REVIEWARTICLE OPEN
Mesenchymalstemcell-derivedextracellularvesiclesfor immunomodulationandregeneration:anextgeneration therapeutictool?
MengKou1,10,LiHuang1,10,JinjuanYang1,ZhixinChiang2,ShaoxiangChen1,JieLiu3,4,LiyanGuo1,XiaoxianZhang1,XiaoyaZhou1, XiangXu 5,XiaomeiYan6,YanWang7,JinqiuZhang1,AiminXu 3,4,Hung-fatTse4,8 andQizhouLian 1,3,4,8,9 ✉
©TheAuthor(s)2022
Mesenchymalstemcells(MSCs)canbewidelyisolatedfromvarioustissuesincludingbonemarrow,umbilicalcord,andadipose tissue,withthepotentialforself-renewalandmultipotentdifferentiation.Thereiscompellingevidencethatthetherapeuticeffect ofMSCsmainlydependsontheirparacrineaction.Extracellularvesicles(EVs)arefundamentalparacrineeffectorsofMSCsandplay acrucialroleinintercellularcommunication,existinginvariousbody fluidsandcellsupernatants.SinceMSC-derivedEVsretainthe functionofprotocellsandhavelowerimmunogenicity,theyhaveawiderangeofprospectivetherapeuticapplicationswith advantagesovercelltherapy.WedescribesomecharacteristicsofMSC-EVs,anddiscusstheirroleinimmuneregulationand regeneration,withemphasisonthemolecularmechanismandapplicationofMSC-EVsinthetreatmentof fibrosisandsupport tissuerepair.WealsohighlightcurrentchallengesintheclinicalapplicationofMSC-EVsandpotentialwaystoovercomethe problemofqualityheterogeneity.
CellDeathandDisease (2022)13:580;https://doi.org/10.1038/s41419-022-05034-x
FACTS
● MSC-derivedEVshavelow-immunogenicityandstrong potentialfortherapeuticapplications.
● MSC-derivedEVswereusedtotreattissue fibrosisand promotetissueregeneration.
● MSC-derivedEVsareproposedasanoveltherapeuticagentto mediateimmunomodulationandpromoteregeneration.
OPENQUESTIONS
● HowcanMSC-derivedEVsmediateimmunomodulationand regeneration?
● HowcanMSC-derivedEVsbeusedtoaidregenerationof fibrotictissue?
● HowcanmassmanufacturingofMSC-derivedEVsbeachieved andtheproblemofqualityheterogeneityovercome?
● WhatarethechallengesofMSC-derivedEV-basedimmunomodulationandregenerationinclinicalpractice?
INTRODUCTION
Mesenchymalstemcells(MSCs)existinvarioustissuessuchas bonemarrow(BMSCs),umbilicalcordblood(UC-MSCs)and umbilicalcordtissue,placentaltissue(hPMSCs),adiposetissue (ADSCs),andmenstrualblood(MenSCs).Thesecellshavemultidirectionaldifferentiationpotential[1]tobecomeosteoblasts, chondrocytesoradipocytesinvitro[2],andhaveauniquefunction ofcytokinesecretion[3].Cellmodelshavebeenappliedin proliferation,transplantation,anddifferentiationstudies,andin identificationofimmuneresponsesinvitro[4].Numerousstudies haveshownthatMSCshavegreatpotentialinimmuneregulation andregeneration[5].TheU.S.FDAhasapprovednearly60clinical trials[6],mainlyfocusedonHematopoieticStemCellTransplantation(HSCT)[7],tissuehealing,AutoimmuneDisease(AID),and genetictherapyvectors[8].Recently,MSCshavebeenwidelyused inclinicalstudiesasaregenerativeagentandtotreatavarietyof conditionsincludingosteoarthritis[9],pulmonary fibrosis,spinal cordinjury,myocardialdamage,kneecartilageinjury,dentalpulp regeneration,andorgantransplantation[10].Anincreasingnumber
1CordBloodBankCentre,GuangzhouWomenandChildren’sMedicalCentre,GuangzhouMedicalUniversity,Guangzhou,China. 2DepartmentofAlliedHealthSciencesFacultyof Science,TunkuAbdulRahmanUniversity,Ipoh,Malaysia. 3StateKeyLaboratoryofPharmaceuticalBiotechnology,theUniversityofHongKong,HongKongSAR,China. 4DepartmentofMedicine,theUniversityofHongKong,HongKongSAR,China. 5DepartmentofStemCell&RegenerativeMedicine,StateKeyLaboratoryofTrauma,Burnand CombinedInjury,DapingHospital,ArmyMedicalUniversity,Chongqing400042,China. 6DepartmentofChemicalBiology,TheMOEKeyLaboratoryofSpectrochemicalAnalysis& Instrumentation,CollegeofChemistryandChemicalEngineering,XiamenUniversity,Xiamen,Fujian361005,China. 7XiamenCardiovascularHospitalofXiamenUniversity,School ofMedicine,XiamenUniversity,Xiamen,China. 8HKUMedLaboratoryofCellularTherapeutics,theUniversityofHongKong,HongKongSAR,China. 9DepartmentofSurgery, ShenzhenHongKongUniversityHospital,Shenzhen518053,China. 10Theseauthorscontributedequally:MengKou,LiHuang. ✉email:qzlian@hku.hk EditedbyDrYufangShi
Received:14February2022Revised:8June2022Accepted:22June2022

ofstudieshasrevealedthatthepowerfultherapeuticeffectsof MSCsareduetoparacrine-likesecretionofcytokines(growth factorsandchemokines)[11, 12]andextracellularvesicles(EVs)as wellastheirinvolvementincellularcommunication[13–16]. ApplicationofMSCsascelltherapyisbasedonregulatingthe inflammatoryresponseandparticipatingintissuerepairand regeneration[17].ThetherapeuticeffectofMSCsismainly attributedtotheirimmunomodulatoryfunctionregulatedbythe inflammatoryenvironment[18].Whenstimulatedbyinflammatory factors,MSCsproducealargenumberofimmunomodulatory factors,cellchemokines,andgrowthfactors,therebyregulating thetissueimmunemicroenvironmentandpromotingtissue regeneration[19].ThereisaccumulatingevidencethatEVs derivedfromMSCspreservethetherapeuticactionoftheparent MSCsandtheiruseavoidsthesafetyconcernsassociatedwithlive celltherapy[20, 21].Therefore,useofMSC-EVstoreplaceMSCsas cell-freetherapymaybethefocusoffutureclinicaltreatments [20].WereviewrecentstudiesoftheroleofMSC-EVsin immunomodulationandregeneration,focusingontheirmolecular mechanismsinthetreatmentofosteoarthritis,spinalcordinjury, skininjury,andliver,kidney,andlung fibrosis.
EXTRACELLULARVESICLESCOMPOSITION
Extracellularvesicles(EVs)existinbody fluids,arereleasedbycells, andhaveamembranestructure[22].Theycanbedividedintofour subgroupsaccordingtotheirdiameter:exosomes(30–150nm), microvesicles(100–1000nm),apoptoticbodies(50–5000nm,generatedduringcellapoptosis)[23, 24],andoncosomes(1–10 μm),newly discoveredandobservedincancercells[25].EVsencapsulatemany bioactivemolecules(proteins,lipids,nucleicacids,andorganelles) [26–28]thatcanbedeliveredtotargetcells.Largeamountsofdata suggestthatexosomesandmicrovesiclesarevitalmediatorsofEVs innumerousphysiological(pathological)processes[29](Fig. 1).
Exosomes
Exosomesaremicroscopicvesicleswithadensityof1.11–1.19g/mL. Theyhaveatypical “disk-like” structureand flatsphericalshapewhen seenunderanelectronmicroscope[24].Manykindsofcellsinvarious body fluidsandcellsupernatantscansecreteexosomesunder normalandpathologicalconditions.Exosomeswere firstdiscovered in1983insheepreticulocytesandwerenamed “Exosomes” by Johnstonein1987[30].Thesetinyvesiclescontainspecificproteins, lipids,andnucleicacidsthatcanbetransmittedandserveas signalingmoleculestoalterthefunctionofothercells[31, 32].
Duringtheformationofexosomes,theextracellularcomponentsandcellmembraneproteinsarewrappedbythe invaginatedplasmamembranetoformearlyendosomes.These canexchangematerialswithintracellularorganellesanddevelop intolateendosomes,eventuallyformingintracellularmultivesicularbodies(MVBs)[33, 34].MVBscontainmanyintraluminal vesicles(ILVs)[35].Theymaybedegradedandreleasedintothe cytoplasmbyfusionwithautophagosomesorlysosomes,or releasedintoextracellularvesiclesbyfusionwithplasma membrane,includingILVs,resultinginexosomeformation[34]. Exosome-mediatedintercellularcommunicationisachievedby directmembranefusion,receptor-mediatedendocytosis,phagocytosis,caveolae,andmicropinocytosis[36–38].
Proteinsinvolvedinexosomebiogenesis(suchastransportand fusion)includeRabGTPases[39–41],ESCRT(endosomalsorting complexrequiredfortransport)[42],annexin,lipidraftproteins,and fourtransmembraneproteins(CD63,CD81,andCD9)[43, 44].In addition,theyalsocontainbiosyntheticantibodies(AlixandTSG101) involvedinMVBs[45, 46],cholesterol,ceramide,phosphoglyceride thatprovidesstructuralstability,andimmune-relatedmoleculeMHC-II thatisinvolvedinantigenbindingandpresentation.Exosomesalso carryfunctionalmRNAsandmiRNAsthatcanbetransferredbetween cells[47].Exosomesreleasedbytumors containsingle-strandedDNA,
genomicDNA,cDNA,andatransposableelement[48, 49].Itisclear thatexosomeshavemanyfunctionsasbiomarkersofdisease.
Microvesicles
Microvesiclesarealsoknownasmicroparticles.BiogenesisofMVs differstothatofexosomessincetheyarereleasedfromoutward buddingand fissionofplasmamembranewhenthecellis stimulatedorapoptotic[50].Nonetheless,theysharecharacteristicsofhighbiocompatibility,andlowimmunogenicityand targetingandcanbeusedasdrugcarriers[51].Studieshave shownthattheuseoftumorcell-derivedMVstodeliver chemotherapydrugsproducesinbettercancertreatmentresults withfewsideeffectsoradversereactions[52, 53].
MSC-DERIVEDEXTRACELLULARVESICLES
AlthoughMSCsderivefromavarietyofsources,theycanallbe adherentincultureanddifferentiatedintoavarietyofcelltypes withspecificsurfacemarkers[54].Withtheneedforclinical treatmentwithMSCs,theMesenchymalandTissueStemCell CommitteeoftheInternationalSocietyforCellularTherapy(ISCT) hasproposedminimumcriteriaforidentificationofhumanMSCs: (1)Culturedunderstandardconditionstheymustadhereto plasticsubstrates;(2)On flowcytometry,thepositiverateof CD105,CD73andCD90expressioninMSCsurfacemarkersshould reach95%,andnegativeexpressionrateCD45,CD34,CD14or CD11b,CD79aorCD19orHLA-DR(humanleukocyteantigen-DR) (≤2%positive);(3)Afterinductionbystandardmethodsinvitro, MSCsmustbeabletoinducedifferentiationintoosteoblasts, chondrocytesandadipocytes[55].Nonetheless,furtherresearch hasrevealedthatthesestandardsdonotfullydefineMSCs[56]. ThereisaccumulatingevidencethatheterogeneousMSCshave multiplecellsubpopulationswithcharacteristicsurfacemarkers [57, 58],butthedefinitionofsurfacemarkersandbiological functionsofthesesubpopulationsrequiresongoingexploration.
MSCsareeasytoresuscitateandproliferateinvitro,enabling themtobemass-producedforclinicalapplication[18].Inrecent years,theyhavebeenthemoststudiedstemcelltypeforclinical application,andhaveplayedaneffectivetherapeuticroleingraftversus-hostdisease(GVHD)[7],kidneyinjury[59],tissueandorgan transplantation,immunetolerance[60],nerveinjury,rheumatic disease,andliverdisease.Atpresent,MSCshaveattractedmuch attentioninthecontextoftheCOVID-19pandemic[61].Lengetal. demonstratedthatinanMSCtreatmentgroup,patientswith COVID-19infectionwerecuredortheirconditionsignificantly improvedasaresultofregulationofincreasedinterleukin10(IL 10)expression,inhibitionofoveractivatedimmuneTcellsandNK cells,andasignificantlyreducedTNF-α level[62].
Despitetheiradvantages,thereareaspectsofMSCtherapythat warrantconsideration.First,theproliferationabilityofMSCsis graduallyweakenedandaccompaniedbyacertaindegreeof differentiationandevenagingwithincreasingpassagesduring invitroculture.Thisimpactstheirregulatoryandtherapeutic ability[56, 63].Second,intheinvivoenvironment,heredityfactors andtheself-renewalabilityofMSCscannotbecontrolledwith consequentpotentialfortumorigenicity[64].Inaddition,although MSCshaveastrongregenerativeregulatorypotential,itis uncertainwhethertheycantargetorremainatthedamaged sitefollowingintravenousinjection[65].Thereissomeevidence thatonlyasmallnumberofMSCsreachthetargetsiteduetothe hostbody’sscavengingcapacity[66, 67].Althoughin-situinjection canpartiallysolvetheseproblems,thereremainproblemswith celldifferentiationandaging,andtheclinicaleffectsarenot optimistic[68].MSCshavealsobeenfoundtocauseandpromote thegrowthofvarioustypesofcancer[69].Inaddition,thereare theusualassociatedrisksofcelltherapysuchasviralinfectionand immunerejectionaswellasproblemswithstorageand transportation[70].

Fig.1 Thedevelopmentandmaintypesofextracellularvesicles.A Exosomesarederivedfromtheendosomalpathway. B Compositionof exosomes.
ThediscoverythatmosttherapeuticeffectsofMSCsdependon theirparacrineactionandthatEVscanreplacetheirparentcells offersexcitingprospectsforresearchers[21].EVsoffergreat advantages[71]:theyarenotself-replicatingandlargelyavoidthe riskoftumorigenicity[72];comparedwithcelltherapy,EVsare safer;asnanoparticlestheyhavebothbiocompatibilityandlow immunogenicity,enablingthemtocross-protectivebarrierssuch astheblood-brainbarrier[73];theycanbecontinuouslysecreted byimmortalizedcellstoobtainasufficientnumber[74];EVs protecttheirinternalbiomolecularactivityviatheirlipidmembranestructure,canbepreservedforaprolongedperiodat-80°C, andarenotsubjecttodeactivation,evenafterrepeatedfreezing andthawing[75, 76];andtheyhaveanencapsulationcapability, canloadspecificdrugsandtransportthemtotargetcells[77].
