Article
https://doi.org/10.1038/s41467-024-47696-5
Exosome-coatedoxygennanobubble-laden hydrogelaugmentsintracellulardeliveryof exosomesforenhancedwoundhealing
Received:8October2023
Accepted:9April2024

Checkforupdates
XiaoxueHan 1,2,3,4,ChaimongkolSaengow3,5,LeahJu1,2,WenRen1,2, RandyH.Ewoldt 3,5 &JosephIrudayaraj 1,2,3,4,6
Woundhealingisanobviousclinicalconcernthatcanbehinderedbyinadequateangiogenesis,inflammation,andchronichypoxia.Whileexosomes derivedfromadiposetissue-derivedstemcellshaveshownpromiseinacceleratinghealingbycarryingtherapeuticgrowthfactorsandmicroRNAs,intracellularcargodeliveryiscompromisedinhypoxictissuesduetoactivated hypoxia-inducedendocyticrecycling.Toaddressthischallenge,wehave developedastrategytocoatoxygennanobubbleswithexosomesandincorporatethemintoapolyvinylalcohol/gelatinhybridhydrogel.Thisapproach notonlyalleviateswoundhypoxiabutalsooffersanefficientmeansofdeliveringexosome-coatednanoparticlesinhypoxicconditions.Theself-healing propertiesofthehydrogel,alongwithitscomponent,gelatin,aidsinhemostasis,whileitscrosslinkingbondsfacilitatehydrogenperoxidedecomposition, toamelioratewoundinflammation.Here,weshowthepotentialofthismultifunctionalhydrogelforenhancedhealing,promotingangiogenesis,facilitatingexosomedelivery,mitigatinghypoxia,andinhibitinginflammationina maleratfull-thicknesswoundmodel.
Poorwoundhealingfollowingtraumaandsurgicalproceduresconstitutesapressingglobalmedicalissue,impactingmillionsofindividualsannuallyandposingsubstantialchallengestohealthcare professionals1,2.Thisconcernarisesduetotheadverseeffectson patients’ qualityoflife,heightenedpsychosocialstress,andtheconsiderable financialburdenassociatedwithprolongedclinicalwound management.Thestatisticsrevealthatinadequatewoundhealing affects6.5millionpatientsintheUS,andamongallwoundtypes, surgicalwounds,beingthecostliest,significantlycontributetototal Medicarespending3.Themaingoalsinmanagingwoundsencompass expeditiouswoundclosureandtheattainmentofascarthatisboth functionalandaestheticallypleasing4–6.However,anomalouswound healingcanbetriggeredbythedevianceofinflammationandhypoxia
fromtheirtypicalpatternsduringthenormalhealingprocess,thereby inducingdelayedwoundclosure,keloidformation,andthedevelopmentofhypertrophicscars7 8.Therefore,effectivemanagementof hypoxiaandinflammationisofparamountimportanceinthedevelopmentofnextgenerationadvancedwounddressings.
Adipose-derivedstemcell(ADSC)-derivedexosomeshave emergedaspromisingtherapeuticagentsintissueregeneration.This isprimarilyattributedtotheircapabilitytofunctionasintercellular communicatorsandharborarichcargoofbioactivemolecules, includingproteins,nucleicacids,andlipids.Thesemoleculescontributetowoundhealingbyexertinganti-inflammatoryeffects,inhibitingapoptosis,promotingangiogenesis,andfacilitatingenhanced cellmigrationandproliferation9,10.Recentstudiesemphasizethe
1DepartmentofBioengineering,1102EverittLab,1406W.GreenSt.,UniversityofIllinoisatUrbana-Champaign,Urbana,IL61801,USA. 2BiomedicalResearch Center,MillsBreastCancerInstitute,CarleFoundationHospital,Urbana,IL61801,USA. 3CancerCenteratIllinois,BeckmanInstitute,Urbana,IL61801,USA. 4HolonyakMicroandNanotechnologyLaboratory,CarleR.WoeseInstituteforGenomicBiology,Urbana,IL61801,USA. 5DepartmentofMechanicalScience andEngineering,UniversityofIllinoisatUrbana-Champaign,Urbana,IL,USA. 6CarleIllinoisCollegeofMedicine,UniversityofIllinoisatUrbana-Champaign, Urbana,IL61801,USA. e-mail: jirudaya@illinois.edu
potentialofexosome-loadedhydrogelsasmultifunctionaldressings forbothacuteandchronicwoundhealing11,12.Thedatashowcasestheir capabilitytomitigateoxidativestress,stimulateangiogenesis,and enhance fibroblastmigration,contributingpositivelytoallphasesof thewoundhealingprocess13–15.Notably,exosomesofferseveral advantagesoverstemcells,astheyareconsideredsafer,lacktumorigenicpotential,andposeaminimalriskofembolism16 17.Nevertheless, recentinvestigationshaverevealedthattheintracellularcargodelivery efficiencyofexosomesiscompromisedunderwoundhypoxicconditionsduetoactivatedhypoxia-inducedendocyticrecycling18,19.This limitationsignificantlyimpedestheirtherapeuticefficacyandnecessitatesapproachestoenhanceexosomedeliveryinhypoxicwound tissues.
Toaddressthischallengeaswellaswoundinflammationand hypoxia,weproposeastrategyutilizingADSC-derivedexosome coatedBSA-basedoxygennanobubbles(EBO)embeddedwithinaselfhealinghydrogelmatrixasamultifunctionalwounddressing.The oxygensupplycomponent,oxygennanobubbles(ONB),isformedby encapsulatingnanoscaleoxygenbubbleswithinaglycosylatedprotein conjugatecomposedofdextran-conjugatedbovineserumalbumin (BSA).Theutilizationofglycosylatedproteinsoffersenhancedprotein characteristics,includingimprovedthermalstabilityandself-assembly properties20.Additionally,theglycosylatedproteinconjugateshave beenestablishedtohavefreeradicalscavengingfeaturesandthe capacitytoimpedeoxidativedeterioration,renderingthemextensivelyusefulinbiomedicalapplicationssuchastumortherapyand woundhealing21.Simultaneously,theglycosylatedproteinconjugate encapsulatesthebulknanoscaleoxygenbubblesproducedthrough
ultrasoniccavitation,resultingintheformationofONB.Exosomes derivedfromhumanadiposetissuestemcellsarefurthercoatedonto thesurfaceoftheONB,resultinginthe finaloxygen-carryingnanosystem,whichexhibitsoxygenreleasepropertiesandfacilitatesthe intracellulardeliveryofexosomes.
Tofurtheroptimizethehemostaticandantioxidantpropertiesof wounddressings,ahybridhydrogelisdevelopedbycombiningpolyvinylalcohol(PVA),gelatin(GA),andborax.Thehydrogelpossesses dynamiccrosslinkingthroughchemicalborateesterbonds,imparting themwithexceptionaltissueadhesion,self-healingcapabilities,and shapeadaptability22.ThemechanismthatisresponsiblefortheselfhealingabilityofthePVA/GAhydrogelistheboroniccrosslinks.Two possiblerouteswerepresumedthatdepictsintraspecies(PVA-PVA) andinterspecies(PVA-GA)crosslink:(i)boronic-esters23;and(ii)ionic crosslinks24 (Fig. 1a).Consequently,itiswell-suitedforwoundsthat requirefrequentstretchingandforuseinpartsofthebodythatarein constantmotionandcanprovideprotectiontowoundsbyeffectively sealingthewoundsite,reducingtheriskoffurtherinjuryor contamination25.Moreover,theboratebondspresentinthehydrogel exhibittheuniqueabilitytoreactwithhydrogenperoxide(H2O2), therebymitigatingexcessiveinflammation26.Additionally,theincorporationofgelatin,knownforitshemostaticproperties,further enhancesthedressings’ abilitytopromotebloodclotting(Fig. 1b), facilitatingtheacceleratedhealingoftraumaticandsurgicalwounds27
Inthiswork,weshowthefeasibilityofintegratinganoxygencarryingnanobubble,EBO,intoawounddressingtofacilitate therapeuticexosomedeliverybyincorporatinganantioxidative andhemostaticself-healingPVA/GAgelasascaffold.Intherat

Fig.1|SchematicillustrationofEBO-Gel-mediatedwoundhealing. a CrosslinkingmechanismsandstructureofEBO-Gel. b Enhancedwoundhealing programmedbyhemostasis,promotedexosomedelivery,oxygensupply,
angiogenesis,andantioxidantpropertiesofferedbyEBO-Gel.PVApolyvinylalcohol,GAgelatin,EBOADSC-derivedexosomecoatedBSA-basedoxygennanobubbles,EBO-GelEBOnanoparticles-embeddedhydrogel.
full-thicknesswoundmodel,thehydrogeldemonstratesaccelerated woundhealingandreducedinflammation.Thisadvanceddressing synergisticallycombinesmultiplefunctionalities,includinghemostasis,antioxidantactivity,oxygendelivery,andenhancedexosome transport.
Results
SynthesisandcharacterizationofEBO
Adiposetissueservesasanindispensablereservoirofmesenchymal stemcellsforapplicationsintissueengineeringandstemcelltherapy duetoitsconvenientaccessibilitythroughminimallyinvasiveproceduresinhumansubjects28,29.Inthisstudy,weisolatedADSCsfrom humanadiposetissueandproceededtoextractandcharacterize exosomesderivedfromtheseADSCs.TheisolatedADSCsexhibited thecharacteristicspindleshapeand fibroblast-likegrowthpattern commonlyassociatedwithmesenchymalstemcells(Supplementary Figs.1and2).Furthermore,thesecellsdemonstratedpositive expressionofapanelofmesenchymalstemcellmarker(CD90, CD105,andCD44),whiledisplayingnegativeexpressionofCD106, CD45,andCD19(SupplementaryFig.3).Theisolatedexosomesdisplayedauniformdistributionofparticlesizes,withanaveragediameterof125.2nmandaconcentrationof7.22×108 particles/mL measuredbynanoparticletrackinganalysis(NTA)(Fig. 2b).The proteinconcentrationofexosomewasquantifiedbybicinchoninic acid(BCA)proteinassay.Transmissionelectronmicroscopy(TEM) imagingdepictedexosomeswithatypicalcircularorcup-shaped morphology,withadiameterofapproximately100nm(Fig. 2eand SupplementaryFig.4).
ToproduceEBO,theinitialstepinvolvedthepreparationofONB, whichwassubsequentlycoatedwiththeexosomemembrane.The synthesisofONBcommencedwiththeconjugationofBSAtodextran sulfatethroughamixturefollowedbyultrasonication.Meanwhile, oxygenwasintroducedintothesystemthroughouttheultrasonication process.ThesynthesisofEBOinvolvedsubjectingtheexosomeand ONBtoultrasonication(Fig. 2a).Themechanicalforcesinducedby ultrasonicationresultedinthetransientdisruptionoftheexosome structure,allowingforthereassemblyofexosomesaroundtheONB, formingacore-shellstructure.TEM(Fig. 2e)andscanningelectron microscopy(SEM)(SupplementaryFig.5)imagingconfirmedthe presenceofthiscore-shellstructure,withEBOexhibitingabilayer core-shellmorphologyandpossessingadiameterrangingfrom approximately150to200nm.TheconcentrationofEBOwastestedby NTAasshowninSupplementaryFig.6.Dynamiclightscattering(DLS) analysisrevealedthatONBpossessedanaveragehydrodynamicdiameterof122.50nmwithameanzetapotentialof 40.73mV,whileEBO exhibitedanaveragehydrodynamicdiameterof192.02nmwitha meanzetapotentialof 23.30mV(Fig. 2c,d).Thenegativechargeshad beenestablishedtostabilizethenanobubblesgeneratedviaultrasonic cavitation30.Consequently,thenegativelychargedEBOcaneffectively shieldtheoxygennanobubblesfromOstwaldripeningandcoalescence,therebyenhancingtheirstabilityduringthelong-termstorage, particularlyinclinicalapplications.
