Roundup Blog: New Achievements in Biomarker Research In this article, a number of important research results have been sorted out to jointly focus on the new achievements of scientists in the study of biomarkers. CancerRes: Scientists identify novel potential biomarkers or are expected to help develop individualized anti-cancer therapies Recently, in a study published in the Cancer Research, scientists from institutions such as Duke-NUS Medical School have discovered a potential way to predict which patients will respond to cancer therapies that block Wnt signaling, such as ETC-159, a novel drug developed in Singapore, and the results may help scientists develop novel individualized cancer therapies. Wnt protein is an important signaling molecule that helps surrounding cells communicate with each other, however, it induces cancer when the protein is produced in excess; Wnt protein is involved in the pathogenesis of a variety of common cancers, including colorectal cancer, breast cancer, leukemia and pancreatic cancer, and many mutations induce the appearance of Wnt hyperactivity, and the search for reliable biomarkers has been a major challenge for scientists. In the article, the researchers identified a novel biomarker called RNF43 that is altered in special types of Wnt-dependent cancers. JBC: Scientists identify novel biomarkers indicating the development of cardiovascular disease In a study published in Biological Chemistry, scientists from institutions like Graz University of Technology identified novel biomarkers of cardiovascular disease through the study; in the article, the researchers investigated the key role of dipeptidyl peptidase 3 (DPP3) in the reninangiotensin system regulated by blood pressure, and the relevant findings may provide new clues and ideas for the development of novel therapies for the treatment of cardiorenal diseases. The renin-angiotensin system (RAS) activates angiotensin II when the body is hypotensive. This hormone induces vasoconstriction and promotes a return to blood pressure, while the enzyme DPP3 is significantly involved in the metabolism of angiotensin II, the researchers said. Professor Peter Macheroux said, for example, we all know that patients with heart attack, moderate or acute kidney injury have increased levels of DPP3 in their blood, which may increase patient mortality. However, little is known about the physiological function of DPP3. For this reason, in this study, they investigated the molecular mechanism by which DPP3 affects RAS. Sci Rep: Biomarkers can be used to detect brain damage Recently, a scientific team led by the University of Arizona and the City of Hope Institute for Translational Genomics (TGen) identified novel biomarker series through proteomics and metabolomics analysis that can help treat tens of millions of patients who suffer from brain injury and have the potential to prevent severe long-term disability. The results were published in the recent issue of Scientific Reports.