Radius 5b larerens bok 5 blabok

Page 16

Thinking blocks Thinking blocks er et visualiseringsverktøy som brukes for å systematisere problemstillingen i tekstoppgaver. Å bruke slik modelltegning for å systematisere og visualisere opplysningene i en tekstoppgave viser seg å være til stor hjelp for mange elever. Når vi bruker thinking blocks i Radius, er det som eksempler på hvordan metoden kan brukes. Størrelsen på blokkene indikerer ikke nødvendigvis verdi. Det er viktig at elevene ikke blir opphengt i størrelsen på blokkene, det kan hindre dem i å tegne modellene. Modellene er som hjelpefigurer i konstruksjonsoppgaver, de er til hjelp for å få oversikt over hva vi har av informasjon, og hva vi skal finne ut. Thinking blocks har et større anvendelsesområde enn å løse tekstoppgaver, de brukes også innen brøk og algebra.

Når elevene etter hvert møter på større tall som skal multipliseres, kan de dele opp rutenettet i kjente multiplikasjoner. Når elevene møter oppgaver der et tosifret tall skal multipliseres med et annet tosifret tall, kan det være nødvendig å dele opp rutenettet i flere deler for å kunne bruke den kjente delen av multiplikasjonstabellen. 17 · 12 = 10 · 10 + 10 · 7 + 2 · 10 + 2 · 7 = 100 + 70 + 20 + 14 = 204 10

7

10

Eksempel Tor og Atman har til sammen 250 kr i lommepenger, Atman har 30 kr mer enn Tor. Hvor mye har hver av guttene i lommepenger? Tor

? kr

Atman

? kr

30 kr

}

250 kr

Multiplikasjon i rutenett og tomt rutenett Multiplikasjon i rutenett og tomt rutenett bygger på arealforståelsen av multiplikasjon. Det er nødvendig å være godt kjent med denne modellen av multiplikasjon for å forstå bruken av rutenett og tomt rutenett i multiplikasjoner som går ut over den lille gangetabellen. Eksempel: Et rutenett med fire rader og seks kolonner består av 24 ruter. Rutenettet er en modell av multiplikasjonene 4 · 6 = 24 og 6 · 4 = 24. Dette rutenettet illustrerer den kommutative loven, a · b = b · a. 6

4

2

Etter hvert som elevene forstår hvordan multiplikasjon og areal henger sammen, kan de frigjøre seg fra det oppdelte rutenettet og gå over til tomt rutenett. Dette er også mer hensiktsmessig etter hvert som elevene møter større tall. Samme eksempel som over kan se slik ut i et tomt rutenett: 10 7

10

100

70

2

20

14

Ved å erstatte rutenettet med et tomt rutenett kan det tegnes i mer hensiktsmessig størrelse. Elevene kan multiplisere i det kjente området av multiplikasjonstabellen og addere delproduktene for å finne sluttproduktet. Det er ingen regel for hvordan man deler opp multiplikasjonene. Det er viktig at elevene får dele opp slik at de kan bruke multiplikasjoner som de behersker.

IX

Visuelle modeller


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.