s41419-022-05034-x

Page 1


REVIEWARTICLE OPEN

Mesenchymalstemcell-derivedextracellularvesiclesfor immunomodulationandregeneration:anextgeneration therapeutictool?

MengKou1,10,LiHuang1,10,JinjuanYang1,ZhixinChiang2,ShaoxiangChen1,JieLiu3,4,LiyanGuo1,XiaoxianZhang1,XiaoyaZhou1, XiangXu 5,XiaomeiYan6,YanWang7,JinqiuZhang1,AiminXu 3,4,Hung-fatTse4,8 andQizhouLian 1,3,4,8,9 ✉

©TheAuthor(s)2022

Mesenchymalstemcells(MSCs)canbewidelyisolatedfromvarioustissuesincludingbonemarrow,umbilicalcord,andadipose tissue,withthepotentialforself-renewalandmultipotentdifferentiation.Thereiscompellingevidencethatthetherapeuticeffect ofMSCsmainlydependsontheirparacrineaction.Extracellularvesicles(EVs)arefundamentalparacrineeffectorsofMSCsandplay acrucialroleinintercellularcommunication,existinginvariousbody fluidsandcellsupernatants.SinceMSC-derivedEVsretainthe functionofprotocellsandhavelowerimmunogenicity,theyhaveawiderangeofprospectivetherapeuticapplicationswith advantagesovercelltherapy.WedescribesomecharacteristicsofMSC-EVs,anddiscusstheirroleinimmuneregulationand regeneration,withemphasisonthemolecularmechanismandapplicationofMSC-EVsinthetreatmentof fibrosisandsupport tissuerepair.WealsohighlightcurrentchallengesintheclinicalapplicationofMSC-EVsandpotentialwaystoovercomethe problemofqualityheterogeneity.

CellDeathandDisease (2022)13:580;https://doi.org/10.1038/s41419-022-05034-x

FACTS

● MSC-derivedEVshavelow-immunogenicityandstrong potentialfortherapeuticapplications.

● MSC-derivedEVswereusedtotreattissue fibrosisand promotetissueregeneration.

● MSC-derivedEVsareproposedasanoveltherapeuticagentto mediateimmunomodulationandpromoteregeneration.

OPENQUESTIONS

● HowcanMSC-derivedEVsmediateimmunomodulationand regeneration?

● HowcanMSC-derivedEVsbeusedtoaidregenerationof fibrotictissue?

● HowcanmassmanufacturingofMSC-derivedEVsbeachieved andtheproblemofqualityheterogeneityovercome?

● WhatarethechallengesofMSC-derivedEV-basedimmunomodulationandregenerationinclinicalpractice?

INTRODUCTION

Mesenchymalstemcells(MSCs)existinvarioustissuessuchas bonemarrow(BMSCs),umbilicalcordblood(UC-MSCs)and umbilicalcordtissue,placentaltissue(hPMSCs),adiposetissue (ADSCs),andmenstrualblood(MenSCs).Thesecellshavemultidirectionaldifferentiationpotential[1]tobecomeosteoblasts, chondrocytesoradipocytesinvitro[2],andhaveauniquefunction ofcytokinesecretion[3].Cellmodelshavebeenappliedin proliferation,transplantation,anddifferentiationstudies,andin identificationofimmuneresponsesinvitro[4].Numerousstudies haveshownthatMSCshavegreatpotentialinimmuneregulation andregeneration[5].TheU.S.FDAhasapprovednearly60clinical trials[6],mainlyfocusedonHematopoieticStemCellTransplantation(HSCT)[7],tissuehealing,AutoimmuneDisease(AID),and genetictherapyvectors[8].Recently,MSCshavebeenwidelyused inclinicalstudiesasaregenerativeagentandtotreatavarietyof conditionsincludingosteoarthritis[9],pulmonary fibrosis,spinal cordinjury,myocardialdamage,kneecartilageinjury,dentalpulp regeneration,andorgantransplantation[10].Anincreasingnumber

1CordBloodBankCentre,GuangzhouWomenandChildren’sMedicalCentre,GuangzhouMedicalUniversity,Guangzhou,China. 2DepartmentofAlliedHealthSciencesFacultyof Science,TunkuAbdulRahmanUniversity,Ipoh,Malaysia. 3StateKeyLaboratoryofPharmaceuticalBiotechnology,theUniversityofHongKong,HongKongSAR,China. 4DepartmentofMedicine,theUniversityofHongKong,HongKongSAR,China. 5DepartmentofStemCell&RegenerativeMedicine,StateKeyLaboratoryofTrauma,Burnand CombinedInjury,DapingHospital,ArmyMedicalUniversity,Chongqing400042,China. 6DepartmentofChemicalBiology,TheMOEKeyLaboratoryofSpectrochemicalAnalysis& Instrumentation,CollegeofChemistryandChemicalEngineering,XiamenUniversity,Xiamen,Fujian361005,China. 7XiamenCardiovascularHospitalofXiamenUniversity,School ofMedicine,XiamenUniversity,Xiamen,China. 8HKUMedLaboratoryofCellularTherapeutics,theUniversityofHongKong,HongKongSAR,China. 9DepartmentofSurgery, ShenzhenHongKongUniversityHospital,Shenzhen518053,China. 10Theseauthorscontributedequally:MengKou,LiHuang. ✉email:qzlian@hku.hk EditedbyDrYufangShi

Received:14February2022Revised:8June2022Accepted:22June2022

ofstudieshasrevealedthatthepowerfultherapeuticeffectsof MSCsareduetoparacrine-likesecretionofcytokines(growth factorsandchemokines)[11, 12]andextracellularvesicles(EVs)as wellastheirinvolvementincellularcommunication[13–16]. ApplicationofMSCsascelltherapyisbasedonregulatingthe inflammatoryresponseandparticipatingintissuerepairand regeneration[17].ThetherapeuticeffectofMSCsismainly attributedtotheirimmunomodulatoryfunctionregulatedbythe inflammatoryenvironment[18].Whenstimulatedbyinflammatory factors,MSCsproducealargenumberofimmunomodulatory factors,cellchemokines,andgrowthfactors,therebyregulating thetissueimmunemicroenvironmentandpromotingtissue regeneration[19].ThereisaccumulatingevidencethatEVs derivedfromMSCspreservethetherapeuticactionoftheparent MSCsandtheiruseavoidsthesafetyconcernsassociatedwithlive celltherapy[20, 21].Therefore,useofMSC-EVstoreplaceMSCsas cell-freetherapymaybethefocusoffutureclinicaltreatments [20].WereviewrecentstudiesoftheroleofMSC-EVsin immunomodulationandregeneration,focusingontheirmolecular mechanismsinthetreatmentofosteoarthritis,spinalcordinjury, skininjury,andliver,kidney,andlung fibrosis.

EXTRACELLULARVESICLESCOMPOSITION

Extracellularvesicles(EVs)existinbody fluids,arereleasedbycells, andhaveamembranestructure[22].Theycanbedividedintofour subgroupsaccordingtotheirdiameter:exosomes(30–150nm), microvesicles(100–1000nm),apoptoticbodies(50–5000nm,generatedduringcellapoptosis)[23, 24],andoncosomes(1–10 μm),newly discoveredandobservedincancercells[25].EVsencapsulatemany bioactivemolecules(proteins,lipids,nucleicacids,andorganelles) [26–28]thatcanbedeliveredtotargetcells.Largeamountsofdata suggestthatexosomesandmicrovesiclesarevitalmediatorsofEVs innumerousphysiological(pathological)processes[29](Fig. 1).

Exosomes

Exosomesaremicroscopicvesicleswithadensityof1.11–1.19g/mL. Theyhaveatypical “disk-like” structureand flatsphericalshapewhen seenunderanelectronmicroscope[24].Manykindsofcellsinvarious body fluidsandcellsupernatantscansecreteexosomesunder normalandpathologicalconditions.Exosomeswere firstdiscovered in1983insheepreticulocytesandwerenamed “Exosomes” by Johnstonein1987[30].Thesetinyvesiclescontainspecificproteins, lipids,andnucleicacidsthatcanbetransmittedandserveas signalingmoleculestoalterthefunctionofothercells[31, 32].

Duringtheformationofexosomes,theextracellularcomponentsandcellmembraneproteinsarewrappedbythe invaginatedplasmamembranetoformearlyendosomes.These canexchangematerialswithintracellularorganellesanddevelop intolateendosomes,eventuallyformingintracellularmultivesicularbodies(MVBs)[33, 34].MVBscontainmanyintraluminal vesicles(ILVs)[35].Theymaybedegradedandreleasedintothe cytoplasmbyfusionwithautophagosomesorlysosomes,or releasedintoextracellularvesiclesbyfusionwithplasma membrane,includingILVs,resultinginexosomeformation[34]. Exosome-mediatedintercellularcommunicationisachievedby directmembranefusion,receptor-mediatedendocytosis,phagocytosis,caveolae,andmicropinocytosis[36–38].

Proteinsinvolvedinexosomebiogenesis(suchastransportand fusion)includeRabGTPases[39–41],ESCRT(endosomalsorting complexrequiredfortransport)[42],annexin,lipidraftproteins,and fourtransmembraneproteins(CD63,CD81,andCD9)[43, 44].In addition,theyalsocontainbiosyntheticantibodies(AlixandTSG101) involvedinMVBs[45, 46],cholesterol,ceramide,phosphoglyceride thatprovidesstructuralstability,andimmune-relatedmoleculeMHC-II thatisinvolvedinantigenbindingandpresentation.Exosomesalso carryfunctionalmRNAsandmiRNAsthatcanbetransferredbetween cells[47].Exosomesreleasedbytumors containsingle-strandedDNA,

genomicDNA,cDNA,andatransposableelement[48, 49].Itisclear thatexosomeshavemanyfunctionsasbiomarkersofdisease.

Microvesicles

Microvesiclesarealsoknownasmicroparticles.BiogenesisofMVs differstothatofexosomessincetheyarereleasedfromoutward buddingand fissionofplasmamembranewhenthecellis stimulatedorapoptotic[50].Nonetheless,theysharecharacteristicsofhighbiocompatibility,andlowimmunogenicityand targetingandcanbeusedasdrugcarriers[51].Studieshave shownthattheuseoftumorcell-derivedMVstodeliver chemotherapydrugsproducesinbettercancertreatmentresults withfewsideeffectsoradversereactions[52, 53].

MSC-DERIVEDEXTRACELLULARVESICLES

AlthoughMSCsderivefromavarietyofsources,theycanallbe adherentincultureanddifferentiatedintoavarietyofcelltypes withspecificsurfacemarkers[54].Withtheneedforclinical treatmentwithMSCs,theMesenchymalandTissueStemCell CommitteeoftheInternationalSocietyforCellularTherapy(ISCT) hasproposedminimumcriteriaforidentificationofhumanMSCs: (1)Culturedunderstandardconditionstheymustadhereto plasticsubstrates;(2)On flowcytometry,thepositiverateof CD105,CD73andCD90expressioninMSCsurfacemarkersshould reach95%,andnegativeexpressionrateCD45,CD34,CD14or CD11b,CD79aorCD19orHLA-DR(humanleukocyteantigen-DR) (≤2%positive);(3)Afterinductionbystandardmethodsinvitro, MSCsmustbeabletoinducedifferentiationintoosteoblasts, chondrocytesandadipocytes[55].Nonetheless,furtherresearch hasrevealedthatthesestandardsdonotfullydefineMSCs[56]. ThereisaccumulatingevidencethatheterogeneousMSCshave multiplecellsubpopulationswithcharacteristicsurfacemarkers [57, 58],butthedefinitionofsurfacemarkersandbiological functionsofthesesubpopulationsrequiresongoingexploration.

MSCsareeasytoresuscitateandproliferateinvitro,enabling themtobemass-producedforclinicalapplication[18].Inrecent years,theyhavebeenthemoststudiedstemcelltypeforclinical application,andhaveplayedaneffectivetherapeuticroleingraftversus-hostdisease(GVHD)[7],kidneyinjury[59],tissueandorgan transplantation,immunetolerance[60],nerveinjury,rheumatic disease,andliverdisease.Atpresent,MSCshaveattractedmuch attentioninthecontextoftheCOVID-19pandemic[61].Lengetal. demonstratedthatinanMSCtreatmentgroup,patientswith COVID-19infectionwerecuredortheirconditionsignificantly improvedasaresultofregulationofincreasedinterleukin10(IL 10)expression,inhibitionofoveractivatedimmuneTcellsandNK cells,andasignificantlyreducedTNF-α level[62].

Despitetheiradvantages,thereareaspectsofMSCtherapythat warrantconsideration.First,theproliferationabilityofMSCsis graduallyweakenedandaccompaniedbyacertaindegreeof differentiationandevenagingwithincreasingpassagesduring invitroculture.Thisimpactstheirregulatoryandtherapeutic ability[56, 63].Second,intheinvivoenvironment,heredityfactors andtheself-renewalabilityofMSCscannotbecontrolledwith consequentpotentialfortumorigenicity[64].Inaddition,although MSCshaveastrongregenerativeregulatorypotential,itis uncertainwhethertheycantargetorremainatthedamaged sitefollowingintravenousinjection[65].Thereissomeevidence thatonlyasmallnumberofMSCsreachthetargetsiteduetothe hostbody’sscavengingcapacity[66, 67].Althoughin-situinjection canpartiallysolvetheseproblems,thereremainproblemswith celldifferentiationandaging,andtheclinicaleffectsarenot optimistic[68].MSCshavealsobeenfoundtocauseandpromote thegrowthofvarioustypesofcancer[69].Inaddition,thereare theusualassociatedrisksofcelltherapysuchasviralinfectionand immunerejectionaswellasproblemswithstorageand transportation[70].

Fig.1 Thedevelopmentandmaintypesofextracellularvesicles.A Exosomesarederivedfromtheendosomalpathway. B Compositionof exosomes.

ThediscoverythatmosttherapeuticeffectsofMSCsdependon theirparacrineactionandthatEVscanreplacetheirparentcells offersexcitingprospectsforresearchers[21].EVsoffergreat advantages[71]:theyarenotself-replicatingandlargelyavoidthe riskoftumorigenicity[72];comparedwithcelltherapy,EVsare safer;asnanoparticlestheyhavebothbiocompatibilityandlow immunogenicity,enablingthemtocross-protectivebarrierssuch astheblood-brainbarrier[73];theycanbecontinuouslysecreted byimmortalizedcellstoobtainasufficientnumber[74];EVs protecttheirinternalbiomolecularactivityviatheirlipidmembranestructure,canbepreservedforaprolongedperiodat-80°C, andarenotsubjecttodeactivation,evenafterrepeatedfreezing andthawing[75, 76];andtheyhaveanencapsulationcapability, canloadspecificdrugsandtransportthemtotargetcells[77].