Notably,MSC-EVsexpressEVsurfacemarkersCD63,CD9and CD81,aswellasmesenchymalstemcellsurfacemarkersCD44, CD73,andCD90[78].Inaddition,proteinscontainedinthe extracellularvesiclessecretedbyMSCsareaspecificprotein subclassthatdeterminestheiruniquebiologicalfunctions[36].At thesametime,theencapsulatedmRNAandmiRNAinMSC-EVs formthemolecularbasisfortheirfunction[79].Accordingly,MSCEVstransmitinformationandcommunicatewithtargetcells throughinternalsubstances,thuschangingtheactivityand functionoftargetcells[80].
Withtheiruniqueadvantages,MSC-EVsplayanimportantrole inimmuneregulationandregeneration.Studiesofthepromotion ofregenerationthroughimmuneregulationaredescribedin
detailbelow.Meanwhile,inthetreatmentofautoimmune diseases,Wuetal.foundthatBM-MSC-derivedEVstargeted inhibitionofthecyclinI-activatedATM/ATR/p53signalingpathwaybyupregulationofmiR-34a,therebyinhibitingRA fibroblastlikesynoviocytes(RA-FLSs)andsignificantlyamelioratingRA inflammationinvivo[81].Anotherstudyontheregulationof type-Iautoimmunediabetesmellitus(T1DM)showedthatADMSC-derivedexosomesamelioratedT1DMsymptomsbyupregulatingtheexpressionofregulatoryTcells,interleukin4(IL4),IL10 andtransforminggrowthfactor-beta(TGF-β)anddown-regulating IL17andinterferon-gamma(IFN-γ)[82].Additionalstudiesof autoimmunediseaseregulationhavebeensummarizedelsewhere [83].RecentlyMSC-EVshavealsobeenappliedinclinicalpractice. Nassaretal.areintheprocessofevaluatingtheeffectofhuman UC-MSC-derivedEVsonislet β cellsinpatientswithT1DM(trial NCT02138331).Recentclinicaltrialshavebeenconductedto evaluatethesafetyandefficacyofMSC-EVsinpatientswitha varietyofdiseasesbasedontheirpotentialforimmuneregulation andregeneration(Table 1).
APPLICATIONOFMSC-EVSINIMMUNEREGULATIONAND REGENERATION
ThetherapeuticpotentialofMSC-EVshasbeenreportedin immuneregulationandtissueregenerationbasedonEVmediatedcellularcommunicationbetweenMSCsandseveral targetcells,includingmacrophages,microglia,chondrocytes,
Table1. SummaryofregisteredclinicaltrialsbasedonMSC-EVswithpotentialforimmuneregulationandregeneration.
RegisterNo.TitlePhaseConditionInterventionURL
https://ClinicalTrials.gov/show/ NCT05127122
https://ClinicalTrials.gov/show/ NCT04493242
https://ClinicalTrials.gov/show/ NCT05078385
https://ClinicalTrials.gov/show/ NCT05130983
https://ClinicalTrials.gov/show/ NCT04657458
https://ClinicalTrials.gov/show/ NCT05125562
https://ClinicalTrials.gov/show/ NCT04327635
https://ClinicalTrials.gov/show/ NCT05116761
https://ClinicalTrials.gov/show/ NCT05176366
https://ClinicalTrials.gov/show/ NCT04173650
https://ClinicalTrials.gov/show/ NCT05215288
https://ClinicalTrials.gov/show/ NCT04223622
https://ClinicalTrials.gov/show/ NCT04270006
I/IIARDSBMSC-EVs; IV
NCT05127122BoneMarrowMesenchymalStemCell-DerivedExtracellularVesicles InfusionTreatmentforARDS
IICOVID-19ARDSBMSC-EVs; IV
IBurnwoundsBMSC-EVs;apply towound
ICrohn ’ sDiseaseBMSC-EVs; IV
BMSC-EVs; IV
CriticallyillCOVID- 19ARDS
open- label
BMSC-EVs; IV
NCT04493242ExtracellularVesicleInfusionTreatmentforCOVID-19 AssociatedARDS
NCT05078385SafetyofMesenchymalStemCellExtracellularVesicles(BMSC-EVs) fortheTreatmentofBurnWounds
NCT05130983APhaseIStudyofExoFlo,anexVivoCulture-expandedAdult AllogeneicBoneMarrowMesenchymalStemCell-Derived ExtracellularVesicleIsolateProduct,fortheTreatmentofMedically RefractoryCrohn ’ sDisease
NCT04657458ExpandedAccessProtocolonBoneMarrowMesenchymalStemCell- DerivedExtracellularVesicleInfusionTreatmentforPatientsWith COVID-19AssociatedARDS
IIMild-to-Moderate COVID-19
NCT05125562BoneMarrowMesenchymalStemCell-DerivedExtracellularVesicles InfusionTreatmentforMild-to-ModerateCOVID-19:APhaseII ClinicalTrial
IAMIEVs; Intracoronaryinfusion
NCT04327635SafetyEvaluationofIntracoronaryInfusionofExtracellularVesiclesin PatientsWithAMI
I/IICOVID-19BMSC-EVs; IV
NCT05116761ExoFlo ™ InfusionforPost-AcuteCOVID-19andChronicPost-COVID- 19Syndrome
IUlcerativeColitisBMSC-EVs; IV
NCT05176366StudyofExoFlofortheTreatmentofMedicallyRefractoryUlcerative Colitis
NCT04173650MSCEVsinDystrophicEpidermolysisBullosaI/IIDEBBMSC-EVs;apply towound
ISolidOrganTransplant Rejection BMSC-EVs; IV
NCT05215288IntermediateSizeExpandedAccessfortheUseofExoFlointhe TreatmentofAbdominalSolidOrganTransplantPatientsWhoAreat RiskofWorseningAllograftFunctionWithConventional ImmunosuppressiveTherapyAlone
NCT04223622EffectsofASCSecretomeonHumanOsteochondralExplantsopen- label OAASCsecretome; * IV
IPeriodontitisASC-EVs
NCT04270006EvaluationofAdipose-DerivedStemCellsExo.inTreatmentof Periodontitis
AMI acutemyocardialinfarction, ARDS acuterespiratorydistresssyndrome, ASC adipose-derivedstemcell, BMSC bonemesenchymalstemcell, COVID-19 coronavirusdisease2019, DEB dystrophicepidermolysis bullosa, EVs extracellularvesicles, IV intravenousadministration, OA osteoarthritis. * ASCsecretome,eithercompleteconditionedmediumorEVs.
articularchondrocytes,endothelialcells, fibroblasts,pericytes, neuralstemcells(NSC),neurons,hepaticstellatecells,and podocytes.Inthispaper,wediscussthemolecularmechanisms ofMSC-EVsintissuerepairandanti-fibrosis,inwhichseveral clustersofmiRNAandtheirdownstreampathwayshavebeen revealedtoplayimportantrolesinosteoarthritis,spinalcord injury,skininjury,liver fibrosis,kidney fibrosis,andlung fibrosis (Tables 2–7).
Supporttissuerepair
Osteoarthritis.Osteoarthritis(OA)istheprincipalformofjoint diseasewithunclearpathogenesis,presentingwithpainand stiffness,andinsomecases,disability[84].Recently,MSC-EVshave beenproventohavebothregenerativeandimmunoregulatory benefitsinOA(Table 2).
SeveralstudieshavereportedthathBMSC-EVsplayasignificant roleinthetreatmentofOAbyinhibitingsomepro-inflammatory pathwaysandfactors,andenhancingtheproliferationand migrationofchondrocytes.Vonketal.determinedthatMSC-EVs blockedNFκBsignalingbyinhibitingphosphorylationofIκBα, therebydown-regulatingTNF-α-inducedCOX2expression,and interleukinsandcollagenaseactivity.Additionally,MSC-EVsupregulatedtheexpressionofSOX9andWNT7A,andpromotedthe productionofproteoglycanandtypeIIcollagenininvitrostudies [85].Lietal.concludedthathBMSC-EVspromotedOA-chondrocyte (OA-CH)proliferationandmigrationandreducedapoptosisvia downregulationofMMP13,ALPL,IL-1β-activatedpro-inflammatory Erk1/2,PI3K/Akt,p38,TAK1,andNF-κBsignalingpathwaysand increasedgeneexpressionofPRG4,BCL2,andACAN(aggrecan) [86].Inaddition,inOA-likechondrocytes,MSC-EVsinducedthe expressionoftypeIIcollagenandaggrecan(chondrocytemarkers), whileinhibitingMMP-13andADAMTS5(catabolic)andiNOS (inflammatorymarkers).InaCIOAmodel,treatedmicealso exhibitedreducedcartilageandbonedegeneration[87].Inan OAmodel,RuizshowedthattheeffectofMSC-EVswasduetothe presenceofTGFBImRNAandprotein[88].Analogously,inthe samemodel,BMSC-EVspromotedtheconversionofRAW264.7 fromM1toM2,reducedtheexpressionofproinflammatory cytokinesIL-1β,TNF-α,andIL-6,andenhancedtheexpressionofIL10,chondrogenicgenes,collagenIIandSOX9[89].Interestingly, Wooetal.revealedintheirmonosodiumiodoacetate(MIA)ratand thesurgicaldestabilizationofthemedialmeniscus(DMM)mouse modelthatMSC-EVscouldamelioratecartilagedegenerationby increasingtypeIIcollagensynthesisanddecreasingMMP-1,MMP3,MMP-13andADAMTS-5expressioninthepresenceofIL-1β [90]. RecentstudieshavealsoexaminedtheeffectofmiRNAsinMSCEVs.Insynovial-derivedMSC-EVs(SMSC-EVs),Taoetal.overexpressedmiR-140-5ptoblockWnt5aandWnt5btoactivateYAP viatheWntsignalingpathwayandsignificantlyreduceextracellularmatrix(ECM)secretion[91].Wangetal.foundthat exosomesderivedfrommiR155-5p–overexpressingSMSCs(SMSC155-5p-Exos)promotedECMsecretionbytargetingRunx2,which enhancedcartilageregenerationandamelioratedOA[92].Likewise,SMSC-EVshighlyexpressedmiR-31andrelievedOAviathe KDM2A/E2F1/PTTG1axis[93].Ofinterest,hypoxiaincreasedthe expressionofmiR-216a-3pinHIF-1α-inducedBMSC-EVsand promoteddown-regulationofJAK2,promotingproliferation, migration,andreducedapoptosisofchondrocytesviainhibition oftheJAK2/STAT3signalingpathway[94].Acombinationofthese miRNAsandMSC-EVsmayserveasapotentialtherapyforOA.In contrast,severalstudieshaveshownthatmiRNAscauseside effectsinOA.Intra-articularinjectionofantagomir-miR-100-5p dramaticallyattenuatedtheinfrapatellarfatpad(IPFP)MSC-EV (MSCIPFP-EVs)-mediatedprotectiveeffectonarticularcartilage invivo[95].MiR-29b-3ptargetsFoxO3 geneandenhances chondrocytedestruction.lncRNAH19fromumbilicalcordMSCEVscouldcompetitivelybindtomiR-29b-3ptoattenuateits inhibitionofthetargetgeneFoxO3 [96].
Spinalcordinjury.Spinalcordinjury(SCI)arisesfollowing damagetoitsstructureandfunctionbyvariouspathogenic factors,withconsequentspinalcorddysfunctionincludingthatof movement,sensation,andreflexes[97].Duetothelimited regenerativeabilityofnervecomponents,MSC-EVshavebeen recentlyviewedasapromisingclinicaltreatmentforSCI(Table 3). AratmodelofSCIhascommonlybeenappliedtoevaluate treatmentwithMSC-EVs.Theyhavebeenfoundtobeableto regulateimmunityandrestorefunctionthroughavarietyof pathways.First,Huangetal.studiedtheadministrationofhBMSCExosinananimalmodel,anddemonstratedthatinhibitionof apoptosisprotein(Bax)andpro-inflammatoryfactors(TNFα andIL 1β),andpromotionofanti-apoptoticprotein(Bcl-2),antiinflammatoryprotein(IL10)andangiogenesis,couldimprove motorfunction[98].Interestingly,thereducedpericytemigration mediatedbyBMSC-EVscorrelatedwithinhibitionoftheNF-KB P65signalingpathwaywithconsequentweakeningofthebloodspinalcordbarrier(BSCB)[99].Inaddition,Zhouetal.showedthat treatmentwithBMSC-Exossuppressedtheexpressionofcaspase1 andIL1β byreducingpyroptosis,andenhancedneuronal regenerationtoamelioratemotorabilityinratswithspinalcord injury[100].Hanetal.foundthatTGF-β inBMSC-EVsenhanced theexpressionofSmad6,inhibitedtheexcessivedifferentiationof neuralstemcells(NSCs)intoastrocytes,andpromotedregenerationofneurons[101].Consecutively,Nakazakietal.proposedthat BMSC-EVsshouldbeadministeredover3daystoup-regulate transforminggrowthfactor-β (TGF-β),TGF-β receptor,andrelative proteinsoftightjunction[102].Moreintriguingly,Zhouetal. providedevidencethatexosomessecretedbyhPMSCsincreased theactivationofproliferatingendogenousnervestem/progenitor cellsinvivo,whilepromotingNSCproliferationandupregulating MEK,ERK,andCREBphosphorylationlevelsinvitro,resultingin functionalrecovery[103].
