Signal Transduction and Targeted Therapy
REVIEWARTICLE

ProgressandprospectsofmRNA-baseddrugsinpre-clinical andclinicalapplications
YingyingShi1,MeixingShi1,YiWang 1 ✉ andJianYou
Inthelastdecade,messengerribonucleicacid(mRNA)-baseddrugshavegainedgreatinterestinbothimmunotherapyandnonimmunogenicapplications.Thissurgeininterestcanbelargelyattributedtothedemonstrationofdistinctadvantagesofferedby variousmRNAmolecules,alongsidetherapidadvancementsinnucleicaciddeliverysystems.Itisnoteworthythatthe immunogenicityofmRNAdrugspresentsadouble-edgedsword.Inthecontextofimmunotherapy,extrasupplementationof adjuvantisgenerallyrequiredforinductionofrobustimmuneresponses.Conversely,innon-immunotherapeuticscenarios, immuneactivationisunwantedconsideringthehosttolerabilityandhighexpressiondemandformRNA-encodedfunctional proteins.Herein,mainlyfocusedonthelinearnon-replicatingmRNA,weoverviewthepreclinicalandclinicalprogressand prospectsofmRNAmedicinesencompassingvaccinesandothertherapeutics.Wealsohighlighttheimportanceoffocusingonthe host-specificvariations,includingage,gender,pathologicalcondition,andconcurrentmedicationofindividualpatient,for maximizedefficacyandsafetyuponmRNAadministration.Furthermore,wedeliberateonthepotentialchallengesthatmRNA drugsmayencounterintherealmofdiseasetreatment,thecurrentendeavorsofimprovement,aswellastheapplicationprospects forfutureadvancements.Overall,thisreviewaimstopresentacomprehensiveunderstandingofmRNA-basedtherapieswhile illuminatingtheprospectivedevelopmentandclinicalapplicationofmRNAdrugs.
SignalTransductionandTargetedTherapy (2024)9:322 ;https://doi.org/10.1038/s41392-024-02002-z
INTRODUCTION
Recently,messengerribonucleicacid(mRNA)therapyrepresentsa novelapproachfortreatingawiderangeofdiseases,encompassingbothimmune-relatedandnon-immuneconditions. AmidsttheCOVID-19pandemic,mRNAvaccineshaveachieved remarkableadvancements,owingtotheunwaveringdedication ofnumerousscientistswhohavebeenattheforefrontofmRNA researchfordecades.
However,despiteaplethoraofpreclinicalstudiesconducted, successfultranslationofmRNAmedicinesintoclinicalapplications remainslimited,probablyduetothesuboptimaldesignand administrationofmRNAdrugstopatientswithspecificphysiologicalandpathologicalconditions.DistinctcharacteristicsofmRNA drugsaredemandedindifferenttherapeuticindications.1 Specifically,inimmunogenicapplicationsthatincludecancer immunotherapiesandinfectiousdiseasevaccines,appropriate incorporationofadjuvantsisrequiredforelicitingaugmentedhost immuneresponses.Incontrast,innon-immunotherapiesencompassingproteinreplacement/supplementationtherapy,regenerativemedicinetherapy,andgeneticediting,theimmunogenicityof mRNAdrugsisunfavorable,whichmayleadtodiminishedprotein expressionandevencauseadversereactions.Ontheotherhand, thehostindividualvariations,suchas,age,gender,diseaseand medicalhistorymayinfluenceboththeefficacyandsafetyof mRNAmedication.Forexample,comparedtohealthyadults, immunocompromisedpatientsexhibitinadequateimmune
responsesfollowinginitialmRNAvaccineinoculation,where repeatedvaccinationsarerecommendedfortheestablishment ofsufficientimmuneprotection.2 Nevertheless,repeateddoses maycausepotentialrisksthatexacerbatethepathological burden.3 Todate,thereisstillalackofsystemicunderstanding overthefateandoutcomesofmRNAdrugsinpersonalized recipient.
Inthisreview,we firstsummarizethepreclinicalandclinical applicationsofmRNAdrugspertainingtoimmunotherapyand non-immunotherapy,thendiscusstheimpactfrompatient physiologicalandpathologicalcharacteristics.Finally,weprovide insightsintothefuturedirectionsandresearchprioritiesofmRNA drugs.
EVOLUTIONANDMILESTONESINMRNA-BASEDDRUGS
BriefhistoryofmRNAdrugdevelopment
Chronologically(Fig. 1),mRNAwas firstdiscoveredbypioneering researchesin1961.4 However,itwasnotuntil1990whenWolff etal.successfullyexpressedproteinsbyinjectingmRNAintothe body5 thatmRNAgraduallygainedrecognitionasatherapeutic modality.1 In1999,mRNA-engineereddendriticcells(DCs)entered clinicaltrialasantitumorvaccinesforthe firsttime (NCT00004211).6–8 In2004,Weideetal.conductedtheinitial clinicaltrialinvolvingthedirectinjectionofprotamine-stabilized mRNAintothehumanbodytotargetmetastaticmelanoma
Correspondence:YiWang(zjuwangyi@zju.edu.cn)orJianYou(youjiandoc@zju.edu.cn)
Theseauthorscontributedequally:YingyingShi,MeixingShi
Received:2June2024Revised:3September2024Accepted:26September2024 1CollegeofPharmaceuticalSciences,ZhejiangUniversity,866YuhangtangRoad,Hangzhou,Zhejiang,P.R.China; 2StateKeyLaboratoryforDiagnosisandTreatmentofInfectious Diseases,79QingchunRoad,ShangchengDistrict,Hangzhou,Zhejiang,P.R.China; 3TheFirstAffiliatedHospital,CollegeofMedicine,ZhejiangUniversity,79QingChunRoad, Hangzhou,Zhejiang,P.R.Chinaand 4JinhuaInstituteofZhejiangUniversity,498YiwuStreet,Jinhua,Zhejiang,P.R.China
© TheAuthor(s)2024

Fig.1 ChronologicaldevelopmentofmRNAdrugs.Yellowbox,commoneventsofmRNAdrugs;greenbox,mRNA-basednonimmunotherapy;redbox,mRNA-basedimmunotherapy.From1961to1990:mRNAdiscoveryandthematurationofIVTmRNAtechnology, includingthediscoveryofmRNA,4 purifiedmRNAcouldbetranslatedintoproteinsinthemammaliancell-freesystem,518 discoveryofmRNA cap,519 discoveryofsingle-strandedcircularRNA,520 capanalogcommercialized,18 syntheticmRNAwas firstproducedinthelaboratoryby IVT,374 T7RNApolymerasescommercialized.335 From1990to2019:theexplorationofmRNAvaccines,particularlyforcancertherapy, includingIVTmRNAinjectedintothemouseskeletalmuscleachievedproteintranslation, 5 vasopressinmRNAinjectedintothehypothalamus ofBrattlebororatswasfoundtosuccessfullyexpressvasopressin,357 mRNAvaccineencodingtumorantigeninmice,171 firstclinicaltrialof mRNA-engineeredDCsvaccinestrategy,6–8 firstDCvaccinewithautologoustumormRNAwasusedtotreatclinicalPhaseI/IIofadvanced malignantmelanomatrial(NCT01278940),332,333 firstattemptwasmadetoinjectanmRNAvaccinedirectlyintohumansto fighttumors (NCT00204607),9,10 nucleotide-modifiedRNAreducedthepotentialforimmunestimulation,11 firstpersonalizedcancermRNAvaccinein clinicaltrial(NCT02035956),521,522 firstclinicaltrialofprophylacticmRNAvaccine(CV7201)againstrabies(NCT02241135),13 NIHcalledfor gendertobeincludedinbiologicalvariablesinpreclinicalandclinicalstudies,435 firstmRNA(AZD8601)therapyencodingVEGF-Atoenterthe clinic(NCT02935712),523 firstclinicaltrialofmRNA-encodingimmunostimulant(mRNA-2416,NCT03323398). 