Enrichment Maths Volume 2 – uncorrected sample chapter 18_

Page 1


18 Trigonometry

18AThebasictrigonometricratios

Inthischapterweareconcernedwithright-angledtriangles.Asecond angleinsuchatriangleisoftendenotedbytheGreekletter theta, denotedbythesymbol θ.Thiscanindicateboththenameandthe measureoftheangle.The hypotenuse ofaright-angledtrianglealways referstothesidethatisoppositetherightangle.Theothertwosidesare namedaccordingtotheirpositionsrelativetoangle θ.The opposite side isoppositeangle θ,whilethe adjacentside isnexttoangle θ.

Roughlyspeaking,twotriangleswiththesameangleswillalsohavethesameshape.Bythis,wemeanthat thetwotriangleswillbe similar.Inparticular,theratiosoftheircorrespondingsidesareequal.Weprove thisbelowinthespecialcasethatourtwotrianglesareright-angled.

Theorem1(Thetrigonometricratios)

Iftworight-angledtriangleshaveequalangles,thentheratiosoftheircorrespondingsidesareequal.

Proof

Thetwotrianglesbelowhaveequalangles.Theircorrespondingsideshavebeenlabelledwiththesame letters,onelowercase,theotheruppercase.Wewillprovethat

Taketwocopiesofthefirsttriangleandtwocopiesofthesecond,andarrangetheseintotherectangle shownbelow.Theareabelowthediagonalisthesameastheareaabovethediagonal.Therefore,we caneliminateonecopyofeachtrianglefromaboveandbelowthediagonal,andtheareathatremains abovethediagonalwillequaltheareathatremainsbelowthediagonal.Therefore, aO = oA.Itfollows that o a = O A

Intheexercisesyouwillalsobeaskedtoestablishthat a h = A H and o h = O H

Wenowknowthatforanyright-angledtrianglewithgivenangle θ,theratios O H and A H and O A arefixed. Thesefixedratiosaregiventhefollowingnames.

sin θ = O H The sine of θ equalsoppositeoverhypotenuse.

cos θ = A H The cosine of θ equalsadjacentoverhypotenuse.

tan θ = O A The tangent of θ equalsoppositeoveradjacent.

TheabovethreeratioscanbeeasilyrecalledusingthemnemonicSOHCAHTOA,whoseletterscanbearranged suggestivelyintotrianglesasshown:

Example1

Findsin θ,cos θ andtan θ forthetrianglebelow.

Solution

WefirstusethePythagoreanTheoremtoestablishthelengthofthesideoppositeto θ.Letusdenote thissidelengthby x.Wehave

Drawaright-angledtrianglewithangle θ forwhichtan θ = 2 3 .Findsin θ.

Solution

Sincetan θ = O A = 2 3 ,theright-angledtrianglemustbesimilartothetriangleshownbelow.Weusethe PythagoreanTheoremtoestablishthelengthofthehypotenuse.

18AExercises

1.Findsin θ,cos θ andtan θ foreachofthe right-angledtrianglesshownbelow:

4.Drawaright-angledtrianglewithangle θ for whichsin θ = 5 13 .Find cos θ

5.Drawaright-angledtrianglewithangle θ for whichsin θ = 12 13 .Find tan θ

6.Drawaright-angledtrianglewithangle θ for whichcos θ = 1 2 .Find sin θ.

7.Drawaright-angledtrianglewithangle θ for whichcos θ = 2 3 .Find tan θ

8.Consideraright-angledtriangle.

(a)Provethatthehypotenuseisalwaysthe longestside.

(b)Supposethatthetrianglealsocontainsan angle θ.Provethat0 < cos θ < 1and0 < sin θ < 1.

9.Thetworight-trianglesbelowhaveequalangles. InTheorem1weprovedthat o a = O A .Using this fact,additionallyprovethat o h = O H and a h = A H .

2.Drawaright-angledtrianglewithangle θ for whichtan θ = 3 4 .Find sin θ

3.Drawaright-angledtrianglewithangle θ for whichtan θ = 4 3 .Find cos θ.

10.Thesquarebelowhasasidelengthof1unit,withdiagonalanglesincreasinginincrementsof5○.Use thegridtomeasuretheoppositeandadjacentsidesofthegiventriangles,thenapplythePythagorean Theoremtodetermineeachhypotenuse.Estimatethetrigonometricratiosforthelistedanglesandrecord theminthetable,roundedtotwodecimalplaces.Notethat △XAB canbeusedtoapproximatesin5○ , cos5○,tan5○ aswellassin85○,cos85○,andtan85○ .

11.Namethetrianglefromthetableabovethatissimilartoeachofthetrianglesshownbelow.Thenusethe appropriatetrigonometricratiofromthetabletoestimatethevalueof x.

18BFindinganunknownlength

Trigonometricratioswerehistoricallyfoundusingtables,liketheoneyougeneratedearlier.Amoreaccurate andcomprehensivetableisfoundonthefollowingpage.Usethistableifyou’dpreferatraditionalapproach. Theuseofcalculatorsisnowmuchmorecommon(althoughnotalltrendsareworthfollowing).All approximateanswersinthischapterwillbecalculatedtotwodecimalplaces.

Example1

Find x ineachofthefollowingfigures.