Notably,MSC-EVsexpressEVsurfacemarkersCD63,CD9and CD81,aswellasmesenchymalstemcellsurfacemarkersCD44, CD73,andCD90[78].Inaddition,proteinscontainedinthe extracellularvesiclessecretedbyMSCsareaspecificprotein subclassthatdeterminestheiruniquebiologicalfunctions[36].At thesametime,theencapsulatedmRNAandmiRNAinMSC-EVs formthemolecularbasisfortheirfunction[79].Accordingly,MSCEVstransmitinformationandcommunicatewithtargetcells throughinternalsubstances,thuschangingtheactivityand functionoftargetcells[80].

Withtheiruniqueadvantages,MSC-EVsplayanimportantrole inimmuneregulationandregeneration.Studiesofthepromotion ofregenerationthroughimmuneregulationaredescribedin

detailbelow.Meanwhile,inthetreatmentofautoimmune diseases,Wuetal.foundthatBM-MSC-derivedEVstargeted inhibitionofthecyclinI-activatedATM/ATR/p53signalingpathwaybyupregulationofmiR-34a,therebyinhibitingRA fibroblastlikesynoviocytes(RA-FLSs)andsignificantlyamelioratingRA inflammationinvivo[81].Anotherstudyontheregulationof type-Iautoimmunediabetesmellitus(T1DM)showedthatADMSC-derivedexosomesamelioratedT1DMsymptomsbyupregulatingtheexpressionofregulatoryTcells,interleukin4(IL4),IL10 andtransforminggrowthfactor-beta(TGF-β)anddown-regulating IL17andinterferon-gamma(IFN-γ)[82].Additionalstudiesof autoimmunediseaseregulationhavebeensummarizedelsewhere [83].RecentlyMSC-EVshavealsobeenappliedinclinicalpractice. Nassaretal.areintheprocessofevaluatingtheeffectofhuman UC-MSC-derivedEVsonislet β cellsinpatientswithT1DM(trial NCT02138331).Recentclinicaltrialshavebeenconductedto evaluatethesafetyandefficacyofMSC-EVsinpatientswitha varietyofdiseasesbasedontheirpotentialforimmuneregulation andregeneration(Table 1).

APPLICATIONOFMSC-EVSINIMMUNEREGULATIONAND REGENERATION

ThetherapeuticpotentialofMSC-EVshasbeenreportedin immuneregulationandtissueregenerationbasedonEVmediatedcellularcommunicationbetweenMSCsandseveral targetcells,includingmacrophages,microglia,chondrocytes,

Table1. SummaryofregisteredclinicaltrialsbasedonMSC-EVswithpotentialforimmuneregulationandregeneration.

RegisterNo.TitlePhaseConditionInterventionURL

https://ClinicalTrials.gov/show/ NCT05127122

https://ClinicalTrials.gov/show/ NCT04493242

https://ClinicalTrials.gov/show/ NCT05078385

https://ClinicalTrials.gov/show/ NCT05130983

https://ClinicalTrials.gov/show/ NCT04657458

https://ClinicalTrials.gov/show/ NCT05125562

https://ClinicalTrials.gov/show/ NCT04327635

https://ClinicalTrials.gov/show/ NCT05116761

https://ClinicalTrials.gov/show/ NCT05176366

https://ClinicalTrials.gov/show/ NCT04173650

https://ClinicalTrials.gov/show/ NCT05215288

https://ClinicalTrials.gov/show/ NCT04223622

https://ClinicalTrials.gov/show/ NCT04270006

I/IIARDSBMSC-EVs; IV

NCT05127122BoneMarrowMesenchymalStemCell-DerivedExtracellularVesicles InfusionTreatmentforARDS

IICOVID-19ARDSBMSC-EVs; IV

IBurnwoundsBMSC-EVs;apply towound

ICrohn ’ sDiseaseBMSC-EVs; IV

BMSC-EVs; IV

CriticallyillCOVID- 19ARDS

open- label

BMSC-EVs; IV

NCT04493242ExtracellularVesicleInfusionTreatmentforCOVID-19 AssociatedARDS

NCT05078385SafetyofMesenchymalStemCellExtracellularVesicles(BMSC-EVs) fortheTreatmentofBurnWounds

NCT05130983APhaseIStudyofExoFlo,anexVivoCulture-expandedAdult AllogeneicBoneMarrowMesenchymalStemCell-Derived ExtracellularVesicleIsolateProduct,fortheTreatmentofMedically RefractoryCrohn ’ sDisease

NCT04657458ExpandedAccessProtocolonBoneMarrowMesenchymalStemCell- DerivedExtracellularVesicleInfusionTreatmentforPatientsWith COVID-19AssociatedARDS

IIMild-to-Moderate COVID-19

NCT05125562BoneMarrowMesenchymalStemCell-DerivedExtracellularVesicles InfusionTreatmentforMild-to-ModerateCOVID-19:APhaseII ClinicalTrial

IAMIEVs; Intracoronaryinfusion

NCT04327635SafetyEvaluationofIntracoronaryInfusionofExtracellularVesiclesin PatientsWithAMI

I/IICOVID-19BMSC-EVs; IV

NCT05116761ExoFlo ™ InfusionforPost-AcuteCOVID-19andChronicPost-COVID- 19Syndrome

IUlcerativeColitisBMSC-EVs; IV

NCT05176366StudyofExoFlofortheTreatmentofMedicallyRefractoryUlcerative Colitis

NCT04173650MSCEVsinDystrophicEpidermolysisBullosaI/IIDEBBMSC-EVs;apply towound

ISolidOrganTransplant Rejection BMSC-EVs; IV

NCT05215288IntermediateSizeExpandedAccessfortheUseofExoFlointhe TreatmentofAbdominalSolidOrganTransplantPatientsWhoAreat RiskofWorseningAllograftFunctionWithConventional ImmunosuppressiveTherapyAlone

NCT04223622EffectsofASCSecretomeonHumanOsteochondralExplantsopen- label OAASCsecretome; * IV

IPeriodontitisASC-EVs

NCT04270006EvaluationofAdipose-DerivedStemCellsExo.inTreatmentof Periodontitis

AMI acutemyocardialinfarction, ARDS acuterespiratorydistresssyndrome, ASC adipose-derivedstemcell, BMSC bonemesenchymalstemcell, COVID-19 coronavirusdisease2019, DEB dystrophicepidermolysis bullosa, EVs extracellularvesicles, IV intravenousadministration, OA osteoarthritis. * ASCsecretome,eithercompleteconditionedmediumorEVs.

articularchondrocytes,endothelialcells, fibroblasts,pericytes, neuralstemcells(NSC),neurons,hepaticstellatecells,and podocytes.Inthispaper,wediscussthemolecularmechanisms ofMSC-EVsintissuerepairandanti-fibrosis,inwhichseveral clustersofmiRNAandtheirdownstreampathwayshavebeen revealedtoplayimportantrolesinosteoarthritis,spinalcord injury,skininjury,liver fibrosis,kidney fibrosis,andlung fibrosis (Tables 2–7).

Supporttissuerepair

Osteoarthritis.Osteoarthritis(OA)istheprincipalformofjoint diseasewithunclearpathogenesis,presentingwithpainand stiffness,andinsomecases,disability[84].Recently,MSC-EVshave beenproventohavebothregenerativeandimmunoregulatory benefitsinOA(Table 2).

SeveralstudieshavereportedthathBMSC-EVsplayasignificant roleinthetreatmentofOAbyinhibitingsomepro-inflammatory pathwaysandfactors,andenhancingtheproliferationand migrationofchondrocytes.Vonketal.determinedthatMSC-EVs blockedNFκBsignalingbyinhibitingphosphorylationofIκBα, therebydown-regulatingTNF-α-inducedCOX2expression,and interleukinsandcollagenaseactivity.Additionally,MSC-EVsupregulatedtheexpressionofSOX9andWNT7A,andpromotedthe productionofproteoglycanandtypeIIcollagenininvitrostudies [85].Lietal.concludedthathBMSC-EVspromotedOA-chondrocyte (OA-CH)proliferationandmigrationandreducedapoptosisvia downregulationofMMP13,ALPL,IL-1β-activatedpro-inflammatory Erk1/2,PI3K/Akt,p38,TAK1,andNF-κBsignalingpathwaysand increasedgeneexpressionofPRG4,BCL2,andACAN(aggrecan) [86].Inaddition,inOA-likechondrocytes,MSC-EVsinducedthe expressionoftypeIIcollagenandaggrecan(chondrocytemarkers), whileinhibitingMMP-13andADAMTS5(catabolic)andiNOS (inflammatorymarkers).InaCIOAmodel,treatedmicealso exhibitedreducedcartilageandbonedegeneration[87].Inan OAmodel,RuizshowedthattheeffectofMSC-EVswasduetothe presenceofTGFBImRNAandprotein[88].Analogously,inthe samemodel,BMSC-EVspromotedtheconversionofRAW264.7 fromM1toM2,reducedtheexpressionofproinflammatory cytokinesIL-1β,TNF-α,andIL-6,andenhancedtheexpressionofIL10,chondrogenicgenes,collagenIIandSOX9[89].Interestingly, Wooetal.revealedintheirmonosodiumiodoacetate(MIA)ratand thesurgicaldestabilizationofthemedialmeniscus(DMM)mouse modelthatMSC-EVscouldamelioratecartilagedegenerationby increasingtypeIIcollagensynthesisanddecreasingMMP-1,MMP3,MMP-13andADAMTS-5expressioninthepresenceofIL-1β [90]. RecentstudieshavealsoexaminedtheeffectofmiRNAsinMSCEVs.Insynovial-derivedMSC-EVs(SMSC-EVs),Taoetal.overexpressedmiR-140-5ptoblockWnt5aandWnt5btoactivateYAP viatheWntsignalingpathwayandsignificantlyreduceextracellularmatrix(ECM)secretion[91].Wangetal.foundthat exosomesderivedfrommiR155-5p–overexpressingSMSCs(SMSC155-5p-Exos)promotedECMsecretionbytargetingRunx2,which enhancedcartilageregenerationandamelioratedOA[92].Likewise,SMSC-EVshighlyexpressedmiR-31andrelievedOAviathe KDM2A/E2F1/PTTG1axis[93].Ofinterest,hypoxiaincreasedthe expressionofmiR-216a-3pinHIF-1α-inducedBMSC-EVsand promoteddown-regulationofJAK2,promotingproliferation, migration,andreducedapoptosisofchondrocytesviainhibition oftheJAK2/STAT3signalingpathway[94].Acombinationofthese miRNAsandMSC-EVsmayserveasapotentialtherapyforOA.In contrast,severalstudieshaveshownthatmiRNAscauseside effectsinOA.Intra-articularinjectionofantagomir-miR-100-5p dramaticallyattenuatedtheinfrapatellarfatpad(IPFP)MSC-EV (MSCIPFP-EVs)-mediatedprotectiveeffectonarticularcartilage invivo[95].MiR-29b-3ptargetsFoxO3 geneandenhances chondrocytedestruction.lncRNAH19fromumbilicalcordMSCEVscouldcompetitivelybindtomiR-29b-3ptoattenuateits inhibitionofthetargetgeneFoxO3 [96].

Spinalcordinjury.Spinalcordinjury(SCI)arisesfollowing damagetoitsstructureandfunctionbyvariouspathogenic factors,withconsequentspinalcorddysfunctionincludingthatof movement,sensation,andreflexes[97].Duetothelimited regenerativeabilityofnervecomponents,MSC-EVshavebeen recentlyviewedasapromisingclinicaltreatmentforSCI(Table 3). AratmodelofSCIhascommonlybeenappliedtoevaluate treatmentwithMSC-EVs.Theyhavebeenfoundtobeableto regulateimmunityandrestorefunctionthroughavarietyof pathways.First,Huangetal.studiedtheadministrationofhBMSCExosinananimalmodel,anddemonstratedthatinhibitionof apoptosisprotein(Bax)andpro-inflammatoryfactors(TNFα andIL 1β),andpromotionofanti-apoptoticprotein(Bcl-2),antiinflammatoryprotein(IL10)andangiogenesis,couldimprove motorfunction[98].Interestingly,thereducedpericytemigration mediatedbyBMSC-EVscorrelatedwithinhibitionoftheNF-KB P65signalingpathwaywithconsequentweakeningofthebloodspinalcordbarrier(BSCB)[99].Inaddition,Zhouetal.showedthat treatmentwithBMSC-Exossuppressedtheexpressionofcaspase1 andIL1β byreducingpyroptosis,andenhancedneuronal regenerationtoamelioratemotorabilityinratswithspinalcord injury[100].Hanetal.foundthatTGF-β inBMSC-EVsenhanced theexpressionofSmad6,inhibitedtheexcessivedifferentiationof neuralstemcells(NSCs)intoastrocytes,andpromotedregenerationofneurons[101].Consecutively,Nakazakietal.proposedthat BMSC-EVsshouldbeadministeredover3daystoup-regulate transforminggrowthfactor-β (TGF-β),TGF-β receptor,andrelative proteinsoftightjunction[102].Moreintriguingly,Zhouetal. providedevidencethatexosomessecretedbyhPMSCsincreased theactivationofproliferatingendogenousnervestem/progenitor cellsinvivo,whilepromotingNSCproliferationandupregulating MEK,ERK,andCREBphosphorylationlevelsinvitro,resultingin functionalrecovery[103].

