthisbooksentmeonanostalgicjourney throughmyowncareer,whichspannedworkinRFdeviceandcircuitmodeling, satelliteandwirelesssubsystemdevelopmentandsystemdesign,andmodeling, aswellasthedeploymentandoperationsofthesesystemsanddevices.Istarted mycareerwiththeinvestigationoftwo-terminalsolid-statedevices,suchasGunn andIMPATTdiodes,forsystemapplications.TheissuesofRFparameterdeembedding,linearandnonlinearcircuitanalysisandmodeling,aswellastheirnoise behavior,wererelevantthenfortheirsysteminsertion.Thetwo-terminalRFdevices werequiteconstrainedbecauseoftheir“noisybehavior”andsignaldistortioncharacteristicsduringlargesignalconditions.Emergenceofthree-terminalGallium Arsenidemetal-semiconductorfield-effecttransistors(MESFETs)andthemany

xix

derivatives—includinghighelectronmobilitytransistors(HEMTs)andpseudomorphicHEMTs(p-HEMTs),etc.—andtheirintegrationontomonolithicmicrowave integratedcircuits(MMICs)onGaAssubstrates,aswellasdevelopmentofsilicon basedRFintegratedcircuits(RFICs),havehadarevolutionaryimpactontheminiaturizationofRFsystems.SomeexamplesofthesesystemsincludethehighperformanceradarsusingT/Rmodules,satellitesystemswithflexibleandsteerablebeams, andwirelesssystemswithsmallersize,broaderbandwidth,andrepeatableperformancewithhigherreliability.Byeffectivesystemdesign,thesesystemscanbemanufacturedanddeployedatasignificantlyreducedcost.DuringmyworkatCOMSAT Laboratories,usingthedevice,circuit,system,measurement,andcalibrationtechniquessimilartoonesdocumentedinallthechaptersofthisbook,wewereable todevelopminiaturizedreceivers,poweramplifiersandtransmitters,frequencyconverters,andswitchmatricesfordynamicsatellitebeamswitching.Wealsosuccessfullydevelopedproof-of-conceptC-,X-,andKu-bandphasedarrayantennasfor satellitebeamshapingandsteeringforon-boardandgroundsatelliteapplications. Itisgratifyingtoseemanyofthesesubsystemsandsystemsandtheirderivatives nowbeingcomponentsofthemajorityofmodernsatelliteandwirelessnetwork architectures.

GiventhestateoftheRFandmicrowavetechnologytoday,Iremainveryenthusiasticonemergenceofnewinnovativewirelesssystems.Duringthecomingyears anddecades,manynewapplicationsarelikelytobecomeavailable,includingwearablehealthcaredatasensingandmonitoringsystems,self-energizingimplantable medicalsystems,autonomousandinterconnectedvehicles,collisionavoidancesystems,nondestructivemedicalimagingusingterahertz(THz)frequencies,contactless paymentsystems,etc.Itismyhopethatstudents,engineers,andresearchers involvedinRFandmicrowavepracticewillbeabletoenhancetheirunderstanding ofdevice,circuit,andsysteminteractionsthroughconceptsandtechniquespresented inthisbook,andhelpcreateexcitingsystemapplicationsandsolutionsforthebenefit ofmankind.

Bethesda,Maryland,UnitedStates xx ForewordbyRameshK.Gupta
RameshK.Gupta,Ph.D.

Preface

Thewirelesscommunicationmarkethaswitnessedtremendousgrowthinrecent years.Totheconsumer,thisgrowthmanifestsitselfviatheproliferationofmobile telephones,tablets,gamingconsoles,andsoon,theInternetofThings.Thedesignof thesewirelesscommunicationsystemsrequiresin-depthunderstandingoftheir microwavefunctionality,startingfromthetheoreticalunderpinningsoftheirinner workingstotheirpracticalsystem-leveldeployment.

Thedesignofmicrowavewirelesssystemstraversesthreedifferentstages,oftentimesdubbedthedevice,circuit,andsystemlevels.Inspiteofthevastarchivalliteraturedealingwitheachofthesedesignlevels,thusfarnobookhasdetailedthe linksandinteractionsamongthem.Notsurprisingly,microwaveengineersoften acquiredeepexpertiseinonelevel,butlackunderstandingofotherlevels,especially theirinteractions,whichcomplicatesthecollaborationandprojecthandoverbetween designteams,andstiflesinnovation.Asanexample,engineersworkingondevice modelingoftentimesexperiencedifficultiesunderstandingthedifferentoperating modesoftransmittersbasedondynamicpowersupplypoweramplifiers(DPSPA),despitethefactthatDPS-PAoperatingmodesareinherentlyandsimplyrelated totransistoroperation.

Thegoalofthisbookistoelucidatelinksbetweenthedifferentlevelsinmicrowavewirelesssystemdesignbydescribingandunravelingtheirinteractions.The book’smultipleexpertauthorsofferdistinctandcomplementaryviewpointsof thesubjectmaterial.Together,theirtwoforewordsandeightchaptersprovidecomprehensivecoverageofthevasttopicarea.Whileindividualcontributionsfocusprimarilyononeofthethreedifferentdesignlevels,altogethertheyalsotouchon interactionsbetweenlevels,andaddressthepresentlysiloedknowledgeofthesubjectfield.Forexample,thereaderwilllearnthatdesignlinksbetweenthedevice andthecircuitlevelsarenotsodifferentwhendealingwithamplifiers,mixers,or oscillators,andthatlimitationsarisingfromtransistorlinearandnonlinearparasitic elementsarelargelythesame,eventhoughtheyimpactdifferentquantities(noise, poweraddedefficiency,conversiongain,resonanceconditions).