Atableoftrigonometricratios

00.00001.00000.0000450.70710.70711.0000 10.01750.99980.0175460.71930.69471.0355

20.03490.99940.0349470.73140.68201.0724

30.05230.99860.0524480.74310.66911.1106 40.06980.99760.0699490.75470.65611.1504

50.08720.99620.0875500.76600.64281.1918

60.10450.99450.1051510.77710.62931.2349

70.12190.99250.1228520.78800.61571.2799

80.13920.99030.1405530.79860.60181.3269

90.15640.98770.1584540.80900.58781.3764 100.17360.98480.1763550.81920.57361.4281

110.19080.98160.1944560.82900.55921.4826 120.20790.97810.2126570.83870.54461.5399 130.22500.97440.2309580.84800.52991.6003 140.24190.97030.2493590.85720.51501.6643 150.25880.96590.2679600.86600.50001.7321 160.27560.96130.2867610.87460.48481.8040 170.29240.95630.3057620.88290.46951.8807 180.30900.95110.3249630.89100.45401.9626 190.32560.94550.3443640.89880.43842.0503 200.34200.93970.3640650.90630.42262.1445 210.35840.93360.3839660.91350.40672.2460 220.37460.92720.4040670.92050.39072.3559 230.39070.92050.4245680.92720.37462.4751 240.40670.91350.4452690.93360.35842.6051 250.42260.90630.4663700.93970.34202.7475 260.43840.89880.4877710.94550.32562.9042 270.45400.89100.5095720.95110.30903.0777 280.46950.88290.5317730.95630.29243.2709 290.48480.87460.5543740.96130.27563.4874

300.50000.86600.5774750.96590.25883.7321

310.51500.85720.6009760.97030.24194.0108 320.52990.84800.6249770.97440.22504.3315

330.54460.83870.6494780.97810.20794.7046

340.55920.82900.6745790.98160.19085.1446

350.57360.81920.7002800.98480.17365.6713

360.58780.80900.7265810.98770.15646.3138

370.60180.79860.7536820.99030.13927.1154

380.61570.78800.7813830.99250.12198.1443

390.62930.77710.8098840.99450.10459.5144

400.64280.76600.8391850.99620.087211.4301

410.65610.75470.8693860.99760.069814.3007 420.66910.74310.9004870.99860.052319.0811

430.68200.73140.9325880.99940.034928.6363

440.69470.71930.9657890.99980.017557.2899 901.00000.0000undef.

Example2

Aflagpoleisstabilisedbytwocablesaffixedtothetopofthepole.Thefirstofthesemakesa40○ degree angletothegroundandis5.5metreslong.Thesecondmakesanangleof50○ totheground.Howlong isthesecondcable?

Solution

Let y betheheightoftheflagpoleandlet x bethelengthofthesecondcable.

Usingthesineratioforbothtriangles,wefindthat

Equating (1) and (2) gives

Thesecondcableisapproximately4.62metreslong.

Note. Itisoftenmostefficienttoalgebraicallysolvefortheunknownbeforedoinganyintermediate calculations.Thissavestimeandalsoavoidstheaccumulationofroundingerrors.

Example3

Aropehangsfromthetopofaflagpole.Theropeis2metreslongerthanthepole,andwhenitis pulledtightandheldtotheground,theropemakesanangleof64○ tothehorizontal.Howtallisthe flagpole,correcttothenearestcentimetre?

Solution

Let h mbetheheightoftheflagpole.Then (h + 2) misthelengthofthe rope.Therefore,

θ = h h + 2 (h + 2) sin θ = h

sin θ + 2sin θ = h

h sin θ = 2 sin θ

(1 sin θ) = 2sin θ

Theflagpoleis17 76metrestall.

Example4

Tofindtheheightofamountaintop,asurveyortakesmeasurementsfromtwoaccessiblepoints A and B asshownbelow.Findtheheight h mofthemountain,correcttothenearestmetre.

Solution

Thetwounknowns d and h mustbesolvedusingsimultaneousequations.From∆ACD weseethat

From∆BCD weseethat

Equating (1) and (2) gives

Therefore,

Theheightofthemountainisapproximately273m.

Example5

Aright-angledtrianglehasoneangleof35○ andaperimeterof8.Findthelengthofthehypotenuse.

Solution

Let a,b and c bethesidesofthetriangle,with c thehypotenuse. Wehave

Astheperimeteris8,wefindthat

Thelengthofthehypotenuseis3 34.

18BExercises

1.Find x in eachofthefollowingfigures.

3.Atapoint5 5metresfromthebaseofaflagpole, theangleofelevationtothetopoftheflagpole is40○.Determinetheheight, x metres,ofthe flagpole.

6.Aflagpoleisstabilisedbytwocablesaffixedto thetopofthepole.Oneofthesemakesa38○ degreeangletothegroundandis5 5metreslong. Thesecondcablemakesanangleof48○ tothe ground.Howlongisthesecondcable?

4.Whenfellingatreethatisclosetoahouse,it’s wisetofirstdetermineitsheight.Atapoint 12metresfromthebaseofatree,theangleof elevationtothetopmostpointonthetreeis37○ . Howtallisthetree?

7.Findtheareaofeachofthetrianglesshown below:

5.Find x ineachofthefollowingfigures:

8.Aright-angledtrianglehasoneangleof40○ andaperimeterof10.Findthelengthofthe hypotenuse.

9.Fromthetopofabuildingtheangleofdepression tothetopofaflagpoleis65○.Fromthebaseof thebuilding,theangleofelevationtothetopof theflagpoleis25○.Ifthebuildingis15metres tall,thendeterminetheheightoftheflagpole.

