Enrichment Maths Volume 1 - uncorrected sample chapter 11

Page 1


11

ThePythagoreanTheorem

11AProofandsimpleapplications

ThePythagoreanTheorem,whichgivesarelationbetweenthelengthsofthesidesofaright-angledtriangle, isafundamentalresultingeometry.Itstatesthatthesquareofthe hypotenuse (thesideoppositethe right-angle)isequaltothesumofthesquaresoftheothertwosides.Aproofofthistheoremisgivenbelow.

hypotenuse

ThePythagoreanTheoremisnamedaftertheancientGreekphilosopherPythagorasofSamos,1 eventhough itappearsthattheresultwasknowntomathematiciansoftheFirstBabylonianDynastymorethanone thousandyearsearlier.Moreover,thereislittleevidencethatPythagorashimselfwasawareofthetheorem thatbearshisname.

Theorem1(PythagoreanTheorem)

If c isthelengthofthehypotenuseofaright-angledtriangleand a and b arethelengthsoftheother twosides,then

Thismeansthattheareaoftheorangesquareisequaltothesumoftheareasoftheblueandpurple squares.

1 PythagorasofSamos(c.570-c.495BC)wasanancientGreekphilosopherwhoseworkinfluencedPlatoandAristotle. DespitethefactthatthePythagoreanTheorembearshisname,historianscontesttheextentofhiscontributiontomathematics.

Proof

Thetwofiguresbelowhavethesametotalarea.

Therefore, (orangesquare)+ 4(redtriangles) = (bluesquare)+(purplesquare)+ 4(redtriangles) Ifweeliminatethefourtrianglesfromeachfigure,thentheareathatremainswillalsobethesame. Therefore,

Findthevalueof x ineachofthefollowingfigures.

Note. Ineachoftheaboveproblemsweonlyrequiredthepositiverootofeachequation.Thatis,the equation x2 = 25hastwosolutions: x = 5and x = 5,butonlythefirstofthesecanbealength.

Example1

Example2

Givencoordinates A( 3, 1) and B(2, 2),finddistance AB.

Solution

Points A and B areshownontheadjacentsetofaxes. AB2 = 52 + 32 = 25 + 9 = 34 AB = √34.

Therefore, AB = √34.

Example3

Inthegridofsquaresbelow,distance AB = 29.Findthesidelengthofeachsquare.

Solution

Let x bythesidelengthofeachsquare.Then

Example4

Findtheareaoftheisoscelestrianglewithtwosidesoflength3andonesideoflength4.

Solution

Bisectthetriangle.Let h betheheightoftheresultingpairofright-angled triangles.Then

Therefore,theareais

11AExercises

1.Findthevalueof x ineachofthediagramsbelow:

2.Findthevalueof x ineachofthediagramsbelow byrepeatedapplicationsofthePythagorean Theorem:

3.(a)Findthevaluesof x, y and z inthediagram below.

(b)Theabovediagramgivesawayofconstructingsegmentsoflength √2, √3and √4. Showhowyoucouldextendthediagramto constructasegmentoflength √5.

4.Inthediagrambelow,findeachofthefollowing lengths.

11.AmorealgebraicproofofthePythagorean Theoremcanbefoundinthefollowingdiagram.

( 2, 3)

(1, 1)

(2, 1)

( 2, 2)

(a)Findthetotalareaofthelargesquareby expanding (a + b)2 .

(b)Findthetotalareaofthelargesquareby findingthesumoffourtriangularareasand theareaofthesmallersquare.

(e) CD (f)

AB (a) AC (b) AD (c) BC (d)

5.Generalisetheworkyoudidintheprevious questiontofindaformulaforlength AB given coordinates A(x1,y1) and B(x2,y2).

6.Inthesquaregridbelow,distance AB = 34.Find thesidelengthofeachsquare.

(c)Equatethetworesults,anddeducethe PythagoreanTheorem.

12.(a)Findtheareaofthelargestregularhexagon thatfitsinsideacircleofradius1.

(b)Findtheareaofthesmallestregularhexagon thatfitsaroundacircleofradius1.

13.Atrianglehassidesoflength5,6and7.