Wehopethisbookwillbecomeavaluedresource,notonlyforresearchers,engineers,andteacherswishingtoextendtheirknowledgeofmicrowavewireless systemsbeyondthepresentlystratifiedliterature,buttoallthoseseekingabetter understandingofthelinkagesanddependenciesbetweendifferentdesignlevels.

Weverymuchhopethatthereaderwillenjoyherorhisjourneythroughthethree differentlevelsofthemicrowavewirelesssystemdesign!

xxi
AntonioRaffoandGiovanniCrupi

Microwavetransistor modeling 1

G.Crupi*,A.Raffo†,G.Avolio{,A.Caddemi*,D.M.M.-P.Schreurs{ andG.Vannini†

UniversityofMessina,Messina,Italy* UniversityofFerrara,Ferrara,Italy† KULeuven,Leuven,Belgium{

CHAPTEROUTLINE

1.1 INTRODUCTION

Microwavetransistormodelingisanevergreenresearchfieldofparamountimportance.Thesignificantinterestaroundthistopiccomesfromthefactthatthetransistor isthekeycomponentinhigh-frequencycircuitsthatareattheheartofmodernwirelesscommunicationsystems,suchasmobiletelephony.Tomeetthemoreandmore stringentrequirementsofwirelesscommunicationsystems,transistortechnologies areincessantlyprogressing.Hence,theneedforexploitingemergingtechnologies attheirbestmakesmicrowavetransistormodelinganopenresearchfieldincontinuousevolution.

Thisfirstchapterismeanttogiveacomprehensiveoverviewofthefundamentals, state-of-the-art,challenges,andfuturetrendsinthefieldofmicrowavetransistor modeling,goingfromlinear(alsonoise)tononlinearoperation.

Thechapterisstructuredintosixmainsections,includingthisintroduction.The nextsectionisdevotedtothemicrowavetransistortechnologies.Ofthevarious microwavetransistors,theanalysisofthepresentchapterisfocusedonthehighelectron-mobilitytransistor(HEMT).Hence,thephysicalstructureandtheoperation principlesofthismicrowaveactivesolidstatedeviceareconciselyreviewed.

CHAPTER
1.1Introduction........................................................................................................ 1 1.2MicrowaveTransistorTechnologies..................................................................... 2 1.3TransistorModeling............................................................................................ 7 1.4Small-SignalModeling........................................................................................ 9 1.5NoiseModeling................................................................................................. 18 1.6Large-SignalModeling...................................................................................... 20 Acknowledgments.................................................................................................... 34 References.............................................................................................................. 34
MicrowaveWirelessCommunications. http://dx.doi.org/10.1016/B978-0-12-803894-9.00001-9 Copyright # 2016ElsevierLtd.Allrightsreserved. 1

Inparticular,transistorsfabricatedusingbothgallium-arsenideandgallium-nitride materialsaretheoreticallyandexperimentallyinvestigatedtohighlightprosandcons ofeachtechnology.Thethirdsectionisdedicatedtothetransistormodelingathigh frequencies.Theattentionisfocusedontheextractionofequivalentcircuitmodels, whichrepresentagoodcompromisebetweenphysicalandbehavioralmodels.In fact,theequivalentcircuitmodelprovidesindispensablefeedbacktodevicetechnologistsforadvancingthetransistorfabricationprocessandisavaluabletooltocircuit designersforoptimizingcircuitperformance.Thebottom-upapproachfor equivalent-circuit-basedmodelingisdiscussed,startingwithadescriptionofhow toextractasmall-signalmodelinthefourthsection,beforemovingontoitsuse asacornerstonetodevelopbothnoiseandlarge-signalmodelsinthefifthandsixth sections,respectively.

1.2 MICROWAVETRANSISTORTECHNOLOGIES

Thefirstdemonstrationofafield-effecttransistor(FET)usingatwo-dimensional electrongas(2DEG)inapotentialquantumwellastheactivechannelwasmade in1980[1,2].ThistypeoftransistorwasnamedHEMTbytheJapaneseresearchers atFujitsuLaboratories.AlthoughHEMTisthemostpopularname,otherterms describingitsbasicoperationprinciplehavebeenproposedbyotherresearchgroups workingondevelopingthisnewtypeoftransistor.Examplesaremodulationdoped FET(MODFET,UniversityofIllinoisandRockwell,UnitedStates),twodimensionalelectrongasFET(TEGFET,ThomsonCSF,France),andselectively dopedheterojunctiontransistor(SDHT,BellLabs,UnitedStates).Sinceitsinception,theHEMThasreceivedworldwideattentionforitsattractiveadvantagescomparedtoitspredecessor,themetal-semiconductorfield-effecttransistor(MESFET): largergain,higheroperatingfrequency,andlowernoisefigure(NF).