MiRNAshavealwaysbeenpotentbiologicaleffectorsofMSCEVs,andwithoutexception,theyplayastrongroleinimmune regulationandregenerationinspinalcordinjury.Jiaetal. confirmedthatoverexpressionofmiR-381inMSC-EVscould promoteSCIrepairbyup-regulatingRashomologousA(RhoA)/ RHOkinaseactivityanddown-regulatingBRD4expressionand DRGcellapoptosisbyWNT5A[104].Lietal.observedthatmiR-133 carriedbyMSC-Exoscoulddirectlytargetanddown-regulatethe expressionofRhoA,andalsopromoteexpressionofERK1/2STAT3 andCREBsignalingpathwayproteinsrelatedtoneuronalsurvival andaxonregeneration,thusrescuingneuronapoptosisand promotingaxonregeneration[105].Ofinterest,whenmiR-17-92, miR-26a,andmiR-216a-5pwereenrichedinBMSC-Exos,they respectivelyinducedactivationofmTOR/PI3K/Akt,PTEN/Akt /mTOR,andtheTLR4/NF-κB/PI3K/Aktsignalingpathwaycascade, withconsequentpromotionofaxonalregenerationandnerve functionrepairafterSCI[106–108].Inaddition,miRNA-22 encapsulatedinBMSC-EVspromotesneurogenesisandinflammationsuppressionbydownregulatingtheexpressionofinflammatorycytokinesandGSDMD,andblockingthepyroptosisof microgliaafterSCI[109].OverexpressionofmiR-199a-3p/145-5pin exosomessecretedbyhumanumbilicalcord-derivedMSCshas beenshowntoactivatetheNGF/TrkAsignalingpathwayaffecting TrkAubiquitination,andimprovelocomotorfunctioninratswith SCI[110].

Skininjury.Skininjuryisquitecommon.Skinregenerationis typicallyaccompaniedbyfouroverlappingprocesses:inflammation,angiogenesis,newtissueformation,andremodeling [111–113](Table 4).

Thereisrecentevidencethathuman-derivedMSC-Exos effectivelybenefitskindamageandacceleratewoundhealing bymodulatingrelatedsignalingpathways.Intriguingly,Zhouetal. adoptedacombinationtherapy,applyinghADSC-Exosbothlocally andintravenouslytoaccelerateskinwoundhealing.

Table2. Summaryofstudiesontheroleofextracellularvesiclesinosteoarthritis.

AnimalmodelMolecularmechanismActioneffectRef

EVssourceTargetcellsor tissues

[ 85 ]

Promotetheproductionofproteoglycan,typeII collagen,andchondrocytesregeneration

DownregulateTNFα -inducedexpressionofCOX2,ILs andcollagenaseactivity

[ 86 ]

Promotecellproliferationandmigrationand reduceapoptosis.

DownregulateIL-1ß-activatedpro-in fl ammatoryErk1/2, PI3K/Akt,p38,TAK1,andNFκ Bsignalingpathways

[ 87 ]

CIOAInhibitMMP-13,ADAMTS5andiNOSReinducetheexpressionoftypeIIcollagen, aggrecan,andprotectedmicefrom jointdamage

BMSC-EVsChondrocytes –

88 ]

Increasechondrocyteproliferation[

OATGFBIinhibitcartilageandbonedegradation,andlimit calci fi cationandosteophyteformation

hBMSC-EVsChondrocyte –

89 ]

InhibitOAprogression[

[ 90 ]

[ 91 ]

[ 92 ]

Promotetheproliferationandmigrationof humanOAchondrocytes,andprotected cartilagefromdegeneration

Enhanceproliferation,migrationof chondrocytes,andpreventOA

Enhanceproliferation,migrationof chondrocytes,andpreventOA

[ 93 ]

Alleviatecartilagedamageandin fl ammationin kneejoints

Promoteproliferation,migrationandreduce apoptosis

MurineBMSCs-EVsOA-like chondrocytes

hBMSC-EVsOA-like chondrocytes

BMSC-ExosMacrophagesOAPromotetheconversionofRAW264.7fromM1toM2, reducetheexpressionofIL-1 β ,TNFα andIL-6,and enhanceIL-10,chondrogenicgenes,collagenIIandsox9

hASC-EVsChondrocytesMIA,DMMIncreasetypecollagensynthesisanddecreaseMMP-1, MMP-3,MMP-13,andADAMTS-5expressioninthe presenceofIL-1 β

OAHighly-expressmiR-140-5pblockedECMsecretion decreaseviaRalA

OAHighly-expressedmiR-155-5ppromotedECMsecretion viaRunx2

EncapsulatemiR-31ameliorateskneeOAviathe KDM2A/E2F1/PTTG1axis.

SMSC-EVsArticular chondrocytes

SMSC-ExosArticular chondrocytes

SMSC-EVsKneeOAHumankneeOA patients

[ 95 ]

[ 96 ]

Protectarticularcartilagefromdamageand ameliorategaitabnormalityinOAmiceby maintainingcartilagehomeostasis

BMSC-EVsChondrocyteOAHypoxiaincreasedtheexpressionofmiR-216a-3pand promoteddown-regulationofJAK2

[ 94 ] infrapatellarfatpad

ChondrocyteOAMiR100-5p-regulateinhibitionofmTOR-autophagy pathway

MSCs-Exos

UMSC-ExosChondrocyteOAExosomalH19againstmiR-29b-3ptoupregulateFoxO3Promotechondrocytemigration,matrix

secretion,apoptosissuppression,aswellas senescencesuppression

BMSC bonemesenchymalstemcell, CIOA collagenase-inducedosteoarthritis, DMM destabilizationofthemedialmeniscus, ECM extracellularmatrix, EVs extracellularvesicles, Exos exosomes, hASC human adipose-derivedstemcell, MIA monosodiumiodoacetate(inducedosteoarthritis), OA osteoarthritis, OA-CH osteoarthritis-chondrocyte, SMSC synovialmesenchymalstemcell, UMSC umbilicalcordmesenchymal stemcell.

Table3. Summaryofstudiesontheroleofextracellularvesiclesinspinalcordinjury.

EVssourceTargetcellsortissuesAnimalmodelMolecularmechanismActioneffectRef

[ 98 ]

hBMSC-ExosEndothelialSCIInhibitBaxandTNF α andIL1 β ,andBcl2,IL10andangiogenesisAttenuatethelesionsizeandimproved functionalrecoveryafterSCI

BMSC-EVsPericyteSCIInhibitNF-KBP65signalingpathwayAmeliorateblood-spinalcordbarrier[ 99 ]

]

[ 100 ]

Amelioratethemotorabilityofspinal cordinjuryrats

BMSC-ExosPericyteSCISuppresstheexpressionofcaspase1andIL1 β byreducing pyroptosis

BMSC-EVsNSCsSCITGFβ enhancedtheexpressionofSmad6Promotetheregenerationofneurons[ 101 ]

Improvelocomotorrecovery[ 102 ]

BMSC-EVsM2macrophageSCIUp-regulateTGFβ ,TGFβ receptorandrelativeproteinsoftight junction

Promotespinalcordfunctionalrecovery[

SCIPromoteNSCsproliferationandupregulateMEK,ERK,andCREB phosphorylationlevels

hPMSC-ExosEndogenousneuralstem/ progenitorcells

PromoteSCIrepair[ 104 ]

MSC-EVsDRGcellsSCIOverexpressmiR-381up-regulatesRhoA/RHOkinaseactivityand down-regulateBRD4expressionandDRGcellapoptosisbyinhibiting theBRD4/WNT5Aaxis

[ 105 ]

[ 106 ]

[ 107 ]

Improvetherecoveryofhindlimb locomotorfunctionfollowingSCI

Enhanceneuro-functionalrecovery ofstroke

Promoteaxonalregenerationand neurogenesisandattenuateglia scarringinSCI

[ 108 ]

Promotefunctionalbehavioralrecovery afterSCI

NervefunctionrepairafterSCI[ 109 ]

PromotelocomotorfunctioninSCIrats[ 110 ]

MSC-ExosNeuronsSCIMiR-133btargetdown-regulatestheexpressionofRhoA,and promotesERK1/2STAT3andCREBsignalingpathway

BMSC-ExosNeuronsMCAOMiR-17-92inducesactivationofmTOR/PI3K/Aktsignalingpathway cascade

BMSC-ExosNeuronsSCIMiR-26ainducesactivationofPTEN/Akt/mTORsignalingpathway cascade

BMSC-ExosMicrogliaSCIHypoxicexosomalmiR-216a-5pmodulatemicroglialpolarizationby TLR4/NFκ B/PI3K/AKTsignalingcascades

BMSC-EVsMicrogliaSCIMiRNA-22downregulatestheexpressionofin fl ammatorycytokines andGSDMD

hUC-MSC-ExosNeuronsSCIMiR-199a-3p/145-5paffectedTrkAubiquitinationandpromotedthe NGF/TrkAsignalingpathway

BMSC bonemesenchymalstemcell, DRG dorsalrootganglia EVs extracellularvesicles, Exos exosomes, hPMSC humanplacentalmesenchymalstemcell, MCAO middlecerebralarteryocclusion, MSC mesenchymal stemcell, NSCs neuralstemcells, SCI spinalcordinjury, UC-MSC umbilicalcordmesenchymalstemcell.

Mechanistically,hADSC-ExosachievedthiseffectbydownregulatingTNF-α,IL-6,CD14,CD19,CD68,andC-caspase3,and up-regulatingVEGF,CD31,Ki67,PCNA, filaggrin,loricrinandAQP3 [114].Jiangetal.demonstratedthathBMSC-ExossuppressedTGFβ1,Smad2,Smad3,andSmad4bytargetingtheTGF-β/Smad signalingpathway,butincreasedtheexpressionofTGF-β3and Smad7,thusimprovingscarformationandpromotingwound healing[115].Remarkably,fetaldermalmesenchymalstemcellderivedexosomes(FDMSC-Exos)havebeenshowntoactivate adultdermal fibroblast(ADFs)topromotecellproliferation, migrationandsecretionbytargetingJagged1ligandinthe Notchsignalingpathway,andultimatelyacceleratewound healing[116].

Similareffectshavealsobeenobservedforhuman-derived MSC-ExoscarryingmiRNAs.Ofinterest,Heetal.showedthat hBMMSCsandjawbonemarrowMSCs(JMMSCs)couldinduce macrophagestowardM2polarizationandpromotewound healing.Themechanismsuggestedthatexosomessecretedby donorsmayregulatethepolarizationofmacrophagesbycarrying miR-223targetingPknox1.Nonetheless,researcherscannot confirmwhetherothermiRNAsorfactorscarriedbythese exosomesareinvolvedintheinductionofM2polarization,and furtherstudiesareneeded[117].Likewise,Wuetal.utilizedBMSCExostreatedwith50µg/mLFe3O4 nanoparticlesand100mTSMF toformafunctionalexosome(mag-BMSC-Exos).Notably,miR-215pwasoverexpressedinmag-BMSC-Exosandpromotedangiogenesisinvivoandinvitrotoaccelerateskinwoundhealingby targetingSPRY2toactivatethePI3K/AKTandERK1/2signaling pathways[118].Additionally,Chengetal.foundthathUCMSCsEVsarehighlyenrichedwithmiR-27bandpromotetheexpression ofJUNBandIRE1α bytargetingtheItchyE3ubiquitin-protein ligase(ITCH),therebyacceleratingcutaneouswoundhealing[119]. Inaddition,hUMSC-ExoscanbeenrichedwithasetofmicroRNAs (miR-21,-23A,-125b,and-145)toattenuateexcessmyofibroblast formationandscarringviarepressionoftheTGF-β2/SMAD2 pathways[120].AnotherstudyshowedthathADSC-Exosderived miR-19bregulatetheTGF-β pathwaybytargetingCCL1[121].Li etal.verifiedthathADSC-Exosdown-regulatedtheexpressionof Col1,Col3, α-SMA,IL-17RA,andP-SMad2/P-SMad3,andupregulatedthelevelofSIP1bysuppressingmultiplicationand migrationofhypertrophicscar-derived fibroblasts(HSFs).In addition,miR-192-5pwashighlyenrichedinADSC-EXOand reducedthelevelofpro-fibrosisprotein,improvedhypertrophic scar fibrosis,andacceleratedwoundhealingviatargeted inhibitionofIL-17RAexpression[122].Alongsidethis,overexpressionofmiR-486-5PinhADSC-EVsenhancedthemigrationof humanskin fibroblasts(HSFs)andtheangiogenicactivityof humanmicrovascularendothelialcells(HMECs)bytargetingSp5 andmotivatingCCND2expression,therebypromotingwound healing[123].Interestingly,Gaoetal.foundthatoverexpressionof Mir-135ainhAMSC-Exossignificantlydown-regulatedLATS2, therebyincreasingcellmigrationandpromotingwoundhealing [124].

Anti-fibrosis

Liver fibrosis.Liver fibrosisisapathophysiologicalprocessand referstotheabnormalproliferationofintrahepaticconnective tissueduetovariouspathogenicfactors[125].Recently,useof MSC-EVshasbeenconsideredanewtherapeuticapproachto repairliver fibrosis(Table 5).Rongetal.showedthathumanbone MSC-EVsinhibitedexpressionofWnt/β-cateninpathwaycomponents, α-SMA,andtypeIcollagen,therebypreventingstellatecell activationandincreasinghepatocyteregeneration.Invivo injectionofhBMSC-Exoshasbeenshowntoeffectivelyalleviate CCL4-inducedliver fibrosisinratsandrestoreliverfunction[126]. Likewise,usingaCCL4-inducedliver fibrosisanimalmodel,Ohara etal.provedthatEVsfromamnion-derivedMSCs(AMSC-EVs) couldsignificantlyreducethenumberofKupffercells(KCs),mRNA

expressionofinflammatoryfactors,activationofhepaticstellate cells(HSC),andthelipopolysaccharide(LPS)/toll-likereceptor4 (TLR4)signalingpathway,therebyreducinginflammationand fibrosis[127].

Theanti-fibroticeffectofmiRNAsinMSC-EVshasbecomea focusofresearchintoCCL4-inducedliver fibrosisinrats.MiRNA181-5poverexpressioninADSC-EVshasbeenshowntodownregulatetranscription3(STAT3)andBcl-2andactivatedautophagyinHST-T6cells,alongsideasignificantdecreaseincollagenI, vimentin,a-SMA,and fibronectininliver[128].Similarly,high expressionofmiR-122inADSC-EVsmodulatedtheexpressionof targetgenessuchasinsulin-likegrowthfactorreceptor1(IGF1R) cyclinG(CCNG1),andproline-4-hydroxylaseA1(P4HA1),thereby moreeffectivelyblockingtheproliferationofHSCsandcollagen maturation[129].Interestingly,Kimetal.reportedthatmiR-486-5p washighlyexpressedinT-MSC-EVsthatcouldtargetthehedgehogreceptor,smoothened(Smo),andinhibithedgehogsignaling, therebyattenuatetheactivationofHSCsandliver fibrosis[130].