TheinternalizationofDio-labeledEBOintoHDF-a(humandermal fibroblasts,adult)cellswasdemonstratedthroughco-incubationfor 6h,asdepictedinFig. 2f.TheorthogonalXZandYZsectionsofa Z-stackconfirmthepresenceofEBOsinthecytoplasm(Fig. 2f(ii)and SupplementaryVideo1).Theeffectivenessoftheconjugationbetween dextransulfateandBSAwasevaluatedbymeasuringtheUV-vis absorbanceat294nmand420nm,whichcorrespondtotheintensity ofbrowning,indicativeofearlyandlateMaillardreactionproducts (MRP),respectively31.Theresultsindicatedasignificantincreasein absorbanceatboth294nmand420nmafterovernightmixing,comparedtonon-ultrasonicatedBSA(Fig. 2g).Furthermore,ultrasonicationleadstoafurtherincreaseinabsorbancecomparedtothemixture alone,confirmingtheformationofglycosylatedproteinconjugates.To
furthervalidatetheconjugation,sodiumdodecylsulfate
polyacrylamidegelelectrophoresis(SDS-PAGE)wasconducted (Fig. 2i).ThemonomerofBSAexhibitedamolecularweightof approximately66kDa.Afterultrasonication,asimilarproteinbandat approximately66kDawasobservedintheshell,ONB,andEBOsamples,indicatingthepresenceofBSAintheseformulations.However, theproteinbandappearedtobeslightlyshiftedcomparedtonative BSA.Thisshiftcanbeattributedtotheincreasedmolecularmass resultingfromtheconjugationbetweenproteinandpolysaccharides inducedbyultrasonication,indicatingthesuccessfulconjugation.FTIR analysiswasperformedtoidentifyfunctionalgroupsofONB(Fig. 2h). Theabsorptionbandsat1650cm 1 and1542cm 1 wereattributedto distinctiveamide І andamideIIbandsfromproteins32.Thespectral featuresofdextranappearedatapproximately1200–1000cm 1 region.Theintensitychangeobservedinthespectralregionsaround 1650cm 1 and1542cm 1 wereascribedtothemodificationsofC=O andC–NstretchingvibrationsoriginatingfromamideIandII, respectively,duetotheMaillardreaction.Anincreaseinbandintensity wasobservedintheregionof3700–3000cm 1,correspondingtothe vibrationsassociatedwithN-HandO-Hgroups33.Thisenhancement canbeattributedtothehigherabsorbanceofMRPthatwasgenerated. Theextendeddurationofoxygennanobubblepresenceduringstorageiscrucialforefficientoxygenrelease.Toevaluatethestability, particularlythelongevityofthecore-shellstructureofEBO,TEM imageswereobtainedunderdifferentstorageconditions(2daysat 37°Cand1monthat4°C).AsillustratedinSupplementaryFig.7, despitethedissociatedproteinobservedinthebackgroundafter 1monthat4°C(possiblyexosomefragmentswithnegativestaining), EBOsuccessfullymaintainsitscore-shellstructureinbothconditions. Thisresilienceisadvantageousforensuringsustainedoxygensupply uponsubsequentuse.
CharacteristicsofEBO-Gel
TheaqueousmixtureofPVA,gelatinandEBOisalowviscosityliquid (SupplementaryVideo2),upontheadditionof2wt%ofborax,transientcross-linksrapidlyformboronicesterbonds,creatingaviscoelastichydrogelwithinseconds.Figure 3a,b,andSupplementaryFig.10 showevidenceofthesekeyrheologicalfeatures.Knownasprotorheology,theseimagescanbeusedforbothqualitativeandquantitativeinference(detailsinMethods).Forexample,thetiltedvialof EBO-GelinFig. 3aisevidenceofasufficientlyhighviscositytoinhibit flowontheobservationtimescaleof5min,withanimpliedviscosityon theorderof η ~104 Pa·satthisgravitationalstressof~100Pa.Athigher appliedstress,theEBO-Gelreadily flows,asevidencedinFig. 3bwith thematerialextrudedbyhandfromasyringewithcharacteristic flow stress~100,000Pa.Thisisevidencefordramaticshearthinning,since thematerialreadily flowsathighstress,butretainsitsshapeatlower stress(intheformofUIUCinFig. 3b).Thisinjectabledesignfurther facilitatesconformitywiththeshapeofadefect,enablingpreciseand tailoredapplication.
SEMimagesrevealtheporousstructureandthepresenceof nanoscaleparticleinEBO-Gel(Fig. 3i).IncontrasttothesmoothsurfaceobservedinBlank-Gel(SupplementaryFig.8),EBO-Gelexhibitsa roughersurfacewithnanoscaleparticlesadheringtothegelskeleton, indicatingtheexistenceofEBO.TheEBOreleaseprofilewasshownin SupplementaryFig.9,indicatingthatover80%ofEBOisreleasedfrom EBO-Gelwithin48h.Thiscorrespondswiththeintervalsforrefreshing wounddressings,ensuringtheefficientreleaseofnanoparticlestothe woundbedbeforethenextdressing.Toascertaintheshapeadaptability,thehydrogelunderwentiterativeremodeling,whereinitwas repeatedlyreconfiguredintovariousmorphologiesincludingstar shape,crescentmoonshape,round,andcrossshape,whichdemonstratesthefavorablecapacityofEBO-Geltoconformeffectivelyto irregularwoundshapes,thushighlightingitsadaptabilityinaclinical setting(Fig. 3c).

Fig.2|SynthesisandcharacterizationofEBO.a Schematicofthepreparationof ONBandEBO. b Concentrationdistributionandscatteredimages(background)of exosomes.Diameterdistribution(c)andzetapotentialvalues(d)ofONBandEBO (n =3independentsamples). e TEMimagesof(i)exosomes;(ii)ONB;(iii)EBO. Scalebar:50nm. f (i)EBOuptakeand(ii)Z-stackslicewithorthogonalviewsofEBO (Green)internalizationinHDF-acellsafter6hofincubation.Scalebar:10 μm. g The browningintensityofearly(A294)andlate(A420)MRP(n =3independentsamples). h InfraredspectraofBSAandONB.Pinkareasindicatethespectralregionsofgroup vibrations(Left)anddextran(Right).(i)SDS-PAGEofdifferentformulations.Lanes:
Self-healingabilityisanadditionalcrucialfactorthatinfluences thewoundadaptabilityofhydrogeldressings34–36.Themechanismthat isresponsiblefortheself-healingabilityofourPVA-GAhydrogelsisthe transientboroniccrosslinks.Twopossiblerouteswerepresumed, intra-(PVA-PVA)andinterspecies(PVA-GA)crosslinks:(i)boronicesters;and(ii)ioniccrosslinks.Weexaminedself-healingpropertiesat bothmacroandmicrolevels.Atthemacroscopiclevel,twoEBO-Gel
1.NaturalBSA;2.MixtureofBSAanddextransulfate;3.UltrasonicatedBSA;4.Shell; 5.ONB;6.Exosomes;7.EBO.Dataarepresentedasmean±SD(b, d, g).Statistical analysiswasperformedbytwo-wayANOVAwithDunnett’smultiplecomparisons (g).Representativeimagesareshownfromtwoindependentexperimentswith similarresults(e, f, i).SourcedataareprovidedasaSourceData file.BSAbovine serumalbumin,ONBoxygennanobubble,Exoadipose-derivedstemcell(ADSC)derivedexosomes,EBOADSC-derivedexosomecoatedBSA-basedoxygennanobubbles,Dexdextransulfate,MixmixtureofBSAanddextransulfate.
specimens,eachstainedwithadistinctcolor(purpleandyellow),were broughttogether.Inthisprotorheologydemonstration,thereassembledgelwassubjectedtostretchingafteraminutetoevaluateits healingcapacity.Notably,thedyesexhibitedrapidmigrationalongthe damagedinterface,whichcouldbevisuallyobservedfrom3to 100min(Fig. 3d).Toexploretheself-healingcharacteristic,anevaluationofthegellinearviscoelasticitywasassessedfurthercarefully

Fig.3|CharacterizationsofEBO-Gel.a FormationofEBO-Gel. b Injectabilityof EBO-Gelthroughthesyringe. c ShaperemodelingandadaptabilityofEBO-Gel. d Macroscopicself-healingpropertyofEBO-Gelovertime.Scalebar(inthe2nd row): 2mm. e Storagemodulus(G’)andlossmodulus(G’’)ofEBO-Gelaftercycliccutting andreassemblingprocess. f Adhesivecapacityondifferentsubstrates. g Adhesion to fingerwithdifferentbendingangles. h LinearviscoelasticrheologicalcharacterizationofBlank-GelandEBO-Gel.Thetransitionfromtheblueregiontothe yellowregionsignifiestheshiftfromliquid-liketosolid-likebehaviorduringthe
followingacyclicprocessofcuttingandreassembling(Fig. 3e).The findingsrevealedthatevenafterundergoingthreecyclesofcutting andreassembling,thehydrogelscouldconsistentlymaintaintheir linearviscoelasticproperties,i.e., G’ and G’’.Wefurtherconfirmthe recoverabilitywiththealternatingstrainamplitudetest,i.e.,applicationofsmall-large-smallstrainamplitudeduringoscillatoryshear.The resultsshowalmostfullrecovery,wheretheunrecoverablepartis attributabletogelatinbundleat T < T g ≈ 60 C(SupplementaryFig.13). Theresultsfromtheserheologicalexperimentssuggestthatboth blank-andEBO-Gelscanself-healandretaintheirrheologicalpropertiesevenafterbeingstrained,whichisfavorableforclinical woundcare.