MiRNAshavealwaysbeenpotentbiologicaleffectorsofMSCEVs,andwithoutexception,theyplayastrongroleinimmune regulationandregenerationinspinalcordinjury.Jiaetal. confirmedthatoverexpressionofmiR-381inMSC-EVscould promoteSCIrepairbyup-regulatingRashomologousA(RhoA)/ RHOkinaseactivityanddown-regulatingBRD4expressionand DRGcellapoptosisbyWNT5A[104].Lietal.observedthatmiR-133 carriedbyMSC-Exoscoulddirectlytargetanddown-regulatethe expressionofRhoA,andalsopromoteexpressionofERK1/2STAT3 andCREBsignalingpathwayproteinsrelatedtoneuronalsurvival andaxonregeneration,thusrescuingneuronapoptosisand promotingaxonregeneration[105].Ofinterest,whenmiR-17-92, miR-26a,andmiR-216a-5pwereenrichedinBMSC-Exos,they respectivelyinducedactivationofmTOR/PI3K/Akt,PTEN/Akt /mTOR,andtheTLR4/NF-κB/PI3K/Aktsignalingpathwaycascade, withconsequentpromotionofaxonalregenerationandnerve functionrepairafterSCI[106–108].Inaddition,miRNA-22 encapsulatedinBMSC-EVspromotesneurogenesisandinflammationsuppressionbydownregulatingtheexpressionofinflammatorycytokinesandGSDMD,andblockingthepyroptosisof microgliaafterSCI[109].OverexpressionofmiR-199a-3p/145-5pin exosomessecretedbyhumanumbilicalcord-derivedMSCshas beenshowntoactivatetheNGF/TrkAsignalingpathwayaffecting TrkAubiquitination,andimprovelocomotorfunctioninratswith SCI[110].
Skininjury.Skininjuryisquitecommon.Skinregenerationis typicallyaccompaniedbyfouroverlappingprocesses:inflammation,angiogenesis,newtissueformation,andremodeling [111–113](Table 4).
Thereisrecentevidencethathuman-derivedMSC-Exos effectivelybenefitskindamageandacceleratewoundhealing bymodulatingrelatedsignalingpathways.Intriguingly,Zhouetal. adoptedacombinationtherapy,applyinghADSC-Exosbothlocally andintravenouslytoaccelerateskinwoundhealing.
Table2. Summaryofstudiesontheroleofextracellularvesiclesinosteoarthritis.
AnimalmodelMolecularmechanismActioneffectRef
EVssourceTargetcellsor tissues
[ 85 ]
Promotetheproductionofproteoglycan,typeII collagen,andchondrocytesregeneration
DownregulateTNFα -inducedexpressionofCOX2,ILs andcollagenaseactivity
[ 86 ]
Promotecellproliferationandmigrationand reduceapoptosis.
DownregulateIL-1ß-activatedpro-in fl ammatoryErk1/2, PI3K/Akt,p38,TAK1,andNFκ Bsignalingpathways
[ 87 ]
CIOAInhibitMMP-13,ADAMTS5andiNOSReinducetheexpressionoftypeIIcollagen, aggrecan,andprotectedmicefrom jointdamage
BMSC-EVsChondrocytes –
88 ]
Increasechondrocyteproliferation[
OATGFBIinhibitcartilageandbonedegradation,andlimit calci fi cationandosteophyteformation
hBMSC-EVsChondrocyte –
89 ]
InhibitOAprogression[
[ 90 ]
[ 91 ]
[ 92 ]
Promotetheproliferationandmigrationof humanOAchondrocytes,andprotected cartilagefromdegeneration
Enhanceproliferation,migrationof chondrocytes,andpreventOA
Enhanceproliferation,migrationof chondrocytes,andpreventOA
[ 93 ]
Alleviatecartilagedamageandin fl ammationin kneejoints
Promoteproliferation,migrationandreduce apoptosis
MurineBMSCs-EVsOA-like chondrocytes
hBMSC-EVsOA-like chondrocytes
BMSC-ExosMacrophagesOAPromotetheconversionofRAW264.7fromM1toM2, reducetheexpressionofIL-1 β ,TNFα andIL-6,and enhanceIL-10,chondrogenicgenes,collagenIIandsox9
hASC-EVsChondrocytesMIA,DMMIncreasetypecollagensynthesisanddecreaseMMP-1, MMP-3,MMP-13,andADAMTS-5expressioninthe presenceofIL-1 β
OAHighly-expressmiR-140-5pblockedECMsecretion decreaseviaRalA
OAHighly-expressedmiR-155-5ppromotedECMsecretion viaRunx2
EncapsulatemiR-31ameliorateskneeOAviathe KDM2A/E2F1/PTTG1axis.
SMSC-EVsArticular chondrocytes
SMSC-ExosArticular chondrocytes
SMSC-EVsKneeOAHumankneeOA patients
[ 95 ]
[ 96 ]
Protectarticularcartilagefromdamageand ameliorategaitabnormalityinOAmiceby maintainingcartilagehomeostasis
BMSC-EVsChondrocyteOAHypoxiaincreasedtheexpressionofmiR-216a-3pand promoteddown-regulationofJAK2
[ 94 ] infrapatellarfatpad
ChondrocyteOAMiR100-5p-regulateinhibitionofmTOR-autophagy pathway
MSCs-Exos
UMSC-ExosChondrocyteOAExosomalH19againstmiR-29b-3ptoupregulateFoxO3Promotechondrocytemigration,matrix
secretion,apoptosissuppression,aswellas senescencesuppression
BMSC bonemesenchymalstemcell, CIOA collagenase-inducedosteoarthritis, DMM destabilizationofthemedialmeniscus, ECM extracellularmatrix, EVs extracellularvesicles, Exos exosomes, hASC human adipose-derivedstemcell, MIA monosodiumiodoacetate(inducedosteoarthritis), OA osteoarthritis, OA-CH osteoarthritis-chondrocyte, SMSC synovialmesenchymalstemcell, UMSC umbilicalcordmesenchymal stemcell.
Table3. Summaryofstudiesontheroleofextracellularvesiclesinspinalcordinjury.
EVssourceTargetcellsortissuesAnimalmodelMolecularmechanismActioneffectRef
[ 98 ]
hBMSC-ExosEndothelialSCIInhibitBaxandTNF α andIL1 β ,andBcl2,IL10andangiogenesisAttenuatethelesionsizeandimproved functionalrecoveryafterSCI
BMSC-EVsPericyteSCIInhibitNF-KBP65signalingpathwayAmeliorateblood-spinalcordbarrier[ 99 ]
]
[ 100 ]
Amelioratethemotorabilityofspinal cordinjuryrats
BMSC-ExosPericyteSCISuppresstheexpressionofcaspase1andIL1 β byreducing pyroptosis
BMSC-EVsNSCsSCITGFβ enhancedtheexpressionofSmad6Promotetheregenerationofneurons[ 101 ]
Improvelocomotorrecovery[ 102 ]
BMSC-EVsM2macrophageSCIUp-regulateTGFβ ,TGFβ receptorandrelativeproteinsoftight junction
Promotespinalcordfunctionalrecovery[
SCIPromoteNSCsproliferationandupregulateMEK,ERK,andCREB phosphorylationlevels
hPMSC-ExosEndogenousneuralstem/ progenitorcells
PromoteSCIrepair[ 104 ]
MSC-EVsDRGcellsSCIOverexpressmiR-381up-regulatesRhoA/RHOkinaseactivityand down-regulateBRD4expressionandDRGcellapoptosisbyinhibiting theBRD4/WNT5Aaxis
[ 105 ]
[ 106 ]
[ 107 ]
Improvetherecoveryofhindlimb locomotorfunctionfollowingSCI
Enhanceneuro-functionalrecovery ofstroke
Promoteaxonalregenerationand neurogenesisandattenuateglia scarringinSCI
[ 108 ]
Promotefunctionalbehavioralrecovery afterSCI
NervefunctionrepairafterSCI[ 109 ]
PromotelocomotorfunctioninSCIrats[ 110 ]
MSC-ExosNeuronsSCIMiR-133btargetdown-regulatestheexpressionofRhoA,and promotesERK1/2STAT3andCREBsignalingpathway
BMSC-ExosNeuronsMCAOMiR-17-92inducesactivationofmTOR/PI3K/Aktsignalingpathway cascade
BMSC-ExosNeuronsSCIMiR-26ainducesactivationofPTEN/Akt/mTORsignalingpathway cascade
BMSC-ExosMicrogliaSCIHypoxicexosomalmiR-216a-5pmodulatemicroglialpolarizationby TLR4/NFκ B/PI3K/AKTsignalingcascades
BMSC-EVsMicrogliaSCIMiRNA-22downregulatestheexpressionofin fl ammatorycytokines andGSDMD
hUC-MSC-ExosNeuronsSCIMiR-199a-3p/145-5paffectedTrkAubiquitinationandpromotedthe NGF/TrkAsignalingpathway
BMSC bonemesenchymalstemcell, DRG dorsalrootganglia EVs extracellularvesicles, Exos exosomes, hPMSC humanplacentalmesenchymalstemcell, MCAO middlecerebralarteryocclusion, MSC mesenchymal stemcell, NSCs neuralstemcells, SCI spinalcordinjury, UC-MSC umbilicalcordmesenchymalstemcell.
Mechanistically,hADSC-ExosachievedthiseffectbydownregulatingTNF-α,IL-6,CD14,CD19,CD68,andC-caspase3,and up-regulatingVEGF,CD31,Ki67,PCNA, filaggrin,loricrinandAQP3 [114].Jiangetal.demonstratedthathBMSC-ExossuppressedTGFβ1,Smad2,Smad3,andSmad4bytargetingtheTGF-β/Smad signalingpathway,butincreasedtheexpressionofTGF-β3and Smad7,thusimprovingscarformationandpromotingwound healing[115].Remarkably,fetaldermalmesenchymalstemcellderivedexosomes(FDMSC-Exos)havebeenshowntoactivate adultdermal fibroblast(ADFs)topromotecellproliferation, migrationandsecretionbytargetingJagged1ligandinthe Notchsignalingpathway,andultimatelyacceleratewound healing[116].
Similareffectshavealsobeenobservedforhuman-derived MSC-ExoscarryingmiRNAs.Ofinterest,Heetal.showedthat hBMMSCsandjawbonemarrowMSCs(JMMSCs)couldinduce macrophagestowardM2polarizationandpromotewound healing.Themechanismsuggestedthatexosomessecretedby donorsmayregulatethepolarizationofmacrophagesbycarrying miR-223targetingPknox1.Nonetheless,researcherscannot confirmwhetherothermiRNAsorfactorscarriedbythese exosomesareinvolvedintheinductionofM2polarization,and furtherstudiesareneeded[117].Likewise,Wuetal.utilizedBMSCExostreatedwith50µg/mLFe3O4 nanoparticlesand100mTSMF toformafunctionalexosome(mag-BMSC-Exos).Notably,miR-215pwasoverexpressedinmag-BMSC-Exosandpromotedangiogenesisinvivoandinvitrotoaccelerateskinwoundhealingby targetingSPRY2toactivatethePI3K/AKTandERK1/2signaling pathways[118].Additionally,Chengetal.foundthathUCMSCsEVsarehighlyenrichedwithmiR-27bandpromotetheexpression ofJUNBandIRE1α bytargetingtheItchyE3ubiquitin-protein ligase(ITCH),therebyacceleratingcutaneouswoundhealing[119]. Inaddition,hUMSC-ExoscanbeenrichedwithasetofmicroRNAs (miR-21,-23A,-125b,and-145)toattenuateexcessmyofibroblast formationandscarringviarepressionoftheTGF-β2/SMAD2 pathways[120].AnotherstudyshowedthathADSC-Exosderived miR-19bregulatetheTGF-β pathwaybytargetingCCL1[121].Li etal.verifiedthathADSC-Exosdown-regulatedtheexpressionof Col1,Col3, α-SMA,IL-17RA,andP-SMad2/P-SMad3,andupregulatedthelevelofSIP1bysuppressingmultiplicationand migrationofhypertrophicscar-derived fibroblasts(HSFs).In addition,miR-192-5pwashighlyenrichedinADSC-EXOand reducedthelevelofpro-fibrosisprotein,improvedhypertrophic scar fibrosis,andacceleratedwoundhealingviatargeted inhibitionofIL-17RAexpression[122].Alongsidethis,overexpressionofmiR-486-5PinhADSC-EVsenhancedthemigrationof humanskin fibroblasts(HSFs)andtheangiogenicactivityof humanmicrovascularendothelialcells(HMECs)bytargetingSp5 andmotivatingCCND2expression,therebypromotingwound healing[123].Interestingly,Gaoetal.foundthatoverexpressionof Mir-135ainhAMSC-Exossignificantlydown-regulatedLATS2, therebyincreasingcellmigrationandpromotingwoundhealing [124].
Anti-fibrosis
Liver fibrosis.Liver fibrosisisapathophysiologicalprocessand referstotheabnormalproliferationofintrahepaticconnective tissueduetovariouspathogenicfactors[125].Recently,useof MSC-EVshasbeenconsideredanewtherapeuticapproachto repairliver fibrosis(Table 5).Rongetal.showedthathumanbone MSC-EVsinhibitedexpressionofWnt/β-cateninpathwaycomponents, α-SMA,andtypeIcollagen,therebypreventingstellatecell activationandincreasinghepatocyteregeneration.Invivo injectionofhBMSC-Exoshasbeenshowntoeffectivelyalleviate CCL4-inducedliver fibrosisinratsandrestoreliverfunction[126]. Likewise,usingaCCL4-inducedliver fibrosisanimalmodel,Ohara etal.provedthatEVsfromamnion-derivedMSCs(AMSC-EVs) couldsignificantlyreducethenumberofKupffercells(KCs),mRNA
expressionofinflammatoryfactors,activationofhepaticstellate cells(HSC),andthelipopolysaccharide(LPS)/toll-likereceptor4 (TLR4)signalingpathway,therebyreducinginflammationand fibrosis[127].
Theanti-fibroticeffectofmiRNAsinMSC-EVshasbecomea focusofresearchintoCCL4-inducedliver fibrosisinrats.MiRNA181-5poverexpressioninADSC-EVshasbeenshowntodownregulatetranscription3(STAT3)andBcl-2andactivatedautophagyinHST-T6cells,alongsideasignificantdecreaseincollagenI, vimentin,a-SMA,and fibronectininliver[128].Similarly,high expressionofmiR-122inADSC-EVsmodulatedtheexpressionof targetgenessuchasinsulin-likegrowthfactorreceptor1(IGF1R) cyclinG(CCNG1),andproline-4-hydroxylaseA1(P4HA1),thereby moreeffectivelyblockingtheproliferationofHSCsandcollagen maturation[129].Interestingly,Kimetal.reportedthatmiR-486-5p washighlyexpressedinT-MSC-EVsthatcouldtargetthehedgehogreceptor,smoothened(Smo),andinhibithedgehogsignaling, therebyattenuatetheactivationofHSCsandliver fibrosis[130].