(a)Findthelengthofitslongestaltitude,as shownbelow.(Notethatanaltitudeisaline segmentdrawnfromavertexofatriangle thatmeetstheopposingsideatarightangle.)

7.Findtheareaofthetrianglesshownbelow.

(a)

(b)

8.Findtheareaofaregularhexagonwhoseside lengthis2.Hint:splitthehexagonintoequilateral triangles.

9.Findthestraightlinedistancefrom A to B inthe diagrambelow.

10.Explainwhythehypotenuseinaright-angled trianglewillalwaysbethelongestside.

5 7 6

(b)Hence,find theareaofthetriangle.

(c)Hence,findthelengthofitsshortestaltitude.

14.Theareaofarectangleis50anditsperimeteris 30.Findthelengthofitsdiagonal.

15.Inaright-angledtriangle,thealtitudedrawnto thehypotenuse c dividesthehypotenuseintotwo linesegmentsoflengths p and q.Ifwedenotethe lengthofthealtitudedrawntothehypotenuseby h,thenprovethat h = √pq. a b p q

11BApplicationsofthePythagoreanTheorem

ThePythagoreanTheoremiscentraltothestudyofgeometryprimarilybecauseofitsconnectiontothenotions ofdistanceandlength.Thisconnectionalsomakesitimmenselyimportantforavarietyofapplications.

Example1

Aropetiedtothetopofaflagpoleis1mlongerthanthepolewhenhangingstraightdown.Whenpulled tightwiththelowerendontheground,itis4mfromthebaseofthepole.Howtallistheflagpole?

Solution

If h mistheheightoftheflagpole,thenthelengthoftheropeis (h + 1) m.So

Theflagpoleis7 5metrestall.

Example2

Townsarelocatedat O(0, 0), A(16, 0),and B(0, 12) (distancesinkilometres).Astraightroadjoins A and B,andanewroadistoconnect O tothisroad.Findtheshortestpossiblelengthofthenewroad.

Solution

Let x bethelengthof AB.Then,

Nowdrawalinethrough O perpendiculartotheexistingroadthough A and B.Thiswillbetheshortestroad.Let h beitslength.Tofind h,we findtheareaof △AOB twodifferentways:

Problemsinvolvingdistanceofteninvolvecircles.A circle isthesetofallpointsintheplanewhosedistance fromafixedpointisequaltoaconstant.Thefixedpointiscalledthe centre ofcircleandtheconstant distanceiscalledthe radius ofthecircle.

Example3

Findthesidelengthofthesmallestsquarethatcontainstwotouchingcirclesofradius1.

Solution

Constructaright-angledtrianglewhosehypotenusespansthe centreofthetwocircles.Let x bethesidelengthofthisisosceles triangle.UsingthePythagoreanTheorem,

Example4

Asquare isinscribedinsideasemicircleofradius5.Findtheareaofthesquare.

Solution

Let2x be thesidelengthofthesquare.Therefore,

thesquareisthen

TheTriangle Inequality

ThePythagoreanTheoremallowsustogiveageometricproofoftheso-called triangleinequality.This characteriseswhenthreepositivenumbersformthesidelengthsofatriangle.Ourproofrequiresonesimple butusefulfact:

Thehypotenuseinaright-angledtriangleislongerthaneitheroftheothertwosides.

Toseewhythisistrue,notethat c2 = a2 + b2 > a2.Therefore, c > a.

Theorem1(TriangleInequality)

Suppose a,b,c > 0.If a, b and c arethesidelengthsofatriangle,then c < a + b

Proof

Theanglebetweenthesidesoflengths a and c iseitheracute,right-angled,orobtuse.Weconsidertwo cases.

Case1.Firstsupposethattheangleisacute.A linesegmentperpendiculartothesideoflength c dividesthissideintotwolinesegmentsoflength d and e.

Case2.Supposethattheangleisrightorobtuse. Alinesegmentperpendiculartothesideoflength c dividesthesideoflength b intolinesegmentsof length d and e.

e

Therefore,

a > d (as a isahypotenuse)

b > e (as b isahypotenuse)

Therefore,

a + b > d + e = c.

Therefore,

d > c (as d isahypotenuse)

Therefore, a + b > b ≥ d > c.