ThebasicstructureofaHEMTconsistsofaheterojunctioncomposedofadoped wide-bandgapsemiconductorandanundopednarrow-bandgapsemiconductor.The earlierHEMTswerebasedonthealuminum-gallium-arsenide/gallium-arsenide (AlGaAs/GaAs)heterostructure.Commonly,n-channelGaAsFETsareconsidered, becauseelectronshavemuchhighermobilitythanholes.Asillustratedin Figure1.1, electronsdiffusefromthedopedwide-bandgapsemiconductortotheundoped narrow-bandone.Duetotheconductionbanddiscontinuityandtheaccumulation ofelectronsleavingpositivechargedionizeddopants,apotentialbarrierisformed attheinterfacebetweenthetwosemiconductors.Thisbarrierpreventstheelectrons fromgoingbacktothedopedsemiconductor.Therefore,a2DEGisconfinedina triangularpotentialquantumwell.Theseelectronsdriftinapurecrystallinematerial fromthesourcetothedrainandthespatialseparationofcarriersfromdonorsistypicallyimprovedbyintroducingathinspacerlayerofundopedAlGaAs.SuchaseparationallowsforachievingasignificantreductionofCoulombscatteringand carriersfrozenationizeddonors,whicharetwomechanismsresponsiblefordegradingthecarriertransportpropertiesatlowtemperature.Aconsiderableimprovement

2CHAPTER1 Microwavetransistormodeling

Conduction band

Fermi level

TheenergybanddiagramforanAlGaAs/GaAsheterostructure.

oftheperformanceoftheHEMTisthusachievedatcryogenictemperatures,because thereductionofthephononscatteringprocessesatlowertemperaturesallowsfor obtainingaveryhighelectronmobility[3,4].Hence,electronsina2DEGexhibit amuchhighermobilitythanthoseinthedoped-channelMESFET,especiallyat lowtemperatures.

ThebasicoperationprincipleofaHEMTconsistsofcontrollingtheoutputdrain currentthroughthegatemodulationofthecarrierdensityinthe2DEG.Ifthegate biasisbelowthepinch-offvoltage,the2DEGchannelisdepleted.Asthegatevoltageisincreased,the2DEGdensityincreases,resultinginahigheroutputdraincurrent.Typically,aheavyforwardgatebiasisavoidedinordertopreventdevice degradationfromtheassociatedexcessiveconductioncurrentflowingthroughthe gateSchottkyjunction.Furthermore,ahigh VGS mayleadtotheoccurrenceof thephenomenonknownas“parasiticMESFET,”whichconsistsofatransconductancereductionduetoaparallelconductionthroughtheundepletedlowmobility AlGaAsdonorlayer[3].Infact,theincreaseof VGS lowersthepotentialenergybarrierandthen,byincreasing VDS,theelectronsofthe2DEGcangainenoughkinetic energyfromtheacceleratingelectricfieldinthechanneltosurmounttheAlGaAs/ GaAsenergybarrier.

ToimprovetheperformanceoftheconventionalAlGaAs/GaAsHEMT,an undopedlayerofnarrowbandgapindium-gallium-arsenide(InGaAs)canbeintroducedbetweentheAlGaAsandGaAslayers.InthecaseoftheAlGaAs/InGaAs/ GaAsstructure,thecarriersflowintheInGaAsquantumwellthatissquare-shaped. AstheInGaAsisnotlatticematchedtoitsadjacentlayers,theInGaAschannellayer hastobethinenoughsothatitstretchestofittheothertwosemiconductors.Compared totheconventionalHEMT,thistypeoftransistor,knownaspseudomorphicHEMT (pHEMT),exhibitsimprovedcarriertransportpropertiesduetothepresenceof indium,andabettercarrierconfinementduetoalargerbandgapdifference.

Doped AlGaAs Undoped GaAs Valence band
FIGURE1.1
3 1.2 Microwavetransistortechnologies

Althoughsilicon(Si)ismuchcheaperthanGaAsbecauseofthelowerprocessing complexity,largerwaferdiameter,andbetterindustryinfrastructure,GaAshastraditionallybeenwidelyusedformicrowaveapplications.Afundamentalbenefitof usingGaAsconsistsofhigherelectronmobilityandsaturationvelocitycomparedwith thoseofSi.Furthermore,GaAsbeingintrinsicallyaverypoorconductorofferssemiinsulatingsubstrates,whileSisubstratesaremuchmoreconductive.Althoughsiliconon-insulator(SOI)technologywithahighresistivitysubstrateallowsforminimizing thesubstratelosses,theSOIwafershavethedrawbacksofhavinghigherwafer cost,lowerthermalconductivity,andhigherdefectdensitythanbulkSiwafers.Hence, GaAsisveryusefulformicrowaveandmillimeter-waveintegratedcircuits(MMICs), whereactiveandpassivecomponentshavetobefabricatedonthesamesemiconductor substrate.ThisisbecausetheGaAssemi-insulatingsubstrateallowsforachieving electricalisolationamongthevariouscomponents,whileeffectiveshieldingsolutions areneededforSi-basedradio-frequencyintegratedcircuits(RFICs).

MMICshavesignificantadvantagesoverhybridcircuitssuchassmallersize, lighterweight,improvedreproducibilityandreliability,broaderbandperformance, andlowercostformassproduction.AlthoughtheinterestinmilitaryandspacecommunicationsystemshasdrivenandcontinuestodrivethedevelopmentofMMIC technology,MMICsarenowalsousedincivilapplications,suchasmobile telephony.