10.Aropehangsfromthetopofaflagpole.The ropeis3metreslongerthanthepole,andwhen itispulledtightandheldtotheground,therope makesanangleof50○ tothehorizontal.Howtall istheflagpole?

11.Tofindtheheightofamountaintop,asurveyor takesmeasurementsfromtwoaccessiblepoints A and B,asshownbelow.Findtheheight h of themountain,tothenearestmetre.

13† RadiusoftheMoon. Let r denotetheradius oftheMoon, θ theanglesubtendedbytheMoon whenitisdirectlyoverhead,and d thedistance fromthesurfaceoftheMoontothesurfaceof Earth.

12† . Aright-angledtrianglehasanangle θ and perimeter P

Findaformulaforthelengthofits hypotenuseintermsof θ and P . (a)

Findaformulafortheareaofthetrianglein termsof θ and P (b)

18CFindinganunknownangle

Giventhat θ = 0 52○ and d = 384000 kilometres,find r,tothenearest10 kilometres.

Considerthetriangleshown.Wearegiventhelengthsoftheadjacent andoppositesides,andsotan θ = 2 5 = 0 4.Ifwewanttofindthe anglethatgivesthisratio,thenwecanfindtheentryinthetable oftrigonometricratiosclosesttothisvalue.

Fromthiswecanseethat θ ≈ 22○.Thesedays,calculatorsaremorecommonlyusedtofindtheseangles.In whatfollowswewillwritetan 1(0.4040) = 22○ toexpressthefactthattan22○ = 0.4040,withsimilarnotation forsinandtan.Inlaterchaptersthischoiceofnotationwillbeplacedinabroadercontext.

Example1

Find θ ineachofthefollowingfigures.

Example2

Findtheangle θ markedinthesquaregridshownbelow.

Solution

Therequiredangle θ isthedifferencebetweenthetwoangles α and β markedonthediagrambelow.Wefindthat

1.Find θ ineachofthefollowingfigures.

2.Find θ ineachofthefollowingfigures:

3.Aflagpoleisstabilisedbytwocablesaffixedto thetopofthepole.Thefirstofthesemakesa40○ degreeangletothegroundandis4 9metreslong. Thesecondcableis3.8metreslong.Determine theangle θ thatthesecondcablemakeswiththe ground.

Thecirclesshownbelowaretangent,and DE istangenttobothcircles.Thelinesegment AC passesthroughthecentresofbothcircles.Find

4.Findtheangle θ markedineachofthesquare gridsbelow.

Explainhowthediagrambelowshowsthat

Explainhowthediagrambelowshowsthat

8† Inanidealisedgameofbilliards,whenaball strikestheedgeofatable,the angleof incidence and angleofreflection areequal.

Considerthebilliardtableshownbelowwhere theballisinitiallylocatedinthelowerleft corner. 2 4 x θ

(a)Theballisstruckatanangleof θ = 40○ to thehorizontal.Findthedistance x fromthe ball’sstartingpositiontothelocationofthe thirdbounce.

(b)Theballisstrucksothat x = 2.Findthe strikeangle θ.

9† . Agoatistiedbyaropetoacornerofagrassy fieldofwidth30metresandlength40metres.

(a)Whatlengthofropewouldensurethatthe goatcanaccessallofthegrassinthefield?

(b)Whatpercentageofthefield’sareacanthe goataccessifthelengthoftheropeis30 metres?

(c)Whatpercentageofthefield’sareacanthe goataccessifthelengthoftheropeis35 metres?

(d)Whatpercentageofthefield’sareacanthe goataccessifthelengthoftheropeis45 meters?

10† Acylindricalglassofheight12cmanddiameter 8cmisfilledtothebrimwithwater.Theglass iscarefullytiltedsothatitssidemakesanangle of θ tothehorizontal.Theglassisthencarefully restoredtoanuprightposition.

(a)Given θ = 50○,whatisthenewheightof waterintheglass?

(b)Giventhenewheightofwaterintheglassis halftheoriginalheight,find θ

18DExactvalues

Upuntilnowwehaveeitherusedatableofvaluesoracalculatortofindtheapproximateanglesandside lengthsofright-angledtriangles.However,therearecertainspecialangles θ forwhichwecanfind exact values ofsin θ,cos θ andtan θ.Thesevaluesareobtainedfromtwospecialtriangleswhoseanglesandsidelengths canbeeasilyfoundusingthePythagoreanTheorem.

The45-45-90Triangle

Cutasquareofsidelength1alongoneofitsdiagonalstogivethe45-45-90triangleshownbelow.

Thetriangleestablishesthefollowingexactvalues:

The30-60-90Triangle

Cutanequilateraltriangleofsidelength2alongoneofitsaltitudestogivethe30-60-90triangleshownbelow.

Thetriangleestablishesthefollowingexactvalues:

Find x ineachofthefollowingfigures:

Example1

Asummaryofexactvalues

Thefollowingtablesummarisestheexactvaluesthatyouarerequiredtocommittomemory.

18DExercises

3.Atrianglewithperimeter10hasangles30○ , 60○ and90○.Findtheareaofthetriangle.

4.Considerthefigureshownbelow.

(a)Provethat α = θ 2

(b)Hence,provethattan

(c)Usetheaboveformulatofindtheexactvalue oftan22 5○

(d)Usethistodeterminetheareaofaregular octagonofsidelength1.