Kidney fibrosis.Renal fibrosisisagradualpathophysiological processduringwhichkidneyfunctionprogressesfromhealthyto injured,thentodamagewithanultimatelossoffunction[131]. Increasingly,MSC-EVshavebeenstudiedinthetreatmentofrenal fibrosisusingvariousmodels(Table 6).

Jietal.determinedthathUC-MSC-ExosrepressedYesassociatedprotein(YAP)throughcaseinkinase1δ (CK1δ)andE3 ubiquitinligase β-TRCPinaratmodelofunilateralureteral obstruction(UUO),thusamelioratingrenal fibrosis[132].Similar effectsinaUUOmodelwereconfirmedinLiu’sstudy.They revealedthathUC-MSC-Exosattenuatedrenal fibrosisbyinhibitingtheROS-mediatedp38MAPK/ERKsignalingpathway[133]. Likewise,Shietal.showedthatmilkfatglobule–epidermalgrowth factor–factor8(MFG-E8)wasincludedinBMSC-EVs,and amelioratedrenal fibrosisbyblockingtheRhoA/ROCKpathway inaUUOmodel[134].Ofinterest,inaUUOmousemodel,BMSCExosloadedmiR-34c-5pinhibitedcorefucosylation(CF)bycd81EGFRcomplex,therebyimprovingrenalinterstitial fibrosis(RIF) [135].Correspondingly,recentstudiesalsosuggestthatexosomes fromADSCsamelioratethedevelopmentofDNviamiRNAs.Jin etal.usedmiRNA-215-5ptoinhibitZEB2andimproveddiabetic nephropathy(DN)symptoms.Theyalsorevealedthatupregulated expressionofmiR-486couldsuppresstheSmad1/mTORsignaling pathwayinpodocytes[136, 137].MV-miR-451afromhUMSCs repressedcellcycleinhibitorP15andP19expressionbytargeting their3′-UTRsites,therebydecreasing α-SMAandincreasing e-cadherinexpression.Thisresultedinepithelial-mesenchymal transformation(EMT)reversalandimprovedDNsymptoms[138]. InanotherstudyofameliorationofDN,BMSC-Exossignificantly enhancedtheexpressionofLC3andBeclin-1,anddecreasedthe levelofmTORand fibroticmarkersinastreptozotocin-inducedrat modelofdiabetesmellitus[139].Interestingly,Grangeetal. reportedthatrenal fibrosisandtheexpressionofcollagenIwere significantlyamelioratedviamultipleinjectionsofHLSCs(human liverstem-likecells)andMSC-EVsinNOD/SCID/IL2Rγ KO(NSG) mice.Additionally,relatedgenes(Serpina1a,FASligand,CCL3, TIMP1,MMP3,collagenI,andSNAI1)weresignificantlydownregulated,therebyattenuatingDNsymptoms[140].

Lung fibrosis.Pulmonary fibrosisisaterminalchangeinlung diseasecharacterizedby fibroblastproliferationandaccumulation ofalargeamountofextracellularmatrixaccompaniedby inflammatoryinjuryanddestructionoftissue.Normalalveolar tissueisdamagedandabnormalrepairleadstostructural abnormalities[141, 142].Theetiologyinthevastmajorityof patientswithpulmonary fibrosisisunknown[143].Idiopathic pulmonary fibrosis(IPF)manifestsmainlywithpulmonary fibrotic lesionsandisaseriousinterstitiallungdiseasethatcanleadto progressivelossoflungfunction.IPFhasahighermortalitythan

Table4. Summaryofstudiesontheroleofextracellularvesiclesinskininjury.

AnimalmodelMolecularmechanismActioneffectRef

Accelerateskinwoundhealing[ 114 ]

Down-regulateTNFα ,IL-6,CD14,CD19,CD68,and C-caspase3,up-regulateVEGF,CD31,Ki67,PCNA, fi laggrin,loricrinandAQP3

[ 115 ]

Improvescarformationandpromote woundhealing

TargetonTGFβ /Smadsignalingpathway,butincreased theexpressionofTGFβ 3andSmad7

[ 116 ]

InhibitMMP-13,ADAMTS5andiNOSReinducetheexpressionoftypeIIcollagen, aggrecan,andprotectedmicefrom jointdamage

[ 117 ]

Full-thicknessskin defectmodel

EVssourceTargetcellsor tissues

hADSC-Exos –

hBMSC-ExosHaCaTcells andHSFs Full-thicknessskinwounds injurymodelinrats

FDMSC-ExosADFsFull-thicknessdermal woundinjurymodel

hBMSC-Exosand JMMSC-Exos MacrophagesSkinWound-HealingBycarryingmiR-223targetingPknox1InducedmacrophagestowardM2 polarizationandpromotewoundhealing

Accelerateskinwoundhealing[ 118 ]

mag-BMSC-ExosHUVECsandHSFsRatSkinWoundModelHighly-expressmiR-21-5pandtargetSPRY2toactivating PI3K/AKTandERK1/2signalingpathways

119 ]

Acceleratecutaneouswoundhealing[

Highly-expressmiR-27bpandpromotetheexpression ofJUNBandIRE1 α bytargetingtheItchyE3ubiquitinproteinligase(ITCH)

[ 120 ]

Attenuateexcessmyo fi broblastformation andanti-scarring

121 ]

Promotethehealingofskinwounds[

Highly-expressmicroRNAs(miR-21,-23A,-125band -145)repressedtheTGFβ 2/SMAD2pathway

Highly-expressmiR-19bregulatedTGFβ pathwayby targetingCCL1

[ 122 ]

[ 123 ]

[ 124 ]

Reducethelevelofprofi brosisprotein, improvehypertrophicscar fi brosisand acceleratewoundhealing

Down-regulatetheexpressionofCol1,Col3, α -SMA,IL- 17RA,andP-SMad2/P-SMad3,andup-regulatethelevel ofSIP1,whileoverexpressionmiR-192-5ptarget inhibitionofIL-17RAexpression

Promoteproliferation,migrationand reduceapoptosis

OverexpressionmiR-486-5pinhibitSp5andelevatethe CCND2expression

Increasecellmigrationandpromote woundhealing

DownregulationofLATS2afteroverexpressionofmiR- 135a

hUCMSCs-EVsHaCaTcells andHSFs Cutaneouswound mousemodel

hUCMSC-ExosMyo fi broblastFull-thicknessskindefect mousemodel

Woundhealingofskin- injuredmice

hADSC-ExosHaCaTcells andHSFs

hADSC-ExosHSFsFull-thicknessskindefects inthebacksofrats

hADSC-EVsHSFsandHMECs –

hAMSC-ExosFibroblastsFull-thicknessskindefects inthebacksofrats

EVs extracellularvesicles, Exos exosomes, FDMSC fetaldermalmesenchymalstemcell, hADSC humanadipose-derivedstemcell, hAMSC humanamnionmesenchymalstemcell, hBMSC humanbonemesenchymal stemcell, HMEC humanmicrovascularendothelialcell, HSF Humanskin fi broblast, hUCMSC humanumbilicalcordmesenchymalstemcell, JMMSC jawbonemarrowMSC.

[ 126 ]

Effectivelyalleviateliver fi brosis,andenhance liverfunctionality,hepatocyteregeneration

InhibitedtheexpressionofWnt/ β -cateninpathway, α -SMA,andCollagenI

127 ]

Improveliverin fl ammationand fi brosis[

[ 128 ]

[ 129 ]

hBMSC-ExosHepaticstellatecellsCCl4-inducedliver fi brosis

Effectiveanti-liver fi broticandattenuate liverinjury

AMSC-EVsHepaticstellatecellsNASH,liver fi brosisDecreasethenumberofKCsandthemRNA expressionlevelsofTNFα ,IL1β ,IL6,TGFβ ,LPS, andTLR4

Down-regulateSTAT3andBcl-2andactivated autophagy

ADSC-ExosHST-T6cells * Inducedliverinjury byCCl4

AMSC-ExosHepaticstellatecellsCCl4-inducedliver fi brosis miR-122Enhancethetherapeuticef fi cacyofAMSCsinthe treatmentofliver fi brosis

MiR-486inactivateshedgehogsignalingAttenuateHSCactivationandliver fi brosis[ 130 ]

CCl4-inducedliver fi brosis

hTMSC-EVsHumanprimaryhepatic stellatecells

ADSC adipose-derivedmesenchymalstemcell, AMSC amnion-derivedmesenchymalstemcell, BMSC bonemesenchymalstemcell, CCl4 carbontetrachloride, EVs extracellularvesicles,Exosexosomes, HSC hepatic stellatecell, NASH nonalcoholicsteatohepatitis, TMSC tonsil-derivedmesenchymalstemcell.

mosttumorsandisconsideredatumor-likedisease[142]. Recently,MSC-EVshavebecomeaneffectivetreatmentfor pulmonary fibrosis(Table 7).

BMSC-Exosexerttheirtherapeuticeffectthroughimmunomodulation.Inamousemodel,BMSC-Exoshavebeenshownto significantlyamelioratehyperoxia(HYRX)-inducedbronchopulmonarydysplasia(BPD),alveolar fibrosis,andpulmonaryvascular remodelingbysuppressingM1macrophageproductionand enhancingM2macrophagegeneration[144].Likewise,BMSCExoshavebeenshowntosignificantlyreverse fibrosisina bleomycin-inducedpulmonary fibrosismodelbyregulatingtotal lungimbalanceofMΦ phenotype[145].Inaddition,theWnt5a/ BMPsignalingpathwayregulatedbyUC-MSC-Exoscanenhance Wnt5a,Wnt11,BMPR2,BMP4,andBMP9expression,anddownregulatethatof β-catenin,CyclinD1andTGF-β1.Inamonocrotaline(MCT)-inducedratmodelofpulmonaryhypertension(PH), MSC-Exoswereshowntosignificantlyamelioratepulmonary vascularremodelingandpulmonary fibrosis[146].Ofinterest, Chaubeyetal.showedthatUC-MSC-Exosplayedatherapeutic roleinimprovingpulmonaryinflammation,pulmonarysimplification,pulmonaryhypertension,andrightventricularhypertrophy throughimmunomodulatoryglycoproteinTSG-6inaneonatal BPDmousemodel[147].

Additionally,MSC-EVscanreverselunginjuryandpulmonary fibrosisbyexpressinginfluentialmiRNAs.Wanetal.determined thathighexpressionofmiR-29b-3pbyBMSC-EVsamelioratedIPF byFZD6[148].Zhouetal.foundthatmiR-186enrichedbyBMSCEVsrepressedtheexpressionofSOX4andDickkopf-1(Dkk1), therebyeffectivelyinhibiting fibroblastdevelopmentandattenuatingIPF[149].Inaddition,Lei’sstudyrevealedthathPMSC-EVs couldcarrymiR-214-3panddownregulateATM/P53/P21signaling, thusrelievingradiation-inducedlunginflammationand fibrosis [150].InBLM-inducedlung fibrosisandamousemodelofalveolar epithelialcelldamage,exosomessecretedfromMenSCs(MenSCsExos)havebeenshowntoamelioratepulmonary fibrosisby transferringmiRNALet-7tosuppressreactiveoxygenspecies (ROS),mitochondrialDNA(mtDNA)damage,andactivationof NLRP3inflammasome[151].Similarly,Xiaoetal.usedanotherLPSinducedAcuteLungInjury(ALI)mousemodelanddemonstrated thatMSC-ExosrepressedNF-κBandhedgehogpathwaysby transportingmiR-23a-3pandmiR-182-5p,therebyimprovinglung injuryand fibrosis[152].

CHALLENGESANDAPPLICATIONOFMSC-EVSASAN ADVANCEDTHERAPY

*HST-T6,mousehepaticstellatecellline.

AlthoughMSC-EV-basedtherapyholdsgreatpromiseasanovel “cell-free” therapeuticproduct,thereremainmanychallengesto overcomepriortotheirclinicalapplication.Atpresent,several limitationsrestricttheclinicaltranslationofMSC-EVsincludingthe discrepanciesinthecomponentsofEVsfromvarioussourcesand thelackofstandardoperationprocessesforlargescaleproduction, bothofwhichlargelydependonqualitycontrolofthesourcesof EVs.Itisplausibletoovercomethesehurdlesbyintroducinga strategytocontrolthequalityofMSCsfromtheoriginalsource ofEVs.

ThequalityofMSC-derivedEVsfromdifferentgroupsand batchesisheterogeneous MSCsaremostcommonlyderivedfrombonemarrow,fat, umbilicalcordandothertissues,butmaintainingconsistent qualityofMSCsandtheirEVsfromdifferentsourcesandacross batchesisdifficult.Thisseverelyrestrictsthequalitycontroland managementofMSCsandtheirEVsasdrugs,andincreasesthe problemofdrugresistance[153].Thisresultsinlimited reproducibilityoffunctionalmeasurementsinvitroandinvivo [154].

UUOInhibitROS-mediatedp38MAPK/ERKsignaling pathway Attenuaterenal

]

hUC-MSC-ExosRenaltubular epithelialcells

BMSC-EVsHK-2cellsUUOInhibitRhoA/ROCKpathwayAttenuaterenal

AmeliorateRIF[ 135 ]

UUOMiR-34c-5pinhibitsthecorefucosylationofmultiple proteins

[ 136 ]

ImprovepodocytedysfunctionandDN symptoms

MiR-215-5pshuttlestopodocyte,andinhibitsthe transcriptionofZEB2

137 ]

AmeliorateDNsymptom[

[ 138 ]

Decreasethemorphologicandfunctional injuryofkidney

139 ]

AttenuateDNsymptom[

[ 140 ]

BMSC-EVsPericytes;Fibroblasts; Macrophages

ADSCs-ExosPodocyte

ADSCs-ExosPodocyteSpontaneousdiabetesmiceEnhancetheexpressionofmiR-486,inhibitof Smad1/mTORsignalingpathway

DiabetesandhyperuricemiamiceMiR-451adecreases α -SMAandincreasese-cadherin expressionbytargeting3 ′ -UTRsitesofP15andP19

EnhancetheexpressionofLC3,Beclin-1anddecrease thelevelofmTORand fi broticmarker

hUC-MSC-EVsHK-2cells *

BMSC-EVsRenaltissueStreptozotocin-induceddiabetes mellitusrat

brosisandtheexpression ofcollagenI,attenuateDNsymptom

Amelioraterenal fi

KO(NSG)miceDownregulateSerpina1a,FASligand,CCL3,TIMP1, MMP3,collagenIandSNAI1

hBMSC-EVsGlomerulusNOD/SCID/IL2R γ

ADSC adipose-derivedmesenchymalstemcell, BMSC bonemesenchymalstemcell, DN diabeticnephropathy, EVs extracellularvesicles,Exosexosomes, RIF renalinterstitial fi brosis, UC-MSC umbilicalcord mesenchymalstemcell, UUO unilateralureteralobstruction. * HK-2,humanproximaltubularepithelialcellline.

