Christian Gérard
Visit to download the full and correct content document: https://textbookfull.com/product/microlocal-analysis-of-quantum-fields-on-curved-spac etimes-1st-edition-christian-gerard/
Quantum
Microlocal Analysis of
Fields on Curved Spacetimes 1st Edition
More products digital (pdf, epub, mobi) instant download maybe you interests ...
Analysis on Fock spaces and mathematical theory of quantum fields 1st Edition Asao Arai
https://textbookfull.com/product/analysis-on-fock-spaces-andmathematical-theory-of-quantum-fields-1st-edition-asao-arai/
Lectures on Classical and Quantum Theory of Fields 2nd Edition Henryk Arodz
https://textbookfull.com/product/lectures-on-classical-andquantum-theory-of-fields-2nd-edition-henryk-arodz/
From Classical to Quantum Fields 1st Edition Laurent Baulieu
https://textbookfull.com/product/from-classical-to-quantumfields-1st-edition-laurent-baulieu/
Quantum Fields and Processes A Combinatorial Approach 1st Edition John Gough
https://textbookfull.com/product/quantum-fields-and-processes-acombinatorial-approach-1st-edition-john-gough/
Quantum Fields: From the Hubble to the Planck Scale 1st Edition Michael
Kachelriess
https://textbookfull.com/product/quantum-fields-from-the-hubbleto-the-planck-scale-1st-edition-michael-kachelriess/
Micro-Spatial Histories of Global Labour 1st Edition
Christian G. De Vito
https://textbookfull.com/product/micro-spatial-histories-ofglobal-labour-1st-edition-christian-g-de-vito/
Algebraic and Analytic Microlocal Analysis AAMA
Evanston Illinois USA 2012 and 2013 Michael Hitrik
https://textbookfull.com/product/algebraic-and-analyticmicrolocal-analysis-aama-evanston-illinoisusa-2012-and-2013-michael-hitrik/
Complex Semisimple Quantum Groups and Representation Theory 1st Edition Christian Voigt
https://textbookfull.com/product/complex-semisimple-quantumgroups-and-representation-theory-1st-edition-christian-voigt/
Waves,
Particles
and
Fields:
Introducing
Quantum Field
Theory 1st Edition Anthony C. Fischer-Cripps
https://textbookfull.com/product/waves-particles-and-fieldsintroducing-quantum-field-theory-1st-edition-anthony-c-fischercripps/
Lectures in Mathematics and Physics
Christian Gérard
Microlocal Analysis of Quantum Fields on Curved Spacetimes
ESI Lectures in Mathematics and Physics
Editors
Christoph Dellago and Ilaria Perugia (University of Vienna, Austria)
Erwin Schrödinger International Institute for Mathematical Physics
Boltzmanngasse 9
A-1090 Wien
Austria
The Erwin Schrödinger International Institute for Mathematical Phyiscs is a meeting place for leading experts in mathematical physics and mathematics, nurturing the development and exchange of ideas in the international community, particularly stimulating intellectual exchange between scientists from Eastern Europe and the rest of the world.
The purpose of the series ESI Lectures in Mathematics and Physics is to make selected texts arising from its research programme better known to a wider community and easily available to a worldwide audience. It publishes lecture notes on courses given by internationally renowned experts on highly active research topics. In order to make the series attractive to graduate students as well as researchers, special emphasis is given to concise and lively presentations with a level and focus appropriate to a student‘s background and at prices commensurate with a student‘s means.
Previously published in this series:
Arkady L. Onishchik, Lectures on Real Semisimple Lie Algebras and Their Representations
Werner Ballmann, Lectures on Kähler Manifolds
Christian Bär, Nicolas Ginoux, Frank Pfäffle, Wave Equations on Lorentzian Manifolds and Quantization
Recent Developments in Pseudo-Riemannian Geometry, Dmitri V. Alekseevsky and Helga Baum (Eds.)
Boltzmann‘s Legacy, Giovanni Gallavotti, Wolfgang L. Reiter and Jakob Yngvason (Eds.)
Hans Ringström, The Cauchy Problem in General Relativity
Emil J. Straube, Lectures on the 2-Sobolev Theory of the ∂ -Neumann Problem
Noncommutative Geometry and Physics: Renormalisation, Motives, Index Theory, Alan L. Carey (Eds.)
Erwin Schrödinger – 50 Years After, Wolfgang L. Reiter and Jakob Yngvason (Eds.)
Christian Gérard
Microlocal Analysis of Quantum Fields on Curved Spacetimes
Author:
Christian Gérard
Département de Mathématiques Bâtiment 307
Faculté des Sciences d’Orsay Université Paris-Sud
91405 Orsay Cedex
France
E-mail: christian.gerard@math.u-psud.fr
2000 Mathematics Subject Classification (primary; secondary): 81T13, 35L10, 35L40, 58J40; 81T28, 35L15, 35L45, 58J47, 53C50
Key words: Quantum Field Theory, curved spacetimes, Hadamard states, microlocal analysis, pseudo-differential calculus
ISBN 978-3-03719-094-4
The Swiss National Library lists this publication in The Swiss Book, the Swiss national bibliography, and the detailed bibliographic data are available on the Internet at http://www.helveticat.ch.
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, reproduction on microfilms or in other ways, and storage in data banks. For any kind of use permission of the copyright owner must be obtained.