524 From2019tothepresent: rapiddevelopmentofmRNA-basedtherapeutics,includingtwomRNAvaccines(mRNA-1273486 andBNT162b2)havebeenapprovedfor emergencyusebytheFDA,123 124 firsttouseunmodifiedmRNAinregenerativemedicine,370 forty-threeCOVID-19mRNAvaccineswerein clinicaltrials,125 firstcombiningmRNAtherapywithphotodynamictherapyto fighttumors,290 PhaseIIItrialofmRNA-4157plus Pembrolizumabinthetreatmentofmelanoma.501 IVTinvitrotranscription,NIHtheNationalInstitutesofHealth,DCsdendriticcells,FDAthe FoodandDrugAdministration.ThegraphiciscreatedwithAdobeIllustrator
(NCT00204607),9 whereinthemRNAencodedtumor-associated antigens(TAAs) Melan-A,Mage-A1,Mage-A3,Tyrosinase,gp100, andSurvivin.10 In2005,Karikóetal.demonstratedthatRNAcould evadeimmunedetectionwhenitwasnaturallymodifiedwith nucleotidessuchas5-methylcytosine(m5C),5-methyluridine (m5U), N6-methyladenosine(m6A),pseudouridine(Ψ),and2′ -OMethyluridine.11 12 Theidentificationofthisapproachtomitigate theimmunogenicityofmRNAiscrucialforbroadeningthescope ofmRNAtherapeuticsinnon-immunologicalmedical fields.In 2013,CureVacconductedaninitialevaluationofthesafetyand immunogenicityofaprophylacticmRNAvaccinecodingthe rabiesvirusglycoprotein(CV7201)inaclinicaltrial(NCT02241135) involvinghealthyadults.13 Thistrialrepresentsthe firstclinical studyutilizingmRNAvaccinestocombatinfectiousdiseases.12 Then,in2016,thetherapeuticpotentialofmRNAwas first unleashedinthe fieldofproteinsupplementationtherapy (NCT02935712).Notably,in2020,twoantivirusmRNAvaccines mRNA-1273byModerna(NCT04283461)andBNT162b2by Pfizer/BioNTech(NCT04380701),werequicklyapprovedbythe UnitedStates(U.S.)FoodandDrugAdministration(FDA)andput intouseduringtheCOVID-19outbreak,whichachievedgreat successandmarkedasignificantmilestoneinemergency responseagainstinfectiousdiseases.14 Sincethen,mRNAdrugs haveexperiencedanexplosionofdevelopment.
Classification,advantages,andlimitationsofmRNAdrugs mRNA,asingle-strandedribonucleicacid,actsasatransient carrierforthegeneticinformationtranscribedfromDNAtoguide proteinsynthesis.15 TheexecutionofmRNAfunctionineukaryotes involvesmultiplestages,includingtranscription,posttranscriptionalprocessing,intracellulartransport,andtranslation.16 PriortothematurationofmRNA,precursormessenger RNA(pre-mRNA)mustundergothreeessentialprocessingsteps: additionofa5’ capstructure,cleavagemediatedbynumerous proteinfactors,and3’-endprocessingwhichincludesaddinga polyadenosine[poly(A)]tail.Thesepre-mRNAprocessingstepsare crucialforthegenerationofmaturemRNA.17 WiththecommercializationofCapanalogsandT7RNApolymerasein1983and 1985,respectively,thetechnologyforinvitrotranscription(IVT)of mRNAhassteadilymatured.18 ThestructuralcharacteristicsofIVT mRNAcloselyresemblethoseofendogenousmRNAfoundin naturaleukaryoticcells.19
Thelinearnon-replicatingmRNA,representativeofIVTmRNA,is composedof fivesegmentsinthe5’ to3’ direction:the5’ cap,the 5’ untranslatedregion(UTR),anopenreadingframe(ORF) encodingthetargetprotein,the3’ UTR,andapoly(A)tail.20–22 TheORFfunctionsasthecodingsequenceforproteintranslation andisanindispensableelementofIVTmRNA.TheUTR,although non-coding,playsapivotalroleinribosomerecruitmentand successfulmRNAtranslation.Furthermore,the5’ capand3’ Poly(A)tailstructuressignificantlycontributetoenhancingmRNA stabilityandtranslationefficiency.23,24 Oneofthekeyattributesof mRNAisitshighlycustomizablenature.TheoptimizationofmRNA involvesnucleotidesequencerefinement,chemicalmodifications,25 andmRNApurification.Variousfactorsmustbetaken intoconsiderationduringmRNAdesign,includingtheinfluenceof nucleotidesequenceonRNAfolding,immunogenicity,enhancementofmRNAstability,andmaximizationoftheexpressionofthe targetprotein.26,27 TheimmunogenicityofexogenousmRNA elicitsaninnateimmuneresponse,leadingtothesuppressionof exogenousmRNAtranslationinthebody.28 Substitutinguridine withmodifiednucleotidessuchasm5Uand Ψ,whicharenot recognizedbypattern-recognitionreceptors,canmitigatethe immunogenicityofmRNA.26 Inaddition,severalstudiessuggest that Ψ modificationmayenhancethestabilityoftranscripts.29 Nevertheless,therehavebeeninvestigationssuggestingthat specificcircumstancesmaydisruptthestabilityofmRNA.30 Itis noteworthythattherearecurrentlymorethan170identified typesofRNAmodifications.31 ExploringtheoptimizationofmRNA holdssubstantialresearchpotential.32
Comparedtorecombinantproteindrugs,mRNAdrugshavea shorterproductioncycle33 andarenotlimitedtoshortpeptide sequences.34 mRNAvaccinescaneasilydelivernumeroustumor antigenfragmentssimultaneously,therebyincreasingthediversity ofantigenicepitopes.33 IncontrasttoDNAvaccines,mRNA vaccinescircumventtheneedtoenterthenucleus,thereby obviatingthepotentialforgeneinsertionandsubsequent mutations.33,35 Inaddition,mRNAexhibitsmodifiableimmunogenicity36 andcanbeeffectivelypotentiatedbyadjuvantsto efficientlyelicithumoralandcellularimmunity.35 Moreover,mRNA vaccineshavethepotentialtobecomepersonalizedtherapeutic drugs,inwhichtheyhaveapplicationprospectsfortargeting specifictumors37 andtreatingrarediseases.Nevertheless,mRNAis susceptibletodegradationbynucleases33 andsuffersfrom thermalinstability,necessitatingacold-chaininfrastructurefor storageandtransportation,therebyincreasingtheoverallcost.38 Furthermore,mRNA,beingalargepolyanionicstructure,presents challengesintraversingcellandtissuebarriers. 33 Overcoming theselimitationsnecessitatesthedevelopmentofappropriate deliverystrategies.