Adhesionpropertieswereinvestigatedonmaterialsandtissues. Theadhesivepropertiesofthehydrogelondiversesubstratesare showninFig. 3f,includingplastic,glass,rubber,andsteel.Linearviscoelasticcharacterizationwithoscillatoryshearfrequencysweep
gelationprocess. i SEMimagesofBlank-GelandEBO-Gel.Theredareaindicatesthe magnifiedregion.Scalebarsareshownoneachimagerespectively. j Adhesionto ratorgans(fromlefttoright:heart,liver,spleen,lung,andkidney). k Adhesionto skintissuefromdifferentspecies(fromlefttoright:rat,porcine,mouse,and human).Dataarepresentedasmean±SD(h).Representativeimagesareshown fromtwoindependentexperimentswithsimilarresults(i).SourcedataareprovidedasaSourceData file.PVApolyvinylalcohol,GAgelatin,Blank-Gelhydrogel scaffoldwithoutnanoparticles,EBO-GelEBOnanoparticles-embeddedhydrogel.
experiments,Fig. 3h,showthatourhydrogelsareviscoelastic fluids witharelaxationtimebasedoncrossoverfrequency λ =1=ωc ≈1 5s,a largezeroshearviscosity~2kPa·s,andaplateauelasticmodulus~5kPa. Thislinearviscoelasticbehaviorrationalizeswhythematerialsappear solid-likewithminimal flow,butthegelscanalsoremodel,making themsuitableforirregularlyshapedandbleedingwoundsandsuitable forgluing.Wealsoshowthatthehydrogelexhibitedremarkable fixationonthe finger,retainingitsadhesionwhenthe fingerswere flexed withinarangeof0°to90°,providingfurtherevidenceofexceptional adaptabilityofEBO-Gel,particularlyonbodypartsthatexhibitawide rangeofmotion(Fig. 3g).Additionally,theEBO-Gelwasabletotightly adheretothesurfacesofratorgansandeffectivelysupportedtheselfweightoftheseorgans(Fig. 3j).Italsoshowedstrongadhesiononskin surfacesfromvariousspecies(Fig. 3k).Theadhesioncanbeattributed totheformationofstronghydrogenbondsbetweentheskintissue andEBO-Gel.ThisrobustadhesivefeatureestablishestheEBO-Gelasa

Fig.4|OxygensupplyandantioxidantpropertiesofEBO-Gel.a Illustrationof oxygensupplyandanti-inflammationmechanismsofferedbyEBO-Gel. b Oxygen releasecurvemonitoredwithin10h. c Intracellularhypoxiaconditionsofdifferent treatments.Scalebar:50 μm. d H2O2 consumptioncapacityofEBO-Gel(n =3 independentsamples). e ROS/SODdetectioninHDF-acells.Scalebar:100 μm. f QuantificationofROS/SOD fluorescence(n =3biologicallyindependentsamples). g EvaluationofH2DCFDAsignalaftertreatedwithBlank-Gel,ONB-Gel,ExoGel,andEBO-Gel.Dataarepresentedasmean±SD(d, f).Statisticalanalysiswas
reliablephysicalsealingagentforhemostasispurposes.Effective degradationiscrucialtopreventtheretentionofresidualhydrogelin deepwounds,thatcouldimpedethehealingduetoitsstrongadhesion andtissueadaptability.InvitrodegradationanalysisrevealedthatEBOGelcandegradeby80%within3daysundersimulatedphysiological conditions(SupplementaryFig.14),ensuringcompatibilitywiththe subsequenthealingprocessandalignmentwiththedressingchange intervalsininvivostudies.
OxygensupplyandROSeliminationassessment
Toverifytheoxygenreleaseproperties,oxygenconcentrationwas monitoredwithin10h.Figure 4bdemonstratestheoxygen-supplying capabilitiesofbothEBO-GelandONB-Gelinhypoxicconditions,in comparisontoExo-GelandBlank-Gel.ExtendedoxygenreleaseprofileswerecomparedwithaControl-Gelformedwithoutultrasonication.Despiteadeclineafter12h,thedissolvedoxygeninthehypoxic environmentexceededthatinControl-Gelby40h(Supplementary Fig.15).Thissupportsourtreatmentofchangingdressingsevery 2daysinsubsequentinvivoexperimentstosustainoptimaloxygen levelsinthewoundbed.Subsequently,hypoxiainhumandermal fibroblast(HDF-a)cellswasinvestigatedbyemploying[Ru(dpp)3]Cl2 (RDPP)asacellularhypoxiaindicator(Fig. 4c).Remarkably,cells
performedbyone-wayANOVAwithTukey’smultiplecomparisons(f).Representativeimagesareshownfromthreeindependentexperimentswithsimilar results(c, e).SourcedataareprovidedasaSourceData file.Exoadipose-derived stemcell(ADSC)-derivedexosomes,ONBoxygennanobubble,NTnotreatments, Blank-Gelhydrogelscaffoldwithoutnanoparticles,Exo-Geladipose-derivedstem cell(ADSC)-derivedexosomes-embeddedhydrogel,ONB-Geloxygennanobubbleembeddedhydrogel,EBO-GelEBOnanoparticles-embeddedhydrogel.
incubatedwithEBO-GelandONB-GelexhibitedthelowRDPP fluorescenceintensity,signifyingeffectivehypoxiamitigation,whichserves tovalidatetheexceptionalcellularoxygensupplycapabilityof EBO-Gel.
ROSscavengingpropertiescanbeascribedtotwoprimaryfactors:(1)thepresenceofboronicesterbondsinthegelenablesitto respondtoH2O2 andfacilitateitsdecomposition;(2)theexosomes derivedfromADSCshavebeendemonstratedtopossessantioxidant properties37 (Fig. 4a).Figure 4dshowedarapidreductioninH2O2 concentrationwithinthe first30minofincubationwiththegel,witha continueddecreaseobservedoverthecourseof240min,indicating theabilityofthegeltoeffectivelyscavengeH2O2.ROS/SOD fluorescencedetectiononHDF-acellsfurtherdemonstratedtheROSeliminationcapacitiesofEBO-Gel(Fig. 4e,f).Furthermore, flowcytometry analysisshowedEBO-Gel-treatedcellsexhibitedweakH2DCFDA fluorescence(Fig. 4g).
Exosomedeliveryenhancementstudy
Oxygensensingpathwaywasfoundtoregulateendocytosis38.Previous studieshavealsodemonstratedthatintracellularcargodeliveryof exosomesisunderminedinhypoxictissues18.Therefore,EBOis expectedtorestoreexosomedeliveryefficiencyinhypoxic


Fig.5|Enhancedintracellularexosomedelivery.a RepresentativeimmunofluorescentimagesofCFSE-ExoandLamp2underdifferenttreatments.Scalebar: 10 μm. b Fluorescenceintensityandcolocalizationefficiencyofdifferenttreatments(n =3biologicallyindependentsamples). c Illustrationsoftheprocedures fortheevaluationofexosomerecycling. d Quantificationofexosomerecyclingin theculturemedium(n =3biologicallyindependentsamples).Dataarepresented
microenvironmentsbysupplyingoxygen.Toexploretheexosome deliveryefficiency,HDF-acellswereco-culturedwithCFSE-labeled exosomesforadurationof8h.Immunofluorescencewasperformed toassessthecolocalizationbetweenexosomesandLamp2,amarkerof endolysosomes(Fig. 5a).Remarkably,underhypoxicconditions,a notabledecreaseinthecolocalizationofexosomesandLamp2was
asmean±SD(b, d).Statisticalanalysiswasperformedbyone-wayANOVAwith Tukey’smultiplecomparisons(b)ortwo-wayANOVAwithDunnett’smultiple comparisons(d).Representativeimagesareshownfromtwoindependent experimentswithsimilarresults(a).SourcedataareprovidedasaSourceData file. EBO-GelEBOnanoparticles-embeddedhydrogel.
observed,indicatingadiminishedtransferofexosomestotheendolysosomes,whichtypicallyserveassitesforthereleaseofprotein cargointothecytoplasm(Fig. 5b).
Hypoxiahasbeenknowntoimpactendocyticrecyclingviathe modulationofRab1119 39 40.Consequently,therecyclingofexosomes throughexocytosismayhindertheefficientreleaseoftheircargointo

Fig.6|Biocompatibilityandhemostaticpropertiesassessment.a Cellviability ofHDF-acellsincubatedwithdifferentconcentrationsofExo-Gel,ONB-Gel,and EBO-Gel(n =5biologicallyindependentsamples). b Bloodcompatibilityevaluated byhemolysisassay(n =3biologicallyindependentsamples).Insertedimage:+: Positivecontrol(Triton);1:Blank-Gel;2:Exo-Gel;3:ONB-Gel;4:EBO-Gel. c Mechanismsofhemostasiscapacity:(i)Embolizationhemostasisofferedby remodeling,adhesive,andself-healingpropertiesofEBO-Gel;(ii)ActivatedplateletmediatedhemostasisofferedbyGA. d InvitroprocoagulanteffectsofEBO-Gel. e Illustration(Left)andDigitalphotos(Right)ofhemostasisevaluationonratliver
thecellularcytoplasm,thuscompromisingthedeliveryoftherapeutic cargo.Toprovethishypothesis,aperiodof24-hofinternalizationof CFSE-labeledADSC-derivedexosomewasallowed,followedbythe assessmentofCFSEsignalsthatweresubsequentlyre-secretedintothe culturemediumovera12-hintervalunderdistinctexperimentalconditions,includinghypoxia,normoxia,andtreatmentwithanoxygenenhancingagent(EBO)(Fig. 5c).Theobtainedresultsrevealeda heightenedpresenceofexosomeproteinsrecycledtotheculture mediumduringhypoxicincubationincontrastwithbothEBO-treated andnormoxicgroups(Fig. 5d).Thisobservationsignifiesthepotential ofEBOtreatmenttoaugmenttheevasionofexosomesfromenhanced endocyticrecyclingcausedbyhypoxia,therebyfacilitatingthetherapeuticcargoreleasewithinthecellularcytoplasm.
Evaluationofbiocompatibilityandhemostaticefficacy
ToexaminethebiocompatibilityofEBO-Gel,cytotoxicitytestand hemolysisassaywasconducted.Forcytotoxicityexperiments,HDF-a cellswereincubatedwithfourdifferentconcentrationsofExo-Gel, ONB-Gel,andEBO-Gelfor24h.AsshowninFig. 6a,allgroupsperformedhighcellviability,surpassing80%,whichindicatestheir excellentbiocompatibility.Forhemolysisassay,allhydrogelgroups demonstratedaremarkablebloodcompatibility,asevidencedbya hemolysisratiooflessthan2%(Fig. 6b).
hemorrhagemodel. f Quantitationofbloodlossin e (n =3biologicallyindependentexperiments).Dataarepresentedasmean±SD(a, b, f).Statisticalanalysiswas performedbytwo-wayANOVAwithDunnett’smultiplecomparisons(a)ortwotailedStudent’s t test(f).Representativeimagesareshownfromthreeindependent experimentswithsimilarresults(b, d, e).SourcedataareprovidedasaSourceData file.GAgelatin,Exo-Geladipose-derivedstemcell(ADSC)-derivedexosomesembeddedhydrogel,ONB-Geloxygennanobubble-embeddedhydrogel,EBO-Gel EBOnanoparticles-embeddedhydrogel.
Hemostasisplaysapivotalroleintheinitialphaseofwoundhealing,servingasacriticalstepthatestablishesatemporarybarrierto safeguardtheunderlyingtissuesagainstadditionalharmandpotential infection8.Giventhefrequentoccurrenceofbleedinginbothsurgical woundsandtraumaticinjuries,advancedwounddressingsshould possesstheabilitytoexpeditethehemostasisprocess.Gelatinhas gainedsignificantattentiontobeapromisinghemostasismaterialdue toitssimilarityincompositiontotheextracellularmatrix,enabling gelatintoeffectivelytriggerplateletaggregationandfacilitate hemostasis41,42.Inaddition,PVAhydrogelasaself-healingbioadhesive hydrogeloffersapromisingapplicationasanembolichemostatic agent,allowingittoseamlesslyadheretothesiteofbleeding,forminga physicalsealthateffectivelycontrolsandmanagesthebleedingprocess (Fig. 6c).Therefore,thehemostaticfunctionofEBO-Gelwasassessed bothinvitroandinvivo.EBO-Gel,whenmixedwithratwholebloodand bloodcellsatavolumeratioof2:1for1min,showedcoagulation.This underscoresitshemostaticcapability,similartocommercialproducts includingCURAD®BloodStop®HemostaticGauzeandBleedStop™,in comparisontoboththecontrolgroupandanon-hemostaticgel(Carbopolhydrogelgroup)(Fig. 6dandSupplementaryFig.16).Intherat liverhemorrhagemodel,thebleedingsitewaspromptlysealedupon applicationofEBO-Gel,leadingtoasubstantialreductioninbloodloss, alignedwiththeinvitro findings(Fig. 6e,f,SupplementaryFigs.17,18).