© 2019 European Mathematical Society
Contact address:
European Mathematical Society Publishing House TU Berlin Mathematikgebäude Straße des 17. Juni 136 10623 Berlin Germany
Email: info@ems-ph.org Homepage: www.ems-ph.org
Typeset using the authors’ TEX files: le-tex publishing services GmbH, Leipzig, Germany
Printing: Beltz Bad Langensalza GmbH, Bad Langensalza, Germany
∞ Printed on acid free paper
9 8 7 6 5 4 3 2 1
2FreeKlein–GordonfieldsonMinkowskispacetime
Contents 1Introduction 1 1.1Introduction ..............................1 1.2Content .................................2 1.3Notation ................................5
7
.........................7
......................9
.................12
...........................14
15 3.1BosonicFockspace ..........................15 3.2FockquantizationoftheKlein–Gordonequation ...........17 3.3Quantumspacetimefields .......................18 3.4Localalgebras .............................19
21 4.1Vectorspaces ..............................21 4.2Bilinearandsesquilinearforms ....................22 4.3Algebras ................................23 4.4States ..................................24 4.5CCRalgebras .............................25 4.6Quasi-freestates ............................26 4.7Covariancesofquasi-freestates ....................30 4.8TheGNSrepresentationofquasi-freestates ..............33 4.9Purequasi-freestates .........................37 4.10Examples ................................41
43 5.1Background ..............................43 5.2Lorentzianmanifolds .........................47
....................52 5.4Globallyhyperbolicspacetimes ....................52
..........57 5.6Symplecticspaces ...........................61
2.1Minkowskispacetime
2.2TheKlein–Gordonequation
2.3Pre-symplecticspaceoftestfunctions
2.4Thecomplexcase
3FockquantizationonMinkowskispace
4CCRalgebrasandquasi-freestates
5FreeKlein–Gordonfieldsoncurvedspacetimes
5.3Stationaryandstaticspacetimes
5.5Klein–GordonequationsonLorentzianmanifolds
6Quasi-freestatesoncurvedspacetimes
6.1Quasi-freestatesoncurvedspacetimes
6.2Consequencesofuniquecontinuation
6.3Conformaltransformations
7MicrolocalanalysisofKlein–Gordonequations
7.1Wavefrontsetofdistributions
7.2Operationsondistributions
7.3H¨ormander’stheorem
7.4ThedistinguishedparametricesofaKlein–Gordonoperator
8Hadamardstates
8.1Theneedforrenormalization
8.2OlddefinitionofHadamardstates
8.3ThemicrolocaldefinitionofHadamardstates
8.4ThetheoremsofRadzikowski
8.5TheFeynmaninverseassociatedtoaHadamardstate
8.6Conformaltransformations
8.7Equivalenceofthetwodefinitions
8.8ExamplesofHadamardstates
8.9ExistenceofHadamardstates
9Vacuumandthermalstatesonstationaryspacetimes
9.1GroundstatesandKMSstates
9.2Klein–Gordonoperators
9.3TheKlein–Gordonequationonstationaryspacetimes
9.5GroundandKMSstatesfor P
9.6Hadamardproperty
10.3Riemannianmanifoldsofboundedgeometry
10.5Time-dependentpseudodifferentialoperators
10.6Seeley’stheorem
10.7Egorov’stheorem
11ConstructionofHadamardstatesbypseudodifferentialcalculus
11.3ParametricesfortheCauchyproblem
11.4ThepureHadamardstateassociatedtoamicrolocalsplitting
vi Contents
65
................65
.................68
......................69
71
.....................71
......................74
.........................76
.....77
81
.....................81
...................83
.............85
.....................86
.........88
......................88
...................88
.....................90
.....................91
93
.....................93
........................97
........99
...............................100
.....................101
9.4Reduction
..........................102
103 10.1Pseudodifferentialcalculuson
...................103
..............106
10Pseudodifferentialcalculusonmanifolds
Rn
10.2Pseudodifferentialoperatorsonamanifold
.............108
..........................111
10.4TheShubincalculus
.............113
............................113
...........................114
115
.........115
11.1HadamardconditiononCauchysurfacecovariances
11.2ModelKlein–Gordonoperators ....................116
.................117
.....123
11.5SpacetimecovariancesandFeynmaninverses
11.6Klein–GordonoperatorsonLorentzianmanifoldsofboundedgeometry ...................................125
11.7Conformaltransformations
11.8Hadamardstatesongeneralspacetimes
12AnalyticHadamardstatesandWickrotation
12.1Boundaryvaluesofholomorphicfunctions
12.2Theanalyticwavefrontset
12.3AnalyticHadamardstates
12.4TheReeh–SchliederpropertyofanalyticHadamardstates
12.5ExistenceofanalyticHadamardstates
12.6Wickrotationonanalyticspacetimes
12.7TheCalder´onprojectors ........................137
12.8TheHadamardstateassociatedtoCalder´onprojectors
12.9Examples
13HadamardstatesandcharacteristicCauchyproblem
13.1Klein–Gordonfieldsinsidefuturelightcones
13.3TheHadamardconditionontheboundary
13.4ConstructionofpureboundaryHadamardstates
13.5Asymptoticallyflatspacetimes
13.6Thecanonicalsymplecticspaceon I
14Klein–GordonfieldsonspacetimeswithKillinghorizons
15Hadamardstatesandscatteringtheory
16FeynmanpropagatoronasymptoticallyMinkowskispacetimes
16.2TheFeynmaninverseof P
Contents vii
.............123
......................126
................127
129
..............130
.......................131
.......................133
......134
.................135
.................136
........138
................................140
143
.............143
....................145
13.2Theboundarysymplecticspace
...............147
...........150
....................151
................154
159 14.1SpacetimeswithbifurcateKillinghorizons ..............160 14.2Klein–Gordonfields ..........................162 14.3Wickrotation ..............................162 14.4Thedouble
C [ M ...............164
....165
...................166
ˇ -KMSstatein M
14.5TheextendedEuclideanmetricandtheHawkingtemperature
14.6TheHartle–Hawking–Israelstate
169
.....169
.....................171 15.3Reductiontoamodelcase .......................173
15.1Klein–Gordonoperatorsonasymptoticallystaticspacetimes
15.2The in and out vacuumstates
177
..178
.......................178
.........................180
16.1Klein–GordonoperatorsonasymptoticallyMinkowskispacetimes
16.3ProofofTheorem16.1
viii Contents
17Diracfieldsoncurvedspacetimes
17.1CAR -algebrasandquasi-freestates
17.2Cliffordalgebras ............................188
17.3Cliffordrepresentations
17.4Spingroups
17.5Weylbi-spinors
17.6Cliffordandspinorbundles
17.7Spinstructures
17.8Spinorconnections
17.9Diracoperators
17.10Diracequationongloballyhyperbolicspacetimes
17.11QuantizationoftheDiracequation
17.12HadamardstatesfortheDiracequation
17.13Conformaltransformations
17.14TheWeylequation ...........................204
17.15RelationshipbetweenDiracandWeylHadamardstates
187
.................187
........................189
..............................192
............................192
......................194
.............................196
...........................197
.............................198
..........200
..................201
................202
......................203
........206 Bibliography 209 GeneralIndex 215 IndexofNotations 219
Chapter1 Introduction
1.1Introduction
QuantumFieldTheoryarosefromtheneedtounifyQuantumMechanicswithspecialrelativity.ItisusuallyformulatedontheflatMinkowskispacetime,onwhich classicalfieldequations,suchastheKlein–Gordon,DiracorMaxwellequationsare easilydefined.Theirquantizationrestsontheso-called Minkowskivacuum,which describesastateofthequantumfieldcontainingnoparticles.TheMinkowskivacuum isalsofundamentalfortheperturbativeornon-perturbativeconstructionofinteractingtheories,correspondingtothequantizationofnon-linearclassicalfieldequations.
QuantumFieldTheoryonMinkowskispacetimereliesheavilyonitssymmetry underthePoincar´egroup.Thisisapparentintheubiquitousroleofplanewavesin theanalysisofclassicalfieldequations,butmoreimportantlyinthecharacterization oftheMinkowskivacuumastheuniquestatewhichisinvariantunderthePoincar´e groupandhassome energypositivity property.
QuantumFieldTheoryon curvedspacetimes describesquantumfieldsinanexternalgravitationalfield,representedbytheLorentzianmetricoftheambientspacetime. Itisusedinsituationswhenboththequantumnatureofthefieldsandtheeffectof gravitationareimportant,butthequantumnatureofgravitycanbeneglectedinafirst approximation.Itsnon-relativisticanalogwouldbeforexampleordinaryQuantum Mechanics,i.e.theSchr¨odingerequation,inaclassicalexteriorelectromagneticfield. Itsmostimportantareasofapplicationarethestudyofphenomenaoccurringin theearlyuniverseandinthevicinityofblackholes,anditsmostcelebratedresultis thediscoverybyHawkingthatquantumparticlesarecreatednearthehorizonofa blackhole.