5† Considerrectangle ACDE shownbelow.

(a)Copythediagram,andthendetermineallof themissingangles.

(b)Findlengths AB and DE.

(c)Hence,findlengths BC and CD

(d)Hence,findtheexactvaluesofsin15○ , cos15○,sin75○ andcos75○ .

(e)Apieceofstringoflength1metreistightly wrappedaroundaright-angledtrianglewith angles15○,75○ and90○.Findtheexactlength ofthetriangle’shypotenuse.

(f)Hence,findtheexactareaofaregular dodecagonofsidelength1.

6† Theregularpentagon ABCDE hassidesof length1.Thediagonals AD, BD and AC have beendrawn,anddiagonals AC and BD meetat P

(a)Copythediagram,andthendetermineallof themissingangles.

(b)Showthattriangles∆ADC and∆DCP are similar.

(c)Hence,findthelengthofthediagonal AD.

(d)Findtheexactvaluesofsin18○,cos18○ , sin72○ andcos72○

(e)Findtheexactvaluesofsin36○,cos36○ , sin54○ andcos54○ .

7† . Considerthefiguresshownbelow.Thesedepict anequilateraltriangle,asquare,aregular pentagonandaregularhexagon,andeachis inscribedinacircleofradius1.

(a)Thevertices A,B and C ofanequilateral trianglelieonacircleofradius1.Showthat

AB × AC = 3

(b)Thevertices A,B,C and D ofasquarelieon acircleofradius1.Showthat

AB × AC × AD = 4

(c)Thevertices A,B,C,D and E ofaregular pentagonlieonacircleofradius1.Show that

AB × AC × AD × AE = 5

Hint:Youmayrefertoexercise6.

(d)Thevertices A,B,C,D,E and F ofaregular hexagonlieonacircleofradius1.Showthat

AB × AC × AD × AE × AF = 6.

Note. Theresultsobtainedinthisexercise canbegeneralisedtoaregular n-gon,butwe willnotdothishere.

18EAreaofatriangle

Wewilloftenrefertothethreeanglesinatrianglebytheletters A, B and C.Oppositetheseanglesaresides oflength a, b and c,respectively.Thatis,welabelanangleandthesideoppositetothatangleusingthe sameletter.

Findingtheareaofatriangle

Wewillnowestablishtheareaofatrianglegiventwosidelengths a,b andtheincludedangle C.Weconsider threecases:theincludedanglemaybeacute,obtuseorright.

Case1.Wefirstsuppose C isacute.Drawanaltitudeoflength h fromthevertexat B.Then h = a sin C Therefore,theareaofthetriangleis

Case2.Nowifangle C isobtuse,thenwecanstillfindtheheightofthetrianglebyfindingtheexterior angle:180○ C.Therefore,theareaisgivenby

Thisformulacanbemadetolookexactlylikethepreviousformulaifwe define thesineratioforobtuse angles.Werequirethat

sin(180○ θ) = sin θ.

Case3. Suppose C isarightangle.Ifwedefinesin90○ = 1,thenthesameformulastillworks.Hence,wehave thefollowinggeneralresult.

Theorem1(Theareaofatriangle)

Theareaof∆ABC is

Findtheareaofeachofthesetriangles:

Theareaofthetriangleis

Example1

Example2

In∆ABC shown,

∶ DB = 1 ∶ 1

∶ EC = 1 ∶ 3

∶ FA = 1 ∶ 2

Ifarea(∆DEF ) = 5,thenfindarea(∆ABC)

Solution

Welet AF = x, AD = y, AF = z asshownbelow.

Wethenfindtheareaoftriangle ABC threedifferentways:

Similarly,wecanfindthatarea(∆ABC) = 6 area∆(BED) andarea(∆ABC) = 2 area∆(CEF ).The areaof∆ABC canbewrittenasthesumofareasoffourtriangles.Thatis,

1.Findtheareaofeachofthesetriangles:

2.Findtheareaofanequilateraltriangleofside length a.

3.For∆ABC wearegiventhat a = 2, b = 3√2and ∠C = 45○.Findtheareaofthetriangle.

4.For∆ABC wearegiventhat a = 6and b = 5. Giventhattheareaofthetriangleis10,find sin C

5.Findalltriangleswitharea1andtwosidesof length2.

6.Findalltriangleswitharea √2andtwosidesof length2.

7.For∆ABC wearegiventhat a = 6, ∠A = 30○ and ∠B = 45○.Findtheareaofthetriangle.

8.Considerthetriangleshownbelow.

A B

(a)Theformulaarea(∆ABC) = 1 2 ab sin C impliestheareaofthetriangleaboveis 1 2 sin(2θ.Splitthetriangleinhalfandobtain analternativeformulaforitsareainterms of θ

(b)Hence,showthat sin2θ = 2sin θ cos θ.

9.Twosidelengthsofatriangleare a and b.

18FThesinerule

(a)Whatisthemaximumpossibleareaofthe triangle?

(b)Whattypeoftrianglegivesthismaximum area?

10† For∆ABC shownbelow,

Giventhatarea(∆DEF ) = 5,findarea(∆ABC)

The sinerule,or lawofsines,statesthattheratioofeachsidetothesineofitscorrespondingangleisa constant.Giventhemeasuresoftwoanglesandonesideofatriangle,thesineruleallowsustodeterminethe lengthoftheothertwosides.