TwoinnovativemRNAstructureshavebeendevelopedfor specificpurposes,namelyself-amplifyingmRNA(saRNA)39 and circularmRNA(circRNA).40 saRNAcanconferequivalentvaccine
protectioneffectstothoseofnon-replicatingmRNAatareduced dosage.41–43 TheprimarydistinctionbetweensaRNAandlinear non-replicatingmRNAisthatsaRNAcontainsadditionalselfamplifyingreplicongenesthatoriginatefrommultiplepositivestrandRNAviruses,44–46 resultinginalargermolecularsize.47 OwingtotheextensiveanionicstructureofsaRNA,itsdelivery vehicleoftencomprisespolycations.Nevertheless,theuseofsuch deliveryvectorsmayleadtohighchargedensitythatinduces cytotoxicity.Hence,itisimperativetooptimizeasuitabledelivery methodforenhancingboththeloadingefficiencyandtheoverall safetyofsaRNAdrugs.Dastgerdietal.48 demonstratedthat optimizingtheratioofpolyanions,suchas γ-polyglutamicacid,to polycationsinRNAformulationsisaneffectiveapproachfor improvingthedeliveryefficiencyandsafetyofsaRNA.Furthermore,giventhecontinuousgenerationofnewmRNAwithinthe bodybysaRNAvaccines,itisimportanttoremainvigilantabout safetyconcernssuchasthepotentialforseveresystemicorlocal inflammatoryresponses. 49 CircRNAisaclassofcovalentlyclosedloopsingle-strandedRNAmoleculethatisnotinitiatedbythe classicaltranslationpathwayduetotheabsenceofa5’ capanda 3’ tail.50 Theinternalloadingoftheribosomemaybethesole meansforitstranslationtocommence.51 Thecapabilitytoencode proteinswithouttheclassicalpathwayisgrantedbycircRNA’s abilitytotranslatewithouta5’ cap.50 Meanwhile,circRNAexhibits betterstructuralandbiochemicalstabilityduetoitsinherent resistanceagainstexonucleases-mediateddegradation.52 Therefore,theaveragehalf-lifeofcircRNAincellssignificantlyexceeds thatoflinearmRNA.53 Hence,cirRNAhasthecapacitytoextend antigenproductionandsustainenduringimmuneresponses.54 Nevertheless,despitethemorepersistentandrobustexpression ofencodedproteins,circRNAseemstoperformpoorlyintargeted delivery.55 Atpresent,non-replicatingIVTmRNA,whichhasbeen well-establishedinproductionandqualitycontrol,isprimarily usedinpreclinicalandclinicalpractice.
DeliverysystemandpreparationstrategyofmRNAdrugs DuetothesusceptibilityofIVTmRNAtodegradationby nucleases,itiscrucialtoselectanappropriatedeliveryvehicle tosafeguardtheintegrityofthemRNApriortoitsintracellular delivery.56 AninnovationinitiallynotintendedformRNAbut crucialformRNAdrugdevelopmentistheadvancementof deliveryvectors,particularlythedevelopmentoflipidnanoparticles(LNPs).Atpresent,mRNAdeliverysystemscanbeclassified intoviralandnonviralsystems.57
Virus-relateddeliverysystemsincludebothvirusesandviruslikeparticles(VLPs).58 Viralvectorsencompassadenoviruses, adeno-associatedviruses(AAV),lentiviruses,herpessimplexvirus (HSV),andSendaivirus.59,60 TheformationofVLPsisfacilitatedby thestructuralproteinsofavirus,whichareviralcomponents devoidofgeneticmaterial.61 Incomparisontononviralvectors, viralvectorspossesstheinherentadvantageofefficientlyentering cellsanddeliveringnucleicaciddrugs.58 Thisapproachholds significantpromiseforvaccinedevelopment.62 Severalclinical trialsarecurrentlyutilizingviralvectorstodelivergeneticmaterial forthetreatmentofdiseases.Forinstance,AAV9-mediated CLN6 genetherapy(AT-GTX-501)hasprogressedtoclinicalstagesI/II (NCT02725580),andinterim findingsindicatedthatAT-GTX-501 demonstratedfavorabletolerabilityandcouldamelioratethe deteriorationinmotorandlanguagefunctionamongpediatric patientswithvariantlateinfantileceroidlipofuscinosis6 (vLINCL6).63 Nevertheless,virus-mediateddeliverysystemspose potentialbiosecurityconcerns(e.g.,tumorgenicityandimmunogenicity),exhibitlowpackagingefficiency,andentailhigh manufacturingcosts.59 Theselimitationshavedrivenresearchers toinvestigatealternativedeliverymethodsformRNAvaccines, suchasnonviraldeliverysystems.62 Variousnonviraldeliveryvectors,suchasLNPs,64–68 polymeric nanoparticles,67,69,70 lipidenvelopedhybridnanoparticles,66
protein/peptide-basednanoparticles,67,68 lyotropicliquidcrystallinelipidnanoparticles(LCNPs),71,72 inorganicnanoparticles,65 nanoemulsions,73,74 exosomes,64,75 hydrogels,76,77 polymeric nanoparticlegel,78 andbiologicalmembrane-basedvesicles,79 havebeendevelopedforefficientandversatilemRNAdelivery. OptimizingtherouteofmRNAdrugadministrationisessentialfor enhancingtherapeuticefficacy,asitcansignificantlyimpactthe biodistributionofthedrugwithintissues.Generally,intravenously injectedmRNAdrugstendtoaccumulateintheliver,whereas locallyadministratedonesoftenprolongthedurationofprotein expressionattheinjectionsiteanddeliversustainedtherapeutic effects.Subcutaneousandintramuscularinjectionsrepresentthe predominantroutesforadministeringmRNAvaccines.80 AlternativemRNAdrugdeliverymethodsincludeaerosolinhalationto directlytargetthelungs,81–83 eyedrops,84 intravitrealadministration,subretinaladministration,80 oraladministration,85,86 transcutaneousroute,87 andinuterodelivery.88
Despitethedevelopmentofvarioustypesofdeliveryvectorsin preclinicalstudies,LNPsremaintheestablishedpreferreddelivery systemformRNAduetoitsclinicalvalidation.89 Therefore,a comprehensiveunderstandingofthedesignstrategiesemployed inLNPsisessentialfortheeffectiveimplementationofmRNA therapies.ThecurrentformulationofLNPsfornucleicaciddelivery typicallycomprisesfourkeycomponents:ionizablelipids,helper lipids,cholesterol,andpolyethyleneglycol(PEG)-lipids,90,91 with theratioof~50:10:38.5:1.5mol%.92 Ionizablelipidsplayacrucial roleinencapsulatingmRNAandfacilitatingthesuccessful transfectionofmRNAintocells.93 TheincorporationofPEGlipidsservesprimarilytoevademacrophagephagocytosisand ensureprolongedsystemiccirculationofLNPs.Theinclusionof helperlipidsandcholesterolallowsformodulationofLNPs rigidity.94 Kulkarnietal.95 demonstratedthathelperlipidsand cholesterolplaycrucialrolesintheformulationofLNPs,aidingin theencapsulationofgeneticmaterial.96 However,Suetal.97 broke awayfromthetraditionalLNPsmodelanddiscoveredthat cholesterolandphospholipidsmaynotbeessentialforLNPs.