ThesymmetriesoftheMinkowskispacetime,whichplaysuchafundamentalrole, areabsentincurvedspacetimes,exceptinsomesimplesituations,like stationary or static spacetimes.Therefore,thetraditionalapproachtoquantumfieldtheoryhasto bemodified:onehasfirsttoperforman algebraicquantization,whichforfreetheoriesamountstointroducinganappropriate phasespace,whichiseithera symplectic oran Euclidean space,inthe bosonic or fermionic case.Fromsuchaphasespace onecanconstructCCRorCAR -algebras,andactually nets of -algebras,each associatedtoaregionofspacetime.
Thesecondstepconsistsinsinglingout,amongthemanystatesonthesealgebras,thephysicallymeaningfulones,whichshouldresembletheMinkowski vacuum,atleastinthevicinityofanypointofthespacetime.Thisleadstothe notionof Hadamardstates,whichwereoriginallydefinedbyrequiringthattheir two-pointfunctionshaveaspecificasymptoticexpansionnearthediagonal,called the Hadamardexpansion
AveryimportantprogresswasmadebyRadzikowski,[R1, R2],whointroduced thecharacterizationofHadamardstatesbythe wavefrontset oftheirtwo-pointfunctions.Thewavefrontsetofadistributionisthenaturalwaytodescribeitssingularitiesinthecotangentspace,andliesatthebasisof microlocalanalysis,afundamental toolintheanalysisoflinearandnon-linearpartialdifferentialequations.Among itsavatarsinthephysicsliteratureare,forexample,thegeometricalopticsinwave propagationandthesemi-classicallimitinQuantumMechanics.
Theintroductionofmicrolocalanalysisinquantumfieldtheoryoncurvedspacetimesstartedaperiodofrapidprogress,nononlyforfree(i.e.linear)quantumfields, butalsofortheperturbativeconstructionofinteractingfieldsbyBrunettiandFredenhagen[BF].Forfreefieldsitallowedtouseseveralfundamentalresultsofmicrolocal analysis,likeH¨ormander’spropagationofsingularitiestheoremandtheclassification ofparametricesforKlein–GordonoperatorsbyDuistermaatandH¨ormander.
1.2Content
Thegoaloftheselecturenotesistogive anexpositionofmicrolocalanalysismethods inthestudyofQuantumFieldTheoryoncurvedspacetimes.Wewillfocuson free fields andthecorresponding quasi-freestates andmorepreciselyon Klein–Gordon fields,obtainedbyquantizationoflinearKlein–GordonequationsonLorentzianmanifolds,althoughthecaseof Diracfields willbedescribedinChapter 17.
Thereexistalreadyseveralgoodtextbooksorlecturenotesonquantumfieldtheoryincurvedspacetimes.AmongthemletusmentionthebookbyB¨ar,Ginouxand Pfaeffle[BGP],thelecturenotes[BFr ]and[BDFY],themorerecentbookbyRejzner[Re],andthesurveybyBenini,DappiagiandHack[BDH].Thereexistalsomore physicsorientedbooks,likethebooksbyWald[W2],Fulling[F]andBirrelland Davies[BD].Severalofthesetextscontainimportantdevelopmentswhicharenot describedhere,liketheperturbativeapproachtointeractingtheories,ortheuseof categorytheory.
Inthislecturenoteswefocusonadvancedmethodsfrommicrolocalanalysis,like forexample pseudodifferentialcalculus,whichturnouttobeveryusefulinthestudy andconstructionofHadamardstates.
Puremathematiciansworkinginpartialdifferentialequationsareoftendeterred bythetraditionalformalismofquantumfieldtheoryfoundinphysicstextbooks,and bythefactthattheconstructionofinteractingtheoriesis,atleastforthetimebeing, restrictedtoperturbativemethods.
Wehopethattheselecturenoteswillconvincethemthatquantumfieldtheory oncurvedspacetimesisfullofinterestingandphysicallyimportantproblems,witha niceinterplaybetweenalgebraicmethods,Lorentziangeometryandmicrolocalmethodsinpartialdifferentialequations.Ontheotherhand,mathematicalphysicistswith atraditionaleducation,whichmaylackfamiliaritywithmoreadvancedtoolsofmicrolocalanalysis,canusethistextasanintroductionandmotivationtotheuseof thesemethods.
2 1Introduction
Letusnowgiveamoredetaileddescriptionoftheselecturenotes.Thereader mayalsoconsulttheintroductionofeachchapterformoreinformation.
Forpedagogicalreasons,wehavechosentodevoteChapters 2 and 3 toabriefoutlineofthetraditionalapproachtoquantizationofKlein–GordonfieldsonMinkowski spacetime,buttheimpatientreadercanskipthemwithouttrouble.
Chapter 4 dealswithCCR -algebrasandquasi-freestates.AreaderwithaPDE backgroundmayfindthereadingofthischapterabittedious.Nevertheless,wethink itisworththeefforttogetfamiliarwiththenotionsintroducedthere.
InChapter 5 wedescribewell-knownconceptsandresultsconcerningLorentzian manifoldsandKlein–Gordonequationsonthem.Themostimportantarethenotion of globalhyperbolicity,apropertyofaLorentzianmanifoldimplyingglobalsolvabilityoftheCauchyproblem,andthe causalpropagator andthevarioussymplectic spacesassociatedtoit.
InChapter 6 wediscussquasi-freestatesforKlein–Gordonfieldsoncurvedspacetimes,whichisaconcreteapplicationoftheabstractformalisminChapter 4.Of interestarethetwopossibledescriptions ofaquasi-freestate,eitherbyitspacetime covariances,orbyitsCauchysurfacecovariances,whicharebothimportantinpractice.Anotherusefulpointisthediscussionofconformaltransformations.
Chapter 7 isdevotedtothemicrolocalanalysisofKlein–Gordonequations.We collectherevariouswell-knownresultsaboutwavefrontsets,H¨ormander’spropagationofsingularitiestheoremandits relatedstudywithDuistermaatof distinguished parametrices forKlein–Gordonoperators,whichplayafundamentalroleinquantizedKlein–Gordonfields.
InChapter 8 weintroducethemoderndefinitionofHadamardstatesduetoRadzikowskianddiscusssomeofitsconsequences.Weexplaintheequivalencewiththe olderdefinitionbasedonHadamardexpansionsandthewell-knownexistenceresult byFulling,NarcowichandWald.
InChapter 9 wediscussgroundstatesandthermalstates,firstinanabstractsetting,thenforKlein–Gordonoperatorsonstationaryspacetimes.Groundstatesshare thesymmetriesofthebackgroundstationaryspacetimeandarethenaturalanalogsof theMinkowskivacuum.Inparticular,theyarethesimplestexamplesofHadamard states.
Chapter 10 isdevotedtoanexpositionofaglobalpseudodifferentialcalculuson noncompactmanifolds,the Shubincalculus.Thiscalculusisbasedonthenotion ofmanifoldsofboundedgeometryandisanaturalgeneralizationofthestandard uniformcalculuson Rn .ItsmostimportantpropertiesaretheSeeleyandEgorov theorems.