Intheangiogenesisstudy,BMSC-,ADSC-,andUCBMSC-derived EVswerecomparedandfoundtoreducemyocardialapoptosis, facilitateangiogenesis,andimprovecardiovascularfunction. Notably,EVsfromADSCsstimulatedcardioprotectionfactors VEGF,bFGF,andHGF[155].Inaddition,BMSC-derivedEVs appearedtohaveagreaterangiogenicpotentialthanADSCderivedEVswhencomparedintwoindependentischemicmodel studies,withanapproximately4-foldincreaseinendothelialcell numberscomparedwithcontrols,anda1.5-foldchangeinthe latter[156, 157].Nonetheless,anotherstudyshowedthatEVsfrom endometrialmesenchymalstemcellsresultedinagreaterlevelof angiogenesisthanEVsfromBMSCSorADMSCs[158].

Instudiesofosteogenesisstudies,intwoseparateratskull defectstudies,BMSC-EVtreatmentincreasedbonevolumefourfoldrelativetothecontrolgroup[159],whileADSC-EVincreased bonevolumebyabout1.33times[160].Inotherstudies,BMSCandADSC-derivedEVsacceleratedchondrocyteproliferation, migration,andosteogenicdifferentiation[161, 162].

ComparisonoftheimmunomodulatorydifferencesofMSCderivedEVsfromdifferentsourcesrevealedthatBMSC-EVsand ADSC-EVscouldinduceM2polarizationofmacrophagesinvivo andinvitro[163, 164].Interestingly,inaseparateexperiment, Wangetal.showedthatBMSC-EVspromptedasignificant(3.2fold)increaseintheexpressionofCD206ofM2-polarization markerinanacutelunginjurymousemodel[163].Nonetheless Liuetal.reportedthattheM2polarizationabilityofADSC-EVs increasedonlybyafactorof1.5inamousemodel[165].

TheproliferationcapacityofMSCsextractedfromadult tissueswaslimited,andaffectedthelargescaleproductionof EVs

TodevelopMSC-EVsintocommerciallyadvancedtherapeutic products(ATPs),qualityassurance(QA)isrequiredoftheoriginal material,includingparentalgroupsorcellsusedinthe manufactureofMSCs.Thereremainmanydifficultiesinmass productionofEVsfromadulttissuesforclinicaltrialssince proprietaryMSCshavealimitednumberofpassagetimes,age easily,andcomeatahigh financialcost.Inaddition,their heterogenicitymakestraditionalcellcultureinefficientintermsof timeandcost.

MSCsderivedfrompluripotentstemcellsovercomethe problemsofmassproductionofMSC-EVsandquality heterogeneity

TheoriginalsourceMSCsrequiresgood,consistent,and controllablequality,withastrongabilitytoproliferateandto secretelargenumbersofEVs.Toachievethis,weestablishedan inductionsystemofMSCsusingpluripotentstemcellsto overcometheproblemsofmassproductionofMSC-EVsand variationinquality.WesuccessfullyinducedMSCsfrompluripotentstemcells(PSC)[166–170].ComparedwithMSCsextracted fromtraditionalsources,ourMSCswerederivedfromthesame parentPSCs,consequentlyovercomingtheproblemofEV heterogeneitywhenMSCsfromavarietyofsourcesareused. Recently,GMP-gradeMSCsderivedfromhumanPSCs(hPSC)have beenusedinclinicaltrialsforrefractorygraft-versus-hostdisease (GVHD)[171].ThetherapeuticpotentialofMSC-EVshasbeen showninpreclinicalstudiesofbothacuteGVHD(aGVHD) [172–174]andchronicGVHD(cGVHD)[175]models.The preliminarybenefitsofhPMSC-EVshavebeenreportedina patientwithcutaneouscGVHD.Thestiffeninganddrynessofskin wereimprovedsignificantlyafterintravenousinjectionofhPMSCEVs[176].Basedonthepreliminaryefficacyandsafetyprofiles,a phase1studyhasbeenlaunchedtoevaluatethesafetyand efficacyofBM-MSC-derivedEVsinpatientswithacuteorchronic rejectionfollowingabdominalsolidorgantransplantation (NCT05215288,Table 1).ItisplausiblethathPSC-MSC-derived EVswillpromotetheclinicaltranslationofMSC-EVsowingtothe

fi brosis.

Table7. Summaryofstudiesontheroleofextracellularvesiclesinlung

EVssourceTargetcellsortissuesAnimalmodelMolecularmechanismActioneffectRef

[ 144 ]

Improvelungfunction,decrease fi brosisandpulmonary vascularremodeling,andamelioratepulmonaryhypertension.

BMSC-ExosLungmacrophageHyperoxia-inducedBPDSuppressM1macrophageproductionandenhanceM2 macrophagegeneration

145 ]

fi brosis[

RegulatetotallungimbalanceofmacrophagephenotypePreventorreverselung

hBMSC-ExosLungmacrophageBleomycin-inducedpulmonary fi brosis

146 ]

RegulateWnt5a/BMPsignalingpathwayAttenuatepulmonaryvascularremodelingandlung fi brosis[

UC-MSC-ExosPAECandPASMCMonocrotaline-inducedrat modelofPH

UC-MSC-ExosLungtissueBPDImmunomodulatoryglycoproteinTSG-6Improvepulmonaryin fl ammation,pulmonarysimpli fi cation, pulmonaryhypertension,andrightventricularhypertrophy [ 147 ]

148 ]

BMSC-EVsIPFpulmonarytissueIPFMiR ‐29b ‐3pAmeliorateIPF[

150 ]

AmeliorateIPF[

BMSC-EVsLung fi broblastPFMiR-186suppressedSOX4andDKK1expression,blocked fi broblastactivation

MiR-214-3pdownregulateATM/P53/P21signalingRelieveradiation-inducedlungin fl ammationand fi brosis[

149 ] hPMSC-EVsLung fi broblastWholethoraxirradiation mousemodel

151 ]

Remitpulmonary fi brosis[

MenSCs-ExosRecipientalveolarepithelialcellsBLMMiRNALet-7suppressesROS,mtDNAdamage,and NLRP3in fl ammasomeactivation

152 ]

ReversedtheLPS-inducedlunginjuryand fi brosis[

MSC-ExosMLE-12cells * LPS-inducedALITransmitmiR-23a-3pandmiR-182-5ptoinhibitNFκ Band hedgehogpathways

ALI acutelunginjury, BLM bleomycin, BMSC bonemesenchymalstemcell, BPD bronchopulmonarydysplasia; EVs extracellularvesicles, Exos exosomes, hPMSC humanplacenta-derivedmesenchymalstemcell, IPF idiopathicpulmonary fi brosis, LPS lipopolysaccharide, PAEC pulmonaryarteryendothelialcell, PASMC pulmonaryvascularsmoothmusclecell, PF pulmonary fi brosis, PH pulmonaryhypertension, MenSCs menstrualblood-derivedstemcell, UC-MSC umbilicalcordmesenchymalstemcell.

qualitycontrolandlargescaleproductiveadvantagesofhPSCMSCscomparedwithtraditionalMSC.hPSC-MSCshavemore passages(morethan30generations),strongamplificationability, canwithstandsenescence[166, 167, 170],andhavestrong secretionability(includingcytokinesandexosomes)[168] comparedwiththetraditionalMSCs.Nonetheless,thepassage timesoftraditionalMSCsaregenerallylessthan10generations, andtheproliferationanddifferentiationabilitiesofMSCsare reducedafternumerouspassagesinculture,andaffectsthe secretionofextracellularvesicles.Therefore,ourhPSC-MSCshave greatadvantagesforlarge-scaleproductionandcostcontrolof EVs.MassproductionofMSCsandtheirEVsisnowpossibleusing bioreactorsandmicrocarrierstomaximizeMSCgrowthandEV releaseperunitsurfacearea.Weevaluatedmesenchymalstem cellsfromdifferentsourcesandfoundthatPSC-MSCshadthe highestEVproduction.TooptimizeEVproduction,weacquired hPSC-MSCsinascalablecellfactory-basedcultureandwereable toovercomethemajorobstaclesduringtransformationofMSCEVsintoATPs.

CONCLUSIONSANDFUTUREPERSPECTIVE

Extracellularvesiclesderivedfrommesenchymalstemcellsplaya criticalroleinthedevelopmentofimmuneregulationand regeneration.TheseEVsmimictheeffectsofstemcellsand performpowerfulfunctionsbymodulatingimmunepathways, promotingeffectorcellmigrationandproliferation,andreducing apoptosis.Todate,15clinicaltrialshavebeenregisteredin ClinicalTrial.gov,butnonehasbeencompleted.AlthoughEVs comparedwithMSCcelltherapyincitealowerimmuneresponse andhaveahighersafetyprofile,thereremainchallengestotheir clinicalapplication[56].Inaddition,thesuccessfulapplicationof EVsdependsonlowcostformassproduction,aswellasimproved separationefficiencyandmoreaccuratecharacterizationmethods. ThisreviewhasdiscussedthetherapeuticeffectsofEVsbasedon thefunctionofMSCsortheintroductionofspecificmolecules (suchasmiRNAsandlncRNAs).Asworkcontinues,researchersare activelydevelopingengineeredEVsthataremoreeffectiveand capableoftargeting,throughloadingofbioactivemoleculesand surfacemodification.Ofinterest,Fengetal.developed ε-polylysine-polyethylene-distearylphosphatidylethanolamine (PPD)tomodifyMSC-EVsandinverttheirsurfacecharge.Asa result,thestericandelectrostatichindranceofcartilagematrix werealleviated,andtheefficiencyofMSC-EVsinthetreatmentof OAwasimproved[177].Thesetreatmentstrategieshaveachieved promisingresultsattheinitialstageandprovideexcitingnew avenuesforregenerativemedicinetherapy.

DATAAVAILABILITY

Allrelevantdataareincludedinthismanuscript.

REFERENCES

*MLE-12,mouselungepithelialcellline.

1.MaqsoodM,KangM,WuX,ChenJ,TengL,QiuL.Adultmesenchymalstemcells andtheirexosomes:Sources,characteristics,andapplicationinregenerative medicine.LifeSci.2020;256:118002.

2.PittengerMF,MackayAM,BeckSC,JaiswalRK,DouglasR,MoscaJD,etal. Multilineagepotentialofadulthumanmesenchymalstemcells.Science. 1999;284:143–7.

3.SantamariaG,BrandiE,VitolaP,GrandiF,FerraraG,PischiuttaF,etal.Intranasal deliveryofmesenchymalstemcellsecretomerepairsthebrainofAlzheimer’s mice.CellDeathDiffer.2021;28:203–18.

4.ReaganMR,KaplanDL.Concisereview:Mesenchymalstemcelltumor-homing: detectionmethodsindiseasemodelsystems.StemCells.2011;29:920–7.

5.UccelliA,MorettaL,PistoiaV.Mesenchymalstemcellsinhealthanddisease. NatRevImmunol.2008;8:726 –36.

6.WiestEF,ZubairAC.Challengesofmanufacturingmesenchymalstromalcell-derived extracellularvesiclesinregenerativemedicine.Cytotherapy.2020;22:606–12.

7.Martínez-CarrascoR,Sánchez-AbarcaLI,Nieto-GómezC,MartínGarcíaE,Sánchez-GuijoF,ArgüesoP,etal.SubconjunctivalinjectionofmesenchymalstromalcellsprotectsthecorneainanexperimentalmodelofGVHD.OculSurf. 2019;17:285–94.

8.LevyO,KuaiR,SirenEMJ,BhereD,MiltonY,NissarN,etal.Shatteringbarriers towardclinicallymeaningfulMSCtherapies.SciAdv.2020;6:eaba6884.

9.ParkYB,HaCW,LeeCH,YoonYC,ParkYG.Cartilageregenerationinosteoarthriticpatientsbyacompositeofallogeneicumbilicalcordblood-derived mesenchymalstemcellsandhyaluronatehydrogel:resultsfromaclinicaltrial forsafetyandproof-of-conceptwith7yearsofextendedfollow-up.StemCells TranslMed.2017;6:613 –21.

10.HanY,LiX,ZhangY,HanY,ChangF,DingJ.MesenchymalStemCellsfor RegenerativeMedicine.Cells.2019;8:886.

11.vandenBosC,MoscaJD,WinklesJ,KerriganL,BurgessWH,MarshakDR. Humanmesenchymalstemcellsrespondto fibroblastgrowthfactors.HumCell. 1997;10:45 –50.

12.KinnairdT,StabileE,BurnettMS,LeeCW,BarrS,FuchsS,etal.Marrow-derived stromalcellsexpressgenesencodingabroadspectrumofarteriogeniccytokinesandpromoteinvitroandinvivoarteriogenesisthroughparacrine mechanisms.CircRes.2004;94:678–85.

13.AsaiA,AiharaE,WatsonC,MouryaR,MizuochiT,ShivakumarP,etal.Paracrine signalsregulatehumanliverorganoidmaturationfrominducedpluripotent stemcells.Development.2017;144:1056–64.

14.QuagliaM,DellepianeS,GuglielmettiG,MerlottiG,CastellanoG,CantaluppiV. Extracellularvesiclesasmediatorsofcellularcrosstalkbetweenimmunesystem andkidneygraft.FrontImmunol.2020;11:74.

15.RahmaniA,SalekiK,JavanmehrN,KhodaparastJ,SaadatP,NouriHR. Mesenchymalstemcell-derivedextracellularvesicle-basedtherapiesprotect againstcoupleddegenerationofthecentralnervousandvascularsystemsin stroke.AgeingResRev.2020;62:101106.

16.KourembanasS.Exosomes:vehiclesofintercellularsignaling,biomarkers,and vectorsofcelltherapy.AnnuRevPhysiol.2015;77:13 –27.

17.HosseiniS,ShamekhiMA,JahangirS,BagheriF,EslaminejadMB.Therobust potentialofmesenchymalstemcell-loadedconstructsforhardtissueregenerationaftercancerremoval.AdvExpMedBiol.2019;1084:17–43.