Tomeetthedemandingrequirementsforwirelesscommunicationsystemssuch asthoseforbasestations,alotofattentioniscurrentlydevotedtotheHEMTbased onthealuminum-gallium-nitride/gallium-nitride(AlGaN/GaN)heterostructure.The GaN-basedHEMTisundoubtedlytheleadingtechnologyformicrowavehigh-power applications[5–19]becausethewidebandgapofthenitridesemiconductorsimplies ahigherbreakdownvoltage.InthecaseofGaN-basedHEMTs,thephysicsbehind theformationof2DEGissubstantiallydifferentfromtheoneillustratedin Figure1.1 forconventionalGaAs-basedHEMTs.Owingtothelargepiezoelectricandspontaneouspolarizationeffectsandthelargeconductionbanddiscontinuitybetweenthe AlGaNbarrierandtheGaNchannellayers,anextremelyhigh2DEGdensitycanbe achievedevenwithoutintentionallydopingtheAlGaNlayer.Theelectricfieldassociatedwiththepiezoelectricandspontaneouspolarizationscanbehighenoughtoionizeelectronsandforcethemtodrifttowardstheheterointerfacewheretheyfallintothe quantumwell,formingthe2DEG.Inthecaseofunintentionallyintroduceddopant impurities,the2DEGconsistsofelectronsresultingfromcovalentelectrons,impuritiesthathappentobepresentinthematerials,andlooselybondedsurfaceelectrons.

GaNHEMTsaretypicallygrownonsiliconcarbide(SiC),silicon,orsapphiresubstrates.Siliconisavailableinlargerwafersizesandischeaperthantheothertwosubstrates.Ontheotherhand,siliconcarbideisthemostexpensivesolution,butits superiorthermalconductivitywithrespecttosiliconandsapphiremakesitverysuitableforhigh-powerandhigh-temperatureapplications.Infact,high-powerdevices needasubstratematerialwithhighthermalconductivitytospreadheatefficiently.

TopresentexperimentalresultsasanillustrativeexampleoftheSiCtechnology, Figure1.2 showsthebehaviorof ID versus VDS and VGS foranAlGaN/GaNHEMT

4CHAPTER1 Microwavetransistormodeling

FIGURE1.2

Behaviorof ID(VDS, VGS)fora0.7 800 μm2 GaNHEMTat20°C.

Drain-source voltage (V) 051015202530

FIGURE1.3

Outputcharacteristics ID(VDS)fora0.7 800 μm2 GaNHEMTat VGS ¼ 2Vunderthree differentambienttemperatures:20°C (solidblackline),50°C (dashedblackline),and80°C (solidgrayline)

onSiCsubstratewithagatelengthof0.7 μm[20].Toavoiddevicedegradation,the maximum VDS andthemaximumdissipatedpower Pmax havebeenlimitedto28V and5W/mm,respectively.Ascanbeobserved,thedeviceexhibitsanegativeslope of ID(VDS)underhighlydissipatedpowerconditionsbecauseoftheself-heating phenomenon.

Figure1.3 reports ID(VDS)at VGS ¼ 2Vunderthreedifferentambienttemperatures:20°C,50°C,and80°C.Itisobservedthattheself-heatingeffectisenhancedat highertemperaturesanddissipatedpower,duetotheassociatedincreaseofthephononscatteringprocessesleadingtoadegradationoftheelectrontransportproperties. Furthermore, Figure1.4 showstheloadlinesat1dBgaincompressionata fundamentalfrequency f0 of2GHzunderthethreeambienttemperatures.

20 10 0 VDS (V) VGS (V) I D (mA) 6 4 2 0 30 0 100 200 300 400 500
0 50 100 150 200 250
Drain current (mA)
5 1.2 Microwavetransistortechnologies

FIGURE1.4

Loadlinesat1dBcompressionwithafundamentalfrequencyof2GHzfora0.7 800 μm2 GaNHEMTat VGS ¼ 2Vand VDS ¼ 19.5Vunderthreedifferentambienttemperatures: 20°C (solidblackline),50°C (dashedblackline),and80°C (solidgrayline)

FIGURE1.5

Cryogenicsystemformicrowavetransistorcharacterization.

Asexpected,theswingoftheloadlinedecreasesathighertemperaturesandthis impliesareductionoftheoutputpower.

Figure1.5 showsapictureofanexperimentalset-upformicrowavetransistorcharacterizationatcryogenictemperatures.Thecryogenicsystemisbasedonaclosedcircleliquidheliumrefrigeratorandavacuumchamberhavingmicrowavecoaxial feedthroughsforconnectingtheexternalinstrumentation.Thetemperatureismonitoredandcontrolledbyusingaproportional-integral-differentialcontrolloop.ToillustratetheperformanceofacryogenicallycooledHEMT, Figure1.6 showsthebehavior ofthemagnitudeoftheforwardtransmissionparameterS21 forapackagedAlGaAs/ InGaAs/GaAspHEMT(MitsubishiMGF4919)versusfrequencyand VGS attwo differenttemperatureconditions:16.85°Cand 243.15°C[3].Bycoolingthe

400 300 200 100 0 1015202530 Drain-source voltage (V) Drain current (mA)
6CHAPTER1 Microwavetransistormodeling

FIGURE1.6

Magnitudeof S21 versusfrequencyand VGS foraGaAspHEMT(MitsubishiMGF4919) at VDS ¼ 2Vundertwodifferentambienttemperatures:16.85°C (whiteplot) and 243.15°C (grayplot).

transistor,themagnitudeof S21 increaseswhen VGS isfarfrompinch-off,whileit decreaseswhen VGS isnearpinch-off.Theobservedbehaviorofthisfigureofmerit isduetothefactthat,bydecreasing VGS towardsthepinch-off,thethresholdvoltage (VTH)shifthasastrongerimpacton S21 thantheimprovementoftheaverageelectron velocity.Itshouldbeemphasizedthattheinfluenceofthethresholdvoltageshifton S21 mightbecompensatedbytheDCbiascircuitrywhenthedeviceisbiasedbyimposing ID ratherthan VGS [21].Itshouldbenotedthatexceptforthisdeviceinapackage,allof thetransistorsanalyzedinthischapterareon-waferdevices.