InChapter 11 weexplaintheconstructionofHadamardstatesusingthepseudodifferentialcalculusinChapter 10.Theconstructionisdone,afterchoosingaCauchy surface,byamicrolocalsplittingofthespaceofCauchydataobtainedfromaglobal constructionofparametricesfortheCauchyproblem.Itcanbeappliedtomany spacetimesofphysicalinterest,liketheKerr–KruskalandKerr–deSitterspacetimes.
InChapter 12 weconstruct analytic Hadamardstatesby Wickrotation,awellknownprocedureinMinkowskispacetime.AnalyticHadamardstatesaredefined onanalyticspacetimes,byreplacingtheusual C 1 wavefrontsetbythe analytic
1.2Content
3
wavefrontset,whichdescribestheanalyticsingularitiesofdistributions.Likethe Minkowskivacuum,theyhavetheimportant Reeh–Schlieder property.AfterWick rotation,thehyperbolicKlein–GordonoperatorbecomesanellipticLaplaceoperator, andanalyticHadamardstatesareconstructedusingawell-knowntoolfromelliptic boundaryvalueproblems,namelythe Calder ´ onprojector.
InChapter 13 wedescribetheconstructionofHadamardstatesbythe characteristicCauchyproblem.Thisamountstoreplacingthespace-likeCauchysurfacein Chapter 11 byapastorfuture lightcone,choosingitsinteriorastheambientspacetime.Fromthetraceofsolutionsonthisconeonecanintroducea boundarysymplecticspace,anditturnsoutthatitisquiteeasytocharacterizestatesonthissymplectic spacewhichgenerateaHadamardstateintheinterior.Itsmainapplicationisthe conformalwaveequation onspacetimeswhichareasymptoticallyflatatpastorfuture nullinfinity.WealsodescribeinthischaptertheBMS group ofasymptoticsymmetriesofthesespacetimes,anditsrelationshipwithHadamardstates.
InChapter 14 wediscussKlein–GordonfieldsonspacetimeswithKillinghorizons.Ouraimistoexplainaphenomenonlooselyrelatedwiththe Hawkingradiation, namelytheexistenceofthe Hartle–Hawking–Israel vacuum,onspacetimeshavinga stationaryKillinghorizon.Theconstructionandpropertiesofthisstatefollowfrom theWickrotationmethodalreadyusedinChapter 12,theCalder´onprojectorsplaying alsoanimportantrole.
Chapter 15 isdevotedtotheconstructionofHadamardstatesbyscatteringtheory methods.Weconsiderspacetimeswhichareasymptoticallystaticatpastorfuture timeinfinity.Inthiscaseonecandefinethe in and outvacuumstates,whichare statesasymptotictothevacuumstateatpastorfuturetimeinfinity.Usingthetools fromChapters 10, 11 weprovethatthesestatesareHadamardstates.
InChapter 16 wediscussthenotionof Feynmaninverses.ItisknownthataKlein–Gordonoperatoronagloballyhyperbolicspacetimeadmits Feynmanparametrices, whichareuniquemodulosmoothingoperatorsandcharacterizedbythewavefrontset ofitsdistributionalkernels.Onecanaskifonecanalsodefineaunique,canonical trueinverse,havingthecorrectwavefrontset.Wegiveapositiveanswertothis questiononspacetimeswhichare asymptoticallyMinkowski.
Chapter 17 isdevotedtothequantizationofthe Diracequation andtothedefinitionofHadamardstatesforDiracquantumfields.TheDiracequationonacurved spacetimedescribesanelectron-positronfieldwhichisa fermionic field,andtheCCR -algebrafortheKlein–GordonfieldhastobereplacedbyaCAR -algebra.Apart fromthisdifference,thetheoryforfermionicfieldsisquiteparalleltothebosonic case.Wealsodescribethequantizationofthe Weylequation,whichoriginallywas thoughttodescribemasslessneutrinos.
1.2.1Acknowledgments. TheresultsdescribedinChapters 11, 12, 15,andpart ofthoseinChapters 10 and 13,originatefromcommonworkwithMichalWrochna, overaperiodofseveralyears.
IlearnedalotofwhatIknowaboutquantumfieldtheoryfrommylongcollaborationwithJanDerezinski,andseveralpartsoftheselecturenotes,likeChapters 4
4 1Introduction
1.3Notation 5
and 5 borrowalotfromourcommonbook[DG].Itaketheoccasionheretoexpress mygratitudetohim.
Finally,IalsogreatlyprofitedfromdiscussionswithmembersoftheAQFTcommunity.AmongthemIwouldliketoespeciallythankClaudioDappiagi,Valter Moretti,NicolaPinamonti,IgorKhavkine,KlausFredenhagen,DetlevBucholz,WojciechDybalski,KasiaRejzner,DorotheaBahns,RainerVerch,StefanHollandsand KoSanders.
1.3Notation
Wenowcollectsomenotationthatwewilluse.
Weset h iD .1 C 2 / 1 2 for 2 R.
Wewrite A b B if A isrelativelycompactin B
If X;Y aresetsand f W X ! Y wewrite f W X ! Y if f isbijective.If X;Y areequippedwithtopologies,wewrite f W X ! Y ifthemapiscontinuous,and f W X ! Y ifitisahomeomorphism.
1.3.1ScaleofabstractSobolevspaces. Let H arealorcomplexHilbert spaceand A aselfadjointoperatoron H .Wewrite A>0 if A 0 andKer A Df0g. If A>0 and s 2 R,weequipDom A s withthescalarproduct .ujv/ s D .A s ujA s v/ andthenorm kA s uk.Wedenoteby As H thecompletionofDom A s forthisnorm,whichisa(realorcomplex)Hilbertspace.
Chapter2
FreeKlein–GordonfieldsonMinkowski spacetime
Almostalltextbooksonquantumfieldtheorystartwiththequantizationofthefree (i.e.linear)Klein–GordonandDiracequationsonMinkowskispacetime.Thetraditionalexpositionrestsontheso-called frequencysplitting,whichamountstosplitting thespaceofsolutionsof,say,theKlein–Gordonequationintotwosubspaces,correspondingtosolutionshavingpositive/negativeenergy,orequivalentlywhoseFourier transformsaresupportedinthe upper/lowermasshyperboloid.
Onethenproceedswiththeintroductionof Fockspaces andthedefinitionofquantizedKlein–GordonorDiracfieldsusing creation/annihilationoperators.
SinceitreliesontheuseoftheFouriertransformation,thismethoddoesnotcarry overtoKlein–Gordonfieldsoncurvedspacetimes.Morefundamentally,ithasthe drawbackofmixingtwodifferentstepsinthequantizationoftheKlein–Gordonequation.
Thefirst,purelyalgebraicstepconsistsinusingthesymplecticnatureofthe Klein–GordonequationtointroduceanappropriateCCR -algebra.Thesecondstep consistsinchoosinga state onthisalgebra,whichontheMinkowskispacetimeisthe vacuumstate.