Theorem1(Thesinerule)

If∆ABC hassidesoflength a, b and c,then

Proof

Weonlyprovethefirstequality,asthesecondfollowssimilarly.

Case1.Firstsuppose A isacute.Drawanaltitudeoflength h fromthevertexat C.Thisaltitudelies insidethetriangle.

Then h canbefoundtwodifferentways:

Weequatethesetogive b sin A = a sin B,whichisequivalenttotherequiredexpression.

Case2.Nowsuppose A isobtuse.Thealtitudeliesoutside∆ABC

Weagainfind h twodifferentways.Notingthatsin(180○ A) = sin A wefindthat

Weequatetheseagaintogive

Example1

Find x inthetriangleshownbelow.

Usingthesinerulewefindthat

Example2

Findtheareaof∆

Notethat ∠B = 80○.Wethenfind b usingthesinerule:

Theareaofthetrianglecannowbefound:

WenowshowthatthesineruleallowsustoefficientlysolvetheproblemgiveninExample4inSection18B.

Example3

Tofindtheheightofamountaintop,asurveyortakesmeasurementsfromtwoaccessiblepoints A and B asshownbelow.Findtheheight h ofthemountain,correcttothenearestmetre.

Solution

Let α and β bethemeasureoftheanglesindicatedinthediagrambelow.

Wefindthat

Wethenfindlength BD = x usingthesinerule:

Finally,wefindthat

Theheightofthemountainisapproximately273m.

Example4

Consider∆ABC below.Findthemeasureof ∠C,correcttothenearestdegree.

Solution

Whenfindinganunknownangle,ithelpstoinvertthesinerule.Wefindthat

Theambiguouscase

Usingthesineruletofindanunknownanglecangiverisetothe possibilityoftwosolutions.Thiscanoccurwhenwearegiventwo sidelengthsandanon-included,acuteangle.Thatis,whenthe givenangle ∠A isacuteandcorrespondstotheshorterofthetwo givensidelengths,so a < c,andwealsohavethat h < a.Inthis case,twopossibletrianglesexist:∆

Example5

Showthattherearetwopossibletriangles∆ABC forwhich a = 5cm, c = 8cmand ∠A = 35○.Findthe twopossiblemeasuresof ∠C,correcttothenearestdegree.

Solution

Wearegiventwosidelengthsandanon-includedangle.We canfindtwosolutionstothisproblem.Bythesinerule,

18FExercises

1.Find x ineachofthetrianglesshownbelow, correcttotwodecimalplaces:

7.For∆ABC wearegiventhat c = 6, a = 4and ∠A = 25○

(a)Drawonecleardiagramthatillustrateshow theinformationabovedescribestwopossible triangles.

(b)Find ∠C inbothtriangles,correcttothe nearestdegree.

8.Showthattherearetwopossibletriangles

∆ABC forwhich a = 6, c = 9and ∠A = 30○ Findthetwopossiblemeasuresof ∠C,correct tothenearestdegree.

2.Find θ ineachofthetrianglesshownbelow, correcttothenearestdegree.

3.Findtheareaofeachofthetrianglesshown below,correcttotwodecimalplaces:

9.Showthattherearetwopossibletriangles

∆ABC forwhich a = 5, c = 10and ∠A = 20○ . Findthetwopossiblemeasuresof ∠C,correct tothenearestdegree.

10.Tofindtheheightofamountaintop,asurveyor takesmeasurementsfromtwoaccessiblepoints A and B asshownbelow.Findtheheight h of themountain,correcttothenearestmetre.

4.For∆ABC wearegiventhat a = 1, ∠A = 30○ and ∠B = 45○.Find b.

5.For∆ABC wearegiventhat ∠A = 43○ , ∠B = 72○ and a = 5 4.Find b and c,correcttoone decimalplace.

6.For∆ABC wearegiventhatsin A = 3 4 ,sin B = 2 3 and a = 3.Find b

11.Averticaltower AB islocatedonahillthatis inclinedat15○.FrompointC,85metresdownhill fromthebase A ofthetower, ∠BAC ismeasured andfoundtobe25○.Findtheheight h ofthe tower,correcttothenearestmetre.

12.Toestablishtheheightofahotairballoonabove levelground,twoobserversmeasuretheangleof inclinationtotheballoonatpoints A and B, located150mapart.Findtheheight h ofthe hotairballoon,correcttothenearestmetre.

13.Showthatonecannotconstructatriangle ∆ABC forwhich ∠A = 45○ , a = 2cmand c = 4cm.

14.For∆ABC wearegiventhat c = 6and ∠A = 25○ Findthevalue(s)of a forwhichthereisonlyone suchtriangle.

15.Findallpossibleareasofatrianglewithtwosides oflength10and11,andoneangleof60○,correct totwodecimalplaces.

16.Inthisexercisewe’llgiveanalternativeproof ofthesinerule.Usetheformulafortheareaof atriangleintroducedintheprevioussectionto provethat

18† The extendedsinerule establishesaconnectionbetweenthesides,anglesandcircumradius R ofatriangle. R a b c B

(a)Assumingthesinerule,provethat a sin A = b sin B = c sin C = 2R

(b)Hence,showthat area(∆ABC) = abc 4R

(c)If r istheinradiusof∆ABC,thenshowthat area(∆ABC) = (a + b + c)r 2

(d)Hence,provethat rR = abc 2(a + b + c) .

