Odpady jądrowe – globalny raport Focus Europe

Page 75

WNWR 2019  —  5. WASTE MANAGEMENT CONCEPTS

75

5.5 SUMMARY Nuclear waste management concepts have evolved slowly over the past decades. First, governments practiced the strategy of diluting and dumping radioactive materials in the environment in the early days of nuclear power. It was gradually followed by a rethinking towards the containment of waste and the search for suitable sites above or in geologically suitable layers of the continental crust. However, the projects realized from the 1960s onwards were only able to meet the high safety expectations to a very limited extent, if at all. More than 70 years after the start of the nuclear age, no country in the world has a deep geological repository for spent nuclear fuel in operation. Finland is the only country that is currently constructing a permanent repository for this most dangerous type of nuclear waste. Besides Finland, only Sweden and France have de facto determined the location for a high-level waste repository in an early confinement process. The US is operating the Waste Isolation Pilot Project (WIPP). However, this repository is only used for long-lived transuranic waste from nuclear weapons, not for spent nuclear fuel from commercial reactors. Despite multiple examples of failed selection procedures and abandoned repositories, current national and international governance show a preference for geological disposal. This requires clear and ambitious conditions for the site selection, exploration, and approval processes. Still, there is no guarantee for the feasibility of deep geological disposal. This is why the process of searching for such repositories must be implemented with extraordinary care on the basis of industrial feasibility and accompanied by appropriate monitoring. Some scientists consider that monitored, long-term storage in a protected environment is more responsible, much faster to achieve and should therefore be implemented. Overall there is a strong consensus that the current state of research and scientific debate and exchange with politicians and involved citizens is not adequate for the magnitude of the challenge. The conditioning, transport, storage and disposal of nuclear waste constitute significant and growing challenges for all nuclear countries. These developments show that governments and authorities are under pressure to improve the management of interim storage and disposal programs. Accordingly, standards must be implemented for the governance of the programs, including planning quality and safety, quality assurance, citizen participation and safety culture. Interim storage of spent nuclear fuel and high-level waste will continue for a century or more. With deep geological repositories not available for decades to come, the risks are increasingly shifting to interim storage. The current storage practices for spent nuclear fuel and other easily dispersible intermediateand high-level waste forms were not planned for the long-term. These practices thus represent a growing and particularly high risk, especially when other options are available (solidification, dry storage) in hardened facilities. Extended storage of nuclear waste increases risks today, adds billions in costs, and shifts these burdens to future generations.


Turn static files into dynamic content formats.

Create a flipbook

Articles inside

Quantities of waste

2hr
pages 97-148

Summary

1min
page 94

Costs and financing

2min
page 93

Waste management policies and facilities

2min
page 92

Financing schemes for interim storage

2min
page 84

Integrated financing schemes

2min
page 87

6.4 Summary

5min
pages 88-89

Financing schemes for disposal

6min
pages 85-86

Quantities of waste

2min
page 91

Decommissioning costs

6min
pages 80-81

Accumulation of the funds

3min
page 78

Overview and nature of the funds

2min
page 77

5.5 Summary

2min
page 75

Extended storage

4min
pages 73-74

Deep borehole disposal

3min
page 70

LILW-repositories

3min
page 67

Host rocks

2min
page 66

5.1 Historical background

16min
pages 58-62

5.2 The context of nuclear waste management

5min
pages 63-64

4.7 Summary

2min
page 57

4.5 Risks from the reprocessing of spent nuclear fuel

5min
pages 53-54

Risks to nuclear workers

3min
page 51

Uranium mine tailings

3min
page 49

Health risks from exposures to uranium

3min
page 47

4.1 Radiation risks of nuclear waste

2min
page 45

Uranium mining

3min
page 48

4.2 Risks from uranium mining, mine tailings, enrichment, and fuel fabrication

2min
page 46

3.4 Summary

4min
pages 43-44

Decommissioning waste

2min
page 34

Uranium mining, milling, processing and fuel fabrication

1min
page 22

Executive summary

28min
pages 11-20

Operational waste

2min
page 32

2.4 Summary

2min
page 30

2.3.1 The IAEA classification

5min
pages 25-26

2.1 Types of waste: the nuclear fuel chain

2min
page 21

Foreword

5min
pages 3-4

Key Insights

2min
pages 9-10
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.