Note. Theconverseofthetriangleinequalityisalsotrue.Thatis,suppose wehavethreepositivenumbers a,b and c,andthesumofanytwoofthese isgreaterthanthethird.Thenthereisatrianglewhosewhosesideshave lengths a,b and c.Toprovethis,suppose c isthegreatestofthese.Drawa linesegment AB oflength c.Drawacircleofradius b centredat A anda circleofradius a centredat B.Since c < a + b,theinteriorsofthecircles overlap,sothecirclesintersectatsomepoint C.Then ABC istherequired triangle.

a b

11BExercises

1.Aropeistiedtothetopofaflagpole.Whenit hangsstraightdown,theropeis2mlongerthan thepole.Whentheropeispulledtightwiththe lowerendontheground,theropeis3metres fromthepole’sbase.Howtallistheflagpole?

2.Threetownsarelocatedatcoordinates O(0, 0),A(8, 0) and B(0, 6),wherealldistances aremeasuredinkilometres.Thereisastraight roadthatjoinstowns A and B.Athirdstraight roadistojointhetownat O totheexistingroad. Whatistheshortestpossiblelengthofthisroad?

3.Abushwalkerstartsatpoint A andfinishes atpoint B bywalking10kmeast,9kmnorth, 4kmwest,and1kmsouth.Findthestraight-line distancefrom A to B

4.Determinewhichright-angledtriangleshaveside lengthsthatareallconsecutiveintegers.Hint:let n bethesidelengthoftheshortestside.

5.Determinewhichright-angledtriangleshaveside lengthsthatareallconsecutiveevenintegers. Hint:let n bethesidelengthoftheshortestside.

6.Asoccerpitchis100mfromgoaltogoal.Apiece ofropeoflength100metresisattachedtothe baseofeachopposinggoal.Therope’slengthis increasedby(only)20centimetres.Theropeis nowlooseandcanbepickedupinthemiddleto formatriangle.Findtheheightofthetrianglein metres,accuratetothetwodecimalplaces.Can amousefitundertherope?

9.Onesideofsquareliesalongthediameterofa semicircleandtwoverticesofthesquareareon thecircle’scircumference.Iftheradiusofthe semicircleis10,thenfindtheareaofthesquare.

7.Twoantsarelocatedattheorigin (0, 0).One beginswalkingnorthataspeedof2cmper secondatthesametimeasthesecondbegins walkingeastataspeedof3cmpersecond.How manysecondspassbeforethedistancebetween thetwoantsis13cm?

10.(a)Determineaformulaforthestraight-line distance d tothehorizon,intermsofthe radius R ofaplanet,andtheheight h from whichthehorizonisviewed.

UNCORRECTEDSAMPLEPAGES

8.Theperimeterofarectangleis16mandthe lengthofitsdiagonalsis6m.Findtheareaof therectangle.

(b)If h istinycomparedto R,thenexplainwhy d ≈ √2Rh

11.Twocylindersofradius r liesidebysideonaflat surface.Athirdcylinderofradius r restsontop ofthetwocylinders.Findtheheightabovethe groundofthecentreofthetopmostcylinder.

12.Therectanglebelowcontainstwotouching semicirclesofradius r.Findtheareaofthe rectangle.

13.Acylindricalglasshasradius4cmandheight 10cm.Anantislocatedat A ontheupperrimof theglass.Thereisadripofmilkontheopposite sideonthebaseoftheglassat M .Theantwalks alongapaththatminimisesthedistanceshemust cover.Howfardoesshewalk?

18† . Threecirclesaredrawntangenttoboththe circumferenceanddiameterofasemicircle,as showninthediagrambelow.Thetwosmaller circlesofradius r aretangenttothelargercircle ofradius R.Findtheratio R ∶ r

14.Acarpenterhasasquarepieceofwoodof dimensions1metreby1metre.Hewantstocreate aregularoctagonbycuttingoffthecorners.What distance x fromtheedgeofthesquaredoesthe carpenterneedtomakehiscuts?

19† . Acircleofradius r andasemicircleofradius R areinscribedinalargerquartercircle,asshown inthediagrambelow.Findtheratio R ∶ r.