Kidney fibrosis.Renal fibrosisisagradualpathophysiological processduringwhichkidneyfunctionprogressesfromhealthyto injured,thentodamagewithanultimatelossoffunction[131]. Increasingly,MSC-EVshavebeenstudiedinthetreatmentofrenal fibrosisusingvariousmodels(Table 6).
Jietal.determinedthathUC-MSC-ExosrepressedYesassociatedprotein(YAP)throughcaseinkinase1δ (CK1δ)andE3 ubiquitinligase β-TRCPinaratmodelofunilateralureteral obstruction(UUO),thusamelioratingrenal fibrosis[132].Similar effectsinaUUOmodelwereconfirmedinLiu’sstudy.They revealedthathUC-MSC-Exosattenuatedrenal fibrosisbyinhibitingtheROS-mediatedp38MAPK/ERKsignalingpathway[133]. Likewise,Shietal.showedthatmilkfatglobule–epidermalgrowth factor–factor8(MFG-E8)wasincludedinBMSC-EVs,and amelioratedrenal fibrosisbyblockingtheRhoA/ROCKpathway inaUUOmodel[134].Ofinterest,inaUUOmousemodel,BMSCExosloadedmiR-34c-5pinhibitedcorefucosylation(CF)bycd81EGFRcomplex,therebyimprovingrenalinterstitial fibrosis(RIF) [135].Correspondingly,recentstudiesalsosuggestthatexosomes fromADSCsamelioratethedevelopmentofDNviamiRNAs.Jin etal.usedmiRNA-215-5ptoinhibitZEB2andimproveddiabetic nephropathy(DN)symptoms.Theyalsorevealedthatupregulated expressionofmiR-486couldsuppresstheSmad1/mTORsignaling pathwayinpodocytes[136, 137].MV-miR-451afromhUMSCs repressedcellcycleinhibitorP15andP19expressionbytargeting their3′-UTRsites,therebydecreasing α-SMAandincreasing e-cadherinexpression.Thisresultedinepithelial-mesenchymal transformation(EMT)reversalandimprovedDNsymptoms[138]. InanotherstudyofameliorationofDN,BMSC-Exossignificantly enhancedtheexpressionofLC3andBeclin-1,anddecreasedthe levelofmTORand fibroticmarkersinastreptozotocin-inducedrat modelofdiabetesmellitus[139].Interestingly,Grangeetal. reportedthatrenal fibrosisandtheexpressionofcollagenIwere significantlyamelioratedviamultipleinjectionsofHLSCs(human liverstem-likecells)andMSC-EVsinNOD/SCID/IL2Rγ KO(NSG) mice.Additionally,relatedgenes(Serpina1a,FASligand,CCL3, TIMP1,MMP3,collagenI,andSNAI1)weresignificantlydownregulated,therebyattenuatingDNsymptoms[140].
Lung fibrosis.Pulmonary fibrosisisaterminalchangeinlung diseasecharacterizedby fibroblastproliferationandaccumulation ofalargeamountofextracellularmatrixaccompaniedby inflammatoryinjuryanddestructionoftissue.Normalalveolar tissueisdamagedandabnormalrepairleadstostructural abnormalities[141, 142].Theetiologyinthevastmajorityof patientswithpulmonary fibrosisisunknown[143].Idiopathic pulmonary fibrosis(IPF)manifestsmainlywithpulmonary fibrotic lesionsandisaseriousinterstitiallungdiseasethatcanleadto progressivelossoflungfunction.IPFhasahighermortalitythan
Table4. Summaryofstudiesontheroleofextracellularvesiclesinskininjury.
AnimalmodelMolecularmechanismActioneffectRef
Accelerateskinwoundhealing[ 114 ]
Down-regulateTNFα ,IL-6,CD14,CD19,CD68,and C-caspase3,up-regulateVEGF,CD31,Ki67,PCNA, fi laggrin,loricrinandAQP3
[ 115 ]
Improvescarformationandpromote woundhealing
TargetonTGFβ /Smadsignalingpathway,butincreased theexpressionofTGFβ 3andSmad7
[ 116 ]
InhibitMMP-13,ADAMTS5andiNOSReinducetheexpressionoftypeIIcollagen, aggrecan,andprotectedmicefrom jointdamage
[ 117 ]
Full-thicknessskin defectmodel
EVssourceTargetcellsor tissues
hADSC-Exos –
hBMSC-ExosHaCaTcells andHSFs Full-thicknessskinwounds injurymodelinrats
FDMSC-ExosADFsFull-thicknessdermal woundinjurymodel
hBMSC-Exosand JMMSC-Exos MacrophagesSkinWound-HealingBycarryingmiR-223targetingPknox1InducedmacrophagestowardM2 polarizationandpromotewoundhealing
Accelerateskinwoundhealing[ 118 ]
mag-BMSC-ExosHUVECsandHSFsRatSkinWoundModelHighly-expressmiR-21-5pandtargetSPRY2toactivating PI3K/AKTandERK1/2signalingpathways
119 ]
Acceleratecutaneouswoundhealing[
Highly-expressmiR-27bpandpromotetheexpression ofJUNBandIRE1 α bytargetingtheItchyE3ubiquitinproteinligase(ITCH)
[ 120 ]
Attenuateexcessmyo fi broblastformation andanti-scarring
121 ]
Promotethehealingofskinwounds[
Highly-expressmicroRNAs(miR-21,-23A,-125band -145)repressedtheTGFβ 2/SMAD2pathway
Highly-expressmiR-19bregulatedTGFβ pathwayby targetingCCL1
[ 122 ]
[ 123 ]
[ 124 ]
Reducethelevelofprofi brosisprotein, improvehypertrophicscar fi brosisand acceleratewoundhealing
Down-regulatetheexpressionofCol1,Col3, α -SMA,IL- 17RA,andP-SMad2/P-SMad3,andup-regulatethelevel ofSIP1,whileoverexpressionmiR-192-5ptarget inhibitionofIL-17RAexpression
Promoteproliferation,migrationand reduceapoptosis
OverexpressionmiR-486-5pinhibitSp5andelevatethe CCND2expression
Increasecellmigrationandpromote woundhealing
DownregulationofLATS2afteroverexpressionofmiR- 135a
hUCMSCs-EVsHaCaTcells andHSFs Cutaneouswound mousemodel
hUCMSC-ExosMyo fi broblastFull-thicknessskindefect mousemodel
Woundhealingofskin- injuredmice
hADSC-ExosHaCaTcells andHSFs
hADSC-ExosHSFsFull-thicknessskindefects inthebacksofrats
hADSC-EVsHSFsandHMECs –
hAMSC-ExosFibroblastsFull-thicknessskindefects inthebacksofrats
EVs extracellularvesicles, Exos exosomes, FDMSC fetaldermalmesenchymalstemcell, hADSC humanadipose-derivedstemcell, hAMSC humanamnionmesenchymalstemcell, hBMSC humanbonemesenchymal stemcell, HMEC humanmicrovascularendothelialcell, HSF Humanskin fi broblast, hUCMSC humanumbilicalcordmesenchymalstemcell, JMMSC jawbonemarrowMSC.
[ 126 ]
Effectivelyalleviateliver fi brosis,andenhance liverfunctionality,hepatocyteregeneration
InhibitedtheexpressionofWnt/ β -cateninpathway, α -SMA,andCollagenI
127 ]
Improveliverin fl ammationand fi brosis[
[ 128 ]
[ 129 ]
hBMSC-ExosHepaticstellatecellsCCl4-inducedliver fi brosis
Effectiveanti-liver fi broticandattenuate liverinjury
AMSC-EVsHepaticstellatecellsNASH,liver fi brosisDecreasethenumberofKCsandthemRNA expressionlevelsofTNFα ,IL1β ,IL6,TGFβ ,LPS, andTLR4
Down-regulateSTAT3andBcl-2andactivated autophagy
ADSC-ExosHST-T6cells * Inducedliverinjury byCCl4
AMSC-ExosHepaticstellatecellsCCl4-inducedliver fi brosis miR-122Enhancethetherapeuticef fi cacyofAMSCsinthe treatmentofliver fi brosis
MiR-486inactivateshedgehogsignalingAttenuateHSCactivationandliver fi brosis[ 130 ]
CCl4-inducedliver fi brosis
hTMSC-EVsHumanprimaryhepatic stellatecells
ADSC adipose-derivedmesenchymalstemcell, AMSC amnion-derivedmesenchymalstemcell, BMSC bonemesenchymalstemcell, CCl4 carbontetrachloride, EVs extracellularvesicles,Exosexosomes, HSC hepatic stellatecell, NASH nonalcoholicsteatohepatitis, TMSC tonsil-derivedmesenchymalstemcell.
mosttumorsandisconsideredatumor-likedisease[142]. Recently,MSC-EVshavebecomeaneffectivetreatmentfor pulmonary fibrosis(Table 7).
BMSC-Exosexerttheirtherapeuticeffectthroughimmunomodulation.Inamousemodel,BMSC-Exoshavebeenshownto significantlyamelioratehyperoxia(HYRX)-inducedbronchopulmonarydysplasia(BPD),alveolar fibrosis,andpulmonaryvascular remodelingbysuppressingM1macrophageproductionand enhancingM2macrophagegeneration[144].Likewise,BMSCExoshavebeenshowntosignificantlyreverse fibrosisina bleomycin-inducedpulmonary fibrosismodelbyregulatingtotal lungimbalanceofMΦ phenotype[145].Inaddition,theWnt5a/ BMPsignalingpathwayregulatedbyUC-MSC-Exoscanenhance Wnt5a,Wnt11,BMPR2,BMP4,andBMP9expression,anddownregulatethatof β-catenin,CyclinD1andTGF-β1.Inamonocrotaline(MCT)-inducedratmodelofpulmonaryhypertension(PH), MSC-Exoswereshowntosignificantlyamelioratepulmonary vascularremodelingandpulmonary fibrosis[146].Ofinterest, Chaubeyetal.showedthatUC-MSC-Exosplayedatherapeutic roleinimprovingpulmonaryinflammation,pulmonarysimplification,pulmonaryhypertension,andrightventricularhypertrophy throughimmunomodulatoryglycoproteinTSG-6inaneonatal BPDmousemodel[147].
Additionally,MSC-EVscanreverselunginjuryandpulmonary fibrosisbyexpressinginfluentialmiRNAs.Wanetal.determined thathighexpressionofmiR-29b-3pbyBMSC-EVsamelioratedIPF byFZD6[148].Zhouetal.foundthatmiR-186enrichedbyBMSCEVsrepressedtheexpressionofSOX4andDickkopf-1(Dkk1), therebyeffectivelyinhibiting fibroblastdevelopmentandattenuatingIPF[149].Inaddition,Lei’sstudyrevealedthathPMSC-EVs couldcarrymiR-214-3panddownregulateATM/P53/P21signaling, thusrelievingradiation-inducedlunginflammationand fibrosis [150].InBLM-inducedlung fibrosisandamousemodelofalveolar epithelialcelldamage,exosomessecretedfromMenSCs(MenSCsExos)havebeenshowntoamelioratepulmonary fibrosisby transferringmiRNALet-7tosuppressreactiveoxygenspecies (ROS),mitochondrialDNA(mtDNA)damage,andactivationof NLRP3inflammasome[151].Similarly,Xiaoetal.usedanotherLPSinducedAcuteLungInjury(ALI)mousemodelanddemonstrated thatMSC-ExosrepressedNF-κBandhedgehogpathwaysby transportingmiR-23a-3pandmiR-182-5p,therebyimprovinglung injuryand fibrosis[152].
CHALLENGESANDAPPLICATIONOFMSC-EVSASAN ADVANCEDTHERAPY
*HST-T6,mousehepaticstellatecellline.
AlthoughMSC-EV-basedtherapyholdsgreatpromiseasanovel “cell-free” therapeuticproduct,thereremainmanychallengesto overcomepriortotheirclinicalapplication.Atpresent,several limitationsrestricttheclinicaltranslationofMSC-EVsincludingthe discrepanciesinthecomponentsofEVsfromvarioussourcesand thelackofstandardoperationprocessesforlargescaleproduction, bothofwhichlargelydependonqualitycontrolofthesourcesof EVs.Itisplausibletoovercomethesehurdlesbyintroducinga strategytocontrolthequalityofMSCsfromtheoriginalsource ofEVs.
ThequalityofMSC-derivedEVsfromdifferentgroupsand batchesisheterogeneous MSCsaremostcommonlyderivedfrombonemarrow,fat, umbilicalcordandothertissues,butmaintainingconsistent qualityofMSCsandtheirEVsfromdifferentsourcesandacross batchesisdifficult.Thisseverelyrestrictsthequalitycontroland managementofMSCsandtheirEVsasdrugs,andincreasesthe problemofdrugresistance[153].Thisresultsinlimited reproducibilityoffunctionalmeasurementsinvitroandinvivo [154].
UUOInhibitROS-mediatedp38MAPK/ERKsignaling pathway Attenuaterenal
]
hUC-MSC-ExosRenaltubular epithelialcells
BMSC-EVsHK-2cellsUUOInhibitRhoA/ROCKpathwayAttenuaterenal
AmeliorateRIF[ 135 ]
UUOMiR-34c-5pinhibitsthecorefucosylationofmultiple proteins
[ 136 ]
ImprovepodocytedysfunctionandDN symptoms
MiR-215-5pshuttlestopodocyte,andinhibitsthe transcriptionofZEB2
137 ]
AmeliorateDNsymptom[
[ 138 ]
Decreasethemorphologicandfunctional injuryofkidney
139 ]
AttenuateDNsymptom[
[ 140 ]
BMSC-EVsPericytes;Fibroblasts; Macrophages
ADSCs-ExosPodocyte
ADSCs-ExosPodocyteSpontaneousdiabetesmiceEnhancetheexpressionofmiR-486,inhibitof Smad1/mTORsignalingpathway
DiabetesandhyperuricemiamiceMiR-451adecreases α -SMAandincreasese-cadherin expressionbytargeting3 ′ -UTRsitesofP15andP19
EnhancetheexpressionofLC3,Beclin-1anddecrease thelevelofmTORand fi broticmarker
hUC-MSC-EVsHK-2cells *
BMSC-EVsRenaltissueStreptozotocin-induceddiabetes mellitusrat
brosisandtheexpression ofcollagenI,attenuateDNsymptom
Amelioraterenal fi
KO(NSG)miceDownregulateSerpina1a,FASligand,CCL3,TIMP1, MMP3,collagenIandSNAI1
hBMSC-EVsGlomerulusNOD/SCID/IL2R γ
ADSC adipose-derivedmesenchymalstemcell, BMSC bonemesenchymalstemcell, DN diabeticnephropathy, EVs extracellularvesicles,Exosexosomes, RIF renalinterstitial fi brosis, UC-MSC umbilicalcord mesenchymalstemcell, UUO unilateralureteralobstruction. * HK-2,humanproximaltubularepithelialcellline.