Fig.7|Evaluationofenhancedcellproliferation,migration,andangiogenesis.
a ImmunofluorescenceimagesofBrdUstaininginHDF-acells.Scalebar:50 μm.
b CellproliferationassayofHDF-acellswithdifferenttreatments(n =3biologicallyindependentsamples). c CalceinAM/PI fluorescencestainingtoexaminelive/ deadcells.Scalebar:50 μm. d ScratchwoundhealingassayconductedonHDF-a cellswithdifferenttreatmentssubjectedto0h,12h,or24hofhypoxia.Scalebar: 200 μm. e Invitrowoundclosureratefollowedbyscratchingassayin d (n =3 biologicallyindependentsamples). f, g Brightfieldimagesandquantitativeresultof transwellmigrationofHDF-acells(n =3biologicallyindependentsamples).Scale bar:200 μm. h TubeformationabilityofHUVECswithdifferenttreatments.Scale
OurresultshighlighttheeffectivehemostaticperformanceofEBO-Gel, inadditiontowoundhealingcharacteristics.
Invitrofacilitationofproliferation,migration,andangiogenesis
CellproliferationwasassessedusingHDF-acells,whichwereexposed tohypoxicconditionsfor24and48haftertreatmentwithhydrogels. Notably,theEBO-Gelgroupexhibitedahighernumberofproliferating cellsincomparisontotheothergroups,asdemonstratedinFig. 7b,c.
bar:200 μm.Quantitativeresultsof(i)numberofbranchesand(j)totalbranches length(n =3biologicallyindependentsamplesin i and j. k Cellcycleanalysisof HDF-acellswithdifferenttreatments.Dataarepresentedasmean±SD(b, e, g, I, j). Statisticalanalysiswasperformedbytwo-wayANOVAwithDunnett’smultiple comparisons(b, e),one-wayANOVAwithTukey’smultiplecomparisons(g, i, j). Representativeimagesareshownfromtwo(a, c)orthree(d, f, h)independent experimentswithsimilarresults.SourcedataareprovidedasaSourceData file.NT notreatments,Blank-Gelhydrogelscaffoldwithoutnanoparticles,Exo-Geladiposederivedstemcell(ADSC)-derivedexosomes-embeddedhydrogel,ONB-Geloxygen nanobubble-embeddedhydrogel,EBO-GelEBOnanoparticles-embeddedhydrogel.
Furthermore,real-timemonitoringofcellproliferationwasconducted usingaBrdUincorporationassayandcellcycleanalysis.TheEBO-Gel groupdisplayedasignificantlyhigherpositivesignalofBrdU(Fig. 7a) andmorecellsinS/(G2/M)phasescomparedtotheothergroups (Fig. 7k),indicatinganincreaseinthenewlysynthesizedDNA,which corroboratestheabilityofEBO-Gelinpromotingcellproliferation. ADSC-Exoplaysacrucialroleinpromotingdermal fibroblast migrationandwoundhealingbyreleasingMALAT1,aspecificlong
non-codingRNA43.Additionally,themodulationofApoptosisPeptidaseActivatingFactor1(APAF1)throughmiR-93-3pinADSC-Exos contributestoimprovedcellularviabilityandmigration,particularlyin hypoxicconditions44.ThemigrationabilityofHDF-acellsunder hypoxicconditionswasassessedusingbothscratchingassayand transwellmigrationtest.Inthescratchingassay,cellmigrationwas visuallymonitoredat0,12,and24h.Remarkably,theEBO-Geltreatmentgroupdisplayedahigherwoundclosurerateincomparisonto theothergroups,indicatingenhancedcellmigration(Fig. 7d,e). Similarly,theEBO-Gelgroupexhibitedahighernumberofmigrated cellsinthetranswellafter24hofco-incubation(Fig. 7f,g).These resultscollectivelydemonstratethecapacityoftheEBO-Geltopromote fibroblastmigration.
Angiogenesis,apivotalprocessinwoundhealing,entailsthe formationoftube-likestructuresbyendothelialcells,whichprogressivelyextend,branch,andestablishinterconnectednetworks45.The establishmentofanextracellularmatrix(ECM)isvitalforneovascularization,withcollagendepositionplayingafundamentalrolein aorticendothelialcellmigration,whichisanoxygen-dependent process46.Hence,oxygensupplymightbeapotentialstrategyfor enhancingbloodvesselformation.Moreover,EBOaidsangiogenesis throughexosomescontainingregulatorssuchasNrf2andFGF2,with exosomespromoting β-cateninactivationandharboringmicroRNAs (miR-31,miR-125a)thatmodulateangiogenicpathways,collectively enhancingproangiogeniceffects47,48.Invitrotubeformationcapacity wasevaluatedusingHUVECs(Fig. 7h).After6hofco-incubation,the EBO-Gel-treatedgroupdevelopedahighernumberofbranches (Fig. 7i)andthemaximumtotalbranchlength(Fig. 7j),indicatingthe potentialofEBO-Geltofacilitateangiogenesis.
Invivowoundhealinganalysis
EBO-Gelshowedrobusttissueadhesion,oxygenrelease,antioxidant, andenhancedexosomedeliveryproperties,allofwhichareexpected tobepromisingfornoninvasivewoundclosure.Therefore,thewound healingperformanceoftheEBO-Gelwasassessedinaratfull-thickness defectmodel.Figure 8adepictsthesurgicalprocedure,dressing application,andhealingtimeline.ResultsshowthattheEBO-Geltreatedgroupexhibitedanotablyacceleratedhealingratecompared totheothergroups,particularlyduringtheproliferationstagefrom day2today10(Fig. 8b–e).Remarkably,theTegadermgroupexhibited signsofinfectionandinflammationondays2and4,whilethegroups treatedwithhydrogeldressingsshowednosignificantinfection (Fig. 8b).Throughoutthetreatmentduration,areductioninbody weightwasobservedduringtheinitialtwodayspost-surgery,which canbeattributedtotherecoveryfromanesthesia.Subsequently,the animalsexhibitedagradualweightgain,withanincreaseinweight observedbyday14(Fig. 8f).Additionally,after14daysoftreatment, thewoundstreatedwiththeEBO-Geldisplayedexcellentrecovery quality,characterizedbytheabsenceofhypertrophicandkeloidscars.
Tocomprehensivelyassessthetherapeuticeffectivenessofthe differenttreatments,tissuesamplescollectedonDay4andDay14 weresubjectedtohistopathological evaluationusinghematoxylinand eosin(H&E)stainingandMasson’strichromestaining,focusingonskin repairparametersincludingscarindex,dermisthickness,epidermis thickness,andcollagenfraction49 50.Day4representsacrucialtime windowfortheinflammationandproliferationstagesofthehealing process,whileDay14canreflecttheregenerationstageandhealing efficacy.AsillustratedinSupplementaryFigs.19and20,theEBO-Gel groupexhibitedaconsistentlyregeneratedepidermis,increased fibroblastproliferation,enhancedangiogenesis,andcollagen fiber formation.Incontrast,woundsintheTegadermandBlank-Gelgroups showedincompleteclosureandhigherareasofinflammationinfiltration.ThishighlightstheroleofEBO-Gelininfluencingtheinflammation,proliferation,andearlyregenerationstagesofhealing.The stainingresultsindicatedvisiblewoundclosureandthedevelopment
ofnewlyformedepidermisacrossalltreatmentgroupsonDay14 (Fig. 9a,b).However,theEBO-Geltreatedgroupexhibiteddistinct characteristicswith flatterwoundsurfaces,demonstratingacontinuousandcoherentepidermis,highlightingitssignificantpotential inpreventingkeloidformationandachievingscarlesswoundhealing. Furthermore,theEBO-Gelgroupdisplayedahigherdensityofnewly formedbloodvesselsandreducedinflammationareas,signifyingits capabilitytoenhanceangiogenesisandpossessantioxidantproperties.Theincreasedcountofnewlygeneratedhairfolliclesandglands (SupplementaryFigs.21and22),andtheorganizedformationof granulationtissuefurtherunderscoredthesuperiorqualityofhealing achievedthroughEBO-Geltreatment.
TheScarIndex(SI),representingscarsize,isdeterminedby dividingthescararea(mm²)bythecorrespondingaveragedermal thickness(mm).Thecalculatedresultsshowedthatthegrouptreated withEBO-Gelobtainedthelowestscarindex,indicatingamore favorablehealingoutcome(Fig. 9c).Completewoundhealingisalso markedbytherepairofdermis.Dermalthicknessmeasurements revealedthatthegrouptreatedwithEBO-Gelexhibitedathickerdermallayer,indicatingamorerobusthealingprocessandwell-repaired tissue(Fig. 9d).Conversely,thethicknessofthenewlyformedepidermiswasobservedtobeclosertothatofnormalskintissue,indicatingamorebalancedhealingresponse(Fig. 9f).Thisthinner epidermisisadvantageousinpreventingtheformationofthickscabs orkeloids,whichcanotherwiseimpairthenormalfunctioningofthe regeneratedtissue.Furthermore,Masson’strichromestaining demonstratedcollagendepositionandorganizationinvarioustreatments.TheEBO-Geltreatedgroupshowedanabundanceofdensely packedcollagen fibersinmagnifiedregions.Notably,these fibers demonstratedamorematurephenotypecharacterizedbywellorganizedalignmentandanintricatecollagennetworktopology, especiallyincomparisontotheTegadermandBlank-Gelgroup (Fig. 9e).Thequantitativeassessmentofcollagenvolumefraction alignedwiththeobserved findings,whichverifiedtheimprovedcollagendepositionabilityofEBO-Gel.
ToassessthemultifacetedimpactofEBO-Gelonangiogenesisand anti-inflammatoryresponsesinvivo,weperformed fluorescentstainingofwoundtissuesonDay14post-treatment.TheimmunofluorescentstainingforCD31,amarkerindicatingangiogenesis, exhibitedheightenedexpressionand fluorescenceintensityinthe EBO-Geltreatedgroup,showcasingitspotentialinpromotingangiogenesis(Fig. 9gandSupplementaryFig.23).ByincorporatingADSCexosomes,EBO-Gelhasthepotentialtomitigateexcessiveinflammation,forestallingthedevelopmentofdysfunctionalscarsthroughout thehealingprocess.OurexaminationencompassedROSlevels, inflammatorycytokineexpression,andmacrophagephenotypes. Dihydroethidium(DHE)stainingunveiledsignificantlylowerROS levelsinwoundstreatedwithEBO-GelincomparisontotheTegaderm controlandBlank-Gel(Fig. 9handSupplementaryFig.23).Notably,the heightenedDHEintensityintheTegadermcontrolandBlank-Gel groupssuggestsprolongedelevatedROSlevelsinhealedtissueeven after14daysoftreatment,possiblycontributingtohypertrophicscar formation.IntheevaluationofimmunecellsthroughimmunofluorescentstainingforCD86andCD206withF4/80 markersforM1 inflammatoryandM2anti-inflammatorymacrophages,respectively EBO-GeldemonstratedlowerCD86andhigherCD206expression comparedtocontrolgroups(Fig. 9i,SupplementaryFigs.23–25). Furthermore,theimmunofluorescentstainingofinterleukin-6(IL-6), aninflammatorymarker,exhibitedthelowestexpressionintheEBOGelgroup,solidifyingitsefficaciousanti-inflammatoryeffects(SupplementaryFigs.26and27).