18.Castro-ManrrezaME,MontesinosJJ.Immunoregulationbymesenchymalstem cells:biologicalaspectsandclinicalapplications.JImmunolRes.2015;2015:394917.

19.LiN,HuaJ.Interactionsbetweenmesenchymalstemcellsandtheimmune system.CellMolLifeSci.2017;74:2345–60.

20.LiangX,DingY,ZhangY,TseHF,LianQ.Paracrinemechanismsofmesenchymal stemcell-basedtherapy:currentstatusandperspectives.CellTranspl. 2014;23:1045–59.

21.JafariniaM,AlsahebfosoulF,SalehiH,EskandariN,Ganjalikhani-HakemiM. Mesenchymalstemcell-derivedextracellularvesicles:anovelcell-freetherapy. ImmunolInvest.2020;49:758–80.

22.LötvallJ,HillAF,HochbergF,BuzásEI,DiVizioD,GardinerC,etal.Minimal experimentalrequirementsfordefinitionofextracellularvesiclesandtheir functions:apositionstatementfromtheInternationalSocietyforExtracellular Vesicles.JExtracellVesicles.2014;3:26913.

23.RaposoG,StoorvogelW.Extracellularvesicles:exosomes,microvesicles,and friends.JCellBiol.2013;200:373–83.

24.ColomboM,RaposoG,ThéryC.Biogenesis,secretion,andintercellularinteractionsofexosomesandotherextracellularvesicles.AnnuRevCellDevBiol. 2014;30:255–89.

25.DiVizioD,KimJ,HagerMH,MorelloM,YangW,LafargueCJ,etal.Oncosome formationinprostatecancer:associationwitharegionoffrequentchromosomaldeletioninmetastaticdisease.CancerRes.2009;69:5601–9.

26.GranerMW,AlzateO,DechkovskaiaAM,KeeneJD,SampsonJH,MitchellDA, etal.Proteomicandimmunologicanalysesofbraintumorexosomes.FASEBJ. 2009;23:1541–57.

27.PathanM,FonsekaP,ChittiSV,KangT,SanwlaniR,VanDeunJ,etal.Vesiclepedia2019:acompendiumofRNA,proteins,lipidsandmetabolitesinextracellularvesicles.NucleicAcidsRes.2019;47:D516–d519.

28.NguyenHP,SimpsonRJ,SalamonsenLA,GreeningDW.Extracellularvesiclesin theintrauterineenvironment:challengesandpotentialfunctions.BiolReprod. 2016;95:109.

29.JeppesenDK,FenixAM,FranklinJL,HigginbothamJN,ZhangQ,ZimmermanLJ, etal.Reassessmentofexosomecomposition.Cell.2019;177:428–45.

30.JohnstoneRM,AdamM,HammondJR,OrrL,TurbideC.Vesicleformation duringreticulocytematuration. Associationofplasmamembraneactivitieswith releasedvesicles(exosomes).JBiolChem.1987;262:9412–20.

31.WortzelI,DrorS,KenificCM,LydenD.Exosome-mediatedmetastasis:communicationfromadistance.DevCell.2019;49:347–60.

32.ShaoH,ImH,CastroCM,BreakefieldX,WeisslederR,LeeH.Newtechnologies foranalysisofextracellularvesicles.ChemRev.2018;118:1917–50.

33.vanNielG,D'AngeloG,RaposoG.Sheddinglightonthecellbiologyofextracellularvesicles.NatRevMolCellBiol.2018;19:213–28.

34.PiperRC,KatzmannDJ.Biogenesisandfunctionofmultivesicularbodies.Annu RevCellDevBiol.2007;23:519–47.

35.vanNielG,Porto-CarreiroI,SimoesS,RaposoG.Exosomes:acommonpathway foraspecializedfunction.JBiochem.2006;140:13–21.

36.KalluriR,LeBleuVS.Thebiology,function,andbiomedicalapplicationsof exosomes.Science.2020;367:6478.

37.CostaVerderaH,Gitz-FrancoisJJ,SchiffelersRM,VaderP.Cellularuptakeof extracellularvesiclesismediatedbyclathrin-independentendocytosisand macropinocytosis.JControlRel.2017;266:100–8.

38.RaiAK,JohnsonPJ.Trichomonasvaginalisextracellularvesiclesareinternalized byhostcellsusingproteoglycansandcaveolin-dependentendocytosis.Proc NatlAcadSciUSA.2019;116:21354–60.

39.VanlandinghamPA,CeresaBP.Rab7regulateslateendocytictrafficking downstreamofmultivesicularbodybiogenesisandcargosequestration.JBiol Chem.2009;284:12110–24.

40.OstrowskiM,CarmoNB,KrumeichS,FangetI,RaposoG,SavinaA,etal. Rab27a andRab27bcontroldifferentstepsoftheexosomesecretionpathway.NatCell Biol.2010;12:19 –30.

41.ZeigererA,GilleronJ,BogoradRL,MarsicoG,NonakaH,SeifertS,etal.Rab5is necessaryforthebiogenesisoftheendolysosomalsysteminvivo.Nature. 2012;485:465–70.

42.HenneWM,BuchkovichNJ,EmrSD.TheESCRTpathway.DevCell. 2011;21:77 –91.

43.vanNielG,CharrinS,SimoesS,RomaoM,RochinL,SaftigP,etal.ThetetraspaninCD63regulatesESCRT-independentand-dependentendosomalsorting duringmelanogenesis.DevCell.2011;21:708–21.

44.VerweijFJ,vanEijndhovenMA,HopmansES,VendrigT,WurdingerT,CahirMcFarlandE,etal.LMP1associationwithCD63inendosomesandsecretionvia exosomeslimitsconstitutiveNF-κBactivation.EMBOJ.2011;30:2115–29.

45.NabhanJF,HuR,OhRS,CohenSN,LuQ.Formationandreleaseofarrestin domain-containingprotein1-mediatedmicrovesicles(ARMMs)atplasma membranebyrecruitmentofTSG101protein.ProcNatlAcadSciUSA. 2012;109:4146–51.

46.KowalJ,TkachM,ThéryC.Biogenesisandsecretionofexosomes.CurrOpinCell Biol.2014;29:116–25.

47.ValadiH,EkströmK,BossiosA,SjöstrandM,LeeJJ,LötvallJO.ExosomemediatedtransferofmRNAsandmicroRNAsisanovelmechanismofgenetic exchangebetweencells.NatCellBiol.2007;9:654 –9.

48.BalajL,LessardR,DaiL,ChoYJ,PomeroySL,BreakefieldXO,etal.Tumour microvesiclescontainretrotransposonelementsandamplifiedoncogene sequences.NatCommun.2011;2:180.

49.ThakurBK,ZhangH,BeckerA,MateiI,HuangY,Costa-SilvaB,etal.DoublestrandedDNAinexosomes:anovelbiomarkerincancerdetection.CellRes. 2014;24:766–9.

50.WillmsE,CabañasC,MägerI,WoodMJA,VaderP.Extracellularvesicleheterogeneity:subpopulations,isolationtechniques,anddiversefunctionsincancer progression.FrontImmunol.2018;9:738.

51.SkogJ,WürdingerT,vanRijnS,MeijerDH,GaincheL,Sena-EstevesM,etal. GlioblastomamicrovesiclestransportRNAandproteinsthatpromotetumour growthandprovidediagnosticbiomarkers.NatCellBiol.2008;10:1470–6.

52.TangK,ZhangY,ZhangH,XuP,LiuJ,MaJ,etal.Deliveryofchemotherapeutic drugsintumourcell-derivedmicroparticles.NatCommun.2012;3:1282.

53.MaJ,ZhangY,TangK,ZhangH,YinX,LiY,etal.Reversingdrugresistanceof softtumor-repopulatingcellsbytumorcell-derivedchemotherapeuticmicroparticles.CellRes.2016;26:713–27.

54.ViswanathanS,ShiY,GalipeauJ,KramperaM,LeblancK,MartinI,etal. Mesenchymalstemversusstromalcells:InternationalSocietyforCell&Gene Therapy(ISCT®)MesenchymalStromalCellcommitteepositionstatementon nomenclature.Cytotherapy.2019;21:1019–24.

55.DominiciM,LeBlancK,MuellerI,Slaper-CortenbachI,MariniF,KrauseD,etal. Minimalcriteriafordefiningmultipotentmesenchymalstromalcells.The InternationalSocietyforCellularTherapypositionstatement.Cytotherapy. 2006;8:315 –7.

56.ZhouT,YuanZ,WengJ,PeiD,DuX,HeC,etal.Challengesandadvancesin clinicalapplicationsofmesenchymalstromalcells.JHematolOncol.2021;14:24.

57.HolanV,TrosanP,CejkaC,JavorkovaE,ZajicovaA,HermankovaB,etal.A comparativestudyofthetherapeuticpotentialofmesenchymalstemcellsand limbalepithelialstemcellsforocularsurfacereconstruction.StemCellsTransl Med.2015;4:1052–63.

58.PogozhykhO,PogozhykhD,NeehusAL,HoffmannA,BlasczykR,MüllerT. Molecularandcellularcharacteristicsofhumanandnon-humanprimatemultipotentstromalcellsfromtheamnionandbonemarrowduringlongterm culture.StemCellResTher.2015;6:150.

59.YunCW,LeeSH.Potentialandtherapeuticefficacyofcell-basedtherapyusing mesenchymalstemcellsforacute/chronickidneydisease.IntJMolSci. 2019;20:1619.

60.AnkrumJA,OngJF,KarpJM.Mesenchymalstemcells:immuneevasive,not immuneprivileged.NatBiotechnol.2014;32:252–60.

61.Al-KhawagaS,AbdelalimEM.Potentialapplicationofmesenchymalstemcells andtheirexosomesinlunginjury:anemergingtherapeuticoptionforCOVID-19 patients.StemCellResTher.2020;11:437.

62.LengZ,ZhuR,HouW,FengY,YangY,HanQ,etal.TransplantationofACE2(-) mesenchymalstemcellsimprovestheoutcomeofpatientswithCOVID-19 Pneumonia.AgingDis.2020;11:216–28.

63.NeuhuberB,SwangerSA,HowardL,MackayA,FischerI.Effectsofplating densityandculturetimeonbonemarrowstromalcellcharacteristics.Exp Hematol.2008;36:1176–85.

64.JeongJO,HanJW,KimJM,ChoHJ,ParkC,LeeN,etal.Malignanttumor formationaftertransplantationofshort-termculturedbonemarrowmesenchymalstemcellsinexperimentalmyocardialinfarctionanddiabeticneuropathy. CircRes.2011;108:1340–7.

65.KarpJM,LengTeoGS.Mesenchymalstemcellhoming:thedevilisinthedetails. CellStemCell.2009;4:206 –16.

66.vanHennikPB,deKoningAE,PloemacherRE.Seedingefficiencyofprimitive humanhematopoieticcellsinnonobesediabetic/severecombinedimmune deficiencymice:implicationsforstemcellfrequencyassessment.Blood. 1999;94:3055–61.

67.CuiJ,WahlRL,ShenT,FisherSJ,ReckerE,GinsburgD,etal.Bonemarrowcell traffickingfollowingintravenousadministration.BrJHaematol.1999;107:895–902.

68.MeyerGP,WollertKC,LotzJ,SteffensJ,LippoltP,FichtnerS,etal.Intracoronary bonemarrowcelltransferaftermyocardialinfarction:eighteenmonths'followupdatafromtherandomized,controlledBOOST(BOnemarrOwtransferto enhanceST-elevationinfarctregeneration)trial.Circulation.2006;113:1287–94.

69.AdamoA,DalColloG,BazzoniR,KramperaM.Roleofmesenchymalstromal cell-derivedextracellularvesiclesintumourmicroenvironment.BiochimBiophys ActaRevCancer.2019;1871:192–8.

70.AnkrumJ,KarpJM.Mesenchymalstemcelltherapy:Twostepsforward,one stepback.TrendsMolMed.2010;16:203–9.

71.ZhangB,YinY,LaiRC,TanSS,ChooAB,LimSK.Mesenchymalstemcellssecrete immunologicallyactiveexosomes.StemCellsDev.2014;23:1233–44.

72.PhinneyDG,PittengerMF.Concisereview:MSC-derivedexosomesforcell-free therapy.StemCells.2017;35:851–8.

73.MilbankE,DraganoNRV,González-GarcíaI,GarciaMR,Rivas-LimeresV,PerdomoL,etal.Smallextracellularvesicle-mediatedtargetingofhypothalamic AMPKα1correctsobesitythroughBATactivation.NatMetab.2021;3:1415–31.

74.XunianZ,KalluriR.Biologyandtherapeuticpotentialofmesenchymalstemcellderivedexosomes.CancerSci.2020;111:3100–10.

75.ZhuangWZ,LinYH,SuLJ,WuMS,JengHY,ChangHC,etal.Mesenchymalstem/ stromalcell-basedtherapy:mechanism,systemicsafetyandbiodistributionfor precisionclinicalapplications.JBiomedSci.2021;28:28.

76.WatanabeY,TsuchiyaA,TeraiS.Thedevelopmentofmesenchymalstemcell therapyinthepresent,andtheperspectiveofcell-freetherapyinthefuture. ClinMolHepatol.2021;27:70 –80.

77.HerrmannIK,WoodMJA,FuhrmannG.Extracellularvesiclesasanextgenerationdrugdeliveryplatform.NatNanotechnol.2021;16:748–59.

78.RacchettiG,MeldolesiJ.Extracellularvesiclesofmesenchymalstemcells: therapeuticpropertiesdiscoveredwithextraordinarysuccess.Biomedicines. 2021;9:667.

79.QiuG,ZhengG,GeM,WangJ,HuangR,ShuQ,etal.MesenchymalstemcellderivedextracellularvesiclesaffectdiseaseoutcomesviatransferofmicroRNAs. StemCellResTher.2018;9:320.

80.Varderidou-MinasianS,LorenowiczMJ.Mesenchymalstromal/stemcell-derived extracellularvesiclesintissuerepair:challengesandopportunities.Theranostics. 2020;10:5979–97.

81.WuH,ZhouX,WangX,ChengW,HuX,WangY,etal.miR-34ainextracellular vesiclesfrombonemarrowmesenchymalstemcellsreducesrheumatoid arthritisinflammationviathecyclinI/ATM/ATR/p53axis.JCellMolMed. 2021;25:1896–910.