Intheangiogenesisstudy,BMSC-,ADSC-,andUCBMSC-derived EVswerecomparedandfoundtoreducemyocardialapoptosis, facilitateangiogenesis,andimprovecardiovascularfunction. Notably,EVsfromADSCsstimulatedcardioprotectionfactors VEGF,bFGF,andHGF[155].Inaddition,BMSC-derivedEVs appearedtohaveagreaterangiogenicpotentialthanADSCderivedEVswhencomparedintwoindependentischemicmodel studies,withanapproximately4-foldincreaseinendothelialcell numberscomparedwithcontrols,anda1.5-foldchangeinthe latter[156, 157].Nonetheless,anotherstudyshowedthatEVsfrom endometrialmesenchymalstemcellsresultedinagreaterlevelof angiogenesisthanEVsfromBMSCSorADMSCs[158].
Instudiesofosteogenesisstudies,intwoseparateratskull defectstudies,BMSC-EVtreatmentincreasedbonevolumefourfoldrelativetothecontrolgroup[159],whileADSC-EVincreased bonevolumebyabout1.33times[160].Inotherstudies,BMSCandADSC-derivedEVsacceleratedchondrocyteproliferation, migration,andosteogenicdifferentiation[161, 162].
ComparisonoftheimmunomodulatorydifferencesofMSCderivedEVsfromdifferentsourcesrevealedthatBMSC-EVsand ADSC-EVscouldinduceM2polarizationofmacrophagesinvivo andinvitro[163, 164].Interestingly,inaseparateexperiment, Wangetal.showedthatBMSC-EVspromptedasignificant(3.2fold)increaseintheexpressionofCD206ofM2-polarization markerinanacutelunginjurymousemodel[163].Nonetheless Liuetal.reportedthattheM2polarizationabilityofADSC-EVs increasedonlybyafactorof1.5inamousemodel[165].
TheproliferationcapacityofMSCsextractedfromadult tissueswaslimited,andaffectedthelargescaleproductionof EVs
TodevelopMSC-EVsintocommerciallyadvancedtherapeutic products(ATPs),qualityassurance(QA)isrequiredoftheoriginal material,includingparentalgroupsorcellsusedinthe manufactureofMSCs.Thereremainmanydifficultiesinmass productionofEVsfromadulttissuesforclinicaltrialssince proprietaryMSCshavealimitednumberofpassagetimes,age easily,andcomeatahigh financialcost.Inaddition,their heterogenicitymakestraditionalcellcultureinefficientintermsof timeandcost.
MSCsderivedfrompluripotentstemcellsovercomethe problemsofmassproductionofMSC-EVsandquality heterogeneity
TheoriginalsourceMSCsrequiresgood,consistent,and controllablequality,withastrongabilitytoproliferateandto secretelargenumbersofEVs.Toachievethis,weestablishedan inductionsystemofMSCsusingpluripotentstemcellsto overcometheproblemsofmassproductionofMSC-EVsand variationinquality.WesuccessfullyinducedMSCsfrompluripotentstemcells(PSC)[166–170].ComparedwithMSCsextracted fromtraditionalsources,ourMSCswerederivedfromthesame parentPSCs,consequentlyovercomingtheproblemofEV heterogeneitywhenMSCsfromavarietyofsourcesareused. Recently,GMP-gradeMSCsderivedfromhumanPSCs(hPSC)have beenusedinclinicaltrialsforrefractorygraft-versus-hostdisease (GVHD)[171].ThetherapeuticpotentialofMSC-EVshasbeen showninpreclinicalstudiesofbothacuteGVHD(aGVHD) [172–174]andchronicGVHD(cGVHD)[175]models.The preliminarybenefitsofhPMSC-EVshavebeenreportedina patientwithcutaneouscGVHD.Thestiffeninganddrynessofskin wereimprovedsignificantlyafterintravenousinjectionofhPMSCEVs[176].Basedonthepreliminaryefficacyandsafetyprofiles,a phase1studyhasbeenlaunchedtoevaluatethesafetyand efficacyofBM-MSC-derivedEVsinpatientswithacuteorchronic rejectionfollowingabdominalsolidorgantransplantation (NCT05215288,Table 1).ItisplausiblethathPSC-MSC-derived EVswillpromotetheclinicaltranslationofMSC-EVsowingtothe
fi brosis.
Table7. Summaryofstudiesontheroleofextracellularvesiclesinlung
EVssourceTargetcellsortissuesAnimalmodelMolecularmechanismActioneffectRef
[ 144 ]
Improvelungfunction,decrease fi brosisandpulmonary vascularremodeling,andamelioratepulmonaryhypertension.
BMSC-ExosLungmacrophageHyperoxia-inducedBPDSuppressM1macrophageproductionandenhanceM2 macrophagegeneration
145 ]
fi brosis[
RegulatetotallungimbalanceofmacrophagephenotypePreventorreverselung
hBMSC-ExosLungmacrophageBleomycin-inducedpulmonary fi brosis
146 ]
RegulateWnt5a/BMPsignalingpathwayAttenuatepulmonaryvascularremodelingandlung fi brosis[
UC-MSC-ExosPAECandPASMCMonocrotaline-inducedrat modelofPH
UC-MSC-ExosLungtissueBPDImmunomodulatoryglycoproteinTSG-6Improvepulmonaryin fl ammation,pulmonarysimpli fi cation, pulmonaryhypertension,andrightventricularhypertrophy [ 147 ]
148 ]
BMSC-EVsIPFpulmonarytissueIPFMiR ‐29b ‐3pAmeliorateIPF[
150 ]
AmeliorateIPF[
BMSC-EVsLung fi broblastPFMiR-186suppressedSOX4andDKK1expression,blocked fi broblastactivation
MiR-214-3pdownregulateATM/P53/P21signalingRelieveradiation-inducedlungin fl ammationand fi brosis[
149 ] hPMSC-EVsLung fi broblastWholethoraxirradiation mousemodel
151 ]
Remitpulmonary fi brosis[
MenSCs-ExosRecipientalveolarepithelialcellsBLMMiRNALet-7suppressesROS,mtDNAdamage,and NLRP3in fl ammasomeactivation
152 ]
ReversedtheLPS-inducedlunginjuryand fi brosis[
MSC-ExosMLE-12cells * LPS-inducedALITransmitmiR-23a-3pandmiR-182-5ptoinhibitNFκ Band hedgehogpathways
ALI acutelunginjury, BLM bleomycin, BMSC bonemesenchymalstemcell, BPD bronchopulmonarydysplasia; EVs extracellularvesicles, Exos exosomes, hPMSC humanplacenta-derivedmesenchymalstemcell, IPF idiopathicpulmonary fi brosis, LPS lipopolysaccharide, PAEC pulmonaryarteryendothelialcell, PASMC pulmonaryvascularsmoothmusclecell, PF pulmonary fi brosis, PH pulmonaryhypertension, MenSCs menstrualblood-derivedstemcell, UC-MSC umbilicalcordmesenchymalstemcell.
qualitycontrolandlargescaleproductiveadvantagesofhPSCMSCscomparedwithtraditionalMSC.hPSC-MSCshavemore passages(morethan30generations),strongamplificationability, canwithstandsenescence[166, 167, 170],andhavestrong secretionability(includingcytokinesandexosomes)[168] comparedwiththetraditionalMSCs.Nonetheless,thepassage timesoftraditionalMSCsaregenerallylessthan10generations, andtheproliferationanddifferentiationabilitiesofMSCsare reducedafternumerouspassagesinculture,andaffectsthe secretionofextracellularvesicles.Therefore,ourhPSC-MSCshave greatadvantagesforlarge-scaleproductionandcostcontrolof EVs.MassproductionofMSCsandtheirEVsisnowpossibleusing bioreactorsandmicrocarrierstomaximizeMSCgrowthandEV releaseperunitsurfacearea.Weevaluatedmesenchymalstem cellsfromdifferentsourcesandfoundthatPSC-MSCshadthe highestEVproduction.TooptimizeEVproduction,weacquired hPSC-MSCsinascalablecellfactory-basedcultureandwereable toovercomethemajorobstaclesduringtransformationofMSCEVsintoATPs.
CONCLUSIONSANDFUTUREPERSPECTIVE
Extracellularvesiclesderivedfrommesenchymalstemcellsplaya criticalroleinthedevelopmentofimmuneregulationand regeneration.TheseEVsmimictheeffectsofstemcellsand performpowerfulfunctionsbymodulatingimmunepathways, promotingeffectorcellmigrationandproliferation,andreducing apoptosis.Todate,15clinicaltrialshavebeenregisteredin ClinicalTrial.gov,butnonehasbeencompleted.AlthoughEVs comparedwithMSCcelltherapyincitealowerimmuneresponse andhaveahighersafetyprofile,thereremainchallengestotheir clinicalapplication[56].Inaddition,thesuccessfulapplicationof EVsdependsonlowcostformassproduction,aswellasimproved separationefficiencyandmoreaccuratecharacterizationmethods. ThisreviewhasdiscussedthetherapeuticeffectsofEVsbasedon thefunctionofMSCsortheintroductionofspecificmolecules (suchasmiRNAsandlncRNAs).Asworkcontinues,researchersare activelydevelopingengineeredEVsthataremoreeffectiveand capableoftargeting,throughloadingofbioactivemoleculesand surfacemodification.Ofinterest,Fengetal.developed ε-polylysine-polyethylene-distearylphosphatidylethanolamine (PPD)tomodifyMSC-EVsandinverttheirsurfacecharge.Asa result,thestericandelectrostatichindranceofcartilagematrix werealleviated,andtheefficiencyofMSC-EVsinthetreatmentof OAwasimproved[177].Thesetreatmentstrategieshaveachieved promisingresultsattheinitialstageandprovideexcitingnew avenuesforregenerativemedicinetherapy.
DATAAVAILABILITY
Allrelevantdataareincludedinthismanuscript.
REFERENCES
*MLE-12,mouselungepithelialcellline.
1.MaqsoodM,KangM,WuX,ChenJ,TengL,QiuL.Adultmesenchymalstemcells andtheirexosomes:Sources,characteristics,andapplicationinregenerative medicine.LifeSci.2020;256:118002.
2.PittengerMF,MackayAM,BeckSC,JaiswalRK,DouglasR,MoscaJD,etal. Multilineagepotentialofadulthumanmesenchymalstemcells.Science. 1999;284:143–7.
3.SantamariaG,BrandiE,VitolaP,GrandiF,FerraraG,PischiuttaF,etal.Intranasal deliveryofmesenchymalstemcellsecretomerepairsthebrainofAlzheimer’s mice.CellDeathDiffer.2021;28:203–18.
4.ReaganMR,KaplanDL.Concisereview:Mesenchymalstemcelltumor-homing: detectionmethodsindiseasemodelsystems.StemCells.2011;29:920–7.
5.UccelliA,MorettaL,PistoiaV.Mesenchymalstemcellsinhealthanddisease. NatRevImmunol.2008;8:726 –36.
6.WiestEF,ZubairAC.Challengesofmanufacturingmesenchymalstromalcell-derived extracellularvesiclesinregenerativemedicine.Cytotherapy.2020;22:606–12.
7.Martínez-CarrascoR,Sánchez-AbarcaLI,Nieto-GómezC,MartínGarcíaE,Sánchez-GuijoF,ArgüesoP,etal.SubconjunctivalinjectionofmesenchymalstromalcellsprotectsthecorneainanexperimentalmodelofGVHD.OculSurf. 2019;17:285–94.
8.LevyO,KuaiR,SirenEMJ,BhereD,MiltonY,NissarN,etal.Shatteringbarriers towardclinicallymeaningfulMSCtherapies.SciAdv.2020;6:eaba6884.
9.ParkYB,HaCW,LeeCH,YoonYC,ParkYG.Cartilageregenerationinosteoarthriticpatientsbyacompositeofallogeneicumbilicalcordblood-derived mesenchymalstemcellsandhyaluronatehydrogel:resultsfromaclinicaltrial forsafetyandproof-of-conceptwith7yearsofextendedfollow-up.StemCells TranslMed.2017;6:613 –21.
10.HanY,LiX,ZhangY,HanY,ChangF,DingJ.MesenchymalStemCellsfor RegenerativeMedicine.Cells.2019;8:886.
11.vandenBosC,MoscaJD,WinklesJ,KerriganL,BurgessWH,MarshakDR. Humanmesenchymalstemcellsrespondto fibroblastgrowthfactors.HumCell. 1997;10:45 –50.
12.KinnairdT,StabileE,BurnettMS,LeeCW,BarrS,FuchsS,etal.Marrow-derived stromalcellsexpressgenesencodingabroadspectrumofarteriogeniccytokinesandpromoteinvitroandinvivoarteriogenesisthroughparacrine mechanisms.CircRes.2004;94:678–85.
13.AsaiA,AiharaE,WatsonC,MouryaR,MizuochiT,ShivakumarP,etal.Paracrine signalsregulatehumanliverorganoidmaturationfrominducedpluripotent stemcells.Development.2017;144:1056–64.
14.QuagliaM,DellepianeS,GuglielmettiG,MerlottiG,CastellanoG,CantaluppiV. Extracellularvesiclesasmediatorsofcellularcrosstalkbetweenimmunesystem andkidneygraft.FrontImmunol.2020;11:74.
15.RahmaniA,SalekiK,JavanmehrN,KhodaparastJ,SaadatP,NouriHR. Mesenchymalstemcell-derivedextracellularvesicle-basedtherapiesprotect againstcoupleddegenerationofthecentralnervousandvascularsystemsin stroke.AgeingResRev.2020;62:101106.
16.KourembanasS.Exosomes:vehiclesofintercellularsignaling,biomarkers,and vectorsofcelltherapy.AnnuRevPhysiol.2015;77:13 –27.
17.HosseiniS,ShamekhiMA,JahangirS,BagheriF,EslaminejadMB.Therobust potentialofmesenchymalstemcell-loadedconstructsforhardtissueregenerationaftercancerremoval.AdvExpMedBiol.2019;1084:17–43.