NeverthelessitisusefultokeepinmindtheMinkowskispacetimeasanimportant example.ThischapterisdevotedtotheclassicaltheoryoftheKlein–Gordonequation onMinkowskispacetime,i.e.toitssymplecticstructure.ItsFockquantizationwill bedescribedinChapter 3.
2.1Minkowskispacetime
InthesequelwewillusenotationintroducedlaterinSection 4.1
Theelementsof Rn D Rt Rd x willbedenotedby x D .t; x/,thoseofthedual .Rn /0 by D . ; k/.
2.1.1TheMinkowskispacetime.
Definition2.1. The Minkowskispacetime R1;d is R1Cd equippedwiththebilinear form 2 Ls .R1Cd ;.R1Cd /0 / givenby x x D t 2 C x 2 :
(2.1)
Definition2.2. (1) Avector x 2 R1;d is time-like if x x<0, null if x x D 0, causal if x x 0,and space-like if x x>0.
(2) C˙ Dfx 2 R1;d W x x<0; ˙t>0g,resp. C ˙ Dfx 2 R1;d W x x 0; ˙t 0g arecalledthe open,resp. closedfuture/past(solid)lightcones.
(3) N Dfx 2 R1;d W x x D 0g,resp. N˙ D N \f˙t 0g arecalledthe null cone resp. future/pastnullcones.
Thereisasimilarclassificationofvectorsubspacesof R1;d
Definition2.3. Alinearsubspace V of R1;d is time-like ifitcontainsbothspacelikeandtime-likevectors, null ifitistangenttothenullcone N and space-like ifit containsonlyspace-likevectors.
Definition2.4. (1) If K R1;d , I˙ .K/ D K C C˙ ,resp. J˙ .K/ D K C C ˙ , iscalledthe time-like,resp. causalfuture/past of K ,and J.K/ D JC .K/ [ J .K/ the causalshadow of K .
(2) Twosets K1 , K2 arecalled causallydisjoint if K1 \ J.K2 / D; or,equivalently, if J.K1 / \ K2 D;.
(3) Afunction f on Rn iscalled space-compact,resp. future/pastspace-compact, if supp f J.K/,resp. supp f J˙ .K/ forsomecompactset K b Rn .The spacesofsmoothsuchfunctionswillbedenotedby C 1 sc .Rn /,resp. C 1 sc;˙ .Rn /.
2.1.2TheLorentzandPoincar ´ egroups.
Definition2.5. (1) Thepseudo-Euclideangroup O.R1Cd ; / isdenotedby O.1;d/ andiscalledthe Lorentzgroup
(2) SO.1;d/ isthesubgroupof L 2 O.1;d/ with det L D 1.
(3) If L 2 O.1;d/ onehas L.JC / D JC or L.JC / D J .Inthefirstcase L is called orthochronous andinthesecond anti-orthochronous.
(4) Thesubgroupoforthochronouselementsof SO.1;d/ isdenotedby SO " .1;d/ andcalledthe restrictedLorentzgroup.
Definition2.6. The .restricted/ Poincar´egroup istheset P.1;d/ D Rn SO " .1;d/ equippedwiththeproduct .a2 ;L2 / .a1 ;L1 / D .a2 C
ThePoincar ´ egroupactson Rn by ƒx D Lx C a for ƒ D .a;L/ 2 P.1;d/.
8
2FreeKlein–GordonfieldsonMinkowskispacetime
L2 a
L1
1 ;L2
/:
2.2TheKlein–Gordonequation 9
2.2TheKlein–Gordonequation
Werecallthatthedifferentialoperator
for m 0 iscalledthe Klein–Gordonoperator
Weset .k/ D .k 2 C m2 / 1 2 anddenoteby D .Dx / theFouriermultiplier definedby F . u/.k/ D .k/u.k/,where F u.k/ D .2 / d=2 ´ e ik x u.x/d xisthe (unitary)Fouriertransform.Notethat C m2 D @2 t C 2
The Klein–Gordonequation
isthesimplestrelativisticfieldequation.Itsquantizationdescribesa scalarbosonic field ofmass m.The waveequation (m D 0)isaparticularcaseoftheKlein–Gordon equation.Notethatsince C m2 preservesrealfunctions,theKlein–Gordonequationhasrealsolutions,whichareassociatedto neutralfields,correspondingtoneutral particles,whilethecomplexsolutionsareassociatedto chargedfields,corresponding tochargedparticles.
Itwillbemoreconvenientlatertoconsidercomplexsolutions,butinthischapter wewill,asisusualinthephysicsliterature,considermainlyrealsolutions.Thecase ofcomplexsolutionswillbebrieflydiscussedinSection 2.4
WereferthereadertoChapter 4 forageneraldiscussionoftherealvscomplex formalisminamoreabstractframework.
Weareinterestedinthespaceofits smooth,space-compact,real solutionsdenotedbySolsc;R .KG/.Solsc;R .KG/ isinvariantunderthePoincar´egroupifweset
2.2.1TheCauchyproblem. If 2 C 1 .Rn / and t 2 R weset .t/.x/ D .t; x/ 2 C 1 .Rd /.Anysolution 2 Solsc;R .KG/ isdeterminedbyitsCauchydata ontheCauchysurface †s Dft D s g Rd ,definedbythemap
TheuniquesolutioninSolsc;R .KG/ oftheCauchyproblem . C m2 / D
isdenotedby D Us f andgivenby
P D C m 2 D @2 t d X i D
@
i C m
;
1
2 x
2
C
0 (2.2)
m 2 D
˛ƒ .x/ D .ƒ 1 x/;ƒ 2 P.1;d/:
(2.3)
%s D .s/ @t .s/ D f 2 C 1 0 .Rd I R2 /: (2.4)
0;
%s D f; (2.5)
.t/ D cos. .t s//f0 C 1 sin. .t s//f1 ;f D f0 f1 (2.6)
2FreeKlein–GordonfieldsonMinkowskispacetime
Themap Us iscalledthe Cauchyevolutionoperator.Thefollowingproposition expressestheimportant causalityproperty of Us .
Proposition2.7. Onehas supp Us f J.fs g supp f/:
2.2.2Advancedandretardedinverses. Letusnowconsiderthe inhomogeneousKlein–Gordonequation
whereforsimplicity v 2 C 1 0 .Rn /.Sincethereareplentyofhomogeneoussolutions, itisnecessarytosupplement(2.7)by supportconditions toobtainuniquesolutions, byrequiringthat vanishesforlargenegativeorpositivetimes.