1.3 TRANSISTORMODELING

Whatismicrowavetransistormodeling?Itconsistsofthefieldofknowledgeand problem-solvingconcernedwithhowtoextract,implement,andvalidatemodels abletodescribethepropertiesofadvancedtransistorsmeantforhigh-frequency applications.Itisworthpointingoutthattheextractedmodelshavetobeproperly implementableinacircuitsimulatorandbeaccuratelyvalidatedbymeansofsuitable measurementspriortotheirrelease.Theimportanceofthisresearchbranchcomes fromtheneedformodelsashelpfulfeedbacktotechnologistsforadvancingtransistorfabricationandasaneffectivetoolforcircuitdesignersoptimizingcircuitperformance.Althoughmanysuccessfulmodelingtechniqueshavebeendevelopedinthe lastdecades,microwavetransistormodelingisanevergreenresearchfieldthatstill attractsextensiveinterest.Thisisbecauseinnovativetechniquesareconstantly requiredtomodelthelatestandcontinuouslyprogressingtransistortechnologies.

Asillustratedin Figure1.7,transistormodelscanbedividedintothreemaincategories:physicalmodels[22–25],behavioralmodels[26–29],andequivalentcircuit models[30–33].Thephysicalmodels(or“transparentboxes”)arebasedonthestudy ofthephysicalphenomenaoccurringwithinthetransistor,whilethebehavioral

10 5 0 –0.25 0 0 2 4 6 –0.5 | S 21 | VGS (V) Frequency(GHz)
7 1.3 Transistormodeling

Classificationofthetransistormodelsintophysicalmodels(or transparentboxes),equivalent circuits(or grayboxes),andbehavioralmodels(or blackboxes).

models(or“blackboxes”)arebasedontheexperimentalcharacterizationofthe behavioralinput-outputdescriptionsofthetransistor.Aneffectivecompromise betweenphysicalandbehavioralmodelsisrepresentedbytheequivalentcircuits (or“grayboxes”),whichareextractedfromexperimentalmeasurements,yetkeeping theconnectionwiththeinnerphysicsofthetransistor.Equivalentcircuitmodelsgive thetechnologistsbetterfeedbackthanblack-boxmodelsandenablecircuitdesigners todomuchfastersimulationsthanwithphysicalmodels.Infact,physicalmodelsare notreallysuitableforcomputer-aideddesign(CAD)environmentsduetotheirprohibitivesimulationtime.Ontheotherhand,behavioralmodelsattransistorlevel requireexpensivemeasurementsandtheyshowgoodpredictivecapabilitiesonly intheregimeoftheircharacterization.Itisworthnotingthatbehavioralmodels atcircuitandsystemlevels,wherequiescentconditionandimpedanceenvironment (typically50 Ω)areaprioriknown,donotshowthesamelimitationspreviouslydiscussed,andhavebeensuccessfullyandincreasinglyusedbydesignersinthe lastyears.

Thepresentchapterfocusesonmicrowavetransistormodelingbasedonthe equivalentcircuitrepresentation.Equivalent-circuit-basedtransistormodelingis aninterdisciplinaryscientificresearchfieldthatrequiresexpertisefromdifferent areas:semiconductordevicephysics,electromagneticfields,microwavemeasurementtechniques,circuitnetworktheory,andcircuitsimulationsoftwarepackages. Althoughthemicrowaveperformanceofatransistorcanbefullyandstraightforwardlycharacterizedbycarryingouthigh-frequencymeasurementswithdedicated instrumentations,itisveryusefultoextractanequivalentcircuitmodel,asitisa physicallymeaningfulandaverycompactrepresentation,alsoallowingafastestimationofthescalingofthedeviceperformance.

Theselectionoftheappropriatetopologyoftheequivalentcircuitformodeling thespecifictestedtransistorisachallengingtask,sinceahighernumberofcircuit elementsmayallowforobtainingmoreaccurateresults,butthecircuitcomplexity becomeshigheraswellastheriskofphysicalinconsistency.Hence,thenumberof circuitelementsshouldbetherighttrade-offbetweenmodelaccuracy,physical

FIGURE1.7
8CHAPTER1 Microwavetransistormodeling

soundness,andcomplexity.Typically,thefirstmodelingstepconsistsofextractinga small-signalequivalentcircuitthat,subsequently,canbeusedasacornerstonefor buildingbothnoiseandlarge-signalmodels.Theremainderofthischapterisdedicatedtosmall-signal,noise,andlarge-signalmodeling.GaAsandGaNHEMTsare usedasreferencedevicestoillustratetheapplicationofequivalentcircuitmodeling techniqueswithexperimentalresults.