18.Castro-ManrrezaME,MontesinosJJ.Immunoregulationbymesenchymalstem cells:biologicalaspectsandclinicalapplications.JImmunolRes.2015;2015:394917.
19.LiN,HuaJ.Interactionsbetweenmesenchymalstemcellsandtheimmune system.CellMolLifeSci.2017;74:2345–60.
20.LiangX,DingY,ZhangY,TseHF,LianQ.Paracrinemechanismsofmesenchymal stemcell-basedtherapy:currentstatusandperspectives.CellTranspl. 2014;23:1045–59.
21.JafariniaM,AlsahebfosoulF,SalehiH,EskandariN,Ganjalikhani-HakemiM. Mesenchymalstemcell-derivedextracellularvesicles:anovelcell-freetherapy. ImmunolInvest.2020;49:758–80.
22.LötvallJ,HillAF,HochbergF,BuzásEI,DiVizioD,GardinerC,etal.Minimal experimentalrequirementsfordefinitionofextracellularvesiclesandtheir functions:apositionstatementfromtheInternationalSocietyforExtracellular Vesicles.JExtracellVesicles.2014;3:26913.
23.RaposoG,StoorvogelW.Extracellularvesicles:exosomes,microvesicles,and friends.JCellBiol.2013;200:373–83.
24.ColomboM,RaposoG,ThéryC.Biogenesis,secretion,andintercellularinteractionsofexosomesandotherextracellularvesicles.AnnuRevCellDevBiol. 2014;30:255–89.
25.DiVizioD,KimJ,HagerMH,MorelloM,YangW,LafargueCJ,etal.Oncosome formationinprostatecancer:associationwitharegionoffrequentchromosomaldeletioninmetastaticdisease.CancerRes.2009;69:5601–9.
26.GranerMW,AlzateO,DechkovskaiaAM,KeeneJD,SampsonJH,MitchellDA, etal.Proteomicandimmunologicanalysesofbraintumorexosomes.FASEBJ. 2009;23:1541–57.
27.PathanM,FonsekaP,ChittiSV,KangT,SanwlaniR,VanDeunJ,etal.Vesiclepedia2019:acompendiumofRNA,proteins,lipidsandmetabolitesinextracellularvesicles.NucleicAcidsRes.2019;47:D516–d519.
28.NguyenHP,SimpsonRJ,SalamonsenLA,GreeningDW.Extracellularvesiclesin theintrauterineenvironment:challengesandpotentialfunctions.BiolReprod. 2016;95:109.
29.JeppesenDK,FenixAM,FranklinJL,HigginbothamJN,ZhangQ,ZimmermanLJ, etal.Reassessmentofexosomecomposition.Cell.2019;177:428–45.
30.JohnstoneRM,AdamM,HammondJR,OrrL,TurbideC.Vesicleformation duringreticulocytematuration. Associationofplasmamembraneactivitieswith releasedvesicles(exosomes).JBiolChem.1987;262:9412–20.
31.WortzelI,DrorS,KenificCM,LydenD.Exosome-mediatedmetastasis:communicationfromadistance.DevCell.2019;49:347–60.
32.ShaoH,ImH,CastroCM,BreakefieldX,WeisslederR,LeeH.Newtechnologies foranalysisofextracellularvesicles.ChemRev.2018;118:1917–50.
33.vanNielG,D'AngeloG,RaposoG.Sheddinglightonthecellbiologyofextracellularvesicles.NatRevMolCellBiol.2018;19:213–28.
34.PiperRC,KatzmannDJ.Biogenesisandfunctionofmultivesicularbodies.Annu RevCellDevBiol.2007;23:519–47.
35.vanNielG,Porto-CarreiroI,SimoesS,RaposoG.Exosomes:acommonpathway foraspecializedfunction.JBiochem.2006;140:13–21.
36.KalluriR,LeBleuVS.Thebiology,function,andbiomedicalapplicationsof exosomes.Science.2020;367:6478.
37.CostaVerderaH,Gitz-FrancoisJJ,SchiffelersRM,VaderP.Cellularuptakeof extracellularvesiclesismediatedbyclathrin-independentendocytosisand macropinocytosis.JControlRel.2017;266:100–8.
38.RaiAK,JohnsonPJ.Trichomonasvaginalisextracellularvesiclesareinternalized byhostcellsusingproteoglycansandcaveolin-dependentendocytosis.Proc NatlAcadSciUSA.2019;116:21354–60.
39.VanlandinghamPA,CeresaBP.Rab7regulateslateendocytictrafficking downstreamofmultivesicularbodybiogenesisandcargosequestration.JBiol Chem.2009;284:12110–24.
40.OstrowskiM,CarmoNB,KrumeichS,FangetI,RaposoG,SavinaA,etal. Rab27a andRab27bcontroldifferentstepsoftheexosomesecretionpathway.NatCell Biol.2010;12:19 –30.
41.ZeigererA,GilleronJ,BogoradRL,MarsicoG,NonakaH,SeifertS,etal.Rab5is necessaryforthebiogenesisoftheendolysosomalsysteminvivo.Nature. 2012;485:465–70.
42.HenneWM,BuchkovichNJ,EmrSD.TheESCRTpathway.DevCell. 2011;21:77 –91.
43.vanNielG,CharrinS,SimoesS,RomaoM,RochinL,SaftigP,etal.ThetetraspaninCD63regulatesESCRT-independentand-dependentendosomalsorting duringmelanogenesis.DevCell.2011;21:708–21.
44.VerweijFJ,vanEijndhovenMA,HopmansES,VendrigT,WurdingerT,CahirMcFarlandE,etal.LMP1associationwithCD63inendosomesandsecretionvia exosomeslimitsconstitutiveNF-κBactivation.EMBOJ.2011;30:2115–29.
45.NabhanJF,HuR,OhRS,CohenSN,LuQ.Formationandreleaseofarrestin domain-containingprotein1-mediatedmicrovesicles(ARMMs)atplasma membranebyrecruitmentofTSG101protein.ProcNatlAcadSciUSA. 2012;109:4146–51.
46.KowalJ,TkachM,ThéryC.Biogenesisandsecretionofexosomes.CurrOpinCell Biol.2014;29:116–25.
47.ValadiH,EkströmK,BossiosA,SjöstrandM,LeeJJ,LötvallJO.ExosomemediatedtransferofmRNAsandmicroRNAsisanovelmechanismofgenetic exchangebetweencells.NatCellBiol.2007;9:654 –9.
48.BalajL,LessardR,DaiL,ChoYJ,PomeroySL,BreakefieldXO,etal.Tumour microvesiclescontainretrotransposonelementsandamplifiedoncogene sequences.NatCommun.2011;2:180.
49.ThakurBK,ZhangH,BeckerA,MateiI,HuangY,Costa-SilvaB,etal.DoublestrandedDNAinexosomes:anovelbiomarkerincancerdetection.CellRes. 2014;24:766–9.
50.WillmsE,CabañasC,MägerI,WoodMJA,VaderP.Extracellularvesicleheterogeneity:subpopulations,isolationtechniques,anddiversefunctionsincancer progression.FrontImmunol.2018;9:738.
51.SkogJ,WürdingerT,vanRijnS,MeijerDH,GaincheL,Sena-EstevesM,etal. GlioblastomamicrovesiclestransportRNAandproteinsthatpromotetumour growthandprovidediagnosticbiomarkers.NatCellBiol.2008;10:1470–6.
52.TangK,ZhangY,ZhangH,XuP,LiuJ,MaJ,etal.Deliveryofchemotherapeutic drugsintumourcell-derivedmicroparticles.NatCommun.2012;3:1282.
53.MaJ,ZhangY,TangK,ZhangH,YinX,LiY,etal.Reversingdrugresistanceof softtumor-repopulatingcellsbytumorcell-derivedchemotherapeuticmicroparticles.CellRes.2016;26:713–27.
54.ViswanathanS,ShiY,GalipeauJ,KramperaM,LeblancK,MartinI,etal. Mesenchymalstemversusstromalcells:InternationalSocietyforCell&Gene Therapy(ISCT®)MesenchymalStromalCellcommitteepositionstatementon nomenclature.Cytotherapy.2019;21:1019–24.
55.DominiciM,LeBlancK,MuellerI,Slaper-CortenbachI,MariniF,KrauseD,etal. Minimalcriteriafordefiningmultipotentmesenchymalstromalcells.The InternationalSocietyforCellularTherapypositionstatement.Cytotherapy. 2006;8:315 –7.
56.ZhouT,YuanZ,WengJ,PeiD,DuX,HeC,etal.Challengesandadvancesin clinicalapplicationsofmesenchymalstromalcells.JHematolOncol.2021;14:24.
57.HolanV,TrosanP,CejkaC,JavorkovaE,ZajicovaA,HermankovaB,etal.A comparativestudyofthetherapeuticpotentialofmesenchymalstemcellsand limbalepithelialstemcellsforocularsurfacereconstruction.StemCellsTransl Med.2015;4:1052–63.
58.PogozhykhO,PogozhykhD,NeehusAL,HoffmannA,BlasczykR,MüllerT. Molecularandcellularcharacteristicsofhumanandnon-humanprimatemultipotentstromalcellsfromtheamnionandbonemarrowduringlongterm culture.StemCellResTher.2015;6:150.
59.YunCW,LeeSH.Potentialandtherapeuticefficacyofcell-basedtherapyusing mesenchymalstemcellsforacute/chronickidneydisease.IntJMolSci. 2019;20:1619.
60.AnkrumJA,OngJF,KarpJM.Mesenchymalstemcells:immuneevasive,not immuneprivileged.NatBiotechnol.2014;32:252–60.
61.Al-KhawagaS,AbdelalimEM.Potentialapplicationofmesenchymalstemcells andtheirexosomesinlunginjury:anemergingtherapeuticoptionforCOVID-19 patients.StemCellResTher.2020;11:437.
62.LengZ,ZhuR,HouW,FengY,YangY,HanQ,etal.TransplantationofACE2(-) mesenchymalstemcellsimprovestheoutcomeofpatientswithCOVID-19 Pneumonia.AgingDis.2020;11:216–28.
63.NeuhuberB,SwangerSA,HowardL,MackayA,FischerI.Effectsofplating densityandculturetimeonbonemarrowstromalcellcharacteristics.Exp Hematol.2008;36:1176–85.
64.JeongJO,HanJW,KimJM,ChoHJ,ParkC,LeeN,etal.Malignanttumor formationaftertransplantationofshort-termculturedbonemarrowmesenchymalstemcellsinexperimentalmyocardialinfarctionanddiabeticneuropathy. CircRes.2011;108:1340–7.
65.KarpJM,LengTeoGS.Mesenchymalstemcellhoming:thedevilisinthedetails. CellStemCell.2009;4:206 –16.
66.vanHennikPB,deKoningAE,PloemacherRE.Seedingefficiencyofprimitive humanhematopoieticcellsinnonobesediabetic/severecombinedimmune deficiencymice:implicationsforstemcellfrequencyassessment.Blood. 1999;94:3055–61.
67.CuiJ,WahlRL,ShenT,FisherSJ,ReckerE,GinsburgD,etal.Bonemarrowcell traffickingfollowingintravenousadministration.BrJHaematol.1999;107:895–902.
68.MeyerGP,WollertKC,LotzJ,SteffensJ,LippoltP,FichtnerS,etal.Intracoronary bonemarrowcelltransferaftermyocardialinfarction:eighteenmonths'followupdatafromtherandomized,controlledBOOST(BOnemarrOwtransferto enhanceST-elevationinfarctregeneration)trial.Circulation.2006;113:1287–94.
69.AdamoA,DalColloG,BazzoniR,KramperaM.Roleofmesenchymalstromal cell-derivedextracellularvesiclesintumourmicroenvironment.BiochimBiophys ActaRevCancer.2019;1871:192–8.
70.AnkrumJ,KarpJM.Mesenchymalstemcelltherapy:Twostepsforward,one stepback.TrendsMolMed.2010;16:203–9.
71.ZhangB,YinY,LaiRC,TanSS,ChooAB,LimSK.Mesenchymalstemcellssecrete immunologicallyactiveexosomes.StemCellsDev.2014;23:1233–44.
72.PhinneyDG,PittengerMF.Concisereview:MSC-derivedexosomesforcell-free therapy.StemCells.2017;35:851–8.
73.MilbankE,DraganoNRV,González-GarcíaI,GarciaMR,Rivas-LimeresV,PerdomoL,etal.Smallextracellularvesicle-mediatedtargetingofhypothalamic AMPKα1correctsobesitythroughBATactivation.NatMetab.2021;3:1415–31.
74.XunianZ,KalluriR.Biologyandtherapeuticpotentialofmesenchymalstemcellderivedexosomes.CancerSci.2020;111:3100–10.
75.ZhuangWZ,LinYH,SuLJ,WuMS,JengHY,ChangHC,etal.Mesenchymalstem/ stromalcell-basedtherapy:mechanism,systemicsafetyandbiodistributionfor precisionclinicalapplications.JBiomedSci.2021;28:28.
76.WatanabeY,TsuchiyaA,TeraiS.Thedevelopmentofmesenchymalstemcell therapyinthepresent,andtheperspectiveofcell-freetherapyinthefuture. ClinMolHepatol.2021;27:70 –80.
77.HerrmannIK,WoodMJA,FuhrmannG.Extracellularvesiclesasanextgenerationdrugdeliveryplatform.NatNanotechnol.2021;16:748–59.
78.RacchettiG,MeldolesiJ.Extracellularvesiclesofmesenchymalstemcells: therapeuticpropertiesdiscoveredwithextraordinarysuccess.Biomedicines. 2021;9:667.
79.QiuG,ZhengG,GeM,WangJ,HuangR,ShuQ,etal.MesenchymalstemcellderivedextracellularvesiclesaffectdiseaseoutcomesviatransferofmicroRNAs. StemCellResTher.2018;9:320.
80.Varderidou-MinasianS,LorenowiczMJ.Mesenchymalstromal/stemcell-derived extracellularvesiclesintissuerepair:challengesandopportunities.Theranostics. 2020;10:5979–97.
81.WuH,ZhouX,WangX,ChengW,HuX,WangY,etal.miR-34ainextracellular vesiclesfrombonemarrowmesenchymalstemcellsreducesrheumatoid arthritisinflammationviathecyclinI/ATM/ATR/p53axis.JCellMolMed. 2021;25:1896–910.