Theorem2.8. (1) Thereexistuniquesolutions uret=adv D
of (2.7).Setting
where .t/ D Œ0;C1Œ .t/ istheHeavisidefunction,onehas
(2) onehas supp Gret=adv v J˙ .supp v/
Theoperators Gret=adv arecalledthe retarded/advancedinverses of P .Letus equip C 1 0 .Rn / withthescalarproduct
and C 1 0 .Rd I C
withthescalarproduct
Itfollowsfrom(2.8)that Gret=adv D Gadv=ret ; where A denotestheformaladjointof A withrespecttothescalarproduct . j /Rn . Theoperator G D Gret Gadv (2.12) iscalledinthephysicsliteraturethe Pauli–Jordan or commutatorfunction,oralso the causalpropagator.Notethat G D G ; supp Gv J.supp v/; (2.13)
10
. C m 2 /u D v; (2.7)
Gret=adv v 2 C 1˙ sc .Rn /
Gret=adv .t/ D˙ .˙t/ 1 sin. t/; (2.8)
Gret=adv v.t; / D ˆR Gret=adv .t s/v.s; /ds I (2.9)
.ujv/Rn D ˆRn uvdx; (2.10)
.f jg/Rd D ˆRd f 1 g1 C f 0 g0 d x: (2.11)
2 /
2.2TheKlein–Gordonequation 11 and Gv.t; / D ˆR 1 sin. .t s//v.s; /ds: (2.14)
Thereisanimportantrelationshipbetween G and Us .Namely,ifwedenoteby %s W D 0 .Rd I R2 / !
.Rn / theformaladjointof
withrespecttothescalarproducts(2.10)and(2.11),then:
Thefollowinglemmafollowsfrom(2.6),(2.8)byadirectcomputation.
Lemma2.9. Onehas
for D 0 0 .
2.2.3Symplecticstructure. Itiswell-knownthattheKlein–Gordonequationis aHamiltonianequation.Indeedletusequip C 1 0 .Rd I R2 / withthesymplecticform:
Ifweidentifybilinearformson C 1 0 .Rd I R2 / withlinearoperatorsusingthescalar product . j /Rd ,wehave f g D .f j g/Rd ; wheretheoperator isdefinedinLemma 2.9.Ifweintroducethe classicalHamiltonian
weobtainthat
Setting f.t/ D %t U0 f for
wehave,byaneasycomputation f.t/ D etA f; (2.18)
whichshowsthat f ! f.t/ isthesymplecticflowgeneratedbytheclassicalHamiltonian E andthesymplecticform .Inparticular,if fi .t/ D etA fi , i D 1;2, f1 .t/ f2 .t/ isindependenton t
D 0
%s W C 1 0 .Rn / ! C 1 0 .Rd I R2 /
%
s
f0
x
0 s
f1
x/;f 2 C 1 .Rd
R2 /:
s f.t; x/ D ı
.t/ ˝
.
/ ı
.t/ ˝
.
I
(2.15)
Us f D G ı %s ı f;f 2 C 1 0 .Rd I R2 /;
f g D ˆRd f1 g0 f0 g1 d x (2.16)
f Ef D 1 2 ˆRd f 2 1 C f0 2 f0 d x
1 0
Rd I R2 // by f Ag D f Eg;f;g 2 C 1 0 .Rd I R2 /; (2.17)
anddefine A 2 L.C
.
A D 0 2 0 :
f 2 C 1 0 .Rd I C2 /
2FreeKlein–GordonfieldsonMinkowskispacetime
Equivalently,wecanequipSolsc;R .KG/ withthesymplecticform
wheretheright-handsideisindependenton t .FixingthereferenceCauchysurface †0 Rd ,weobtainthefollowingproposition:
Proposition2.10. TheCauchydatamapon †0
%0 W .Solsc;R .KG/; / ! .C 1 0 .Rd I R2 /; /; issymplectic,with % 1 0 D U0 ,wheretheCauchyevolutionoperator Us wasintroducedinSubsection 2.2.1.
Thisleadstoanotherinterpretationof(2.18):thespaceSolsc;R .KG/ isinvariant underthegroupoftimetranslations
/ D . s; x/; and s issymplecticon .Solsc;R .KG/; /.Then(2.18)canberewrittenas
2.3Pre-symplecticspaceoftestfunctions
ByProposition 2.10, .Solsc;R .KG/; / isasymplecticspace.Itiseasytoseethat ˛ƒ definedin(2.3)issymplecticif ƒ isorthochronous,forexampleusingTheorem 2.12 below.If ƒ isanti-orthochronous, ˛ƒ is anti-symplectic,i.e.transforms into . Identifying .Solsc;R .KG/; / with .C 1 0 .Rd I R2 /; / using %0 isconvenientfor concretecomputations,butdestroysPoincar´einvariance,sinceonefixestheCauchy surface †0 .Itwouldbeusefultohaveanotherisomorphicsymplecticspacewhich isPoincar´einvariantandatthesametimeeasiertounderstandthanSolsc;R .KG/.It turnsoutthatonecanusethespaceof testfunctions C 1 0 .Rn I R/,whichisafundamentalstepinformulatingthenotionof locality forquantumfields.
Proposition2.11. Considerthemap G W C 1 0 .Rn I R/ ! C 1 sc .Rn /.Then:
.1/ RanG D Solsc;R .KG/; .2/ Ker G D PC 1 0 .Rn I R/:
Moreover,wehave .3/.%0 G/ ı ı .%0 G/ D G:
12
1 2 D %t 1 %t 2
; (2.19)
%0 ı s ı % 1 0 D esA ;s 2 R
s . ; x
:
2.3Pre-symplecticspaceoftestfunctions 13
Proof. (1)By P ı G D 0 andTheorem 2.8 (2),weseethatRanG Solsc;R .KG/ Converselylet 2 Solsc;R .KG/.If fs D %s ,thenbyLemma 2.9 weobtainthat
D G ı %s ı fs for s 2 R.Hence,if 2 C 1 0 .R/ with ´ .s/ds D 1 weobtain that
D ˆR .s/ dx D Gv; for v D ´R %s ı fs ds 2 C 1 0 .Rn /.
(2)Since G ı P D 0 wehave PC 1 0 .Rn I R/ Ker G .Converselylet v 2 C 1 0 .Rn I R/ with Gv D 0.Thenfor uret=adv D Gret=adv v wehave uret D uadv D u, u 2 C 1 0 .Rn / byTheorem 2.8 (2)and v D Pu since P ı Gret=adv D . (3)Wehave,using(2.14) %0 Gu D ´ 1 sin. s/u.s/ds ´ cos. s/u.s/ds ; hence ı .%0 G/u D ´ cos. s/u.s/ds ´ 1 sin. s/u.s/ds ; and .%0 G/ f D G%0 f
D ´ 1 sin. .t s//.ı0 .s/ ˝ f0 ı 0 0 .s/ ˝ f1 /ds
D 1 sin. t/f0 C cos. t/f1 ; whichyields .%0 G/ ı ı .%0 G/u
´ 1 sin. t/ cos. s/u.s/ds C ´ 1 cos. t/ sin. s/u.s/ds D ´ 1 sin. .t s//u.s/ds D Gu:
Thiscompletestheproofoftheproposition.
OnecansummarizePropositions 2.10 and 2.11 inthefollowingtheorem:
Theorem2.12. (1) Thefollowingspacesaresymplecticspaces:
C 1 0 .Rn I R/
PC 1 0 .Rn I R/ ;. jG /Rn ;.Solsc;R .KG/; /;.C 1 0 .Rd I R2 /; /:
(2) Thefollowingmapsaresymplectomorphisms:
C 1 0 .Rn I R/
PC 1 0 .Rn I R/ ;. jG /Rn G !.Solsc;R .KG/; / %0 !.C 1 0 .Rd I R2 /; /:
Thefirstandlastoftheseequivalentsymplecticspacesarethemostusefulforthe quantizationoftheKlein–Gordonequation.