Effectivewoundclosurecouldbepotentiallyhinderedifthe adaptivehydrogelfailstodegradeadequatelyindeepwounds, underscoringthecrucialimportanceofitsdegradability51.Forinvivo degradationassessment,thevisualobservationofEBO-Gelrevealsa

Fig.8|InvivoefficacyofEBO-Gelinaratfull-thicknesswoundmodel. a Illustrationofwoundcreationandtreatmenttimeline. b Representativedigital photosofwoundswithvariedtreatmentsatdifferenttimepoints.Scalebar:7mm. c Tracesofwoundclosurefromday0today14.Quantitativeanalysisof(d)wound area(cm2)and(e)woundclosurerate(n =6biologicallyindependentwounds) overtime. f Relativebodyweightofratsaftervariedtreatments(n =4animalsper group).Dataarepresentedasmean±SD(e, f).Statisticalanalysiswasperformedby two-wayANOVAwithDunnett’smultiplecomparisons(e).Sourcedataareprovided asaSourceData file.Tegadermnotreatments,Blank-Gelhydrogelscaffoldwithout nanoparticles,Exo-Geladipose-derivedstemcell(ADSC)-derivedexosomesembeddedhydrogel,ONB-Geloxygennanobubble-embeddedhydrogel,EBO-Gel EBOnanoparticles-embeddedhydrogel,D0-D14dayspost-surgery.

Fig.9|histologicalanalysisofwoundsthatunderwenttreatmentswithdifferenthydrogels. Representativeimages(top)andmagnifiedimages(bottom)of (a)H&Eand(b)Masson’strichromestainingofthewoundtissueonDay14.Red arrows:newbloodvesselformation;Blackarrows:inflammationarea;Yellow arrows:newlygenerated-hairfollicles.Scalebar:500 μm(a)and1mm(b)forthe normal-sizedimage;250 μm(a)and500 μm(b)forthemagnifiedimage.Various parametersforwoundhealingevaluation,including:(c)Scarindex;(d)Dermis thickness;(e)Collagenvolumefraction;and(f)Epidermisthickness(n =3biologicallyindependentsamplesin c–f).Representative fluorescenceimagesof(g) CD31immunostaining,(h)DHE(red)staining,and(i)CD86andF4/80
progressivereductioninsizeandcompletedegradationwithina3-day period(SupplementaryFig.28).H&Estainingoftissuessurrounding theinjectionsitesonDay3post-injectionrevealednodiscernible inflammationinducedbytheinjectioncomparedtonormalskinand subcutistissues(SupplementaryFig.29).Thissuggeststheinvivo biocompatibilityofEBO-Gel.Autolysischaracterizesthedegradation ofEBO-Gel,wherewatermolecules,withunsharedelectronpairs, initiatethehydrolysisofboronatoms51,52.Thishydrolysiscausesthe gradualbreakdownoftheboraxbondcrosslinkednetwork,weakening bothboraxandhydrogenbondcrosslinks.Consequently,thehydrogel networkprogressivelyloosenswhenexposedtoawaterenvironment
immunostainingofwoundtissuesonDay14post-treatment.Cellnucleiwere stainedwithDAPI(blue).Scalebar:100 μm(CD31)and50 μm(DHEandCD86). Datainarepresentedasmean±SD(c–f).StatisticalanalysiswasperformedbyonewayANOVAwithTukey’smultiplecomparisons(c–f).Representativeimagesare shownfromthreeindependentexperimentswithsimilarresults(a, b, g, h, i). SourcedataareprovidedasaSourceData file.Tegadermnotreatments,Blank-Gel hydrogelscaffoldwithoutnanoparticles,Exo-Geladipose-derivedstemcell(ADSC)derivedexosomes-embeddedhydrogel,ONB-Geloxygennanobubble-embedded hydrogel,EBO-GelEBOnanoparticles-embeddedhydrogel.
overtime,ultimatelyresultinginthecompletedissolutionofthe hydrogel.TocomprehensivelyassessthebiosafetyofEBO-Gel,we conductedH&Estainingonvisceralslicesobtainedfromanimals treatedfora14-dayperiod(SupplementaryFig.30).Theresults revealednoobvioussystemictoxicityinanimalstreatedwithEBO-Gel comparedtountreatedanimals,validatingthebiosafetyofEBO-Gel.
Discussion
Thehealingoftraumaticandsurgicalwoundsrepresentsasignificant challengethataffectsmillionsofindividualsworldwide,placing immensestrainonhealthcaresystemsandpatientsalike.Amongthe
mostcommoncomplicationsencounteredinsuchwoundsare bleeding,poorhealing,andthedevelopmentofhypertrophicscarring. Adipose-derivedstemcell-derivedexosomeshaveemergedaspromisingtherapeuticagents,boastingantioxidantandpro-angiogenic propertiesthatpromotetissueregeneration.However,thehypoxic microenvironmentofpoorlyhealingwoundscancompromisetheir deliveryefficacy.
Althoughacutehypoxiacanstimulateinitialtissueregeneration byincreasingvascularendothelialgrowthfactor(VEGF),prolonged hypoxiahindersoptimalrecovery53.Whilehypoxiainitiatesneovascularization,itcannotsustaintheprocess54,emphasizingthe importanceofrestoringoxygenlevelsaftertheinitialacutehypoxia phaseinwoundhealing.Moreover,loweroxygentensionduring hypertrophicscarprogressionsuggestsoxygensupplyasapotential strategytoexpeditewoundhealingandpreventhypertrophicscar formation55.Addressingthesemultifacetedchallenges,ourstudy introducesatissueadhesivePVA/GAhybridhydrogelthatexhibitsa remarkablehemostaticsynergisticeffectbyincorporatingthetherapeuticpropertiesofgelatin,specificallytargetingirregularlyshaped andbleedingwounds.Moreover,wehavetakenapioneeringstepby embeddingexosome-coatedoxygennanobubbleswithinthehydrogel,therebyelevatingthedeliveryefficiencyofexosomesand addressinghypoxia.Thiscombinationnotonlyacceleratesthewound healingprocessbutalsoeffectivelyremovesexcessROSfromthe woundtissue,alleviatinghypoxiaandmitigatingtheriskofhypertrophicscars.ThescarlesshealingpotentialofEBO-Gelisattributedto themultifacetedfunctionsofADSC-Exos,enrichedwithmicroRNAs suchasmiR-192-5pandmiR-29athatregulate fibroticresponsesand keloid fibroblastmigration56.Moreover,EBO-Gelshowspromisein addressingabnormalmetabolicconditionsandoxygentensionin hypoxichypertrophicscars57 58,offeringapromisingavenueforfurther investigationinscarmanagement.
Insummary,ourresearchhasculminatedinthedevelopmentofa hybridhydrogelthatpossessesremarkablecapabilitiesinhemostasis, anti-inflammation,hypoxiamitigation,andenhancedexosomedelivery,which,whenappliedtofull-thicknesswounds,demonstratedan acceleratedhealingspeedandsignificantlyimprovedhealingquality. Notably,EBO-Gelcouldalsobepotentiallyusedfordiabeticchronic woundtreatment,leveragingitsoxygen-supplyingcapability,antioxidantproperties,promotionofcellmigration,andenhancementof vascularization.Futureresearchcantargetotherischemicconditions, includingchronicwoundsandpotentiallycancer.
Methods
Ethicalstatement
Thisstudycomplieswithallrelevantethicalregulations.Allanimalrelatedprocedureswereconductedinaccordancewiththeguidelines oftheInstitutionalAnimalCareandUseCommitteeandtheDivisionof AnimalResourcesattheUniversityofIllinoisundertheprotocol approvedbytheInstitutionalAnimalCareandUseCommitteeatthe UniversityofIllinois(IACUCProtocol#:23012).
Materials
Bovineserumalbumin,dextransulfatesodiumsalt(Mw200kDa), poly(vinylalcohol)(Mw89–98kDa),sodiumtetraboratedecahydrate, collagenasetypeI,5-Bromo-2′-deoxyuridinewerepurchasedfrom Sigma-Aldrich.MTT(Catalog#M6494),CFSE(Catalog#C34554),Dio (Catalog#V22886),LAMP2monoclonalantibody(Catalog#MA1-205), H2DCFDA(Catalog#D399),propidiumiodide,BrDUprimaryantibody (Catalog#B35128),AlexaFluor™ Plus555Phalloidin(Catalog #A30106),CD86primaryantibody(Catalog#PA5-114995),CD206 primaryantibody(Catalog#MA5-44409),F4/80monoclonalantibody (Catalog#14-4801-82),CD31primaryantibody(Catalog#MA1-26196), IL-6primaryantibody(Catalog#MA545069),Dihydroethidium(Catalog#D1168)wereobtainedfromThermoFisherScientific.Secondary
antibodiesusedinthisstudywereobtainedfromThermoFisherScientific,includingGoatanti-MouseIgG(H+L)Cross-AdsorbedSecondaryAntibody,FITC(Catalog#F-2761),Goatanti-RabbitIgG(H+L) SecondaryAntibody,FITC(Catalog#65-6111),andGoatanti-RatIgG (H+L)Cross-AdsorbedSecondaryAntibody,AlexaFluor™ 555(Catalog#A-21434).Allantibodieswerediluted100timesexceptGoatantiRabbitIgG(H+L)SecondaryAntibody(1:50).ROS/Superoxidedetectionassaykit(ab139476),calceinAM(ab141420),DAPI(ab228549) werepurchasedfromAbcam.Humanmesenchymalstemcellmarker antibodypanelwaspurchasedfromR&Dsystems(Catalog#SC017).
Celllinesandanimals
TheHDFacelllinewaspurchasedfromAmericanTypeCultureCollection(PCS-201-012,ATCC)andcellswereculturedinFibroblastBasal Medium(PCS-201-013,ATCC)supplementedwiththeFibroblastGrowth Kit-LowSerum(PCS-201-041,ATCC),1×Antimycotic–Antibiotic (15240096,ThermoFisher)at37°C,5%CO2.HUVECs(LonzaC2517A, usedexperimentallybeforepassage6)weremaintainedinEndothelial CellGrowthMedium2(EGM)EBMTM-2BasalMedium(Catalog#CC3156,Lonza)supplementedwithEGMTM-2SingleQuotsTMSupplements(Catalog#CC-4176,Lonza),1×Antimycotic–Antibiotic(15240096, ThermoFisher)at37°C,5%CO2.PrimaryADSCswerederivedfrom discardeddonoradiposetissue,as describedbelow.MaleSpragueDawleyratswerepurchasedfromEnvigoLaboratory(Indianapolis,IN, USA).Allratswerehousedataconstanttemperatureandhumidityina roomwithanartificial12hrslight/darkcycleandallowedfreeaccessto foodandwater.Allanimalstudieswereperformedinaccordancewith theguidelinesoftheInstitutionalAnimalCareandUseCommitteeand theDivisionofAnimalResourcesattheUniversityofIllinois.
ADSCsisolation,culture,andcharacterization
ADSCswereisolatedfromhumanadiposetissueobtainedfromThe SpecimenProcurementServiceCenter,CarleHealth,CarleFoundation Hospital.Thetissuesutilizedinthisstudyarediscarded “de-identified tissues” withnopersonalinformationandareexemptfromtheneed forformalInstitutionalReviewBoard(IRB)approvalandinformed consent.TheydonotfallunderHumanSubjects.Briefly,tissuewas digestedin0.075%collagenasetype1preparedinPBScontaining2% penicillin/streptomycinfor30minat37°C,5%CO2,andthemixture wascentrifugedat2000rpmfor5min.Then,thecellpelletwas resuspendedin3mLofDMEMsupplementedwith20%FBS,1%Lglutamine,and1%penicillin/streptomycin,andthecellsuspensionwas then filteredthrough70 μmcellstrainer.Thecellswereplatedina lysinecoatedtissuecultureplateandadheredfor48h.Afterthe confluencyreached80%,theADSCsweresubcultured.