ItisessentialtoelucidatetheconsiderationsfordesigningLNPs deliverysystems,encompassingpayloadefficiency,stability, circulationtime,facilitationofendosomalescape,biodegradability,immunogenicity,safety,andtargetingcapability.98 Theprecise structureofcationiclipidsispivotal,typicallycomprisinga positivelychargedheadandmultiplehydrophobictails.Even minoralterations,suchastheadditionorremovalofanatomora functionalgroup,cansignificantlyimpacttissuetargeting,cellular uptake,andendosomalescape.99 Thedesignofionizablelipids necessitatescarefulconsiderationofthepKavaluesofthe headgroupinordertoachieveanoptimalpH-dependent electrostaticpattern.98 Ionizablelipidsaretypicallypositively chargedinacidicpHenvironmentsandpossessthecapabilityto aggregatenegativelychargedmRNAintoLNPs.Atphysiological pH,theybecomeneutralizedtominimizetoxicityandenhance thebiocompatibilityofmRNALNPs.Uponuptakebycellsinto acidicendosomes,theyundergoprotonation,therebypromoting thetranslocationofmRNAfromendosomesintothecytosol.93 The pKavaluesofionizablelipidscanbemodifiedbyalteringthe chemicalcompositionoftheheadgroup,suchasimidazole,ester, andpiperazine.98 Thehydrophobictailsoftheionizablelipidsplay acrucialroleinfacilitatingtheassemblyofLNPsandensuringthe stableencapsulationofmRNA.Thedesignofthelinkerregion betweentheheadgroupandthelipidtailshasasignificantimpact ontheoverallpHsensitivityoftheionizablelipids,consequently influencingboththereleasekineticsandmagnitudeofmRNA.61 Theshapeofionizablelipidscanalsoimpacttheirfunctionality. Moreconicalionizablelipids,withamolecularstructurethatisnot compatiblewiththelipidbilayer,canfacilitatemRNAescapefrom lysosomes.100
ThesafetyandstabilityconcernsassociatedwithmRNAtherapy encompassvariousfacets.Withregardtosafety,itisimperativeto
assessthebiocompatibilityofmRNAanditsdeliverysystem, minimizedirectcellulardamage,andmitigatetheelicitationof unnecessaryimmuneresponses.101 However,thepresenceofpHdependentorpermanentcationicpropertiesmayresultinsafety concerns,suchasdisruptionofcellularmembranesandorganelles,releaseofdegradativeenzymesfromlysosomes,and damagetoDNA.Asaresult,biocompatiblemolecularcomponents capableofformingcovalentesteroramidebondshavebeen developedfortheproductionofbiodegradableionizablecationic lipids.102 Intermsofstability,thecarrierdesignshouldensure protectionofthemRNAfromenzymaticdegradationwithout impactingitsrelease.101 Inaddition,enhancingthethermal stabilityofmRNALNPsiscrucialforreducingstoragecosts.For example,inordertoenhancethethermostabilityofmRNALNPs, researchersdevelopedanovelionizablelipidDOG-IM4modified withimidazole.103
ModifyingthephysicalandchemicalcharacteristicsofLNPs, suchastheirsize,surfacecharge,andsurfacehydrophobicity,can impacttheirbiologicalactivity.104 Generally,hydrophilicLNPswith aneutralchargeandasizesmallerthan100nmexhibitprolonged circulationinthebloodstream.LNPswithapositivechargeare moreconducivetocellularuptake.105 Themorphologyand nanostructureofLNPsarecorrelatedwiththetransfection efficiencyofmRNA.Nevertheless,themorphologyofmRNALNPs remainsambiguous,necessitatingfurtherresearchforelucidation.106 Furthermore,thepreciselocalizationofthefourcomponentswithintheLNPsremainsunclear,posingcertainlimitations inmoleculardesign.107 Inordertotacklemoredemandingtasks forLNPs,suchastargetedfunctionality,cellularpenetration,and endosomalescape,thesurfaceofLNPscanbesubjectto modification.PolymerslikePEG-modifiedlipidsarethepredominantsurfacemodifiersutilizedforLNPs.108 Nevertheless,surfacemodifiedLNPsmaypresentpotentialadverseeffects,suchas allergicresponsestriggeredbylipidsmodifiedwithPEG.61 Furthermore,thechallengesinscalinguptheproductionof surface-modifiedLNPscouldimpedetheircommercialization. 108 Presently,thecommonlyutilizedmethodologiesforformulating LNPsencompassthethin-filmhydrationapproach,solvent injectiontechnique,reverseevaporationmethod,andmicrofluidic technology.109 Dependingonthespecificapplication,microfluidic chipscanbefabricatedfromavarietyofmaterialssuchassilicon, glass,polydimethylsiloxane(PDMS),cyclo-olefinpolymersand copolymers(COPs/COCs).Inaddition,variousfabricationmethods includingphotolithography,electronbeamlithography,wetand dryetching,andembossingcanbeemployed.Microfluidic technologyoffersnumerousadvantagesintheproductionof LNPs,facilitatingcontinuousliquid flowwithinthemicrofluidic platformtoensureconsistentnanoparticlequalityovertimeand mitigatebatch-to-batchvariations.Furthermore,thedesign flexibilityofmicrofluidicchannelsenablesadaptationtodifferent rapidmixingmodes.110 Microfluidictechnologyhasnotonly yieldedremarkableresultsinlaboratoryresearch,butalsobeen adoptedandintegratedintoindustrialproductionprocesses.The microfluidicdeviceutilizedinthepreparationofBNT162b2isan impingementjetmixer.111 Furthermore,ongoingadvancementsin automatedhigh-throughputpreparationtechniquesarecontinuouslyenhancingtheproductionofLNPs112 andothernanodeliveryvectors.113
PRECLINICALANDCLINICALAPPLICATIONSOFMRNABASEDDRUGS
Immunotherapy
mRNAvaccinesoutplayedtheirtraditionalcounterpartsinrapid developmentandcost-effectivenesstrait,114 renderingthema promisingtoolforimmunizationagainstviruses,tumors,bacteria, andparasite.DespitethefactthatmRNAwasdiscoveredin1961, therevolutionarybreakthroughofusingitasavaccinehasonly

Fig.2 mRNAcodesforimmunotherapy-associatedantigen,antibody,cytokine,ligand,tumorsuppressorprotein,andadoptivecelltherapy. RVrotavirus,VZVvaricella-zostervirus,RSVrespiratorysyncytialvirus,CMVcytomegalovirus,HPVhumanpapillomavirus,EBVEpstein–Barr virus,RABVrabiesvirus,HIVhumanimmunodeficiencyvirus,MPXVmonkeypoxvirus,anti-VEGFanti-vascularendothelialgrowthfactor.The graphiciscreatedwithBioRender.com