15† . (a)Aright-angledtrianglehasintegerside lengths.Ifitsperimeterequals30,thenfind thetriangle’slengths.

(b)Aright-angledtrianglehasintegerside lengths.Ifitsperimeterequals40,thenfind thetriangle’slengths.

(c)Showthattherearetwodifferentright-angled triangleswithintegersidelengthswhose perimeterequals60.

(d)Showthatthereisnoright-angledtriangle withintegersidelengthswhoseperimeter equals20.

16† . Findthelengthofthediagonalofthesmallest squarethatcontainstwo tangent circles (touchingatexactlyonepoint),oneofradius r andtheotherofradius R

17† Twosemicirclesofradius R aredrawnonthe diameterofasemicircleofradius2R.Acircleof radius r isdrawntangenttoallthreesemicircles, asshowninthediagrambelow.Findtheratio R

20† Twosemicirclesofradius R aredrawntangent toacircleofradius r,asshowninthediagram below.Eachsemicirclepassesthroughthecentre oftheothersemicircle.Findtheratio R

r

21† Threecirclesofradii r1 < r2 < r3 aremutually tangentandalsotangenttoahorizontalline,as showninthediagrambelow.Findanexpression for r1 intermsof r2 and r3

22† . Let E beapointinsiderectangle ABCD.Let AE = a, BE = b, CE = c and DE = d.Provethat a2 + c2 = d2 + b2 .

(a)WritedowntheFareysequences F4, F5, F6, and F7

a b c d

A

B C D E

23† Consideraright-angledtrianglewithsides a,b and c.Drawanaltitudefromtheright-angleto thehypotenuse,andletitslengthbe h a b c h

(a)Showthat c = ab h

(b)The InversePythagoreanTheorem statesthat 1 a2 + 1 b2 = 1 h2 .

Provethisresult.

24† . Findalloftheright-angledtriangleswithinteger sidelengthssuchthattheareaandperimeterare equal.

25‡ Forthisquestionallourfractionswillbeassumed tobewrittenwithnon-negativenumeratorsand denominators.

The nth Fareysequence Fn isthelist,written inincreasingorder,ofallfractionsbetween0and 1whichhavedenominatorslessthanorequalto n (whenexpressedasirreduciblefractions).For example,

Wehaverepresented F4 onthenumberlinewith neighbouringfractionsconnectedbycirculararcs. Thisiscalleda Fareydiagram

UNCORRECTEDSAMPLEPAGES

1 = { 0 1 , 1 1 } , F2 = { 0 1 , 1 2 , 1 1 } ,

Wesaythat a b and c d kiss if ad bc = ±1.

(b)Provethatifthefractions a b and c d kiss,then theymustbothbeirreducible.

Infact, a b and c d kissifandonlyiftheyare neighboursinaFareysequence,thoughwewill notprovethishere.

Wedefinethe mediant of a b and c d tobe a+c b+d

(c)Provethatif a b < c d ,thentheirmediant satisfies:

(d)Provethatif a b and c d kiss,thentheirmediant a+c b+d kissesboth a b and c d

(e)Provethatif a b and c d areneighboursina Fareysequence,thentheirmediantisthe uniquefractionthatoccursinbetween a b and c d thatkissesthemboth.Inparticular, themediantisthefirstfractionthatoccurs between a b and c d inalaterFareysequence.

Toanyfraction a b wedefineitsassociated Ford circle tobethecirclewithradius 1 2b2 thatlies abovethenumberline,andtouchesitatthepoint a b

(f)Provethat a b and c d kissifandonlyiftheir associatedFordcirclesaretangent.

Beginningwiththefractions 0 1 and 1 1 ,wecan takemediantsandsketchtheassociatedFord circles.Wecaniteratethisproceduretogenerate

infinitelymanycircles,andhavedrawnthefirst fewiterationsbelow.Eachcirclerepresentsa rationalnumber,andstartingwiththeintegers n 1 wecangenerateallrationalnumbersinthis way,thoughwewillnotprovethishere.Notethat thediagramisparticularlypleasingwhenoverlaid ontotheFareydiagram,asshownadjacent.

(g)ProvethatthecirculararcsintheFarey diagramadjacentmeettheFordcirclesat rightangles.