82.NojehdehiS,SoudiS,HesampourA,RasouliS,SoleimaniM,HashemiSM. Immunomodulatoryeffectsofmesenchymalstemcell-derivedexosomeson experimentaltype-1autoimmunediabetes.JCellBiochem.2018;119:9433–43.

83.ShenZ,HuangW,LiuJ,TianJ,WangS,RuiK.Effectsofmesenchymalstemcellderivedexosomesonautoimmunediseases.FrontImmunol.2021;12:749192.

84.BurrDB,GallantMA.Boneremodellinginosteoarthritis.NatRevRheumatol. 2012;8:665 –73.

85.VonkLA,vanDooremalenSFJ,LivN,KlumpermanJ,CofferPJ,SarisDBF,etal. Mesenchymalstromal/stemcell-derivedextracellularvesiclespromotehuman cartilageregenerationinvitro.Theranostics.2018;8:906 –20.

86.LiS,StöcklS,LukasC,GötzJ,HerrmannM,FederlinM,etal.hBMSC-derived extracellularvesiclesattenuateIL-1β-inducedcataboliceffectsonOAchondrocytesbyregulatingpro-inflammatorysignalingpathways.Front BioengBiotechnol.2020;8:603598.

87.CosenzaS,RuizM,ToupetK,JorgensenC,NoëlD.Mesenchymalstemcells derivedexosomesandmicroparticlesprotectcartilageandbonefromdegradationinosteoarthritis.SciRep.2017;7:16214.

88.RuizM,ToupetK,MaumusM,RozierP,JorgensenC,NoëlD.TGFBIsecretedby mesenchymalstromalcellsamelioratesosteoarthritisandisdetectedinextracellularvesicles.Biomaterials.2020;226:119544.

89.ZhangJ,RongY,LuoC,CuiW.Bonemarrowmesenchymalstemcell-derived exosomespreventosteoarthritisbyregulatingsynovialmacrophagepolarization.Aging.2020;12:25138–52.

90.WooCH,KimHK,JungGY,JungYJ,LeeKS,YunYE,etal.Smallextracellular vesiclesfromhumanadipose-derivedstemcellsattenuatecartilagedegeneration.JExtracellVesicles.2020;9:1735249.

91.TaoSC,YuanT,ZhangYL,YinWJ,GuoSC,ZhangCQ.Exosomesderivedfrom miR-140-5p-overexpressinghumansynovialmesenchymalstemcellsenhance cartilagetissueregenerationandpreventosteoarthritisofthekneeinarat model.Theranostics.2017;7:180–95.

92.WangZ,YanK,GeG,ZhangD,BaiJ,GuoX,etal.ExosomesderivedfrommiR155-5p-overexpressingsynovialmesenchymalstemcellspreventosteoarthritis viaenhancingproliferationandmigration,attenuatingapoptosis,andmodulating extracellularmatrixsecretioninchondrocytes.CellBiolToxicol.2021;37:85–96.

93.WangK,LiF,YuanY,ShanL,CuiY,QuJ,etal.SynovialmesenchymalstemcellderivedEV-packagedmiR-31downregulatesHistoneDemethylaseKDM2Ato preventkneeosteoarthritis.MolTherNucleicAcids.2020;22:1078–91.

94.RongY,ZhangJ,JiangD,JiC,LiuW,WangJ,etal.Hypoxicpretreatmentof smallextracellularvesiclesmediatescartilagerepairinosteoarthritisbydeliveringmiR-216a-5p.ActaBiomater.2021;122:325–42.

95.WuJ,KuangL,ChenC,YangJ,ZengWN,LiT,etal.miR-100-5p-abundant exosomesderivedfrominfrapatellarfatpadMSCsprotectarticularcartilageand ameliorategaitabnormalitiesviainhibitionofmTORinosteoarthritis.Biomaterials.2019;206:87–100.

96.YanL,LiuG,WuX.Theumbilicalcordmesenchymalstemcell-derivedexosomal lncRNAH19improvesosteochondralactivitythroughmiR-29b-3p/FoxO3 axis. ClinTranslMed.2021;11:e255.

97.McDonaldJW,SadowskyC.Spinal-cordinjury.Lancet.2002;359:417–25.

98.HuangJH,YinXM,XuY,XuCC,LinX,YeFB,etal.Systemicadministrationof exosomesreleasedfrommesenchymalstromalcellsattenuatesapoptosis, inflammation,andpromotesangiogenesisafterspinalcordinjuryinrats.J Neurotrauma.2017;34:3388–96.

99.LuY,ZhouY,ZhangR,WenL,WuK,LiY,etal.Bonemesenchymalstemcellderivedextracellularvesiclespromoterecoveryfollowingspinalcordinjuryvia improvementoftheintegrityoftheblood-spinalcordbarrier.FrontNeurosci. 2019;13:209.

100.ZhouY,WenLL,LiYF,WuKM,DuanRR,YaoYB,etal.Exosomesderivedfrom bonemarrowmesenchymalstemcellsprotecttheinjuredspinalcordbyinhibitingpericytepyroptosis.NeuralRegenRes.2022;17:194–202.

101.HanT,SongP,WuZ,XiangX,LiuY,WangY,etal.MSCsecretedextracellularvesicles carryingTGF-betaupregulateSmad6expressionandpromotetheregrowthof neuronsinspinalcordinjuredrats.StemCellRevRep.2021;18:1078–96.

102.NakazakiM,MoritaT,LankfordKL,AskenasePW,KocsisJD.Smallextracellular vesiclesreleasedbyinfusedmesenchymalstromalcellstargetM2macrophages andpromoteTGF-β upregulation,microvascularstabilization,andfunctional recoveryinarodentmodelofseverespinalcordinjury.JExtracellVesicles. 2021;10:e12137.

103.ZhouW,SilvaM,FengC,ZhaoS,LiuL,LiS,etal.Exosomesderivedfromhuman placentalmesenchymalstemcellsenhancedtherecoveryofspinalcordinjury byactivatingendogenousneurogenesis.StemCellResTher.2021;12:174.

104.JiaX,HuangG,WangS,LongM,TangX,FengD,etal.Extracellularvesiclesderived frommesenchymalstemcellscontainingmicroRNA-381protectagainstspinal cordinjuryinaratmodelviatheBRD4/WNT5Aaxis.BoneJtRes.2021;10:328–39.

105.LiD,ZhangP,YaoX,LiH,ShenH,LiX,etal.ExosomesderivedfrommiR-133bmodifiedmesenchymalstemcellspromoterecoveryafterspinalcordinjury. FrontNeurosci.2018;12:845.

106.XinH,LiuZ,BullerB,LiY,GolembieskiW,GanX,etal.MiR-17-92enriched exosomesderivedfrommultipotentmesenchymalstromalcellsenhanceaxonmyelinremodelingandmotorelectrophysiologicalrecoveryafterstroke.JCereb BloodFlowMetab.2021;41:1131–44.

107.ChenY,TianZ,HeL,LiuC,WangN,RongL,etal.ExosomesderivedfrommiR26a-modifiedMSCspromoteaxonalregenerationviathePTEN/AKT/mTOR pathwayfollowingspinalcordinjury.StemCellResTher.2021;12:224.

108.LiuW,RongY,WangJ,ZhouZ,GeX,JiC,etal.Exosome-shuttledmiR-216a-5p fromhypoxicpreconditionedmesenchymalstemcellsrepairtraumaticspinal

cordinjurybyshiftingmicroglialM1/M2polarization.JNeuroinflammation. 2020;17:47.

109.ShengY,ZhouX,WangJ,ShenH,WuS,GuoW,etal.MSCderivedEVloaded withmiRNA-22inhibitstheinflammatoryresponseandnervefunctionrecovery afterspinalcordinjuryinrats.JCellMolMed.2021;25:10268–78.

110.WangY,LaiX,WuD,LiuB,WangN,RongL.UmbilicalmesenchymalstemcellderivedexosomesfacilitatespinalcordfunctionalrecoverythroughthemiR199a-3p/145-5p-mediatedNGF/TrkAsignalingpathwayinrats.StemCellRes Ther.2021;12:117.

111.DriskellRR,LichtenbergerBM,HosteE,KretzschmarK,SimonsBD,CharalambousM,etal.Distinct fibroblastlineagesdeterminedermalarchitecturein skindevelopmentandrepair.Nature.2013;504:277–81.

112.vanZantenMC,MistryRM,SuamiH,Campbell-LloydA,FinkemeyerJP,PillerNB, etal.Thelymphaticresponsetoinjurywithsoft-tissuereconstructioninhighenergyopentibialfracturesofthelowerextremity.PlastReconstrSurg. 2017;139:483–91.

113.FalangaV.Woundhealinganditsimpairmentinthediabeticfoot.Lancet. 2005;366:1736–43.

114.ZhouY,ZhaoB,ZhangXL,LuYJ,LuST,ChengJ,etal.Combinedtopicaland systemicadministrationwithhumanadipose-derivedmesenchymalstemcells (hADSC)andhADSC-derivedexosomesmarkedlypromotedcutaneouswound healingandregeneration.StemCellResTher.2021;12:257.

115.JiangT,WangZ,SunJ.Humanbonemarrowmesenchymalstemcell-derived exosomesstimulatecutaneouswoundhealingmediatesthroughTGF-β/Smad signalingpathway.StemCellResTher.2020;11:198.

116.WangX,JiaoY,PanY,ZhangL,GongH,QiY,etal.Fetaldermalmesenchymal stemcell-derivedexosomesacceleratecutaneouswoundhealingbyactivating notchsignaling.StemCellsInt.2019;2019:2402916.

117.HeX,DongZ,CaoY,WangH,LiuS,LiaoL,etal.MSC-derivedexosomepromotesM2polarizationandenhancescutaneouswoundhealing.StemCellsInt. 2019;2019:7132708.

118.WuD,KangL,TianJ,WuY,LiuJ,LiZ,etal.Exosomesderivedfrombone mesenchymalstemcellswiththestimulationofFe(3)O(4)nanoparticlesand staticmagnetic fieldenhancewoundhealingthroughupregulatedmiR-21-5p. IntJNanomed.2020;15:7979–93.

119.ChengS,XiZ,ChenG,LiuK,MaR,ZhouC.Extracellularvesicle-carriedmicroRNA-27bderivedfrommesenchymalstemcellsacceleratescutaneouswound healingviaE3ubiquitinligaseITCH.JCellMolMed.2020;24:11254–71.

120.FangS,XuC,ZhangY,XueC,YangC,BiH,etal.Umbilicalcord-derived mesenchymalstemcell-derivedexosomalMicroRNAssuppressmyofibroblast differentiationbyinhibitingthetransforminggrowthFactor-β/SMAD2pathway duringwoundhealing.StemCellsTranslMed.2016;5:1425–39.

121.CaoG,ChenB,ZhangX,ChenH.Humanadipose-derivedmesenchymalstem cells-derivedexosomalmicroRNA-19bpromotesthehealingofskinwounds throughmodulationoftheCCL1/TGF-β signalingaxis.ClinCosmetInvestig Dermatol.2020;13:957–71.

122.LiY,ZhangJ,ShiJ,LiuK,WangX,JiaY,etal.Exosomesderivedfromhuman adiposemesenchymalstemcellsattenuatehypertrophicscar fibrosisbymiR192-5p/IL-17RA/Smadaxis.StemCellResTher.2021;12:221.

123.LuY,WenH,HuangJ,LiaoP,LiaoH,TuJ,etal.Extracellularvesicle-enclosed miR-486-5pmediateswoundhealingwithadipose-derivedstemcellsbypromotingangiogenesis.JCellMolMed.2020;24:9590–604.

124.GaoS,ChenT,HaoY,ZhangF,TangX,WangD,etal.ExosomalmiR-135a derivedfromhumanamnionmesenchymalstemcellspromotescutaneous woundhealinginratsand fibroblastmigrationbydirectlyinhibitingLATS2 expression.StemCellResTher.2020;11:56.

125.Hernandez-GeaV,FriedmanSL.Pathogenesisofliver fibrosis.AnnuRevPathol. 2011;6:425 –56.

126.RongX,LiuJ,YaoX,JiangT,WangY,XieF.Humanbonemarrowmesenchymal stemcells-derivedexosomesalleviateliver fibrosisthroughtheWnt/β-catenin pathway.StemCellResTher.2019;10:98.

127.OharaM,OhnishiS,HosonoH,YamamotoK,YuyamaK,NakamuraH,etal. Extracellularvesiclesfromamnion-derivedmesenchymalstemcellsameliorate hepaticinflammationand fibrosisinrats.StemCellsInt.2018;2018:3212643.

128.QuY,ZhangQ,CaiX,LiF,MaZ,XuM,etal.ExosomesderivedfrommiR-181-5pmodifiedadipose-derivedmesenchymalstemcellspreventliver fibrosisvia autophagyactivation.JCellMolMed.2017;21:2491–502.

129.LouG,YangY,LiuF,YeB,ChenZ,ZhengM,etal.MiR-122modification enhancesthetherapeuticefficacyofadiposetissue-derivedmesenchymalstem cellsagainstliver fibrosis.JCellMolMed.2017;21:2963–73.

130.KimJ,LeeC,ShinY,WangS,HanJ,KimM,etal.sEVsfromtonsil-derived mesenchymalstromalcellsalleviateactivationofhepaticstellatecellsandliver fibrosisthroughmiR-486-5p.MolTher.2021;29:1471–86.

131.RomagnaniP,RemuzziG,GlassockR,LevinA,JagerKJ,TonelliM,etal.Chronic kidneydisease.NatRevDisPrim.2017;3:17088.

132.JiC,ZhangJ,ZhuY,ShiH,YinS,SunF,etal.ExosomesderivedfromhucMSC attenuaterenal fibrosisthroughCK1δ/β-TRCP-mediatedYAPdegradation.Cell DeathDis.2020;11:327.

133.LiuB,HuD,ZhouY,YuY,ShenL,LongC,etal.Exosomesreleasedbyhuman umbilicalcordmesenchymalstemcellsprotectagainstrenalinterstitial fibrosis throughROS-mediatedP38MAPK/ERKsignalingpathway.AmJTranslRes. 2020;12:4998–5014.

134.ShiZ,WangQ,ZhangY,JiangD.Extracellularvesiclesproducedbybone marrowmesenchymalstemcellsattenuaterenal fibrosis,inpartbyinhibiting theRhoA/ROCKpathway,inaUUOratmodel.StemCellResTher.2020;11:253.