D
2.4Thecomplexcase
LetusnowdiscussthespaceSolsc;C .KG/ of complex space-compactsolutions.We refertoSection 4.2 fornotationandterminology. Itismorenaturaltousethemap
asCauchydatamapandtoequipthespace C 1 0 .Rd I C2 / ofCauchydatawiththe Hermitianform
ThespaceSolsc;C .KG/ issimilarlyequippedwiththeform
; whichisindependenton t .TheCauchyevolutionoperatorbecomes
WehavethenthefollowinganalogofTheorem 2.12:
Theorem2.13. (1) ThefollowingspacesareHermitianspaces:
(2) Thefollowingmapsareunitary: C 1 0 .Rn I C/
14 2FreeKlein–GordonfieldsonMinkowskispacetime
%s D .s/ i 1 @t .s/ (2.20)
f qg D ˆRd f 1 g0 C f0 g1 d x: (2.21)
1
2
%
1 q%t 2
U0 f.t/
cos. t/f
C
1 sin. t/f
(2.22)
q
D
t
D
0
i
1
PC
Solsc
%0
0
Rd
C 1 0 .Rn I C/ PC 1 0 .Rn I C/ ;. jiG /Rn ;.Solsc;C .KG/;q/;.C 1 0 .Rd I C2 /;q/:
1 0 .Rn I C/ ;. jiG /Rn G !.
;C .KG/;q/
!.C 1
.
I C2 /;q/:
Chapter3
FockquantizationonMinkowskispace
Wedescribeinthischapterthe Fockquantization oftheKlein–Gordonequationon Minkowskispacetime.Werecallthedefinitionofthe bosonicFockspace overa one-particlespaceandofthe creation/annihilationoperators,whichareubiquitous notionsinquantumfieldtheory.
Forexample,itiscommoninthephysicsorientedliteratureto specifyastatefor theKlein–Gordonfieldbydefiningfirstsomecreation/annihilationoperators.Wewill seeinChapter 4 thatthisisnothingelsethanchoosingaparticularK¨ahlerstructure onacertainsymplecticspace.
InthisapproachthequantumKlein–Gordonfieldsaredefinedaslinearoperators ontheFockspace,soonehastopayattentiontodomainquestions.Thesetechnical problemsdisappearifoneusesamoreabstractpointofviewandintroducestheappropriateCCR -algebra,aswillbedoneinChapter 4.Fockspaceswillreappear asthe(Gelfand–Naimark–Segal)GNS Hilbertspaces associatedtoapurequasi-free stateonthisalgebra.Apartfromthisfact,theycanbeforgotten.
3.1BosonicFockspace
3.1.1BosonicFockspace. Let h beacomplexHilbertspacewhoseunitvectors describethestatesofaquantumparticle.Ifthisparticleis bosonic,thenthestatesofa systemof n suchparticlesaredescribedbyunitvectorsinthe symmetrictensorpower ˝n s h,wherewetakethetensorproductsintheHilbertspacesense,i.e.completethe algebraictensorproductsforthenaturalHilbertnorm.
Asystemofanarbitrarynumberofparticlesisdescribedbythe bosonicFock space
wherethedirectsumisagaintakenintheHilbertspacesenseand ˝
s h D C by definition.Werecallthatthesymmetrizedtensorproductisdefinedby
Thevector vac D .1;0;:::/ iscalledthe vacuum anddescribeastatewithnoparticlesatall.Ausefulobservableon s .h/ isthe numberoperator N ,whichcountsthe
s .h/ D 1 M nD0 ˝n s h; (3.1)
‰1 ˝s ‰2 D ‚s .‰1 ˝ ‰2 /; where ‚s .u1 ˝ ˝ un / D 1 nŠ X 2Sn u .1/ ˝ ˝ u .n/ :
0
3FockquantizationonMinkowskispace
numberofparticles,definedby N j˝n s h D n :
Theoperator N isanexampleofa secondquantizedoperator,namely N D d . /, where d .a/j˝n s h D n X j D1 ˝j 1 ˝ a ˝ ˝n j ; for a alinearoperatoron h.
3.1.2Creation/annihilationoperators. Since s .h/ describesanarbitrary numberofparticles,itisusefultohaveoperatorsthatcreateorannihilateparticles. Onedefinesthe creation/annihilationoperators by a .h/‰n D pn C 1h ˝s ‰n ; a.h/‰n D pn.hj˝ ˝n 1 ‰n ;‰n 2˝n s .h/;h 2 h;
whereonesets .hju D .hju/ for u 2 h.Itiseasytoseethat a . / .h/ arewell definedonDom N 1 2 andthat .‰1 ja .h/‰2 / D .a.h/‰1 j‰2 /,i.e. a.h/ a .h/ on Dom N 1 2 .Moreover h 3 h ! a .h/; resp. a.h/ is C-linear,resp.anti-linear,(3.2) andasquadraticformsonDom N 1 2 onehas
Œa.h1 /;a.h2 / D Œa .h1 /;a .h2 / D 0; Œa.h1 /;a .h2 / D .h1 jh2 / ;h
where ŒA;B D AB BA,whichaversionofthe canonicalcommutationrelations, abbreviatedCCRinthesequel.
3.1.3FieldandWeyloperators. Onethenintroducesthe fieldoperators inthe Fockrepresentation F .h/ D 1 p2 .a.h/ C a .h//;h 2 h; (3.4)
whichcanbeeasilyshowntobeessentiallyselfadjointonDom N 1 2 .Onehas F .h1 C h2 / D F .h1 / C F .h2 /; 2 R;hi 2 h; onDom N 1 2 ; (3.5)
i.e. h ! F .h/ is R-linear,andthe Heisenbergform oftheCCRaresatisfiedas quadraticformsonDom N 1 2 Œ F .h1 /; F .h2 / D ih1 h2 : (3.6)
16
1 ;h2 2 h; (3.3)
3.2FockquantizationoftheKlein–Gordonequation 17 for
Denotingagainby F .h/ theselfadjointclosureof F .h/,onecanthendefinethe Weyloperators
whichareunitaryandsatisfythe Weylform oftheCCR
If hR denotestherealformof h,i.e. h asarealvectorspace,then .hR ; / isa realsymplecticspace.Moreoveri,consideredasanelementof L.hR /,belongsto Sp.hR ; / andonehas
Re. j / 0:
3.1.4K ¨ ahlerstructures. Ingeneral,atriple .X ; ; j/,where .X ; / isareal symplecticspaceandj 2 L.X / satisfiesj2 D and ı j 2 Ls .X ; X 0 /,iscalled a pseudo-K ¨ ahlerstructure on X .If ı j 0,itiscalleda K ¨ ahlerstructure.The anti-involutionjiscalleda Kahleranti-involution.Wewillcomebacktothisnotion inSection 4.1.GivenaK¨ahlerstructureon X ,onecanturn X intoacomplexpreHilbertspacebyequippingitwiththecomplexstructurejandthescalarproduct:
Ifwechooseasone-particleHilbertspacethecompletionof X for . j /F ,wecan constructthe Fockrepresentation bythemap
X 3 x ! F .x/ whichsatisfies(3.5),(3.6).