TheisolatedADSCswerecharacterizedby flowcytometry.The cellswereincubatedwithhumanmesenchymalstemcellmarker antibodypanelfor30minatroomtemperature,followedbycentrifugationat300× g for5min,andthesamplewashedtwicein2mLof PBSwith3%BSA.Then,thecellswereincubatedwithsecondaryantibodyfor30mininthedarkandwerewashedandresuspendedin flow cytometrystainingbufferfor flowcytometricanalysisusingBD FACSDiva(v9.0).
Exosomeisolationandcharacterization
Atthe3rd 8th passage,ADSCswereculturedinDMEMwith5% exosome-depletedFBS,andthespentmediawascollectedafter48h andcentrifugedat2000× g for10minat4°Ctoremovecelldebris. Thesupernatantwasthenultrafilteredwitha100kDa filter(Amicon 15),andtheresultingsolutionwasultracentrifugedat120,000× g for 90minat4°Ctoobtainexosomepellets.TheexosomewasresuspendedincoldPBSandstoredat 80°Candusedwithinonemonth.
Tocharacterizetheisolatedexosome,nanoparticletracking analysis(NTA)NTA(NanoSightNS300,MalvernPanalytical)wasused tomeasuretheconcentrationandsizeofexosome.TEMimageswere
obtainedbyScanningTransmissionElectronMicroscope(S)TEM (ThermoFisherFEI,TecnaiG2F20S-TWIN).Sampleswerenegatively stainedwithuranylacetate(1w/w%).
PreparationofONBandEBO
ONBwaspreparedthroughanultrasonicationmethod.Briefly,40mg ofBSAand80mgofdextransulfateweredissolvedin10mLsterile 1×PBSbuffer(pH=7.4),andthenfullymixedusingamagneticstirrer overnight.Further,ultrasonicationwasconductedinicebathwithan ultrasoniccelldisruptor(SFX250,Branson,USA)with3sonand3soff cycle,at50%ofamplitudefor7minwhileoxygenwascontinuously introducedinthissystem.Theresultingsolutionwas filteredbya 0.22 μmcelluloseacetate filter.Finally,ONBwascollectedthrough ultrafiltrationwithAmicon15 filter(100kDa).
EBOwasgeneratedbyutilizingultrasonicationtocoattheexosomemembraneontotheONB.Typically,exosomesandONBswere thoroughlymixedattheratioof1:2,followedbyultrasonication.The ultrasonicationprocesswascarriedoutinanicebath,withacycleof 10sonand10soff,atanamplitudeof50%,foradurationof5min.This cyclewasrepeatedthreetimes.
CharacterizationofONBandEBO
ThehydrodynamicsizedistributionandzetapotentialofONBandEBO wasobtainedbytheLitesizer™ 500(AntonPaar).(S)TEMwas employedtoacquireTEMimages,withthesamplesbeingnegatively stainedwith1w/w%uranylacetate.TheNanoDrop™ OneMicrovolume UV-VisSpectrophotometer(Catalognumber:ND-ONE-W,ThermoFisherScientific)wasutilizedtomeasuretheUV-visabsorbance.The infraredspectraofBSAandONBwereobtainedbyaFT-IRspectrometer(Thermo-NicoletIs-50FTIR).Oxygenreleasepropertywas monitoredbyOrion™ VersaStarPro™ DissolvedOxygenElectrochemistryBenchtopMeter(ThermoFisherScientific)every0.5hinthe durationof10h.
EBO-Gelsynthesisandcharacterization
PVAandgelatinwerecompletelydissolvedindistilledwater,resulting inthe finalconcentrationsof8wt%and2wt%,respectively.Subsequently,a2wt%solutionofboraxwasaddedtothemixture,facilitatingtheformationoftheblankPVA/GAgel.TopreparetheExo-Gel, ONB-Gel,andEBO-Gelformulations,exosomes,ONBs,andEBOwere evenlydistributedwithinthePVA/GAmixture(10wt%PVAand2.5wt% GA)andwerefurthercrosslinkedbyanequivalentvolumeofa2wt% boraxsolution.
AllrheologicaltestsweredoneonanARES-G2rotationalrheometer(TAInstruments,DE)usinga25-mmparallel-plategeometryat 1mmgapwithsandpapersattachedtobothplatestopreventslippage. Thegelswereheatedwhilebeingstirredat T = T g ,GA ∼ 60 Cfor10min andthesampleswereallowedtorestfor5minbeforeany rheologicaltests.
Oscillatorystrain-amplitudesweepexperimentwasusedto identifythecriticalyield-strainamplitude, γ y ,thatapproximatesthe boundarybetweenlinearandnonlinearregimesofbothblankand EMO-ladenPVA/GAgels.Thesetestswereperformedat ω =1rad=s,and sweptupfrom γ 0 =0 1%to500%.BothblankandEMO-ladengels exhibit γ y ∼ 100%,seeSupplementaryFig.11.Toassesstheinjectability, thecomplexviscosity, jη * j ω 1 G0 2 + G’’2 p ,isnextextractedfrom thisstrain-amplitudesweepexperiment,andplottedagainstapplied stressamplitude, σ 0 ,forbothblankandEBO-hydrogels,SupplementaryFig.12.Bothhydrogelsexhibityieldstress, σ y ,ofabout2kPa. Dramaticshearthinningoccurswhentheappliedstressexceeds σ y .To furtherassesstheinjectability,thestainedhydrogelwasloadedintoa syringewithaninnerdiameterof4.7mmandsubsequentlyextruded toconformtotheshapeof “UIUC”,seeFig. 3b.Thissubfigureshows thevisualconfirmationofshearthinningwherethehydrogelswere
extrudableyetbeabletoretaintheirshapeforatleast60minonthe substrate.Aquantitativeestimateofforcerequiredtoextrudecomes fromabalanceofappliedforcegeneratingapressurethatmustexceed theyieldstressatthewallsincircularpipe flow, F =2σ y L R A =0 8N. Invertingthisequation,wecanestimatetheappliedwallshearstress during flowinthesyringe,e.g.foraforceontheorderofafewNewtons,withL/R~10,thewallshearstressis~100,000Pa.Ourhydrogels exhibitgoodshaperetentionandshearthinningandthussuitablefor invivoapplication.
Linearviscoelasticity(LVE)wasassessedusingoscillatoryshearfrequencysweepexperimentsatsmall-strainamplitude(γ 0 =5%).TheLVE resultsarereportedinFig. 3h,andrelaxationtimeisextractedfromthe crossoverfrequency, ωc : λ =1=ωc ≈1 5s.Thissignifiesthesolid-likebehavioratatimescaleshorterthan λ,andthegelscan flowat η * ≈2,000Pa sfromnetworkrearrangingatalongertimescale.Visualevidenceconfirmsthisbehavior.ThetiltedvialinFig. 3a,wasusedtomakeanestimate ofthe flowviscosity.Usinggravitational flowdownanincline,anupper boundviscosityisestimatedtobe η = ρgh2 sin θ=2vs =1 9×104 Pa s basedonanassumed fluidthickness h =10mm,tiltangle θ =40 ,and maximumvelocitybasedonadisplacementof5mmoverthe5minof observation59.Thisviscosityisobservedatthecharacteristicdriving stressfromgravityof σ = ρgh =98Pa.
Twomethodswereusedtodemonstratetheself-healingproperties. The firstmethodwastofragmentizethePVA-GAsamplesandreprocess them.Toreprocessthesamples,theywerecutupintosmallpieces (about5×5mmsquares)beforeblobbingandsandwichingthem betweentwoglassplatesat1.2mmgap.Foreachreprocessing,about 10wt%offreshsamplewasaddedtocompensateforsmallmasslost fromthefragmentation.Linearviscoelasticity(videsupra)ofthegels weremeasuredasaprobingsurrogatemetricforbothvirgin(anewly crosslinkedgel)andreprocessedsamples.Resultsrevealnosignificant differenceuptothethirdreprocessing,withonlyaslightincreaseinLVE attributabletoevaporation.Thesecondmethodwastoprobetherheologicalrecoveryfromlargedeformation.Forthisexperiment,asmallamplitudeoscillatoryshear(SAOS)atthestrainamplitudeof5%was first appliedfor60s,andthenlarge-amplitudeoscillatoryshear(LAOS)at 200%for60s,andlastlybacktoSAOSat5%toprobetherecoveryof linearviscoelasticity.Therecoverywasmonitoredfor30minuntilthe PVA-GAgelsreacha finallogarithmicagingregime.
Collagenprecursorsolutionsaremadeandkeptoniceuntilthe testtime.Approximately55 μLofthecollagenprecursorsolutionswas depositedonthebottomplateandtheupperplatewasthenlowered intoposition.Athinlayerofheavymineraloil(FCC/USP,FisherChemical)wasappliedtothesamplefreesurfacetopreventevaporation. Thetemperaturewasthenraisedto37°Ctoinitiategelation.
ESEM(FEIQuantaFEG450ESEM)wasemployedtovisualize microstructuresofhydrogels.Macroscopicself-healingpropertywas evaluatedasfollows:TwoEBO-Gelspecimens,eachwithadiameterof 2.2cm,werefabricatedandsubsequentlysubjectedtostainingusing crystalvioletandreddyes,respectively.Thehydrogelswerethen halved,andonehalffromeachtypeofthehydrogelwasjuxtaposed. After1min,thereassembledgelwassubjectedtostretchingtoassess itshealingcapacity.Thediffusionofdyewasmonitoredfor100min. Theassessmentofshapeadaptabilityinvolvedplacingthehydrogel withinvarioussiliconemoldstoevaluateitsabilitytoconformtodifferentshapes.Todemonstratetheinjectabilityofthehydrogel,the stainedhydrogelwasloadedintoasyringewithaninnerdiameterof 4.7mmandsubsequentlyextrudedtoformtheshapeof “UIUC” . Oxygenreleasewithin48hwasmonitoredbyOrion™ VersaStarPro™ DissolvedOxygenElectrochemistryBenchtopMeter(ThermoFisher Scientific)usingapreviouslydevelopedmethodology60
Invitrodegradation
Forinvitrodegradationanalysis,EBO-Gelsweresubmergedina5mL PBSsolution(pH=7.4)withlysozyme(1000U/mL).Theincubationwas
inaconstant-temperatureincubatorsetat37°C.Thehydrogelswere takenoutforlyophilizationandweighedatintervalsof0,1,2,and3days. Tomaintainenzymefunctionality,thelysozymesolutionwasrefreshed daily.Theinvitrodegradationratewasdeterminedusingtheformula:
Degradationrate= W 0 W t =W 0 ×100%
where W 0 and W t representedtheweightsoftheoriginaland remaininghydrogels,respectively.
Hemolysisassay
FreshratbloodwasobtainedviacardiacpuncturefollowingeuthanasiaandanticoagulatedusingHeparin.Subsequently,erythrocytes wereisolatedthroughcentrifugationat10,000× g for5minand washedusingD-PBS.Next,0.8mLofdilutederythrocyteswere exposedto200 μLofTritonX-100,PBS,anddifferenthydrogels. Followinga4-hincubationatroomtemperature,themixtureswere centrifugedat10,016× g for5min,andtheabsorbanceofthesupernatantwasmeasuredat540nmusingamicroplatereader.The hemolyticratiowascalculatedusingthefollowingformula:Hemolysis ratio=ODt ODn ðÞ=ðODp ODnÞ ×100%.ODt:ODvalueoftested samples,ODn:ODvalueofnegativecontrol,ODp:ODvalueofpositive control.
Cellviability
5×103 HDF-acellswerepre-seededinto96-wellplate.After24hof culture,themediumwasrefreshed,andtheHDF-acellswerecoincubatedwithhydrogels.MTTassaywasperformedtoevaluatecell viability.Inbrief,20 μLoftheprepared5mg/mLMTTsolutionwas addedtoeachwelloftheplateandincubatedat37°Cfor4h.Followingtheadditionof100 μLofDMSO,theplatewasincubatedforan additional4hat37°Cinthedark.Ultimately,theabsorbanceat 490nmwasmeasuredusingamicroplatereader(SynergyH1,BioTek Instruments).