82.NojehdehiS,SoudiS,HesampourA,RasouliS,SoleimaniM,HashemiSM. Immunomodulatoryeffectsofmesenchymalstemcell-derivedexosomeson experimentaltype-1autoimmunediabetes.JCellBiochem.2018;119:9433–43.
83.ShenZ,HuangW,LiuJ,TianJ,WangS,RuiK.Effectsofmesenchymalstemcellderivedexosomesonautoimmunediseases.FrontImmunol.2021;12:749192.
84.BurrDB,GallantMA.Boneremodellinginosteoarthritis.NatRevRheumatol. 2012;8:665 –73.
85.VonkLA,vanDooremalenSFJ,LivN,KlumpermanJ,CofferPJ,SarisDBF,etal. Mesenchymalstromal/stemcell-derivedextracellularvesiclespromotehuman cartilageregenerationinvitro.Theranostics.2018;8:906 –20.
86.LiS,StöcklS,LukasC,GötzJ,HerrmannM,FederlinM,etal.hBMSC-derived extracellularvesiclesattenuateIL-1β-inducedcataboliceffectsonOAchondrocytesbyregulatingpro-inflammatorysignalingpathways.Front BioengBiotechnol.2020;8:603598.
87.CosenzaS,RuizM,ToupetK,JorgensenC,NoëlD.Mesenchymalstemcells derivedexosomesandmicroparticlesprotectcartilageandbonefromdegradationinosteoarthritis.SciRep.2017;7:16214.
88.RuizM,ToupetK,MaumusM,RozierP,JorgensenC,NoëlD.TGFBIsecretedby mesenchymalstromalcellsamelioratesosteoarthritisandisdetectedinextracellularvesicles.Biomaterials.2020;226:119544.
89.ZhangJ,RongY,LuoC,CuiW.Bonemarrowmesenchymalstemcell-derived exosomespreventosteoarthritisbyregulatingsynovialmacrophagepolarization.Aging.2020;12:25138–52.
90.WooCH,KimHK,JungGY,JungYJ,LeeKS,YunYE,etal.Smallextracellular vesiclesfromhumanadipose-derivedstemcellsattenuatecartilagedegeneration.JExtracellVesicles.2020;9:1735249.
91.TaoSC,YuanT,ZhangYL,YinWJ,GuoSC,ZhangCQ.Exosomesderivedfrom miR-140-5p-overexpressinghumansynovialmesenchymalstemcellsenhance cartilagetissueregenerationandpreventosteoarthritisofthekneeinarat model.Theranostics.2017;7:180–95.
92.WangZ,YanK,GeG,ZhangD,BaiJ,GuoX,etal.ExosomesderivedfrommiR155-5p-overexpressingsynovialmesenchymalstemcellspreventosteoarthritis viaenhancingproliferationandmigration,attenuatingapoptosis,andmodulating extracellularmatrixsecretioninchondrocytes.CellBiolToxicol.2021;37:85–96.
93.WangK,LiF,YuanY,ShanL,CuiY,QuJ,etal.SynovialmesenchymalstemcellderivedEV-packagedmiR-31downregulatesHistoneDemethylaseKDM2Ato preventkneeosteoarthritis.MolTherNucleicAcids.2020;22:1078–91.
94.RongY,ZhangJ,JiangD,JiC,LiuW,WangJ,etal.Hypoxicpretreatmentof smallextracellularvesiclesmediatescartilagerepairinosteoarthritisbydeliveringmiR-216a-5p.ActaBiomater.2021;122:325–42.
95.WuJ,KuangL,ChenC,YangJ,ZengWN,LiT,etal.miR-100-5p-abundant exosomesderivedfrominfrapatellarfatpadMSCsprotectarticularcartilageand ameliorategaitabnormalitiesviainhibitionofmTORinosteoarthritis.Biomaterials.2019;206:87–100.
96.YanL,LiuG,WuX.Theumbilicalcordmesenchymalstemcell-derivedexosomal lncRNAH19improvesosteochondralactivitythroughmiR-29b-3p/FoxO3 axis. ClinTranslMed.2021;11:e255.
97.McDonaldJW,SadowskyC.Spinal-cordinjury.Lancet.2002;359:417–25.
98.HuangJH,YinXM,XuY,XuCC,LinX,YeFB,etal.Systemicadministrationof exosomesreleasedfrommesenchymalstromalcellsattenuatesapoptosis, inflammation,andpromotesangiogenesisafterspinalcordinjuryinrats.J Neurotrauma.2017;34:3388–96.
99.LuY,ZhouY,ZhangR,WenL,WuK,LiY,etal.Bonemesenchymalstemcellderivedextracellularvesiclespromoterecoveryfollowingspinalcordinjuryvia improvementoftheintegrityoftheblood-spinalcordbarrier.FrontNeurosci. 2019;13:209.
100.ZhouY,WenLL,LiYF,WuKM,DuanRR,YaoYB,etal.Exosomesderivedfrom bonemarrowmesenchymalstemcellsprotecttheinjuredspinalcordbyinhibitingpericytepyroptosis.NeuralRegenRes.2022;17:194–202.
101.HanT,SongP,WuZ,XiangX,LiuY,WangY,etal.MSCsecretedextracellularvesicles carryingTGF-betaupregulateSmad6expressionandpromotetheregrowthof neuronsinspinalcordinjuredrats.StemCellRevRep.2021;18:1078–96.
102.NakazakiM,MoritaT,LankfordKL,AskenasePW,KocsisJD.Smallextracellular vesiclesreleasedbyinfusedmesenchymalstromalcellstargetM2macrophages andpromoteTGF-β upregulation,microvascularstabilization,andfunctional recoveryinarodentmodelofseverespinalcordinjury.JExtracellVesicles. 2021;10:e12137.
103.ZhouW,SilvaM,FengC,ZhaoS,LiuL,LiS,etal.Exosomesderivedfromhuman placentalmesenchymalstemcellsenhancedtherecoveryofspinalcordinjury byactivatingendogenousneurogenesis.StemCellResTher.2021;12:174.
104.JiaX,HuangG,WangS,LongM,TangX,FengD,etal.Extracellularvesiclesderived frommesenchymalstemcellscontainingmicroRNA-381protectagainstspinal cordinjuryinaratmodelviatheBRD4/WNT5Aaxis.BoneJtRes.2021;10:328–39.
105.LiD,ZhangP,YaoX,LiH,ShenH,LiX,etal.ExosomesderivedfrommiR-133bmodifiedmesenchymalstemcellspromoterecoveryafterspinalcordinjury. FrontNeurosci.2018;12:845.
106.XinH,LiuZ,BullerB,LiY,GolembieskiW,GanX,etal.MiR-17-92enriched exosomesderivedfrommultipotentmesenchymalstromalcellsenhanceaxonmyelinremodelingandmotorelectrophysiologicalrecoveryafterstroke.JCereb BloodFlowMetab.2021;41:1131–44.
107.ChenY,TianZ,HeL,LiuC,WangN,RongL,etal.ExosomesderivedfrommiR26a-modifiedMSCspromoteaxonalregenerationviathePTEN/AKT/mTOR pathwayfollowingspinalcordinjury.StemCellResTher.2021;12:224.
108.LiuW,RongY,WangJ,ZhouZ,GeX,JiC,etal.Exosome-shuttledmiR-216a-5p fromhypoxicpreconditionedmesenchymalstemcellsrepairtraumaticspinal
cordinjurybyshiftingmicroglialM1/M2polarization.JNeuroinflammation. 2020;17:47.
109.ShengY,ZhouX,WangJ,ShenH,WuS,GuoW,etal.MSCderivedEVloaded withmiRNA-22inhibitstheinflammatoryresponseandnervefunctionrecovery afterspinalcordinjuryinrats.JCellMolMed.2021;25:10268–78.
110.WangY,LaiX,WuD,LiuB,WangN,RongL.UmbilicalmesenchymalstemcellderivedexosomesfacilitatespinalcordfunctionalrecoverythroughthemiR199a-3p/145-5p-mediatedNGF/TrkAsignalingpathwayinrats.StemCellRes Ther.2021;12:117.
111.DriskellRR,LichtenbergerBM,HosteE,KretzschmarK,SimonsBD,CharalambousM,etal.Distinct fibroblastlineagesdeterminedermalarchitecturein skindevelopmentandrepair.Nature.2013;504:277–81.
112.vanZantenMC,MistryRM,SuamiH,Campbell-LloydA,FinkemeyerJP,PillerNB, etal.Thelymphaticresponsetoinjurywithsoft-tissuereconstructioninhighenergyopentibialfracturesofthelowerextremity.PlastReconstrSurg. 2017;139:483–91.
113.FalangaV.Woundhealinganditsimpairmentinthediabeticfoot.Lancet. 2005;366:1736–43.
114.ZhouY,ZhaoB,ZhangXL,LuYJ,LuST,ChengJ,etal.Combinedtopicaland systemicadministrationwithhumanadipose-derivedmesenchymalstemcells (hADSC)andhADSC-derivedexosomesmarkedlypromotedcutaneouswound healingandregeneration.StemCellResTher.2021;12:257.
115.JiangT,WangZ,SunJ.Humanbonemarrowmesenchymalstemcell-derived exosomesstimulatecutaneouswoundhealingmediatesthroughTGF-β/Smad signalingpathway.StemCellResTher.2020;11:198.
116.WangX,JiaoY,PanY,ZhangL,GongH,QiY,etal.Fetaldermalmesenchymal stemcell-derivedexosomesacceleratecutaneouswoundhealingbyactivating notchsignaling.StemCellsInt.2019;2019:2402916.
117.HeX,DongZ,CaoY,WangH,LiuS,LiaoL,etal.MSC-derivedexosomepromotesM2polarizationandenhancescutaneouswoundhealing.StemCellsInt. 2019;2019:7132708.
118.WuD,KangL,TianJ,WuY,LiuJ,LiZ,etal.Exosomesderivedfrombone mesenchymalstemcellswiththestimulationofFe(3)O(4)nanoparticlesand staticmagnetic fieldenhancewoundhealingthroughupregulatedmiR-21-5p. IntJNanomed.2020;15:7979–93.
119.ChengS,XiZ,ChenG,LiuK,MaR,ZhouC.Extracellularvesicle-carriedmicroRNA-27bderivedfrommesenchymalstemcellsacceleratescutaneouswound healingviaE3ubiquitinligaseITCH.JCellMolMed.2020;24:11254–71.
120.FangS,XuC,ZhangY,XueC,YangC,BiH,etal.Umbilicalcord-derived mesenchymalstemcell-derivedexosomalMicroRNAssuppressmyofibroblast differentiationbyinhibitingthetransforminggrowthFactor-β/SMAD2pathway duringwoundhealing.StemCellsTranslMed.2016;5:1425–39.
121.CaoG,ChenB,ZhangX,ChenH.Humanadipose-derivedmesenchymalstem cells-derivedexosomalmicroRNA-19bpromotesthehealingofskinwounds throughmodulationoftheCCL1/TGF-β signalingaxis.ClinCosmetInvestig Dermatol.2020;13:957–71.
122.LiY,ZhangJ,ShiJ,LiuK,WangX,JiaY,etal.Exosomesderivedfromhuman adiposemesenchymalstemcellsattenuatehypertrophicscar fibrosisbymiR192-5p/IL-17RA/Smadaxis.StemCellResTher.2021;12:221.
123.LuY,WenH,HuangJ,LiaoP,LiaoH,TuJ,etal.Extracellularvesicle-enclosed miR-486-5pmediateswoundhealingwithadipose-derivedstemcellsbypromotingangiogenesis.JCellMolMed.2020;24:9590–604.
124.GaoS,ChenT,HaoY,ZhangF,TangX,WangD,etal.ExosomalmiR-135a derivedfromhumanamnionmesenchymalstemcellspromotescutaneous woundhealinginratsand fibroblastmigrationbydirectlyinhibitingLATS2 expression.StemCellResTher.2020;11:56.
125.Hernandez-GeaV,FriedmanSL.Pathogenesisofliver fibrosis.AnnuRevPathol. 2011;6:425 –56.
126.RongX,LiuJ,YaoX,JiangT,WangY,XieF.Humanbonemarrowmesenchymal stemcells-derivedexosomesalleviateliver fibrosisthroughtheWnt/β-catenin pathway.StemCellResTher.2019;10:98.
127.OharaM,OhnishiS,HosonoH,YamamotoK,YuyamaK,NakamuraH,etal. Extracellularvesiclesfromamnion-derivedmesenchymalstemcellsameliorate hepaticinflammationand fibrosisinrats.StemCellsInt.2018;2018:3212643.
128.QuY,ZhangQ,CaiX,LiF,MaZ,XuM,etal.ExosomesderivedfrommiR-181-5pmodifiedadipose-derivedmesenchymalstemcellspreventliver fibrosisvia autophagyactivation.JCellMolMed.2017;21:2491–502.
129.LouG,YangY,LiuF,YeB,ChenZ,ZhengM,etal.MiR-122modification enhancesthetherapeuticefficacyofadiposetissue-derivedmesenchymalstem cellsagainstliver fibrosis.JCellMolMed.2017;21:2963–73.
130.KimJ,LeeC,ShinY,WangS,HanJ,KimM,etal.sEVsfromtonsil-derived mesenchymalstromalcellsalleviateactivationofhepaticstellatecellsandliver fibrosisthroughmiR-486-5p.MolTher.2021;29:1471–86.
131.RomagnaniP,RemuzziG,GlassockR,LevinA,JagerKJ,TonelliM,etal.Chronic kidneydisease.NatRevDisPrim.2017;3:17088.
132.JiC,ZhangJ,ZhuY,ShiH,YinS,SunF,etal.ExosomesderivedfromhucMSC attenuaterenal fibrosisthroughCK1δ/β-TRCP-mediatedYAPdegradation.Cell DeathDis.2020;11:327.
133.LiuB,HuD,ZhouY,YuY,ShenL,LongC,etal.Exosomesreleasedbyhuman umbilicalcordmesenchymalstemcellsprotectagainstrenalinterstitial fibrosis throughROS-mediatedP38MAPK/ERKsignalingpathway.AmJTranslRes. 2020;12:4998–5014.
134.ShiZ,WangQ,ZhangY,JiangD.Extracellularvesiclesproducedbybone marrowmesenchymalstemcellsattenuaterenal fibrosis,inpartbyinhibiting theRhoA/ROCKpathway,inaUUOratmodel.StemCellResTher.2020;11:253.