19† Showthatinany∆ABC, a (sin B sin C) + b (sin C sin A) + c (sin A sin B) = 0

17.(a)Suppose ∠A, ∠B ≤ 90○.Withtheaidofa diagramexplainwhy ∠A ≤ ∠B ⇐⇒ sin(A) ≤ sin(B)

(b)Hence,provethat ∠A ≤ ∠B ⇐⇒ sin(A) ≤ sin(B) whenever ∠A and ∠B are(possiblyobtuse) anglesinatriangle.

(c)Given∆ABC,provethat a ≤ b ≤ c ifand onlyif ∠A ≤ ∠B ≤ ∠C.

20† Showthatinany∆ABC, (b c) sin A + (c a) sin B + (a b) sin C = 0.

21† . Findaformulafortheareaofthetrianglein termsofitsthreeangles A, B and C,andits perimeter P .Hint:startbywriting P = a + b + c, andthenusethesinerule.

18GThecosinerule

Supposewearegiventwosidelengthsoftriangle, a and b,andangle C betweenthem.Asillustratedbelow, wearenotfreetochoosethelengthoftheremainingside.Therefore,weshouldbeabletofindarelationship betweenunknownsidelength c andsides a,b andangle C.Thisrelationshipiscalledthe cosinerule

Theorem1(Thecosinerule)

If∆ABC hassidesoflength

Weneedtoconsiderconsiderthreecases.Theangleat C willeitherbeacute,obtuseorright.

Case1.Suppose C isacute.Drawanaltitude BD oflength h.Thealtitudemustliewithinthetriangle. ApplyingthePythagoreanTheoremtobothtriangles BCD and ABD gives

Weequatethesetogive

.Therefore,

Case2.Nowsuppose C isobtuse.Thealtitude BD liesoutside∆ABC.ApplyingthePythagoreanTheorem tobothtriangles BCD and ABD gives

Asbefore,weequatethesetogive

Thisformulacanbemadetolookexactlylikethepreviousformulaifwe define thecosineratioforobtuse angles.Werequirethat cos(180○ θ) = cos θ.

Case3. Suppose C isarightangle.Ifwedefinecos90○ = 0,thenthesameformulastillworks.Infact,it reducestotheveryfamiliarformula: c2 = a2 + b2 .

Example1

Findtheunknownsidelengthofeachofthetrianglesshownbelow.

Let x cmbetheunknownsidelength.Then

x 2 = 42 + 52 2(4)(5) cos88○ = 41 40cos88○ x = √41 40cos 88○ ≈ 6 29

Thethirdsidelengthisapproximately6 29cm. (a)

Thethird sidelengthis √52 + 24√2cm. (b)

Let x cmbetheunknownsidelength.Then x 2 = 42 + 62 2(4)(6) cos135○ = 16 + 36 + 48cos45○

52 + 24√2 x = √52 + 24√2

Example2

For∆ABC wearegiventhat ∠C = 30○ , a = √3and c = 1. Find b. Solution

We findthat

Therefore, b = 1or b = 2.

Ifweknowallthreesidelengthsofatriangle,thenweshouldbeabletodetermineeachofitsangles.Thisis duetothefactthatthreesideswilluniquelydeterminethetriangle,uptocongruence.Thecosineruleallows ustodojustthat:

Example3

Find ∠C ofthetriangleshownbelow.

Usingthecosinerulewefindthat

1.Find x ineachofthetrianglesshownbelow,correcttotwodecimalplaces.

2.Find θ ineachofthetrianglesshownbelow, correcttothenearestdegree.

θ 8cm 5cm (a)

(b)

(c)

(d)

3.Consider∆ABC shownbelow.

(a)Findthelengthsofsides BC and CA

(b)Usingthecosinerule,findtheexactvalueof cos75○ .

4.(a)Consider∆ABC shownbelow.

Usethe cosineruletodetermineaformula for AC intermsof θ.

(b)Drawtheanglebisectorat B.Findasecond formulafor AC intermsof θ 2 . 1

6.Kate walksdueeastforadistanceof3 0km, turns120○ toherleftandthenwalks4.0kmin thenewdirection.HowfarisKatethenfromher startingpoint?

7.Apipelineneedstobeconstructedfrompoints A to B acrossamarshland.Theengineers cannotmeasurelength AB directly,sothey markouttwoadditionalpoints D and C.Their measurementsaresummarisedonthediagram below.

(c)Hence, provethatsin2

UNCORRECTEDSAMPLEPAGES

5.Suppose∆ABC hasvertices A(6, 2), B(5, 4) and C(3, 6).Findtheexactlengthofeachside,and themeasureofeachangle,correcttothenearest degree.

Findthe lengthoftheproposedpipe,correctto thenearestmetre.

8.For∆ABC wearegiventhat ∠A = 45○ , a = √18 and c = 5.Find b.

9.For∆ABC wearegiventhat ∠A = 45○ , a = √5 and c = 3.Find b

10.For∆ABC wearegiventhat c = √6 √2, b = 2√2and a = 2√3.Find themeasureof ∠B.

11.Apointislocatedinasquaresuchthatitis 3mfromonecorner,4mfromanothercorner, and5mfromathirdcorner(inclockwiseorder). Findtheareaofthesquare.

12.Thelawofcosinescanberegardedasa generalisationofthePythagoreanTheoremto non-right-angledtriangles,sinceitreducesto thistheoreminthecasewhere ∠C = 90○.Explain whether a2 + b2 islargerorsmallerthan c2 when ∠C is: acute(a) right(b) obtuse(c)

13.Threecircleswithcentres A, B and C are tangenttoeachotherasshowninthediagram. Thecircleshaveradiiequalto5,9and15, respectively.