1.4 SMALL-SIGNALMODELING

Figure1.8 showsanexampleofasmall-signalequivalentcircuittopologyfora HEMT.Theresistances Rgsf and Rgdf areoftenomittedastheconductiongatecurrent isnegligibleundertypicaloperatingbiasconditions.Typically,thevaluesoftheelementsaredeterminedusingscattering(S-)parametermeasurements,whichcanbe straightforwardlyandaccuratelymeasuredbymeansofavectornetworkanalyzer (VNA).Givenabiascondition,themodelextractionisbasedondefiningeightequationsthatrepresentthefourcomplex S-parametersintermsoftheequivalentcircuit elementsateachfrequency.Severaltechniqueshavebeendevelopedtosolvethisillconditionedproblemandtheycanbeclassifiedintotwomaincategories:numerical optimization[34–36]andanalyticaltechnique[33,37,38].However,itiswellknown thatoptimizationmethodscanleadtocircuitelementvalueswithnophysicalmeaningandbywhichtheresultscandependonmanyfactors(eg,thestartingelement values,localminima,andtheoptimizationmethoditself).Ontheotherhand,analyticalmethodsallowovercomingthesedrawbacksbysplittingthemodelextraction intwoparts.Basically,theequivalentcircuitelementsareusuallydividedinto twomaingroups:theextrinsicelements(ie, Cpg, Cpd, Lg, Ls, Ld, Rg, Rs, Rd)andintrinsicones(ie, Cgs, Cgd, Cds, Rgsf, Rgdf, Rgs, Rgd, Rds, gm, τ ).Theformerareassumed

circuit

FIGURE1.8

Intrinsic
Rgdf Cgd Rgd Rds Rs Ls Source Cds Rd Ld Drain Cpd Rgsf Rgs Cgs gm V V + –e –jwt Rg Lg Cpg Gate
Small-signalequivalentcircuitforaHEMT. 9 1.4 Small-signalmodeling

tobebias-independent,whereasthelatteraredependentonthebiascondition.The analyticaltechniquesarebasedondeterminingfirsttheextrinsicelementsandsuccessivelytheintrinsicones.

Generally,theextrinsicelementsareobtainedfrom“cold” S-parametermeasurements(ie, VDS ¼ 0V)[33,37–48],becausethe“cold”conditionallowsasignificant simplificationoftheequivalentcircuitmodel.Theterm“cold”arisesfromthefact thattheequivalenttemperature,representingthecarrieraveragekineticenergy,is coldcomparedtothetypicaloperatingconditionandthedissipatedpowerisnull. With VDS equaltozero,thevoltagecontrolledcurrentsourcecanbeomittedsince therearenocarriersdriftingfromsourcetodrain.Asaresult,twounknowns(ie, gm and τ )disappearbut,atthesametime,twoequationsvanish(ie, S12 ¼ S21),duetothe factthatundercoldconditionthetransistorbehavesasareciprocalnetworkwith [S] ¼ [S]T (ie,notcontaininganynonreciprocalmediasuchasferritesorplasmas, oractivedevices).Additionally,thezerodrain-sourcevoltageallowsassumingthat thegate-sourceandgate-drainintrinsiccircuitsareequal. Figure1.9 showsthatthe intrinsiccoldHEMTcanberepresentedbyan RC parallelnetwork(Ry, Cy)modeling theSchottkygatejunctionandtwoidentical RC parallelnetworks(Rch/2,2Cch) modelingtheactivechannel.Astheintrinsicresistancesdecreaseathigher VGS, theintrinsiccapacitancesarenegligibleunderforwardcondition,whereastheintrinsicresistancesarenegligibleunderpinch-offcondition[40].Ingeneral,theextrinsic capacitancesareextractedfromIm(Yij)ofthecapacitivenetworkrepresentingthe

FIGURE1.9 Small-signalequivalentcircuitfora“cold”HEMT.

Source Intrinsic cold circuit Drain Gate Pinch-off Forward Cpg Cpd Cy Cy Rs Ry Ry Rg Rd Rch/2 Rch/2 Rch/2 Rch/2 2Cch 2Cch 2Cch 2Cch Ls Lg Ld
10CHAPTER1 Microwavetransistormodeling

transistoratlowfrequenciesunderpinch-offcondition,whereastheextrinsicinductancesandresistancesare,respectively,obtainedfromRe(Zij)andIm(Zij)of theresistiveinductivenetworkrepresentingthetransistorathighfrequenciesunder high VGS.

Afterde-embeddingtheextractedextrinsiccontributionsfromthe S-parameter measurementswithsimplematrixmanipulations[49],theintrinsicelementscan becalculatedfromtheintrinsic Y-parameters.Inparticular, Rgsf and Rgdf areestimatedfromtherealpartoftheintrinsic Y11 and Y12 atlowfrequenciesbyassuming thatthecapacitancesbehaveasopencircuits[50]:

Therefore,theextractedvaluesof Rgsf and Rgdf canbesubtractedand,finally,the remainingeightintrinsicelementscanbecalculatedfromtherealandimaginary partsofthefour Y-parameterswithstandardformulas[51].Itshouldbehighlighted that Rgsf and Rgdf playasignificantroleonlyatrelativelyhigh VGS whenforward biasingthegateSchottkyjunction.Thisisconfirmedby Figure1.10 showingthebias

Behaviorof Ggsf (A)and Ggdf (B)versus VDS and VGS fora0.2 100 μm2 GaNHEMT.