occurredinrecentyears,duetoitssusceptibilitytoenzymatic degradation,inefficientinvivodelivery,andintrinsic immunogenicity.115
Inordertoachieveantiviral,antitumor,antibacterial,and antiparasiticeffects,mRNA-basedimmunotherapiesmustelicita robustandspecifichostimmuneresponsetoeliminatepathogens andconferdurableprotection.28 mRNAvaccinesencoding disease-specificantigensfunctionbytransfectingantigenpresentingcells(APCs).Theproteinantigenistranslatedwithin thecellandreleasedintotheextracellularspaceordegradedby theproteasometoexposetheantigenicsites.Intrinsicantigens canbepresentedbythecellsurfacemajorhistocompatibility complexI(MHCI)toinducematurationofclusterofdifferentiation (CD)8+ Tcells,whileextracellularantigenproteinscanbe recognizedbyBcells,internalized,degradedbyAPCcells,and presentedthroughtheMHCIIclasspathwaytoactivateCD4+ T helper(Th)cells.28,116
Inadditiontodisease-specificantigens,proteinsrelatedto immunotherapyencompassantibodies,cytokines,ligands,tumor suppressorproteins,andotherfunctionalproteins.Itisworth notingthatmRNAtherapiesencodingcytokinescouldbeutilized toeitherenhanceorsuppresstheimmuneresponse.Cytokines areaclassofproteinsthatmodulateimmunecellsbyactivating downstreamcytokinereceptors.117 Stimulatorycytokinesare suitableforcombatinginfectiousdiseasesandcancer,while inhibitorycytokinesareappropriatefortreatingautoimmune diseases.Itisnoteworthythatcertaincytokines,suchas Interleukin(IL)-2,donothavea fixedfunctioninregulatingthe immuneresponse;rather,theirfunctionchangeswithvariations inconcentration.118, 119 Moreover,mRNA-basedadoptivecell
therapiesmaynotbeexclusivelyutilizedforimmunemodulation orsuppression,contingentupontheproteinencodedbythe mRNA.Forinstance,BNT211isemployedinthetreatmentof CLDN6-positiveadvancedsolidtumors,120 whileDescartes-08is designatedforautoimmunedisorders.121
Ingeneral,mRNApossessesthecapacitytoencodediverse proteinsincludingantigens,antibodies,ligands,andtumor suppressorproteins.Inaddition,mRNAcanalsobeharnessedin combinationwithadoptivecelltherapy(Fig. 2),thusshowcasing immensepotentialwithintherealmofimmunotherapy(Table 1).
Disease-specificantigentherapy
VirusantigenmRNAvaccine: SARS-CoV-2: In2019,thenovel coronavirusemergedglobally,leadingtowidespreadtransmission andthetragiclossofnumerouslives,therebyposingahuge threattoglobalhealthandsanitation.Thescarcityofaspecific therapeuticagentforpost-infectiontreatmentwithSARS-CoV-2 causedglobalpanic.Inresponsetothischallenge,avarietyof SARS-CoV-2vaccineshavebeenpropelledintoanintenseand acceleratedresearchphase.mRNAvaccines,representingan innovativetechnologyforthepreventionofinfectiousdiseases, wereinitiallyanticipatedtorequire5–6yearstoreachthe market.122 Encouragingly,followingthepublicdisclosureofthe coronavirusRNAsequenceinJanuary2020,122 ittooklessthan3 monthsforthemRNAvaccines,mRNA-1273(NCT04283461,Phase IinitiatedinMarch2020)andBNT162b2(NCT04380701,PhaseI andPhaseIIinitiatedinApril2020),totransitionfromdevelopmenttoclinicaltrials.123 Remarkably,withinayear,bothmRNA vaccines(BNT162b2andmRNA-1273)rosetoprominence, securingemergencyapprovalfromtheU.S.FDAandwere
Table1. Representativecompletedandongoingclinicalstudies(immunotherapy)
PhaseStatusResultNCTnumberSponsorRef.
Study started
Administration route
Delivery system
TherapySubclassmRNAdrugApplicationmRNA-encoded protein
486
NCT04470427ModernaTX, Inc.
2020-07-27PhaseIIICompletedShow94.1% ef fi cacyin preventing COVID-19disease, withnosafety concernsfound exceptfor transientlocalor systemicreactions
Intramuscular injection
LNPs(SM-102, PEG2000-DMG, DSPC, cholesterol)
mRNA-1273COVID-19Prefusionstabilized full-lengthspike protein
Virus antigen
Disease- speci fi c antigen therapy
NCT04368728BioNTechSE 487
2020-04-29PhaseII/IIICompletedGoodimmune ef fi cacyagainst COVID-19witha sustainedsafety pro fi leand acceptable adverseevents, buttheimmune ef fi cacydeclines after6months
Intramuscular injection
LNPs(ALC- 0315,ALC- 0159,DSPC, cholesterol)
BNT162b2COVID-19SARS-CoV-2full- lengthspikeprotein
2023-10-06PhaseIIIRecruiting/NCT06067230ModernaTX, Inc. 479
Intramuscular injection
LNPs(ionizable lipid, phospholipid, PEGlipid, sterol)
mRNA-1345RSVRSVprefusion stabilizedF(preF) glycoprotein
NCT05566639ModernaTX, Inc. 134 , 488
2022-09-14PhaseIIICompletedAcceptablesafety andtolerability support continuedstudy
LNPsIntramuscular injection
Membrane-bound hemagglutinin(HA) surfaceglycoproteins offourin fl uenza strains(A/H1N1,A/ H3N2,B/Victoria,and B/Yamagata)
mRNA-1010Seasonal in fl uenza
2021-10-26PhaseIIIActive,not recruiting /NCT05085366ModernaTX, Inc. 489
LNPsIntramuscular injection
mRNA-1647CMVTwoCMVantigens (glycoproteinBand thepentameric glycoprotein complex)
NCT03014089ModernaTX, Inc. 490
2016-12-21PhaseICompletedWelltolerated,but poorZikavirus- speci fi cnAb responses
LNPsIntramuscular injection
mRNA-1325ZikavirusPremembraneand envelopeEstructural proteins(prME)from aMicronesia2007 Zikavirusisolate
NCT04064905ModernaTX, Inc. 490
2019-07-30PhaseICompletedWelltolerated, inducestrong Zikavirus-speci fi c serumnAb responsesafter twodosesthat supportedthe continuedstudy ofmRNA-1893
LNPsIntramuscular injection
mRNA-1893ZikavirusprMEfromtheRIO- U1Zikavirusisolate
NCT03325075ModernaTX, Inc. 491
2017-08-15PhaseICompletedGoodsafetyand immunogenicity
mRNA-1388CHIKVFullCHIKVstructural polyprotein(capsid andenvelope proteinsE3,E2,6k/TF, andE1)fromCHIKV WestAfricanstrain 37,997 LNPs (cholesterol, DPSC, ionizablelipid MC3,PEG2000- DMG) Intramuscular injection
Table1. continued
PhaseStatusResultNCTnumberSponsorRef.