135.HuX,ShenN,LiuA,WangW,ZhangL,SuiZ,etal.Bonemarrowmesenchymal stemcell-derivedexosomalmiR-34c-5pamelioratesRIFbyinhibitingthecore fucosylationofmultipleproteins.MolTher.2021;30:763–81.
136.JinJ,WangY,ZhaoL,ZouW,TanM,HeQ.ExosomalmiRNA-215-5pderived fromadipose-derivedstemcellsattenuatesepithelial-mesenchymaltransition ofpodocytesbyinhibitingZEB2.BiomedResInt.2020;2020:2685305.
137.JinJ,ShiY,GongJ,ZhaoL,LiY,HeQ,etal.Exosomesecretedfromadiposederivedstemcellsattenuatesdiabeticnephropathybypromotingautophagy fluxandinhibitingapoptosisinpodocyte.StemCellResTher.2019;10:95.
138.ZhongL,LiaoG,WangX,LiL,ZhangJ,ChenY,etal.Mesenchymalstemcellsmicrovesicle-miR-451aameliorateearlydiabetickidneyinjurybynegativeregulationofP15andP19.ExpBiolMed.2018;243:1233–42.
139.EbrahimN,AhmedIA,HussienNI,DessoukyAA,FaridAS,ElshazlyAM,etal. Mesenchymalstemcell-derivedexosomesameliorateddiabeticnephropathyby autophagyinductionthroughthemTORsignalingpathway.Cells.2018;7:226.
140.GrangeC,TrittaS,TapparoM,CedrinoM,TettaC,CamussiG,etal.Stemcellderivedextracellularvesiclesinhibitandrevert fibrosisprogressioninamouse modelofdiabeticnephropathy.SciRep.2019;9:4468.
141.SpagnoloP,DistlerO,RyersonCJ,TzouvelekisA,LeeJS,BonellaF,etal. Mechanismsofprogressive fibrosisinconnectivetissuedisease(CTD)-associatedinterstitiallungdiseases(ILDs).AnnRheumDis.2021;80:143–50.
142.RicheldiL,CollardHR,JonesMG.Idiopathicpulmonary fibrosis.Lancet. 2017;389:1941–52.
143.ShenderovK,CollinsSL,PowellJD,HortonMR.Immunedysregulationasa driverofidiopathicpulmonary fibrosis.JClinInvest.2021;131:e143226.
144.WillisGR,Fernandez-GonzalezA,AnastasJ,VitaliSH,LiuX,EricssonM,etal. Mesenchymalstromalcellexosomesameliorateexperimentalbronchopulmonarydysplasiaandrestorelungfunctionthroughmacrophageimmunomodulation.AmJRespirCritCareMed.2018;197:104–16.
145.MansouriN,WillisGR,Fernandez-GonzalezA,ReisM,NassiriS,MitsialisSA,etal. Mesenchymalstromalcellexosomespreventandrevertexperimentalpulmonary fibrosisthroughmodulationofmonocytephenotypes.JCIInsight. 2019;4:e128060.
146.ZhangZ,GeL,ZhangS,WangJ,JiangW,XinQ,etal.Theprotectiveeffectsof MSC-EXOagainstpulmonaryhypertensionthroughregulatingWnt5a/BMP signallingpathway.JCellMolMed.2020;24:13938–48.
147.ChaubeyS,ThuesonS,PonnalaguD,AlamMA,GheorgheCP,AghaiZ,etal. Earlygestationalmesenchymalstemcellsecretomeattenuatesexperimental bronchopulmonarydysplasiainpartviaexosome-associatedfactorTSG-6.Stem CellResTher.2018;9:173.
148.WanX,ChenS,FangY,ZuoW,CuiJ,XieS.Mesenchymalstemcell-derived extracellularvesiclessuppressthe fibroblastproliferationbydownregulating FZD6expressionin fibroblastsviamicrRNA-29b-3pinidiopathicpulmonary fibrosis.JCellPhysiol.2020;235:8613–25.
149.ZhouJ,LinY,KangX,LiuZ,ZhangW,XuF.microRNA-186inextracellularvesicles frombonemarrowmesenchymalstemcellsalleviatesidiopathicpulmonary fibrosisviainteractionwithSOX4andDKK1.StemCellResTher.2021;12:96.
150.LeiX,HeN,ZhuL,ZhouM,ZhangK,WangC,etal.Mesenchymalstemcellderivedextracellularvesiclesattenuateradiation-inducedlunginjuryviamiRNA214-3p.AntioxidRedoxSignal.2021;35:849–62.
151.SunL,ZhuM,FengW,LinY,YinJ,JinJ,etal.ExosomalmiRNALet-7from menstrualblood-derivedendometrialstemcellsalleviatespulmonary fibrosis throughregulatingmitochondrialDNAdamage.OxidMedCellLongev. 2019;2019:4506303.
152.XiaoK,HeW,GuanW,HouF,YanP,XuJ,etal.Mesenchymalstemcellsreverse EMTprocessthroughblockingtheactivationofNF-κBandHedgehogpathways inLPS-inducedacutelunginjury.CellDeathDis.2020;11:863.
153.YinJQ,ZhuJ,AnkrumJA.Manufacturingofprimedmesenchymalstromalcells fortherapy.NatBiomedEng.2019;3:90–104.
154.WitwerKW,VanBalkomBWM,BrunoS,ChooA,DominiciM,GimonaM,etal. Definingmesenchymalstromalcell(MSC)-derivedsmallextracellularvesiclesfor therapeuticapplications.JExtracellVesicles.2019;8:1609206.
155.XuH,WangZ,LiuL,ZhangB,LiB.Exosomesderivedfromadiposetissue,bone marrow,andumbilicalcordbloodforcardioprotectionaftermyocardial infarction.JCellBiochem.2020;121:2089–102.
156.DoeppnerTR,HerzJ,GörgensA,SchlechterJ,LudwigAK,RadtkeS,etal. ExtracellularVesiclesimprovepost-strokeneuroregenerationandprevent postischemicimmunosuppression.StemCellsTranslMed.2015;4:1131–43.
157.ChenKH,ChenCH,WallaceCG,YuenCM,KaoGS,ChenYL,etal.Intravenous administrationofxenogenicadipose-derivedmesenchymalstemcells(ADMSC) andADMSC-derivedexosomesmarkedlyreducedbraininfarctvolumeand preservedneurologicalfunctioninratafteracuteischemicstroke.Oncotarget. 2016;7:74537–56.
158.WangK,JiangZ,WebsterKA,ChenJ,HuH,ZhouY,etal.EnhancedcardioprotectionbyhumanendometriummesenchymalstemcellsdrivenbyexosomalMicroRNA-21.StemCellsTranslMed.2017;6:209 –22.
159.QinY,WangL,GaoZ,ChenG,ZhangC.Bonemarrowstromal/stemcell-derived extracellularvesiclesregulateosteoblastactivityanddifferentiationinvitroand promoteboneregenerationinvivo.SciRep.2016;6:21961.
160.ChenS,TangY,LiuY,ZhangP,LvL,ZhangX,etal.ExosomesderivedfrommiR375-overexpressinghumanadiposemesenchymalstemcellspromotebone regeneration.CellProlif.2019;52:e12669.
161.NarayananR,HuangCC,RavindranS.Hijackingthecellularmail:exosomemediateddifferentiationofmesenchymal.StemCellsStemCellsInt.2016;2016:3808674.
162.TakeuchiR,KatagiriW,EndoS,KobayashiT.Exosomesfromconditionedmedia ofbonemarrow-derivedmesenchymalstemcellspromoteboneregeneration byenhancingangiogenesis.PLoSOne.2019;14:e0225472.
163.WangJ,HuangR,XuQ,ZhengG,QiuG,GeM,etal.MesenchymalstemcellderivedextracellularvesiclesalleviateacutelunginjuryviatransferofmiR-27a3p.CritCareMed.2020;48:e599–e610.
164.LiR,ZhaoK,RuanQ,MengC,YinF.BonemarrowmesenchymalstemcellderivedexosomalmicroRNA-124-3pattenuatesneurologicaldamageinspinal cordischemia-reperfusioninjurybydownregulatingErn1andpromotingM2 macrophagepolarization.ArthritisResTher.2020;22:75.
165.LiuW,YuM,XieD,WangL,YeC,ZhuQ,etal.Melatonin-stimulatedMSCderivedexosomesimprovediabeticwoundhealingthroughregulatingmacrophageM1andM2polarizationbytargetingthePTEN/AKTpathway.StemCell ResTher.2020;11:259.
166.LianQ,LyeE,SuanYeoK,KhiaWayTanE,Salto-TellezM,LiuTM,etal.DerivationofclinicallycompliantMSCsfromCD105+,CD24-differentiatedhuman ESCs.StemCells.2007;25:425–36.
167.LianQ,ZhangY,ZhangJ,ZhangHK,WuX,ZhangY,etal.Functional mesenchymalstemcellsderivedfromhumaninducedpluripotentstemcells attenuatelimbischemiainmice.Circulation.2010;121:1113–23.
168.ZhangY,LiangX,LiaoS,WangW,WangJ,LiX,etal.Potentparacrineeffectsof humaninducedpluripotentstemcell-derivedmesenchymalstemcellsattenuatedoxorubicin-inducedcardiomyopathy.SciRep.2015;5:11235.
169.LiX,ZhangY,YeungSC,LiangY,LiangX,DingY,etal.Mitochondrialtransferof inducedpluripotentstemcell-derivedmesenchymalstemcellstoairwayepithelialcellsattenuatescigarettesmoke-induceddamage.AmJRespirCellMol Biol.2014;51:455–65.
170.SzeSK,deKleijnDP,LaiRC,KhiaWayTanE,ZhaoH,YeoKS,etal.Elucidating thesecretionproteomeofhumanembryonicstemcell-derivedmesenchymal stemcells.MolCellProteom.2007;6:1680–9.
171.MendtM,DaherM,BasarR,ShanleyM,KumarB,WeiInngFL,etal.Metabolic reprogrammingofGMPgradecordtissuederivedmesenchymalstemcells enhancestheirsuppressivepotentialinGVHD.FrontImmunol.2021;12:631353.
172.WangL,GuZ,ZhaoX,YangN,WangF,DengA,etal.Extracellularvesicles releasedfromhumanumbilicalcord-derivedmesenchymalstromalcellsprevent life-threateningacutegraft-versus-hostdiseaseinamousemodelofallogeneic hematopoieticstemcelltransplantation.StemCellsDev.2016;25:1874–83.
173.DalColloG,AdamoA,GattiA,TamelliniE,BazzoniR,TakamKamgaP,etal. Functionaldosingofmesenchymalstromalcell-derivedextracellularvesiclesfor thepreventionofacutegraft-versus-host-disease.StemCells.2020;38:698–711.
174.FujiiS,MiuraY,FujishiroA,ShindoT,ShimazuY,HiraiH,etal.Graft-versus-host diseaseameliorationbyhumanbonemarrowmesenchymalstromal/stemcellderivedextracellularvesiclesisassociatedwithperipheralpreservationofnaive Tcellpopulations.StemCells.2018;36:434–45.
175.LaiP,ChenX,GuoL,WangY,LiuX,LiuY,etal.Apotentimmunomodulatory roleofexosomesderivedfrommesenchymalstromalcellsinpreventing cGVHD.JHematolOncol.2018;11:135.
176.NorooznezhadAH,YaraniR,PayandehM,HoseinkhaniZ,KianiS,TaghizadehE, etal.Humanplacentalmesenchymalstromalcell-derivedexosome-enriched extracellularvesiclesforchroniccutaneousgraft-versus-hostdisease:Acase report.JCellMolMed.2022;26:588–92.
177.FengK,XieX,YuanJ,GongL,ZhuZ,ZhangJ,etal.Reversingthesurfacecharge ofMSC-derivedsmallextracellularvesiclesby εPL-PEG-DSPEforenhanced osteoarthritistreatment.JExtracellVesicles.2021;10:e12160.
ACKNOWLEDGEMENTS
Forthecollaborationandgeneralsupport,wewouldliketothankourcolleagues fromthecordbloodbankcentre,aswellasallcollaborationpartners.Graphswere assembledusingdynamicBioRenderassets(icons,lines,shapes,and/ortext).
AUTHORCONTRIBUTIONS
KMcollectedtheliteratureandwrotethemanuscript.HLcontributedtothe revisionsofthemanuscriptandtablesfor importantintellectualcontent.YJ,CZ, CS,LJ,GL,ZX,andZXcontributedtotheliteraturesummary.XX,YX,WY,ZJ,TH, andXAcontributedtoreviewandlanguageediting.LQconceptualizedthe manuscriptandcontributedtofundingacquisition.Allauthorsreadandgave fi nal approvalforpublication.
FUNDING
ThisstudyisinpartsupportedbyStart-upGrantforStemCellRegenerativeMedicine (GuangzhouWomenandChildren’sMedicalCentre,GrantNo:5001-4001010),and ShenzhenScienceandTechnologyProgram(JCYJ20210324114606019).
COMPETINGINTERESTS
Theauthorsdeclarenocompetinginterests.
ADDITIONALINFORMATION
Supplementaryinformation Theonlineversioncontainssupplementarymaterial availableat https://doi.org/10.1038/s41419-022-05034-x
Correspondence andrequestsformaterialsshouldbeaddressedtoQizhouLian.
Reprintsandpermissioninformation isavailableat http://www.nature.com/ reprints
Publisher’snote SpringerNatureremainsneutralwithregardtojurisdictionalclaims inpublishedmapsandinstitutionalaffiliations.
OpenAccess ThisarticleislicensedunderaCreativeCommons Attribution4.0InternationalLicense,whichpermitsuse,sharing, adaptation,distributionandreproductioninanymediumorformat,aslongasyougive appropriatecredittotheoriginalauthor(s)andthesource,providealinktotheCreative Commonslicense,andindicateifchangesweremade.Theimagesorotherthirdparty materialinthisarticleareincludedinthearticle’sCreativeCommonslicense,unless indicatedotherwiseinacreditlinetothematerial.Ifmaterialisnotincludedinthe article’sCreativeCommonslicenseandyourintendeduseisnotpermittedbystatutory regulationorexceedsthepermitteduse,youwillneedtoobtainpermissiondirectly fromthecopyrightholder.Toviewacopyofthislicense,visit http:// creativecommons.org/licenses/by/4.0/
©TheAuthor(s)2022