Rgsf ¼ 1 Re Y11 + Y12 ðÞ (1.1) Rgdf ¼ 1 Re Y12 ðÞ (1.2)
1 0.5 0 2 0 –5 –10 10 5 0 VGS (V) VDS (V) G gsf (mS) (A) G gdf (mS) VGS (V) VDS (V) 1 1.5 0.5 0 2 0 –5 –10 10 5 0 (B)
FIGURE1.10
11 1.4 Small-signalmodeling

dependenceofthetwoconductancesassociatedto Rgsf and Rgdf foraGaNHEMTon sapphiresubstratewithagatelengthof0.2 μm.

Itisworthnotingthattheanalysisoftheintrinsic Y-parametersversusfrequency cansuggesttoaddand/ortoneglectsomeintrinsiccircuitelements.Infact,differencesamongtechnologies,materials,structures,andstudiedfrequencyrangesare reflectedindifferentequivalentcircuittopologies.Forinstance,thepresentanalysis isfocusedontheintrinsic Y22 tohighlighttheimportanceofdeterminingthemost appropriatecircuittopology.Thepresenceofthefeedbackresistance Rgd allows definingthisadmittanceparameterasfollows:

Then,therealandimaginarypartsoftheintrinsic Y22 canbeexpressedasfollows:

Eq. (1.4) showsthat Rgd hastobeincludedinthemodelwhenRe(Y22)tendsto increasewithfrequencyinsteadofremainingconstantandequalto gds.Contrary tothebehaviorpredictedbyEq. (1.4), Figure1.11 showsthattheintrinsic Re(Y22)decreasesathigherfrequenciesforaGaAspHEMTwithagatelengthof 0.25 μm.Consequently,tomodelthisobservedbehavior, Rgd hasbeenomitted and gds hasbeenreplacedbyavoltagecontrolledcurrentsourcewithatimedelay τ ds.Thatsolutionallowsdefining Y22 asfollows[41]:

Hence,therealandimaginarypartsoftheintrinsic Y22 aregivenby:

Eq. (1.7) showsthat τ ds isrequiredtomodelthedecreaseofRe(Y22)athigherfrequencies(see Figure1.11).When ωτ ds issufficientlysmall, τ ds canbeapproximated withaninductance Lds inserieswith gds.However,incontrastwiththe Lds implementation, τ ds allowsthesimulationalsoofnegativevaluesofRe(Y22)[41].

Toverifytheaccuracyoftheextractedequivalentcircuit,themodelshouldbeable toreproducethe S-parametermeasurements.Furthermore,therobustnessofthemodel shouldbeconfirmedbyitsvalidationunderawiderangeofoperatingconditions. Inparticular,thecircuitelementsareexpectedtobephysicallymeaningfulandthus theirvaluesshouldbeanalyzedversusbiascondition,temperature,andgeometrical dimensionstocheckifthemodelmeetsthephysicalexpectations.Asanillustrative example, Figure1.12 reportsthegoodagreementbetweenmeasuredandsimulated

Y22 ¼ gds + jωCgd 1+ jωRgd Cgd + jωCds (1.3)
Re Y22 ðÞ¼ gds + ω2 Rgd C2 gd 1+ ωRgd Cgd 2 (1.4) Im Y22 ðÞ¼ ωCgd 1+ ωRgd Cgd 2 + ωCds (1.5)
Y22 ¼ gds e jωτ ds + jωCgd + jωCds (1.6)
Re Y22 ðÞ¼ gds cos ωτ ds ðÞ (1.7) Im Y22 ðÞ¼ ω Cgd + Cds gds sin ωτ ds ðÞ (1.8)
12CHAPTER1 Microwavetransistormodeling

Y 22 ) (mS) Frequency (GHz) 4 2 0 –2 0102030405060708090 0

FIGURE1.11

Comparisonbetweenmeasured (symbols) andsimulated (lines) intrinsic Y22 from4to 90GHzfora0.25 300 μm2 GaAspHEMTat VGS ¼ 0.65Vand VDS ¼ 10V.Simulationsare obtainedwith(A)andwithout(B)accountingfor τ ds

S-parametersforaGaAspHEMTwithagatelengthof0.15 μm[52].Thevalidationis performedunderdifferentbiasconditionsincludingnegative VDS,becausethetested deviceismeantforcold-FETmixerdesign.Itshouldbehighlightedthatthestandard formulasforidentifyingthecurrentsourceatpositive VDS havetobemodifiedforthe extractionatnegative VDS:thesignof gm hastobechangedandthis π phaseshifthasto besubtractedbeforecalculating τ .Theachievedbiasdependenceof gm and Cgs is reportedin Figure1.13.

Figure1.14 shows gm and Cgs versus VGS foraGaAspHEMTat VDS ¼ 2Vunder twodifferenttemperatureconditions:16.85°Cand 243.15°C[4].Inagreement withtheobservedbehaviorofthemagnitudeof S21 (see Figure1.6),thetesteddevice showsthattheimprovementofthecarriertransportpropertiesatcryogenictemperatureleadstoanincreaseof gm onlywhen VGS isfarfrompinch-off.With VGS 4 2 0 0102030405060708090 –2 0

lm(
Re(
60 lm( Y 22
(mS) Re( Y 22
(mS)
(A) (B)
20 40 60
Y 22 ) (mS)
20 40
)
)
Frequency (GHz)
13 1.4 Small-signalmodeling

FIGURE1.12

Comparisonbetweenmeasured (symbols) andsimulated (lines)S-parametersfrom2.5to 65GHzfora0.15 300 μm2 GaAspHEMTat: VDS ¼ 0Vand VGS ¼ 1V(A), VDS ¼ 0.5Vand VGS ¼ 0.8V(B), VDS ¼ 0.5Vand VGS ¼ 0.5V(C).