Study started
Administration route
Delivery system
TherapySubclassmRNAdrugApplicationmRNA-encoded protein
492
NCT03076385ModernaTX, Inc.
2015-12PhaseICompletedWelltolerated, triggerstrong humoralimmune responses
LNPsIntramuscular injection
Full-length, membrane-bound formoftheHA glycoproteinfromthe H10N8in fl uenza strain(A/Jiangxi- Donghu/346/2013)
In fl uenza (H10N8)
H10N8mRNA vaccine(VAL- 506440)
492
NCT03345043ModernaTX, Inc.
2016-05-11PhaseICompletedWelltolerated, triggerstrong humoralimmune responses
LNPsIntramuscular injection
Full-length, membrane-bound formoftheHA glycoproteinfromthe H7N9in fl uenzastrain (A/Anhui/1/2013)
In fl uenza (H7N9)
H7N9mRNA vaccine(VAL- 339851)
NCT02241135CureVac 13
2013-10PhaseICompletedGenerallysafeand reasonably tolerated
Intradermal, intramuscular injection
Cationic protein protamineas stabilizerand adjuvant
CV7201RabiesRabiesvirus glycoprotein
493
NCT03713086CureVac
2018-10-12PhaseICompletedLowdoses(1 μ gor 2 μ g)werewell- tolerated,whereas the5 μ gdose exhibited unacceptable reactogenicity
Intramuscular injection
CV7202RabiesRabiesvirus glycoprotein LNPs (cholesterol, DSPC, PEGylated lipid,cationic lipid)
2022-05-25PhaseIActive,not recruiting /NCT05414786International AIDSVaccine Initiative 156
Intramuscular injection
mRNA-1644HIVeOD-GT860merSelf- assembling nanoparticles
494 , 495
2021-11-12PhaseIActive,not recruiting /NCT05001373International AIDSVaccine Initiative
HIVCore-g28v260merLNPsIntramuscular injection
mRNA- 1644v2-Core
2023-09-21PhaseIRecruiting/NCT05988203BioNTechSE 167
LNPsIntramuscular injection
BNT166aMPXVMPXVantigensA35, B6,H3,andM1
2022-11-18PhaseIRecruiting/NCT05714748WestChina Hospital 496
UndisclosedUndisclosedIntramuscular injection
EBV-positive advanced malignant tumors
EBVmRNA vaccine
NCT04534205BioNTechSE 497
2021-01-07PhaseIIRecruitingAcceptablesafety pro fi le
LiposomalIntravenous injection
HPV16oncoproteins E6andE7
BNT113HPV16positive headandneck squamouscell carcinoma (HNSCC)that expressesPD- L1
498
2023-02-15 (estimated) PhaseIRecruiting/NCT05738447WestChina Hospital
HBsAgLNPsIntramuscular injection
HBV-associated refractory hepatocellular carcinoma
HBVmRNA vaccine
NCT02410733BioNTechSE 174
2015-03PhaseICompletedStrong immunogenicity andpromising clinicalactivity
LipoplexesIntravenous administration
BNT111MelanomaMelanomaTAAs:New Yorkesophageal squamouscell carcinoma1(NY-ESO- 1),tyrosinase, melanoma-associated antigen3(MAGE-A3), andtransmembrane phosphatasewith tensinhomology (TPTE)
Tumor antigen
Table1. continued
PhaseStatusResultNCTnumberSponsorRef.
Study started
Administration route
Delivery system
TherapySubclassmRNAdrugApplicationmRNA-encoded protein
NCT04382898BioNTechSE
2019-12-19PhaseI/IITerminatedAcceptablesafety pro fi le,induce robustprostate antigen-speci fi c immune responsesin patientswith advancedprostate cancer
LipoplexesIntravenous bolusinjection
BNT112ProstatecancerProstatecancerTAAs: kallikrein-2,kallikrein- 3,acidphosphatase prostate,homeobox B13(HOXB13),and NK3homeobox1
2022-06-17PhaseIRecruiting/NCT05142189BioNTechSE
UndisclosedIntravenous injection
Sixsharedantigens frequentlyexpressed innon-smallcelllung cancer
BNT116Non-smallcell lungcancer
481
NCT03897881ModernaTX, Inc.
2019-07-18PhaseIIbRecruitingSigni fi cantly extendeddistant metastasis-free survivalin patientswith resectedhigh-risk melanomaas comparedwith Pembrolizumab monotherapy
LNPsIntramuscular injection
mRNA-4157MelanomaUpto34patient- speci fi ctumor neoantigens
501
2023-07-19PhaseIIIRecruiting/NCT05933577MerckSharp &DohmeLLC
LNPsIntramuscular injection
mRNA-4157MelanomaUpto34patient- speci fi ctumor neoantigens
502
NCT04161755Memorial Sloan Kettering Cancer Center
Preliminarily showntobesafe incombination with Atezolizumaband mFOLFIRINOXand todelay recurrencein patientswith surgically removed pancreaticductal adenocarcinoma (PDAC)
2019-12-13PhaseIActive,not recruiting
Intravenous delivery
NeoantigenLipoplex
nanoparticles
Pancreatic cancer
Autogene cevumeran (RO7198457)
503
2023-04-20NotapplicableNotyet recruiting /NCT05761717Shanghai Zhongshan Hospital
LNPsSubcutaneous injection
LivercancerPersonalizedtumor neoantigen
Personalized tumor neoantigen
mRNA vaccine
504
2019-10-18NotapplicableRecruiting/NCT03908671Stemirna Therapeutics
TumorneoantigenLNPsSubcutaneous injection
Advanced esophageal cancerand non-smallcell lungcancer
Tumor neoantigen
mRNA vaccine
505
NCT03639714Gritstonebio, Inc.
2019-02-13PhaseI/IICompletedWelltolerated, induce neoantigen- speci fi cCD8 + T-cellresponsein allpatients, subsequentPhase II/IIIinitiated (NCT05141721)
Intramuscular injection
Chimpanzee adenovirus vector
SolidtumorsNeoantigen (#samRNA)
GRT-C901 andGRT- R902
Table1. continued
PhaseStatusResultNCTnumberSponsorRef.