Cellproliferation
2×103 HDF-acellswerepre-seededinto96-wellplate.After24hof normoxiaincubation,themediumwasrefreshed,andthehydrogels wereadded.Then,thewellplateswerekeptinhypoxiachamberwitha mixtureof3%O2,5%CO2,92%N2 at37°Cfor0h,24hand48h, respectively.Atdifferenttimepoint,WST-1reagentwasaddedandthe opticaldensityat440nmwasthenmeasuredafter4hofincubation accordingtomanufacturerdescription.
Cellmigration
Forscratchingassay,HDF-acellswerepre-seededina24-wellplate. Aftertheconfluencyreachedto80–90%,scratchingwoundswere createdby200 µLsterilepipettetips,andtheculturemediumwas replacedwithDMEMcontaining1%FBS.Then,hydrogelsweretreated intheupperchamberofcellcultureinserts(Millicell®,Sigma-Aldrich), andtheplateswerekeptinhypoxiachamberwiththehypoxicmixture asdescribed.Cellmigrationwasobservedbymicroscope(ZEISS)at differenttimepointsandwasquantifiedbyImageJsoftware(v1.53t).
Fortranswellmigrationassay,HDF-acellswereseededinthe upperchamberofcellcultureinsertswithadensityof1×104 cells/mL, whilethehydrogelsweretreatedintothelowerchamberwithculture medium.After24h,thecellsontheuppersideof filmweregently removedbyacottonswab,andthecellsthatmigratedtothelowerside werestainedwith0.5%crystalvioletfor1h.Thenumberofmigrated cellswerequantifiedbyImageJsoftware(v1.53t).
Exosomeuptake
ToprepareDio-labeledexosome,EBOwasincubatedwithDio(10 μM) for20min,followedbyultrafiltrationusingAmicon15at1000× g for 10min.HDF-acellswerepre-seededin35mmcoverslipdishesand
culturedwithexosome-depletedmedium.Afterattachment,DiolabeledEBOwasaddedandincubatedfor6h.Thecellswere fixedby 4%PFAafterco-incubation,andthenucleuswasstainedwith4′,6diamidino-2-phenylindole.Intracellularuptakewasobservedby Z-stack3Dconfocalimagingwithorthogonalviewsatthestepsizeof 0.3 µm(LeicaSP8).
Immunofluorescenceanalysis
HDF-acellswerepre-seededin35mmcoverslipdishes.Afterattachment, hydrogelswereadded,andtheimagingdishesweretransferredto hypoxiachamberunderthesamehypoxicconditionsasdescribed.Followingthecompletionofhypoxiaincubation,thecellswerewashedwith PBSandsubsequently fixedwith4%paraformaldehyde.Thiswasfollowedbypermeabilizationusing0.3%TritonX-100foranadditional 10min.Then,thecellswereincubatedwithasolutionof3%BSAinPBS for1hat37°Ctopreventnonspecificbinding.Next,variousprimary antibodies(anti-BrdU,anti-Lamp2)wereappliedtothecellsandallowed toincubateovernightat4°C,andthecellswerethenincubatedwith secondaryantibodyfor1hat37°C.ForBrdUstaining,themediumwas replacedwith10 μMBrdUinculturemediumbeforehydrogelswere added.After fixation,thecellswereincubatedwith2MHClfor0.5hfor acidhydrolysis.CytoskeletonwasstainedbyAlexaFluor™ Plus555 Phalloidinfor20min.Imageswerecapturedbyaconfocallaserscanning microscope(LeicaSP8)andanalyzedbyImageJsoftware(v1.53t).
Tubeformationassay
HUVECsfortubeformationassaywereusedbeforepassage6.Typically,100 μLofMatrigel(Corning)wasaddedina96-wellplateand incubatedtogelat37°Cfor1h.10,000HUVECswereseededintoeach wellandhydrogelswerethenadded.Plateswerefurthertransferred intothehypoxiachamber,andsuppliedwithamixtureof3%O2,5% CO2,92%N2 at37°C.After6h,brightfieldimagesoftubeformation werecapturedbyLeicamicroscope.Thenumberofbranchesandtotal lengthofbrancheswasquantifiedbyImageJsoftware(v1.53t).
Invitrohemostasisassay
HeparinizedratbloodandhemocytesweremixedwithControl,Carbopolgel(1wt%),andEBO-Gel,respectively,atthevolumeratioof1:2.After 1min,thevialwasinversed,andthehemostasispropertywasobserved.
Invivowoundhealingstudy
MaleSprague-Dawleyratsof250–300gweight(8weeksold)were obtainedfromEnvigoLaboratory(Indianapolis,IN).Allanimalstudies wereperformedinaccordancewiththeguidelinesoftheInstitutional AnimalCareandUseCommitteeandtheDivisionofAnimalResourcesat theUniversityofIllinois(IACUCProtocol#:23012).Theratswererandomlysortedinto fivegroups:NT,Blank-Gel,Exo-Gel,ONB-Gel,andEBOGel.Theprecursorsolutionswerepreparedbythoroughlymixing0.4mL ofPVA/GA(10wt%PVAand2.5wt%GA)and0.1mLofnanoparticle solutions(Exo,ONB,andEBO)toachieve finalconcentrationsof8wt% PVAand2wt%GArespectively.Hydrogelswerecreatedbycombining theprecursorsolutionwithanequalvolumeof2wt%boraxsolution beforeapplication.Full-thicknesswoundswerethenmadeontheback usingasteriledisposable8mmdiameterdermalbiopsypunch(MEDLINE)toadepthof2mm.Thehydrogelswereappliedtothewounds aftersurgeryandrefreshedeverytwodays.IntheTegadermgroup,no hydrogelswereapplied.Thehealingprocesswasmonitoredbyadigital camera,andthewoundareawasquantifiedbyImageJsoftware.
Onday4andday14,animalswereeuthanized,andthewound tissueswerecollected.Then,thetissueswere fixedin10%formalin neutralbufferedsolution(Sigma-Aldrich)andfurtherembeddedin paraffinandsectionedforH&E/MassonTrichromestainingaccording tothemanufacturermanual.Thehistologyimageswereacquiredby microscope.TheScarIndex(mm),denotedasScarArea(mm²)divided bytheAverageDermalThickness(mm).Dermalthickness,epidermal
thicknessandscarareawerequantifiedbyNDPView2software.The collagenvolumefractionwasquantifiedbyImageJsoftware(v1.53t).
Statisticsandreproducibility
StatisticalanalysiswasperformedusingGraphPadPrism(v9.0).The differencesbetweenanytwogroupswereanalyzedusingatwo-tailed, unpairedStudent’s t test.Forcomparisonsinvolvingmorethantwo groups,one-wayANOVAwithTukey’smultiplecomparisonswas employed.Groupeddatawereassessedusingtwo-wayANOVAwith Dunnett’smultiplecomparisons. P <0 05wasconsideredstatistically significant.Thepresenteddataindicatethemean±SDfromatleast twoindependentexperiments.
Reportingsummary
FurtherinformationonresearchdesignisavailableintheNature PortfolioReportingSummarylinkedtothisarticle.
Dataavailability
Theauthorsdeclarethatallthedatasupportingthe findingsofthis studyareavailablewithinthearticleanditssupplementaryinformation.SourcedataareprovidedasaSourceData file.Sourcedataare providedwiththispaper.
References
1.Eming,S.A.,Martin,P.&Tomic-Canic,M.Woundrepairand regeneration:Mechanisms,signaling,andtranslation. Sci.Transl. Med. 6,265sr266–265sr266(2014).
2.Menke,N.B.,Ward,K.R.,Witten,T.M.,Bonchev,D.G.&Diegelmann,R.F.Impairedwoundhealing. Clin.Dermatol. 25, 19–25(2007).
3.Nussbaum,S.R.etal.AnEconomicEvaluationoftheImpact,Cost, andMedicarePolicyImplicationsofChronicNonhealingWounds. ValueHealth 21,27–32(2018).
4.Singer,A.J.&Clark,R.A.F.CutaneousWoundHealing. N.Engl.J. Med. 341,738–746(1999).
5.Gurtner,G.C.,Werner,S.,Barrandon,Y.&Longaker,M.T.Wound repairandregeneration. Nature 453,314–321(2008).
6.Takeo,M.,Lee,W.&Ito,M.WoundHealingandSkinRegeneration. ColdSpringHarb.Perspect.Med 5,a023267(2015).
7.Gauglitz,G.G.,Korting,H.C.,Pavicic,T.,Ruzicka,T.&Jeschke,M.G. HypertrophicScarringandKeloids:PathomechanismsandCurrent andEmergingTreatmentStrategies. Mol.Med. 17,113–125(2011).
8.Han,X.,Ju,L.S.&Irudayaraj,J.OxygenatedWoundDressingsfor HypoxiaMitigationandEnhancedWoundHealing. Mol.Pharm. 20, 3338–3355(2023).
9.Brennan,M.Á.,Layrolle,P.&Mooney,D.J.BiomaterialsFunctionalizedwithMSCSecretedExtracellularVesiclesandSolubleFactors forTissueRegeneration. Adv.Funct.Mater. 30,1909125(2020).
10.Gimble,J.M.,Katz,A.J.&Bunnell,B.A.Adipose-DerivedStemCells forRegenerativeMedicine. Circ.Res 100,1249–1260(2007).
11.Shang,S.etal.Abioactivecompositehydrogeldressingthatpromoteshealingofbothacuteandchronicdiabeticskinwounds. Bioact.Mater. 34,298–310(2024).
12.Gondaliya,P.etal.MesenchymalStemCell-DerivedExosomes LoadedwithmiR-155InhibitorAmeliorateDiabeticWoundHealing. Mol.Pharm. 19,1294–1308(2022).
13.Cheng,P.etal.Hypoxiaendothelialcells-derivedexosomesfacilitatediabeticwoundhealingthroughimprovingendothelialcell functionandpromotingM2macrophagespolarization. Bioact. Mater. 33,157–173(2024).
14.Xiong,Y.etal.ReactiveOxygenSpecies-ScavengingNanosystems intheTreatmentofDiabeticWounds. Adv.Healthc.Mater. 12, 2300779(2023).
15.Hu,S.etal.Exosome-elutingstentsforvascularhealingafter ischaemicinjury. Nat.Biomed.Eng. 5,1174–1188(2021).
16.Yang,G.etal.ExosomesandTheirBioengineeringStrategiesinthe CutaneousWoundHealingandRelatedComplications:Current KnowledgeandFuturePerspectives. IntJ.Biol.Sci. 19, 1430–1454(2023).
17.Lai,R.C.,Chen,T.S.&Lim,S.K.Mesenchymalstemcellexosome:a novelstemcell-basedtherapyforcardiovasculardisease. Regen. Med 6,481–492(2011).
18.Tong,B.etal.AugmentingIntracellularCargoDeliveryofExtracellularVesiclesinHypoxicTissuesthroughInhibitingHypoxiaInducedEndocyticRecycling. ACSNano 17,2537–2553(2023).
19.Maxfield,F.R.&McGraw,T.E.Endocyticrecycling. Nat.Rev.Mol. CellBiol. 5,121–132(2004).
20.Li,Z.etal.Structuralcharacteristicsandemulsifyingpropertiesof myofibrillarprotein-dextranconjugatesinducedbyultrasound Maillardreaction. UltrasonSonochem. 72,105458(2021).