11CThePythagoreanTheoreminthreedimensions

A facediagonal ofarectangularprismisaline connectingoppositeverticesofthesameface.A spacediagonal ofarectangularprismisaline connectingtwoverticesthatarenotonthesame face.Wecanfindthelengthofaspacediagonalby repeatedapplicationofthePythagoreanTheorem.

Example1

Findthelengthofthespacediagonalinaboxwhosesidesare2cm,3cmand5cm.

Solution

Wefirstconsiderthefacediagonaloflength x cm,aspictured.Usingthe PythagoreanTheorem,wefindthat,

Wenowfindthelength d cmofthespacediagonal.Applyingthe PythagoreanTheoremonceagain,weseethat,

Theorem1(PythagoreanTheoreminThreeDimensions)

Let a,b and c bethesidelengthsofarectangularprism.If d isthelengthofthespacediagonal,then

Proof

Wefirstconsiderthefacediagonaloflength x,aspictured.Usingthe PythagoreanTheorem,wefindthat,

Wenowfindthelength d ofthespacediagonal.ApplyingthePythagorean Theoremonceagain,weseethat,

Theaboveformulareducesatwo-stepproblemtoaone-stepproblem.

Example2

Findthelengthofthespacediagonalofarectangularprismwhosesidesare8,4and1unitsinlength.

Solution

ByanapplicationofthePythagoreanTheoreminthreedimensions,

Example3

Theface diagonalsofarectangularprismaremeasuredtobe5, 6and7units.Findthelengthofthe spacediagonal.

Solution

Letthesidesbeoflength a,b and c.If d isthelengthofthespacediagonal, then d2 = a2 + b2 + c2.BythreeapplicationsofthePythagoreanTheorem,

Addingthesethreeequationstogether,thendividingbytwo,gives,

1.Findthelengthofthespacediagonalforeachof theserectangularprisms.

5.Foreachofthesepyramids,findtheperpendicular distancefromtheapextothebase,asshown:

2.Findthelengthofthelongestthin,inflexiblestick thatcanbeplacedinsideacubeofsidelength3 metres.

3.Thespacediagonalofacubeis12cmlong.Find itssidelength.

4.Findthevalueof x inthefigurebelow:

6.Thefacediagonalsofarectangularprismare measuredtobe7, 8and9units.Findthelength ofthespacediagonal.

7.Thespacediagonalofarectangularprismis1 cmlongerthanitsfirstside,4cmlongerthanits secondside,and5cmlongerthanitsthirdside. Findthelengthofthespacediagonal.

8.Thespacediagonalofarectangularprismis1 cmlongerthanitsfirstside,5cmlongerthanits secondside,and8cmlongerthanitsthirdside. Findthelengthofthespacediagonal.

11DTheconverseofthePythagoreanTheorem

WearenowacquaintedwiththePythagoreanTheorem.Takeatrianglewithsidelengths a,b and c

Statement: Iftheanglebetween a and b isaright-angle,then a2 + b2 = c2

Ifweswitchthehypothesisandtheconclusioninthisstatement,thenweobtainthe converse statement:

Converse: If a2 + b2 = c2,thentheanglebetween a and b isaright-angle.

Wewillnowprovethattheconverseholds.

Theorem1(ConverseofthePythagoreanTheorem)

Foranytrianglewithsidelengths a, b and c,if a2 +b2 = c2,thentheanglebetween a and b isaright-angle.

Proof

Wearegiventhat a2 + b2 = c2.Firstsupposetheanglebetweenthesides oflength a and b exceeds 90○.Thenwecanextendonesidetoformthe right-angledtriangleshownadjacent.UsingthePythagoreanTheorem

Therefore, c2 = c2 + 2ae > c2,whichisimpossible.Wecanfindasimilar contradictioniftheanglebetweenthetwosidesislessthan90○

Determineifthesetrianglesareright-angled.

Example1

Solution

(a)

Ifthisisaright-angledtriangle,thenthe longestsidewillbethehypotenuse.Therefore,

Ifthisisaright-angledtriangle,thenthe longestsidewillbethehypotenuse.Therefore,

11DExercises

1.Determinewhichofthesetrianglesarerightangled.

trianglehavelengths2and3,respectively.Find thelengthofthethirdside.