Administration route Study started
TherapySubclassmRNAdrugApplicationmRNA-encoded protein Delivery system
2023-07-26PhaseI/IIActive,not recruiting /NCT05975099ModernaTX, Inc 188
LymediseaseUndisclosedUndisclosedIntramuscular injection
mRNA-1975 andmRNA- 1982
Bacterial antigen
2023-07-31PhaseI/IIRecruiting/NCT05547464BioNTechSE 453
TuberculosisUndisclosedUndisclosedIntramuscular injection
BNT164a1 and BNT164b1
2022-12-15PhaseIActive,not recruiting /NCT05581641BioNTechSE 201
LNPsIntramuscular injection
BNT165b1MalariaPartofthe Plasmodium falciparum circumsporozoite protein(PfCSP)
Parasite antigen
506
NCT03829384ModernaTX, Inc.
2019-01-22PhaseICompletedAcceptablesafety pro fi le,produce highlevelsof functionally neutralizing antibodies
Intravenous infusion
AntibodymRNA-1944CHIKVLightandheavy chainsofahuman monoclonalantibody (CHKV-24IgG) targetingtheCHIKV E2glycoprotein LNPs(a proprietary IAL;a proprietary high-purity PEG-2k- stearate monoester; cholesterol, DOPE)
Therapeutic antibody therapy
2022-01-18PhaseI/IITerminated/NCT04683939BioNTechSE 507
LNPsIntravenous injection
Anti-CLDN18.2 antibodies
BNT141Unresectable ormetastatic CLDN18.2- positivegastric, pancreatic, ovarianand biliarytract tumors
2022-03-28PhaseI/IIRecruiting/NCT05262530BioNTechSE 508
LNPsIntravenous bolus/infusion
BNT142CLDN6-positive solidtumors T-cell-engaging bispeci fi cantibody againstCLDN6and theT-cell receptor –associated moleculeCD3
2010-01PhaseITerminated/NCT01216436Duke University 236
DCsIntranodal injection
MelanomaAnti-CTLA-4andanti- GITRmAband melanomaTAAs MART,tyrosinase,and gp100,andMAGE-3
RNA- transfected mature autologous DC
2019-05-08PhaseICompleted/NCT03946800MedImmune LLC 259
MEDI1191SolidtumorsIL-12LNPsIntratumoral injection
CytokineImmune- potentiating
NCT03739931ModernaTX, Inc. 509
2018-11-27PhaseIActive,not recruiting Tolerated,maybe associatedwith tumorshrinkage
OX40L,IL-23,andIL- 36 γ LNPsIntratumoral injection
mRNA-2752Advancedsolid tumorsand lymphoma
NCT03871348Sano fi 263
2019-01-03PhaseITerminatedWelltolerated (clinicaltrialin17 patients;July 2020),supporting furtherclinical studies
Intratumoral injection
Saline- formulated mixture
SAR441000SolidtumorsIL-12singlechain,IFN ɑ -2b,GM-CSF,andIL- 15sushi
SolidtumorsIL-2,IL-7LNPsIntravenous2021-06-08PhaseIRecruiting/NCT04710043BioNTechSE 510
BNT153and BNT152
511
2021-07-28PhaseICompleted/NCT04916431ModernaTX, Inc.
LNPsSubcutaneous injection
Humanserum albuminIL-2mutein fusionprotein(HSA- IL2m)
mRNA-6231Healthy volunteers
Immune- suppressing
Table1. continued
PhaseStatusResultNCTnumberSponsorRef.
Study started
Administration route
Delivery system
TherapySubclassmRNAdrugApplicationmRNA-encoded protein
Ziekenhuis Brussel 512
2018-11-12PhaseIRecruiting/NCT03788083Universitair
UndisclosedIntratumoral administration
LigandLigandTriMixBreastcancerDC-activating[CD40 ligand(CD40L),CD70, andconstitutively activeToll-like receptor4(TLR4)] proteins
120
NCT04503278BioNTechCell &Gene Therapies GmbH
2020-09-16PhaseI/IIRecruitingGoodsafety pro fi leand encouraging ef fi cacy
CLDN6LipoplexesIntravenous injection
CLDN6-positive advancedsolid tumors
CAR-TCLDN6CAR-T cells + / CARVac
Adoptive celltherapy
NCT04146051Cartesian Therapeutics
Infusion2019-12-04PhaseIb/IIaRecruitingSafeandwell- tolerated
AutogolousT cells
Anti-BCMAtargeting CARprotein
NCT02719782LionTCRPte. Ltd. 513
Welltolerated, havenoadverse effectsonthe transplantedliver
Infusion2015-07-02PhaseIUnknown status
121 TCR-TLioCyx-MRecurrent hepatocellular carcinoma HBV-speci fi cTCRAutologousT cells
329
NCT03608618MaxCyte,Inc.