21.Rohiwal,S.S.etal.Self-assemblyofbovineserumalbumin (BSA)–dextranbio-nanoconjugate:structural,antioxidantand invitrowoundhealingstudies. RSCAdv. 11,4308–4317 (2021).
22.Li,Y.,Fu,R.,Duan,Z.,Zhu,C.&Fan,D.AdaptiveHydrogelsBasedon NanozymewithDual-EnhancedTripleEnzyme-LikeActivitiesfor WoundDisinfectionandMimickingAntioxidantDefenseSystem. Adv.Healthc.Mater. 11,2101849(2022).
23.NijenhuisK.Thermoreversiblenetworks:viscoelasticproperties andstructureofgels.In Advancesinpolymerscience 130,(Springer Berlin,Heidelberg,1997).
24.Shibayama,M.,Hiroyuki,Y.,Hidenobu,K.,Hiroshi,F.&Shunji,N. Sol-geltransitionofpoly(vinylalcohol)-boratecomplex. Polymer 29,2066–2071(1988).
25.Qu,J.etal.Antibacterialadhesiveinjectablehydrogelswithrapid self-healing,extensibilityandcompressibilityaswounddressingfor jointsskinwoundhealing. Biomaterials 183,185–199(2018).
26.Shao,Z.etal.Woundmicroenvironmentself-adaptivehydrogel withefficientangiogenesisforpromotingdiabeticwoundhealing. Bioact.Mater. 20,561–573(2023).
27.Xie,X.etal.ConjugateElectrospun3DGelatinNanofiberSponge forRapidHemostasis. Adv.Healthc.Mater. 10,2100918(2021).
28.Shiekh,P.A.,Singh,A.&Kumar,A.Exosomeladenoxygenreleasing antioxidantandantibacterialcryogelwounddressingOxOBand alleviatediabeticandinfectiouswoundhealing. Biomaterials 249, 120020(2020).
29.Zuk,P.A.etal.HumanAdiposeTissueIsaSourceofMultipotent StemCells. Mol.Biol.Cell 13,4279–4295(2002).
30.Ma,X.etal.Ionadsorptionstabilizesbulknanobubbles. J.Colloid InterfaceSci. 606,1380–1394(2022).
31.Liang,C.,Yuan,F.,Liu,F.,Wang,Y.&Gao,Y.Structureandantimicrobialmechanismof ɛ-polylysine–chitosanconjugatesthrough Maillardreaction. IntJ.Biol.Macromol. 70,427–434(2014).
32.Su,J.-F.,Huang,Z.,Yuan,X.-Y.,Wang,X.-Y.&Li,M.Structureand propertiesofcarboxymethylcellulose/soyproteinisolateblend edible filmscrosslinkedbyMaillardreactions. Carbohydr.Polym. 79,145–153(2010).
33.Zheng,Y.,Chang,Y.,Luo,B.,Teng,H.&Chen,L.Molecularstructuremodificationofovalbuminthroughcontrolledglycosylation withdextranforitsemulsibilityimprovement. IntJ.Biol.Macromol. 194,1–8(2022).
34.Talebian,S.etal.Self-HealingHydrogels:TheNextParadigmShift inTissueEngineering? Adv.Sci. 6,1801664(2019).
35.Sun,J.-Y.etal.Highlystretchableandtoughhydrogels. Nature 489, 133–136(2012).
36.Sun,T.L.etal.Physicalhydrogelscomposedofpolyampholytes demonstratehightoughnessandviscoelasticity. Nat.Mater. 12, 932–937(2013).
37.Song,Y.etal.Adipose-DerivedMesenchymalStemCell-Derived ExosomesBiopotentiatedExtracellularMatrixHydrogels
AccelerateDiabeticWoundHealingandSkinRegeneration. Adv. Sci. 10,2304023(2023).
38.Wang,Y.etal.Regulationofendocytosisviatheoxygen-sensing pathway. Nat.Med. 15,319–324(2009).
39.Yoon,S.-O.,Shin,S.&Mercurio,A.M.HypoxiaStimulatesCarcinomaInvasionbyStabilizingMicrotubulesandPromotingtheRab11 Traffickingofthe α6β4Integrin. CancerRes. 65,2761–2769(2005).
40.Grant,B.D.&Donaldson,J.G.Pathwaysandmechanismsof endocyticrecycling. Nat.Rev.Mol.CellBiol. 10,597–608(2009).
41.Choi,Y.S.etal.Studyongelatin-containingartificialskin:I.Preparationandcharacteristicsof novelgelatin-alginatesponge. Biomaterials 20,409–417(1999).
42.Lan,G.etal.Chitosan/gelatincompositespongeisanabsorbable surgicalhemostaticagent. ColloidsSurf.BBiointerfaces 136, 1026–1034(2015).
43.Cooper,D.R.etal.Humanadipose-derivedstemcellconditioned mediaandexosomescontaining MALAT1promotehumandermal fibroblastmigrationandischemicwoundhealing. Adv.WoundCare 7,299–308(2018).
44.Zhou,C.etal.Stemcell-derivedexosomes:emergingtherapeutic opportunitiesforwoundhealing. StemCellRes.Ther. 14,107(2023).
45.Tonnesen,M.G.,Feng,X.&Clark,R.A.F.AngiogenesisinWound Healing. J.Investig.Dermatol.Symp.Proc. 5,40–46(2000).
46.Hong,W.X.etal.Theroleofhypoxia-induciblefactorinwound healing. Adv.WoundCare 3,390–399(2014).
47.Qiu,H.etal.Prospectiveapplicationofexosomesderivedfrom adipose‐derivedstemcellsinskinwoundhealing:Areview. J. Cosmet.Dermatol 19,574–581(2020).
48.Rani,S.&Ritter,T.Theexosome‐Anaturallysecretednanoparticle anditsapplicationtowoundhealing. Adv.Mater. 28,5542–5552 (2016).
49.Liang,Y.,He,J.&Guo,B.FunctionalHydrogelsasWoundDressing toEnhanceWoundHealing. ACSNano 15,12687–12722(2021).
50.Jahoda,C.A.B.&Reynolds,A.J.Hairfollicledermalsheathcells: unsungparticipantsinwoundhealing. Lancet 358,1445–1448(2001).
51.Lei,H.&Fan,D.Conductive,adaptive,multifunctionalhydrogel combinedwithelectricalstimulationfordeepwoundrepair. Chem. Eng.J. 421,129578(2021).
52.Cho,S.,Hwang,S.Y.,Oh,D.X.&Park,J.RecentprogressinselfhealingpolymersandhydrogelsbasedonreversibledynamicB–O bonds:boronic/boronateesters,borax,andbenzoxaborole. J. Mater.Chem.A 9,14630–14655(2021).
53.Sen,C.K.Woundhealingessentials:lettherebeoxygen. Wound RepairRegen. 17,1–18(2009).
54.Sheikh,A.Y.,Rollins,M.D.,Hopf,H.W.&Hunt,T.K.Hyperoxia improvesmicrovascularperfusioninamurinewoundmodel. WoundRepairRegen. 13,303–308(2005).
55.Niessen,F.B.,Spauwen,P.H.,Schalkwijk,J.&Kon,M.Onthenature ofhypertrophicscarsandkeloids:areview. Plast.Reconstr.Surg. 104,1435–1458(1999).
56.Li,Y.etal.Exosomesderivedfromhumanadiposemesenchymal stemcellsattenuatehypertrophicscar fibrosisbymiR-192-5p/IL17RA/Smadaxis. StemCellRes.Ther. 12,1–16(2021).
57.Han,X.etal.Nanooxygenchamberbycascadereactionforhypoxia mitigationandreactiveoxygenspeciesscavenginginwound healing. Bioact.Mater. 35,67–81(2024).
58.Huang,C.,Murphy,G.F.,Akaishi,S.&Ogawa,R.Keloidsand hypertrophicscars:updateandfuturedirections. Plast.Reconstr. Surg.Glob.Open 1,e25(2013).
59.Hossain,M.T.&Ewoldt,R.H.Protorheology. J.Rheol. 68, 113–144(2024).
60.Ren,W.,Messerschmidt,V.,Tsipursky,M.&Irudayaraj,J.Oxygen Nanobubbles-EmbeddedHydrogelasWoundDressingtoAccelerateHealing. ACSAppl.NanoMater. 6,13116–13126(2023).
Acknowledgements
JIacknowledgesfundingfromtheHealthmakerlab(Award#HML0000) attheCarleIllinoisCollegeofMedicine.JIacknowledgesfundingfrom theNSF-SBIR(Award#2031313).XHacknowledgesthesupportfromthe CancerScholarsforTranslationalandAppliedResearch(C*STAR)ProgramsponsoredbytheCancerCenteratIllinoisandtheCarleCancer Center.CSacknowledgestheBeckmanInstituteforAdvancedScience andTechnologyattheUniversityof Illinois,Urbana-Champaignfora postdoctoralfellowship.ThankstotheTumorEngineeringandPhenotyping(TEP)SharedResourceatCancerCenteratIllinois(UIUC)for assistanceinbiologicalevaluation.OursincerethankstoKarenDotyat theHistologyfacilityintheDepartmentofComparativeBiosciences (UIUC)forassistanceintissueprocessingandimmunofluorescent staining.ThankstoYunleiZhaoforassistanceindataanalysis.Figure 5c wascreatedwithBioRender.com(Agreementnumber:PQ26LNGIOK).
Authorcontributions
X.H.wasresponsiblefortheoverallmethodology,experiments,results anddiscussion,dataanalysis,andthe firstdraftofthemanuscriptand revision;J.I.conceivedtheidea,providedsupervisionandguidanceon experimentalplanningandfunding;W.R.assistedinanimalstudies;L.J. assistedinanimalexperimentsandbiologicalevaluation;C.S.andR.H.E. evaluatedtherheologicalcharacteristicsandrelateddiscussion.All authorscontributedtothewritingofthemanuscriptandhavereadand approvethemanuscript.
Competinginterests
J.I.andX.H. filedaprovisionalpatentapplicationfortheexosomecoatedoxygennanobubble-ladenhydrogel(U.S.PatentApplicationNo.: 63/631,255).Theremainingauthorsdeclarenocompetinginterests.
Additionalinformation
Supplementaryinformation Theonlineversioncontains supplementarymaterialavailableat https://doi.org/10.1038/s41467-024-47696-5
Correspondence andrequestsformaterialsshouldbeaddressedto JosephIrudayaraj.
Peerreviewinformation NatureCommunications thanksSharonGerecht,ArunKumarandtheother,anonymous,reviewerfortheircontributiontothepeerreviewofthiswork.Apeerreview fileisavailable.
Reprintsandpermissionsinformation isavailableat http://www.nature.com/reprints
Publisher’snote SpringerNatureremainsneutralwithregardtojurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations.
OpenAccess ThisarticleislicensedunderaCreativeCommons Attribution4.0InternationalLicense,whichpermitsuse,sharing, adaptation,distributionandreproductioninanymediumorformat,as longasyougiveappropriatecredittotheoriginalauthor(s)andthe source,providealinktotheCreativeCommonslicence,andindicateif changesweremade.Theimagesorotherthirdpartymaterialinthis articleareincludedinthearticle’sCreativeCommonslicence,unless indicatedotherwiseinacreditlinetothematerial.Ifmaterialisnot includedinthearticle’sCreativeCommonslicenceandyourintended useisnotpermittedbystatutoryregulationorexceedsthepermitted use,youwillneedtoobtainpermissiondirectlyfromthecopyright holder.Toviewacopyofthislicence,visit http://creativecommons.org/ licenses/by/4.0/.
©TheAuthor(s)2024