3.2FockquantizationoftheKlein–Gordonequation
Fromtheabovediscussionweseethatthefirststepintheconstructionofquantum Klein–GordonfieldsistofixaK¨ahleranti-involutionononeoftheequivalentsymplecticspacesinTheorem 2.12,themostconvenientonebeing .C 1 0 .Rd I R2 /; /.
3.2.1TheK ¨ ahlerstructure. ThereareplentyofchoicesofK¨ahleranti-involutions.Themostnaturaloneisobtainedasfollows:letusdenoteby h thecompletion of C 1 0 .Rd I C/ withrespecttothescalarproduct .h1 jh2 /F D .h1 j 1 h2 /Rd :
h1 h2 D Im.h1 jh2 /: (3.7)
WF .h/ D ei F .h/ ; (3.8)
WF .h1 /WF .h2 / D e ih1 h2 WF .h1 C h2 /:
D ı i
D
.x1 jx2 /F D x1 jx2 C ix1 x2 : (3.9)
3FockquantizationonMinkowskispace
If m>0,thisspaceisthe(complex)Sobolevspace H 1 2 .Rd / andif m D 0 the complexhomogeneousSobolevspace P H 1 2 .Rd /,exceptwhen d D 1,sincethe integral ´R jkj 1 d kdivergesatk D 0.Thisisanexampleoftheso-called infrared problem formasslessfieldsintwospacetimedimensions.
Toavoidasomewhatlengthydigression,wewillassumethat m>0 if d D 1. Letusintroducethemap
Aneasycomputationshowsthat:
Inotherwords,jisaK¨ahleranti-involutionon C 1 0 .Rd I R2 / andtheassociatedoneparticleHilbertspaceisunitarilyequivalentto h.Moreover,afteridentificationby V ,thesymplecticgroup fetA gt 2R becomestheunitarygroup feit gt 2R with positive generator .ThispositivityisthedistinctivefeatureoftheFockrepresentation.
3.3Quantumspacetimefields
Letusset
theintegralbeingforexamplenormconvergentin B.Dom N 1 2 ; s .h//.Weobtain from(2.14)and(3.7)that
and ˆF .Pu/ D 0.Settingformally
weobtainthe spacetimefields ˆF .x/,whichsatisfy
18
V W C 1 0 .Rd I R2 / 3 f ! f0 if1 2 h: (3.10)
Im
i ı V D V ı j; forj D 0 1 0 ; eit ı V D V ı etA :
.Vf jVg/F D f g;
ˆF .u/ D ˆR F .e it u.t; //dt;u 2 C 1 0 .Rn I R/; (3.11)
ŒˆF .u/;ˆF .v/ D i.ujGv/Rn ; (3.12)
ˆF .u/ D ˆRn ˆF .x/u.x/dx;
ŒˆF
F
0
G.x x 0 /
0 2 Rn ; . C m2 /ˆF .x/ D 0: (3.13)
.x/;ˆ
.x
/ D i
;x;x
3.4Localalgebras 19
3.3.1Thevacuumstate. LetusdenotebyCCRpol .KG/ the -algebragenerated bythe ˆF .u/;u 2 C 1 0 .Rn I R/,seeSubsections 4.3.1 and 4.5.1 belowforaprecise definition.Thevacuumvector vac 2 s .h/ inducesa state !vac onCCRpol .KG/, calledthe Fockvacuumstate,by
Clearly, !vac induceslinearmaps
whicharecontinuousforthetopologyof C 1 0 .Rn I R/,andhenceonecanwrite
wherethedistributions !N 2 D 0 .RNn / arecalledinphysicsthe N -pointfunctions. Amongthemthemostimportantoneisthe 2-pointfunction !2 ,whichequals
Ifwewritesimilarlythedistributionalkernelof G ,weobtainby(2.14)
Thefactthat !2 .x;x 0 / and G.x x 0 / dependonlyon x x 0 reflectstheinvariance ofthevacuumstate !vac underspaceandtimetranslations.
3.4Localalgebras
Werecallthata doublecone isasubset
Wedenoteby A.O/ thenormclosureofVect.feiˆF .u/ W supp u O g/ in B. s .h// From(2.13)and(3.12)itfollowsthat
ŒA.O1 /; A.O2 / Df0g; if O1 ;O2 arecausallydisjoint:
!vac N Y i D1 ˆF .ui /! D vac j N Y i D1 ˆF .ui / vac ! s .h/
˝n C 1 0 .Rn I R/ 3 u1 ˝ ˝ uN ! !vac N Y i D1 ˆF .ui /! 2 C
;
!vac N Y i D1 ˆF .ui /! D ˆRNn !N .x1 ;:::;xN / N Y i D1 ui .xi /dx1
N
:::dx
;
!2 .x;x 0 / D .2 / n ˆRd 1 2 .k/ ei.t t 0 / .k/Cik .x x 0 / d k
: (3.14)
G.x;x 0 / D .2 / n ˆRd 1 .k/ sin..t t 0 / .k//eik .x x0/ d k: (3.15)
O D IC .fx1 g/ \ I .fx2 g/;x1 ;x2 2 Rn with x2 2 JC .x1 /:
3FockquantizationonMinkowskispace
WeobtainarepresentationofthePoincar´egroup P.1;d/ by -automorphismsof CCRpol .KG/ bysetting ˛ƒ ˆF .x/ D ˆF .ƒ 1 x/ for ƒ 2 P.1;d/.Fromtheinvarianceofthevacuumstateundertranslations,weobtainthat ˛.a; / .A/ D U.a/AU.a/ 1 for A 2 CCRpol .KG/,where Rn 3 a ! U.a/ isastronglycontinuousunitarygroup on s .h/.
Wehave ˛ƒ .A.O// D A.LO C a/,for ƒ D .a;L/ 2 P.1;d/
3.4.1TheReeh–Schliederproperty. Onemightexpectthattheclosedsubspacegeneratedbythevectors A vac for A 2 A.O/ dependson O ,sinceitdescribes excitationsofthevacuum vac localizedin O .Thisisnotthecase,andactuallythe following Reeh–Schlieder propertyholds:
Proposition3.1. Foranydoublecone O thespace fA vac W A 2 A.O/g isdensein s .h/.
Proof. Let u 2 s .h/ suchthat .ujA vac / D 0 forall A 2 A.O/.If O1 b O isa smallerdoubleconeand A 2 A.O1 /,thefunction f W Rn 3 x ! .ujU.x/A vac / has aholomorphicextension F to Rn C iCC ,i.e. f.x/ D F.x C iCC 0/,asdistributional boundaryvalues,seeSection 12.1.
Since U.x/AU .x/ 2 A.O/,wehave f.x/ D 0 for x closeto 0,hencebythe edgeofthewedgetheorem,seeSubsection 12.1.2, F D 0 and f D 0 on Rn .Vectors oftheform U.x/A vac for x 2 Rn ;A 2 A.O1 / aredensein s .h/,hence u D 0.
20