5.(a)Showthatatrianglewhosesideshavelengths √2, √3and √5hasarightangle.

(b)Let a,b > 0.Showthatatrianglewithsides √a, √b and √a + b hasarightangle.

6.Aright-angledtrianglehasonesideoflength 5andanothersideoflength6.Therearetwo possiblesidelengthsforthethirdsideofthis triangle.Whatarethey?

7.Consider △ABC shownbelow.

2.Atrianglehassideswhoselengthsare7,24and 25.Determineifthistrianglehasarightangle.

3.Atrianglehassideswhoselengthsare √2, √7and 3.Determineifthistrianglehasarightangle.

4.Onesideandthehypotenuseofaright-angled

(a)Findeachofthelengths:

(b)Showthat △ABC hasarightangle,andthen finditsarea.

8.Let r > 1.Supposearight-angledtrianglehas sidesoflength1, r and r2.Findthevalueof r. Hint:let x = r2

9† . Let m > 0.Considerthetwolinessketchedbelow. Theequationsoftheselinesare y = mx and y = 1 m x.Point A islocatedonthefirstline,and point B islocatedonthesecondline.

(a)Findeachofthefollowinglengths: OA (a) OB (b) AB (c)

(b)Hence,usingtheconverseofthePythagorean Theorem,showthatthesetwolinescrossat right-angles.

10† Arjunmeasurestwosidesofatriangleandthese sumto31.Blakemeasurestwosidesofthesame triangleandthesesumto32.Cadenmeasurestwo sidesofthetriangleandthesesumto49.Without measuringanything,Divyadeclaresthistobea right-angledtriangle.HowcanDivyaknowthis forsure?

11EPythagoreantriples

A Pythagoreantriple consistsofthreepositiveintegers a, b and c forwhich a2 + b2 = c2.Suchatripleis oftenwrittenas (a,b,c).Well-knownPythagoreantriplesare (3, 4, 5) and (5, 12, 13)

TheconverseofthePythagoreanTheoremensuresthatifthesidelengthsofatriangleformaPythagorean triple,thenthistrianglewillhavearightangle.

DeterminewhichofthesearePythagoreantriples:

8, 15, 17) (a)

289. As a2 + b2 = c2,thisisaPythagoreantriple.

7, 11, 13)

49 + 121

170 c 2 = 132

169. As a2 +b2 ≠ c2,thisisnotaPythagoreantriple.

Example1

Example2

Provethatif (a,b,c) isaPythagoreantripleand k isapositiveinteger,then (ka,kb,kc) isalsoa Pythagoreantriple.

Solution

Wearegiventhat a2 + b2 = c2.Toshowthat (ka,kb,kc) isaPythagoreantriple,wecalculate

Therefore, (ka,kb,kc) isalsoaPythagoreantriple.

ConsiderthePythagoreantriple (a,b,c).If a, b and c donotshareanyfactorsotherthan1,thenthisiscalled a primitivePythagoreantriple.EachPythagoreantriplecanbeassociatedwithaprimitivePythagorean triplebydividingtheintegersbytheirgreatestcommondivisor.Astheaboveexampleshows,anyprimitive PythagoreantriplealsogivesrisetoaninfinitefamilyofPythagoreantriples.

Example3

ShowthatthereisexactlyonePythagoreantripleforwhich3istheshortestside.

Solution

Since (3,b,c) isaPythagoreantriple,

As c + b > c b wemusthave c b = 1and c + b = 9.Addingthesetwoequationsgives2c = 10.Therefore, c = 5and b = 4.

11EExercises

1.Determinewhichofthefollowingare Pythagoreantriples:

(3, 4, 5) (a)

(5, 6, 7) (b)

(6, 8, 10) (c) (14, 22, 26) (d)

(8, 15, 17) (e) (5, 12, 13) (f)

2.ShowthatthereisexactlyonePythagoreantriple oftheform (5,b,c).

3.ShowthatthereareexactlytwoPythagorean triplesoftheform (9,b,c).

4.ShowthatthereareexactlytwoPythagorean triplesoftheform (8,b,c).