135.HuX,ShenN,LiuA,WangW,ZhangL,SuiZ,etal.Bonemarrowmesenchymal stemcell-derivedexosomalmiR-34c-5pamelioratesRIFbyinhibitingthecore fucosylationofmultipleproteins.MolTher.2021;30:763–81.

136.JinJ,WangY,ZhaoL,ZouW,TanM,HeQ.ExosomalmiRNA-215-5pderived fromadipose-derivedstemcellsattenuatesepithelial-mesenchymaltransition ofpodocytesbyinhibitingZEB2.BiomedResInt.2020;2020:2685305.

137.JinJ,ShiY,GongJ,ZhaoL,LiY,HeQ,etal.Exosomesecretedfromadiposederivedstemcellsattenuatesdiabeticnephropathybypromotingautophagy fluxandinhibitingapoptosisinpodocyte.StemCellResTher.2019;10:95.

138.ZhongL,LiaoG,WangX,LiL,ZhangJ,ChenY,etal.Mesenchymalstemcellsmicrovesicle-miR-451aameliorateearlydiabetickidneyinjurybynegativeregulationofP15andP19.ExpBiolMed.2018;243:1233–42.

139.EbrahimN,AhmedIA,HussienNI,DessoukyAA,FaridAS,ElshazlyAM,etal. Mesenchymalstemcell-derivedexosomesameliorateddiabeticnephropathyby autophagyinductionthroughthemTORsignalingpathway.Cells.2018;7:226.

140.GrangeC,TrittaS,TapparoM,CedrinoM,TettaC,CamussiG,etal.Stemcellderivedextracellularvesiclesinhibitandrevert fibrosisprogressioninamouse modelofdiabeticnephropathy.SciRep.2019;9:4468.

141.SpagnoloP,DistlerO,RyersonCJ,TzouvelekisA,LeeJS,BonellaF,etal. Mechanismsofprogressive fibrosisinconnectivetissuedisease(CTD)-associatedinterstitiallungdiseases(ILDs).AnnRheumDis.2021;80:143–50.

142.RicheldiL,CollardHR,JonesMG.Idiopathicpulmonary fibrosis.Lancet. 2017;389:1941–52.

143.ShenderovK,CollinsSL,PowellJD,HortonMR.Immunedysregulationasa driverofidiopathicpulmonary fibrosis.JClinInvest.2021;131:e143226.

144.WillisGR,Fernandez-GonzalezA,AnastasJ,VitaliSH,LiuX,EricssonM,etal. Mesenchymalstromalcellexosomesameliorateexperimentalbronchopulmonarydysplasiaandrestorelungfunctionthroughmacrophageimmunomodulation.AmJRespirCritCareMed.2018;197:104–16.

145.MansouriN,WillisGR,Fernandez-GonzalezA,ReisM,NassiriS,MitsialisSA,etal. Mesenchymalstromalcellexosomespreventandrevertexperimentalpulmonary fibrosisthroughmodulationofmonocytephenotypes.JCIInsight. 2019;4:e128060.

146.ZhangZ,GeL,ZhangS,WangJ,JiangW,XinQ,etal.Theprotectiveeffectsof MSC-EXOagainstpulmonaryhypertensionthroughregulatingWnt5a/BMP signallingpathway.JCellMolMed.2020;24:13938–48.

147.ChaubeyS,ThuesonS,PonnalaguD,AlamMA,GheorgheCP,AghaiZ,etal. Earlygestationalmesenchymalstemcellsecretomeattenuatesexperimental bronchopulmonarydysplasiainpartviaexosome-associatedfactorTSG-6.Stem CellResTher.2018;9:173.

148.WanX,ChenS,FangY,ZuoW,CuiJ,XieS.Mesenchymalstemcell-derived extracellularvesiclessuppressthe fibroblastproliferationbydownregulating FZD6expressionin fibroblastsviamicrRNA-29b-3pinidiopathicpulmonary fibrosis.JCellPhysiol.2020;235:8613–25.

149.ZhouJ,LinY,KangX,LiuZ,ZhangW,XuF.microRNA-186inextracellularvesicles frombonemarrowmesenchymalstemcellsalleviatesidiopathicpulmonary fibrosisviainteractionwithSOX4andDKK1.StemCellResTher.2021;12:96.

150.LeiX,HeN,ZhuL,ZhouM,ZhangK,WangC,etal.Mesenchymalstemcellderivedextracellularvesiclesattenuateradiation-inducedlunginjuryviamiRNA214-3p.AntioxidRedoxSignal.2021;35:849–62.

151.SunL,ZhuM,FengW,LinY,YinJ,JinJ,etal.ExosomalmiRNALet-7from menstrualblood-derivedendometrialstemcellsalleviatespulmonary fibrosis throughregulatingmitochondrialDNAdamage.OxidMedCellLongev. 2019;2019:4506303.

152.XiaoK,HeW,GuanW,HouF,YanP,XuJ,etal.Mesenchymalstemcellsreverse EMTprocessthroughblockingtheactivationofNF-κBandHedgehogpathways inLPS-inducedacutelunginjury.CellDeathDis.2020;11:863.

153.YinJQ,ZhuJ,AnkrumJA.Manufacturingofprimedmesenchymalstromalcells fortherapy.NatBiomedEng.2019;3:90–104.

154.WitwerKW,VanBalkomBWM,BrunoS,ChooA,DominiciM,GimonaM,etal. Definingmesenchymalstromalcell(MSC)-derivedsmallextracellularvesiclesfor therapeuticapplications.JExtracellVesicles.2019;8:1609206.

155.XuH,WangZ,LiuL,ZhangB,LiB.Exosomesderivedfromadiposetissue,bone marrow,andumbilicalcordbloodforcardioprotectionaftermyocardial infarction.JCellBiochem.2020;121:2089–102.

156.DoeppnerTR,HerzJ,GörgensA,SchlechterJ,LudwigAK,RadtkeS,etal. ExtracellularVesiclesimprovepost-strokeneuroregenerationandprevent postischemicimmunosuppression.StemCellsTranslMed.2015;4:1131–43.

157.ChenKH,ChenCH,WallaceCG,YuenCM,KaoGS,ChenYL,etal.Intravenous administrationofxenogenicadipose-derivedmesenchymalstemcells(ADMSC) andADMSC-derivedexosomesmarkedlyreducedbraininfarctvolumeand preservedneurologicalfunctioninratafteracuteischemicstroke.Oncotarget. 2016;7:74537–56.

158.WangK,JiangZ,WebsterKA,ChenJ,HuH,ZhouY,etal.EnhancedcardioprotectionbyhumanendometriummesenchymalstemcellsdrivenbyexosomalMicroRNA-21.StemCellsTranslMed.2017;6:209 –22.

159.QinY,WangL,GaoZ,ChenG,ZhangC.Bonemarrowstromal/stemcell-derived extracellularvesiclesregulateosteoblastactivityanddifferentiationinvitroand promoteboneregenerationinvivo.SciRep.2016;6:21961.

160.ChenS,TangY,LiuY,ZhangP,LvL,ZhangX,etal.ExosomesderivedfrommiR375-overexpressinghumanadiposemesenchymalstemcellspromotebone regeneration.CellProlif.2019;52:e12669.

161.NarayananR,HuangCC,RavindranS.Hijackingthecellularmail:exosomemediateddifferentiationofmesenchymal.StemCellsStemCellsInt.2016;2016:3808674.

162.TakeuchiR,KatagiriW,EndoS,KobayashiT.Exosomesfromconditionedmedia ofbonemarrow-derivedmesenchymalstemcellspromoteboneregeneration byenhancingangiogenesis.PLoSOne.2019;14:e0225472.

163.WangJ,HuangR,XuQ,ZhengG,QiuG,GeM,etal.MesenchymalstemcellderivedextracellularvesiclesalleviateacutelunginjuryviatransferofmiR-27a3p.CritCareMed.2020;48:e599–e610.

164.LiR,ZhaoK,RuanQ,MengC,YinF.BonemarrowmesenchymalstemcellderivedexosomalmicroRNA-124-3pattenuatesneurologicaldamageinspinal cordischemia-reperfusioninjurybydownregulatingErn1andpromotingM2 macrophagepolarization.ArthritisResTher.2020;22:75.

165.LiuW,YuM,XieD,WangL,YeC,ZhuQ,etal.Melatonin-stimulatedMSCderivedexosomesimprovediabeticwoundhealingthroughregulatingmacrophageM1andM2polarizationbytargetingthePTEN/AKTpathway.StemCell ResTher.2020;11:259.

166.LianQ,LyeE,SuanYeoK,KhiaWayTanE,Salto-TellezM,LiuTM,etal.DerivationofclinicallycompliantMSCsfromCD105+,CD24-differentiatedhuman ESCs.StemCells.2007;25:425–36.

167.LianQ,ZhangY,ZhangJ,ZhangHK,WuX,ZhangY,etal.Functional mesenchymalstemcellsderivedfromhumaninducedpluripotentstemcells attenuatelimbischemiainmice.Circulation.2010;121:1113–23.

168.ZhangY,LiangX,LiaoS,WangW,WangJ,LiX,etal.Potentparacrineeffectsof humaninducedpluripotentstemcell-derivedmesenchymalstemcellsattenuatedoxorubicin-inducedcardiomyopathy.SciRep.2015;5:11235.

169.LiX,ZhangY,YeungSC,LiangY,LiangX,DingY,etal.Mitochondrialtransferof inducedpluripotentstemcell-derivedmesenchymalstemcellstoairwayepithelialcellsattenuatescigarettesmoke-induceddamage.AmJRespirCellMol Biol.2014;51:455–65.

170.SzeSK,deKleijnDP,LaiRC,KhiaWayTanE,ZhaoH,YeoKS,etal.Elucidating thesecretionproteomeofhumanembryonicstemcell-derivedmesenchymal stemcells.MolCellProteom.2007;6:1680–9.

171.MendtM,DaherM,BasarR,ShanleyM,KumarB,WeiInngFL,etal.Metabolic reprogrammingofGMPgradecordtissuederivedmesenchymalstemcells enhancestheirsuppressivepotentialinGVHD.FrontImmunol.2021;12:631353.

172.WangL,GuZ,ZhaoX,YangN,WangF,DengA,etal.Extracellularvesicles releasedfromhumanumbilicalcord-derivedmesenchymalstromalcellsprevent life-threateningacutegraft-versus-hostdiseaseinamousemodelofallogeneic hematopoieticstemcelltransplantation.StemCellsDev.2016;25:1874–83.

173.DalColloG,AdamoA,GattiA,TamelliniE,BazzoniR,TakamKamgaP,etal. Functionaldosingofmesenchymalstromalcell-derivedextracellularvesiclesfor thepreventionofacutegraft-versus-host-disease.StemCells.2020;38:698–711.

174.FujiiS,MiuraY,FujishiroA,ShindoT,ShimazuY,HiraiH,etal.Graft-versus-host diseaseameliorationbyhumanbonemarrowmesenchymalstromal/stemcellderivedextracellularvesiclesisassociatedwithperipheralpreservationofnaive Tcellpopulations.StemCells.2018;36:434–45.

175.LaiP,ChenX,GuoL,WangY,LiuX,LiuY,etal.Apotentimmunomodulatory roleofexosomesderivedfrommesenchymalstromalcellsinpreventing cGVHD.JHematolOncol.2018;11:135.

176.NorooznezhadAH,YaraniR,PayandehM,HoseinkhaniZ,KianiS,TaghizadehE, etal.Humanplacentalmesenchymalstromalcell-derivedexosome-enriched extracellularvesiclesforchroniccutaneousgraft-versus-hostdisease:Acase report.JCellMolMed.2022;26:588–92.

177.FengK,XieX,YuanJ,GongL,ZhuZ,ZhangJ,etal.Reversingthesurfacecharge ofMSC-derivedsmallextracellularvesiclesby εPL-PEG-DSPEforenhanced osteoarthritistreatment.JExtracellVesicles.2021;10:e12160.

ACKNOWLEDGEMENTS

Forthecollaborationandgeneralsupport,wewouldliketothankourcolleagues fromthecordbloodbankcentre,aswellasallcollaborationpartners.Graphswere assembledusingdynamicBioRenderassets(icons,lines,shapes,and/ortext).

AUTHORCONTRIBUTIONS

KMcollectedtheliteratureandwrotethemanuscript.HLcontributedtothe revisionsofthemanuscriptandtablesfor importantintellectualcontent.YJ,CZ, CS,LJ,GL,ZX,andZXcontributedtotheliteraturesummary.XX,YX,WY,ZJ,TH, andXAcontributedtoreviewandlanguageediting.LQconceptualizedthe manuscriptandcontributedtofundingacquisition.Allauthorsreadandgave fi nal approvalforpublication.

FUNDING

ThisstudyisinpartsupportedbyStart-upGrantforStemCellRegenerativeMedicine (GuangzhouWomenandChildren’sMedicalCentre,GrantNo:5001-4001010),and ShenzhenScienceandTechnologyProgram(JCYJ20210324114606019).

COMPETINGINTERESTS

Theauthorsdeclarenocompetinginterests.

ADDITIONALINFORMATION

Supplementaryinformation Theonlineversioncontainssupplementarymaterial availableat https://doi.org/10.1038/s41419-022-05034-x

Correspondence andrequestsformaterialsshouldbeaddressedtoQizhouLian.

Reprintsandpermissioninformation isavailableat http://www.nature.com/ reprints

Publisher’snote SpringerNatureremainsneutralwithregardtojurisdictionalclaims inpublishedmapsandinstitutionalaffiliations.

OpenAccess ThisarticleislicensedunderaCreativeCommons Attribution4.0InternationalLicense,whichpermitsuse,sharing, adaptation,distributionandreproductioninanymediumorformat,aslongasyougive appropriatecredittotheoriginalauthor(s)andthesource,providealinktotheCreative Commonslicense,andindicateifchangesweremade.Theimagesorotherthirdparty materialinthisarticleareincludedinthearticle’sCreativeCommonslicense,unless indicatedotherwiseinacreditlinetothematerial.Ifmaterialisnotincludedinthe article’sCreativeCommonslicenseandyourintendeduseisnotpermittedbystatutory regulationorexceedsthepermitteduse,youwillneedtoobtainpermissiondirectly fromthecopyrightholder.Toviewacopyofthislicense,visit http:// creativecommons.org/licenses/by/4.0/

©TheAuthor(s)2022

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.