B C A

Findthemeasureof ∠B,tothenearestdegree.

14.Ahexagonisinscribedinsideacircle.Thesides ofthehexagonarealternately a and b unitsin length.Determineanexpressionfortheradius r ofthecircle,intermsof a and b.

D C A B

17.Consider∆ABC withthreesidessatisfyingthe equation

(a + b c)(a + b + c) = ab.

Findthemeasureof ∠C.Hint:Expandthelefthandsideandusethecosinerule.

18† Supposeasetofpointsintheplaneissuchthat thedistancebetweenanypairofthesepointsis distinct.Provethatwheneachpointisconnected byalinesegmenttothepointthatisclosestto itthatnopointisconnectedtomorethanfive otherpoints.

19‡ Supposeaconvexquadrilateralhassidesof length a, b, c and d,anddiagonalsoflength p and q.

15.Consider∆ABC forwhich b = 5, c = 8and ∠A = 60○

(a)Showthatthethirdsideofthistriangleis alsoaninteger.

Infact,thereareinfinitelymanytriangleswith integersidelengthsandoneangleequalto60○ Toshowthis,let m and n beanyintegers(where m > n)andconsider∆ABC forwhich

(a)Provethattheareaofthequadrilateralis givenby A = 1 2 pq sin θ

where θ istheanglebetweenthediagonals.

(b)Provethattheareaisalsogivenby A = 1 4

2)2

(c)Provethattheareaisalsogivenby

(b)Showthat ∠C = 60○

16.Inthefigurebelow,thesmallcirclehasitscentre at D,andthelargecirclehasitscentreat C.If DA = 6, BC = 4,and DC = 5,thenfindthe lengthof AB.Hint:Usethecosineruletwice.

where s = a+b+c+d 2 isthesemi-perimeter.

(d)Provethatifthequadrilateraliscyclic,then thissimplifiesto A = √(s a)(s b)(s c)(s d)

(e)Showthatbysetting d = 0theformulain part(c)reducestoHeron’sformulaforthe areaofatriangle.

18HRadianmeasure,arclengthandsectorarea

Radianmeasure

A degree isaunitofmeasurementforanglesthatisdefinedbyspecifyingthatonerevolutionis360degrees. Thisnumberisusefulfordealingwithfractionsofcircles.However,inmostmathematicalworkbeyond elementarygeometry,anglesaretypicallymeasuredin radians ratherthandegrees.

Consideracircleofradius r asshowninthediagram.The measureoftheangle θ in radians isdefinedtobetheratio θ = L r where L isthelengtharoundthecorrespondingsection ofthecircle.Notethefollowing:

(i)Whenthelength L isequaltotheradius r,thentheangle measuresoneradian.

(ii)Whenthelength L isequaltothecircumference2πr, then θ = 2πr r = 2π.Thatis,onerevolutionisequalto2π radians.

Asradianmeasureistheratioofalengthtoalength,theresultissimplyanumberandneedsnounitsymbol.

Arclength

Acircular arc isacurvethatformsaconnectedpartof acircle.Tofindthelengthofthearcwemultiplythe fractionofarevolutiondescribedbythearc,bytheentire circumference.Whenworkingindegreesweobtain:

Whenworkinginradiansweobtain(bydefinition):

Solution

Note. Ratherthanusetheformulasabovewenotethateachisaknownfractionofanentirecircle.

= 1 6 × (2π × 9) = 3π (a)

L = (fractionofcircle) × (2πr)

L = (fractionofcircle) × (2πr) = 3 8 × (2π × 12)

Example2

Acircleofradius4andcentre O isdrawnadjacent.Thelinesegment AC istangenttothecircleat A,andpoint B isthepointof intersectionoflinesegment OC withthecircle.Findthelength ofarc AB showninthefigureinred.

Solution

Let θ betheangleatthecentreofthecircle.Then

Therefore,thelength L ofarc AB willbe

Sectorarea

A sector isaregionwithinacircleenclosedbytworadiiand anarc.Tofindtheareaofasectorwemultiplythefraction ofarevolutiondescribedbythesectorbytheareaofthe entirecircle.Whenworkingindegreesweobtain:

Whenworkinginradiansweobtain:

Example3

Findtheareaofeachofthesectorsshownbelow:

Note. Ratherthanusetheformulasabovewenotethateachisaknownfractionofanentirecircle.

= (fractionofcircle) × (πr 2)

Segmentarea

A segment isaregionboundedbyacirculararcandthechord connectingtheendpointsofthearc.Tofindtheareaofasegment wesubtracttheareaofatrianglefromtheareaofthesectorcontaining thesegment.Whenworkinginradiansweobtain:

Anequilateraltriangleisinscribedinsideacircleofradius2.Findtheareaboundedbetweenthesetwo figures.

Example4

Solution

Eachofthethreeidenticalsegmentshasacentralangleof θ = 2π 3 . Therefore,theshadedareaisequalto

18HExercises

1.Findthelengthofeachofthearcsshownbelow:

2.Findtheareaofeachofthesectorsshownbelow:

3.Findtheangledescribedbyeachofthefollowing sectorsinradians.Theirradiiandarclengthsare labelled.

4.Findtheareaofeachofthesegmentsshown below.