5.(a)ShowthatthereisonlyonePythagorean triplewhosehypotenuseis5.

(b)Provethatthismethodalwaysresultsina Pythagoreantriple.

8† DetermineallPythagoreantriplesforwhichthe hypotenuseisoneunitlongerthanoneofitssides.

9.Let m,n ∈ N where m > n. Euclid’sformula statesthatif

a = m 2 n 2,b = 2mn,c = m 2 + n 2 ,

then (a,b,c) isaPythagoreantriple.Infact,it canbeshownthateveryprimitivePythagorean tripleisofthisformforsomechoiceof m and n ofoppositeparity,satisfyingGCD(m,n) = 1.

(a)FindthePythagoreantriplecorresponding to:

m = 3and n = 4(i)

(b)ShowthatthereisnoPythagoreantriple whosehypotenuseis6.

m = 4and n = 7(ii)

m = 5and n = 8(iii)

(c)Somenumberscanappearasthehypotenuse ofmorethanonetriple.Showthat (15, 20, 25) and (7, 24, 25) arebothPythagoreantriples.

6.(a)Showthat (1,b,c) and (2,b,c) cannotbe Pythagoreantriples.

(b)ShowthatthereisaPythagoreantripleofthe form (n,b,c) forall n ≥ 3.Hint:considerthe casewhere n isevenandthenthecasewhere n isodd.

7.Inthisquestionwegiveaclevermethodforeasily generatingPythagoreantriples.

• Pickanytwooddnumbersthatdifferbytwo, suchas3and5.

• Addtheirreciprocals.Here, 1 3 + 1 5 = 8 15 .

• Thenumeratorandthedenominatorofthe resultingfractionwillbethefirsttwoterms ofaPythagoreantriple.Here,thetripleis (8, 15, 17),since82 + 152 = 172 .

(a)Findthetripleobtainedifyoubeginwiththe numbers:

(a)

(b)Findthevaluesof m and n thatyieldthese Pythagoreantriples:

(3, 4, 5) (i)

(5, 12, 13) (ii)

(7, 24, 25) (iii)

(c)Provethatif a,b and c aregivenbyEuclid’s formula,then (a,b,c) isaPythagoreantriple.

10† Suppose (a,b,c) isaprimitivePythagoreantriple.

(a)Showthatpreciselyoneof a and b isdivisible by2.

(b)Showthatpreciselyoneof a and b isdivisible by3.

(c)Showthatpreciselyoneof a and b isdivisible by4.

(d)Showthatpreciselyoneof a, b and c is divisibleby5.

11† Suppose (a,b,c) isaprimitivePythagoreantriple. Provethat (c a)(c b) 2 isalwaysaperfectsquare.

12† . Isitpossiblefortwodifferentright-angled triangleswithintegersidelengthstohave thesameperimeter?Hint:Considerthetriples (a,b,c) and (d,e,f ) where

and

Byequatingtheirperimeters,showthat

(m + n) = p(p + q)

Canyoufindvaluesof m,n,p and q thatsatisfy thisequation?

13† Usingasquaresheetofpaper,wecaneasilyfolda trianglesimilartothe (3, 4, 5) triangle,asfollows.

• Startwithasquaresheetofpaper.

• Findthemidpointsofthesides.

• Foldalinethroughthetopmid-pointtothe bottomleftcorner,andalinethroughthetop mid-pointtothebottomrightcorner.

• Foldalinethroughtherightmid-pointtothe bottomleftcorner.

Usethediagrambelow,andsimilartriangles, toprovethatthetriangularregionformedin themiddleissimilartothe (3, 4, 5) triangle. Hint:Firstshowthattheanglesindicatedinthe diagramareequal.

14† . Supposethat (a,b,c) isaPythagoreantriple. Provethat (a + 1,b + 1,c + 1) isnotaPythagorean triple.

15† Withalittlemorework,wecangeneralisethe previousquestion.Supposethat (a,b,c) isa Pythagoreantriple.Let d ∈ N.Provethat (a + d,b + d,c + d) isnotaPythagoreantriple.Hint:In anytrianglewithsides a, b and c,weknowthat a + b > c

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.