S
S
12 S
S
2
S
6
(A) (B) (C)
22 S21
11
S
22 S21/3
11
× S12
22 S11 S21
× S12
14CHAPTER1 Microwavetransistormodeling

FIGURE1.13

Behaviorof gm (A)and Cgs (B)versus VDS and VGS fora0.15 300 μm2 GaAspHEMT.

FIGURE1.14

Behaviorof gm (A)and Cgs (B)versus VGS foraGaAspHEMT(MitsubishiMGF4919) at VDS ¼ 2Vundertwodifferentambienttemperatures:16.85°C (blacksymbols) and 243.15°C (whitesymbols)

decreasingtowardsthepinch-offregion,the VTH shiftleadstoadegradationof gm at lowertemperatures.Sucha VTH shiftcanbeattributedtothereductionofthenet positivechargeunderthegate,duetoadecreaseofthethermallyactivatedelectron detrappingmechanismsoccurringwithintheAlGaAsdonorlayer.Asaresultofthis reductionofthedetrappingphenomena,adecreaseofthe“equivalent”dopinglevel canberesponsiblefortheobservedreductionof Cgs atlowertemperatures[4].

200 –200 0 0.8 0.4 –0.4 –0.8 –2 –1 0 1 0 V DS (V) V GS (V) g m (mS) (A) 200 100 300 0 0.8 0.4 –0.4 –0.8 –2 –1 0 1 0 V DS (V) V GS (V) C gs (fF) (B)
150 100 50 0 –0.50 –0.25 0.00 T = 290 K T = 30 K g m (mS) V GS (V) T = 290 K T = 30 K 400 300 350 250 –0.50 –0.25 0.00 V GS (V) C gs (fF) (A)(B)
15 1.4 Small-signalmodeling

Theconventionalscalingrulesarebasedontheassumptionthatincreasingthe gatewidthcanbeseenasconnectingmoreintrinsictransistorsinparallel.Hence, theintrinsicequivalentcircuitelementsassociatedwithadmittances(ie,capacitancesandconductances)andthedraincurrentitselfshouldbeproportionalto thetotalgatewidth,whiletheintrinsiconesassociatedwithimpedances(ie,inductancesandresistances)shouldbeinverselyproportionaltothisgeometricdimension,andtheintrinsictimedelayshouldbeconstant.Nevertheless,thisisan oversimplifiedassumptionthatfailstotakeintoaccountcomplexphenomenasuch asthermaleffects,bordereffects,andresidualextrinsicelementcontributions.As illustrativeexample, Figure1.15 shows g

FIGURE1.15

Behaviorof gm, gds (A), Cgs, Cgd, Cds (B),and τ (C)versusthegatewidthforthreeGaAs HEMTs(0.25 100 μm2,0.25 200 μm2,and0.25 300 μm2)at VGS ¼ 0.6Vand VDS ¼ 2.5V.

m, gds,
gs,
gd,
ds,and
150 100 50 0 0100200300400 W (μm) g (mS) g m 10 × g ds 400 200 0 0100200300400 W (μm) C (fF) Cgs Cgd 0.5 × Cds 2 1 0 0100200300400 t ( ps ) W (μm) (A) (B) (C)
C
C
C
τ versusthegate
16CHAPTER1 Microwavetransistormodeling

widthforthreeAlGaAs/GaAsHEMTswithagatelengthof0.25 μm.As expected,aquiteclearlinearbehaviorw ithrespecttothegatewidthisobserved in gm, g ds , Cgs , C gd ,and C ds ,while τ isalmostindependentofthegatewidth. Thisisbecause τ canbecorrelatedtothecarrie rtransittimeand,therefore, dependsmainlyonthegatelength(infirs tapproximation,proportionally).As canbeseenin Figure1.16A ,thelineapproximating gm versusthegatewidth exhibitsapositiveinterceptwhen V GS isincreasedto0V.Thisresultcanbe attributedtothefactthatthethermalphenomenaareenhancedintransistorswith largergatewidthandathigher V GS ,duetothehigherdissipatedpower.Tocorroboratethisobservation, g m isnormalizedwithrespecttothegatewidthin Figure1.16B andtheachievedvalueisevidentlyreducedinlargertransistors. Byconsideringthatthethermalphenomenacannotfollowtheappliedsmallsignalatsuchhighfrequencies,theobserveddegradationofthenormalizedRF g m hastobeascribedtotheeffectsofthermalphenomenaduetotheDC dissipatedpower.

FIGURE1.16

Behaviorof gm (A)anditsnormalizedvalue(B)versusthegatewidthforthreeGaAsHEMTs (0.25 100 μm2,0.25 200 μm2,and0.25 300 μm2)at VGS ¼ 0Vand VDS ¼ 2.5V.

0 0 20 40 60 100200 W (µm) 300400 g m (mS) (A) 0 150 160 g m (mS/mm) 170 100200 W (μm) 300400 (B)
17 1.4 Small-signalmodeling

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.