7.Acircleofradius √3andcentre O isdrawn below.Thelinesegment AC istangenttothe circle,and B isthepointofintersectionof OC withthecircle.Findthelengthofarc AB shown inthefigureinred.

5.(a)Findtheareaofthesectorwhosesectorangle is45○ andwhoseradiusis8m.

(b)Findtheareaofthesectorwhosesectorangle is π 6 andwhoseradiusis12cm.

(c)Findthesectorangleiftheareaofthesector is4π cm2 anditsradiusis8cm.

(d)Findthesectorradiusifthesectorangleis π 6 andtheareaofthesectoris3π cm2

(e)Findtheareaofthesectorwhoseradiusis 2m2 andwhosearclengthis3m.

(f)Findtheareaofthesectorwhoseradiusis 2mandwhosearclengthis4π m.

(g)Findtheperimeterofthesectorwhosearea is3cm2 andwhosearclengthis5cm.

6.Acirclewithcentre O isdrawnbelow.Theline segment AC istangenttothecircleat A,and B isthepointofintersectionof OC withthecircle.

8.Acircleofradius1andcentre O isdrawnbelow. Thelinesegment AC istangenttothecircle, and B isthepointofintersectionof OC withthe circle.Findtheareaoftheshadedregionshown inthefigurebelow.

(a)Giventhat OA = 7and AC = 5,determine thelengthofarc AB

(b)Giventhat OA = 4and BC = 1,determine thelengthofarc AB

SAMPLEPAGES

(c)Giventhat OA = 2andthelengthofarc AB is1,determine OC

9.Point A is1kilometrefromtheedgeofa circularlakeofradius1kilometre.Jamesruns alaparoundthelakestartingfrompoint A,as indicatedbelow.Findthelengthofhisjourney.

10. Distancetothehorizon. Alighthousehasa heightof d metresabovesealevel.Theradius oftheEarthis r = 6371kilometres.Weare interestedinmeasuringthelength l ofthearc fromthebaseofthelighthousetoapointonthe horizon.

12.Tomstands2mfromacylindricalsiloofradius 5m. 5m 2m T

(a)Showthatcos θ = r r+d

(b)Explainwhy l = θ 360 × 2πr.

(c)Giventhelighthouseis d = 20metrestall, findthelength l ofthearctothenearest kilometre.

(d)Giventhearclengthtothehorizonis l = 20 km,findtheheight d ofthelighthousetothe nearestmetre.

11.Threecirclesaretangenttoeachotherasshown inthediagrambelow.Twoofthecircleshave radiiof6,andthesmallercirclehasaradiusof 4.Findtheareaboundedbythesethreecircles.

(a)Findthepercentageofthesilothathecan see,correcttothenearestwholepercentage.

(b)Findthedistancefromthesilo(tothe nearestmetre)thatTomshouldstandsothat hecansee40%ofthesilo.

13† Agoatistetheredbyropetothecornerofa grassyfieldwhoseshapeisanequilateraltriangle ofarea400m2.Findthelengthoftheropeifthe goatcanaccesshalfofthefield’sgrass.

14† . Achordsplitsacircleintotworegionsofarea a and b.Thechordsubtendsanangleof θ atthe centre.Showthat θ = sin θ + 2aπ a+b

15† Considerthreecirclesofradius r,eachofwhich passesthroughthecentresoftheothertwo circles.Thedarkshadedregioncommontoall threecirclesiscalleda Reuleauxtriangle

FindtheReuleauxtriangle’s perimeter(a)area(b)

16† Considertwotangentcirclesofradius a and b (where a > b),asshowninthediagrambelow.

(a)

(b)

(c)

Findthelengthoftheshorteststringthat canbewrappedaroundthecircles.

Suppose a = b.Whatdoesyourexpressionin (a)simplifyto?

Suppose a isfixedand b approaches0.What doesyourexpressionin(a)approach?

Supposeinsteadthatthecentresofthecircles aredistance c apart(where c > a + b),asshown inthediagrambelow.

c b

(d)Findanexpressionforthelengthofthe shorteststringthatcanbewrappedaround thecircles,intermsof a, b and c.

17† (a)Findtheradiusofthesectorofperimeter4 thathasmaximalarea.(Assumethesector doesnotcomprisetheentirecircle.)

(b)Findtheradiusofthesectorofarea16that hasminimalperimeter.(Assumethesector doesnotcomprisetheentirecircle.)

18† . Considerthefigureshownbelow.Supposethat ∠AOB = θ isanacuteangleandismeasuredin radians.

Notethat

area(∆AOB) ≤ area(sector(AOD)) ≤ area(∆COD)

Usingthisfact,provethat cos θ ≤ sin θ θ ≤ 1 cos θ

(a) Hence,explainwhy sin θ θ approaches1as θ approaches0. (b)

19† Aregular n-sidedpolygonisinscribedinacircle ofradius r.Thesidelengthofthepolygonis denotedby s,andthedistancefromthecentre ofthecircletoanysideofthepolygonisdenoted by a r s a

Findanexpressionfor r intermsof s (a)

(c)

Findanexpressionfor r intermsof a. (b) Showthatthearea An ofthepolygonisgiven by A

(d)

Provethat An approaches π as n approaches ∞.Hint:Useyouranswertotheprevious exercise.

20‡ Apointisrandomlychoseninsideofaunit square(uniformly).Findtheprobabilitythat thepointislessthan1unitawayfromallfour verticesofthesquare.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.