2018-08-27PhaseITerminatedMediateeffective andlong-term antitumor response
PBMCsIntraperitoneal infusion
Anti-mesothelinCAR (Meso-CAR)
CAR-TDescartes-08Myasthenia gravis
CAR-PBMCMCY-M11Advanced ovariancancer andperitoneal mesothelioma
DCsUndisclosed2008-02PhaseIICompleted/NCT00672191Argos Therapeutics 514
DCsAGS-004HIVCD40Landthreeor fourautologousHIV-1 antigens
DCsUndisclosed2012-10PhaseIIActive,not recruiting /NCT01686334Zwi Berneman 515
WT1antigenmRNA loadedautologous DCs(by electroporation)
Acutemyeloid leukemia(AML)
WT1antigen- targetedDC vaccine
2009-09PhaseICompleted/NCT00978913IngeMarie Svane 516
DCsIntradermal injection
Survivin,hTERTand p53
Metastatic breastcancer ormalignant melanoma
DCvaccine (DCs transfected withSurvivin, hTERTand p53mRNA)
NCT02366728Mustafa Khasraw, MBChB,MD, FRCP,FRACP 517
2015-10-12PhaseIICompletedEffectiveGBM inhibition
GBMCMVproteinpp65DCsIntradermaland bilateral administration atthegroinsite (dividedequally tobothinguinal regions)
HumanCMV pp65-LAMP mRNA-pulsed autologous DCs
LNPs lipidnanoparticles, PEG polyethyleneglycol, DSPC distearoylphosphatidylcholine, RSV respiratorysyncytialvirus, CMV cytomegalovirus, CHIKV chikungunyavirus, HIV humanimmunode fi ciencyvirus, MPXV monkeypoxvirus, EBV Epstein –Barrvirus, HPV humanpapillomavirus, HBV hepatitisBvirus, TAAs tumor-associatedantigens, DOPE 1,2-dioleyl-sn-glycero-3-phosphoethanolamine, CLDN6 claudin6, DCs dendritic cells, IL interleukin, IFN interferon, GM-CSF granulocyte-macrophagecolony-stimulatingfactor, TriMix mRNA-encodingCD40L,CD70,andTLR4, CAR chimericantigenreceptor, BCMA B-cellmaturationantigen, TCR T-cellreceptor, PBMC peripheralbloodmononuclearcells, WTI Wilms ’ tumor, GBM glioblastoma

Fig.3 ApplicationofmRNAvaccineinimmunotherapy. a Typesof COVID-19vaccinesinclinicaltrials(fromWHO;March30,2023). b mRNA-baseddrugsinPhaseIII/IVtrials.Onclinicaltrial.gov,search for “mRNA” astheonlykeywordandthesearchcriteriaarelimitedto “Phase3” and “Phase4”.Notethatthissearchmethodcannot findall mRNAvaccines,andsomemRNAvaccinesdonotcontaintheword “mRNA”,sothe figureshouldbevieweddialectically.PSprotein subunit,VVnrviralvector(non-replicating),IVinactivatedvirus,VVr viralvector(replicating),VLPvirus-likeparticle,VVr + APCVVr + antigen-presentingcell,LAVliveattenuatedvirus,VVnr + APC VVnr + antigen-presentingcell,BacAg-SpVbacterialantigen-spore expressionvector
authorizedforglobalmassvaccinationagainstSARS-CoV-2.122,124 AccordingtotheconsolidatedinformationprovidedbytheWorld HealthOrganization(WHO),asofMarch30,2023(Fig. 3a),atotal of183vaccineshadenteredtheclinicalstage,withRNA-based vaccinesaccountingforabout24%(43intotal),rankingsecond onlytoproteinsubunitvaccineswhichaccountforaround32% (59intotal).125
Rotavirus: ThesuccessfulapplicationofmRNAvaccinesagainst COVID-19diseasehaspromptedresearcherstoswiftlyexpand themtootherantiviral fields.Rotaviruses(RVs)areresponsiblefor causingdiarrheainchildrenworldwideandcanresultin subsequentgastroenteritis,yetthereisnospecifictreatmentfor thisvirus.Luetal.14 designedanmRNAvaccineencodingtheVP7 protein,whichisoneofthecapsidproteinsofRVsandplaysan importantroleintheinfectionoftargetcells,forpreventingRVs infection.TheVP7mRNAvaccinewasinoculatedtomicevia intramuscularorsubcutaneousinjection(threedoses).The findingsdemonstratedthattheVP7mRNAvaccineeffectively stimulatedT-cellimmuneresponsesandelicitedRV-specific antibodies.
Varicella-zostervirus: Varicella-zostervirus(VZV),amemberof thealphaherpesvirussubfamily,isaneurotropichumanherpesvirus.126 Theinitialinfectionmanifestsaschickenpoxsymptoms, afterwhichthevirusremainslatentinthebody.Reactivationof thevirusoccurswhentheimmunesystemweakensduetoaging orcompromisedimmunity.127 In2024,Huangetal.128 developed anmRNA-basedVZVvaccinecalledZOSAL,whichemployed ionizableLNPsforencapsulatingsequence-optimizedmRNA encodingthefull-lengthglycoproteinE.Inthisstudy,the immunogenicity,safety,andimmunemechanismsofZOSALwere comparedwiththoseofthelicensedprotein-basedvaccine Shingrixinmiceandrhesusmacaques.The findingsdemonstrated thatZOSALexhibitedsuperiorimmunogenicity,safetyprofile,and capacitytoinducevirus-specificT-cellimmunitywhencompared toShingrix.
Respiratorysyncytialvirus: Respiratorysyncytialvirus(RSV)is anenveloped,single-strandedRNAvirus,whichcancause respiratoryillnesses.129 RSVcanresultinfataloutcomesfor
pediatric,geriatric,andimmunocompromisedindividuals.130 One ofthehighlyprogressivevaccinesaimedatcombatingRSVis mRNA-1345,whichispresentlybeingdevelopedbyModernaTX, Inc.Thisvaccineencodesthemembrane-anchoredRSVprefusion stabilizedF(preF)glycoprotein.131 Currently,themRNA-1345 vaccineforRSVisundergoingPhaseIIItrial(NCT05330975, NCT06067230),andithasalreadyreceivedFDAapprovalviafasttrackdesignationforadministrationinindividualsaged60years andolder.132
Influenzavirus: Influenzaviruseshavetheabilitytoinfecta widerangeofvertebratesandareresponsibleforcausing seasonalinfluenzaaswellasinfluenzapandemicsinhumans.133 ModernaTX,Inc.developedaquadrivalentmRNAvaccine(mRNA1010)targetingseasonalinfluenza,encodingthefourhemagglutinin(HA)surfaceglycoproteinsofinfluenzastrains(A/H1N1,A/ H3N2,B/Victoria,andB/Yamagata).Thevaccinehasundergone testinginhealthyadultsduringPhaseI/IItrial(NCT04956575),with interimresultsdemonstratingfavorablesafety.134 Further,ithas currentlyenrolled22,510adultsaged50yearsandolder (NCT05566639)135 and8400adultsaged18yearsandolder (NCT05827978)136 toinitiatePhaseIIIsafetyandefficacystudies.
Cytomegalovirus: Cytomegalovirus(CMV)isanincredibly prevalentvirus,withestimatedincidenceratesof60%in developedcountriesand90%indevelopingcountries.Although asymptomaticinhealthyindividuals,infectionwithCMVcanpose asignificantrisktoimmunocompromisedpatients(suchasthose undergoingorgantransplantation),potentiallyleadingtograft rejectionandevenlife-threateningcomplications.Inaddition,itis imperativetoacknowledgetheissueofverticaltransmissionof CMVfrompregnantwomentofetuses,whichcanresultin prematurebirthandprofoundpermanentdisabilitiesinneonates, encompassingcognitiveimpairmentandvisualdeficits.Inorderto tacklethisconcern,ModernaTX,Inc.developedanmRNAvaccine (mRNA-1647)thatencodestwoCMVproteins,namelyglycoproteinB(gB)andpentamericgH/gL/UL128/UL130/UL131Aglycoproteincomplex(pentamer).Thevaccinehassuccessfully completedPhaseIclinicaltrial(NCT03382405),demonstrating thatadministrationofthreedosesofmRNA-1647(180µg)could effectivelyelicithightitersofneutralizingantibodies(nAbs),broad neutralizationactivity,robustT-cellresponse,andlong-lasting memoryBcellsinhealthyadults,137 whilemaintainingan acceptablesafetyprofile.138 Huetal.139 comparedmRNA-1647 (NCT03382405)withMF59-adjuvantedgBsubunit(gB/MF59) vaccine(NCT00133497),andobservedthatalthoughthegBspecificIgGresponseswerelowerafterinoculationwithmRNA1647vaccine,itelicitedpersistentHCMV-specificantibody responsesandhigherantibody-dependentcellularcytotoxicity responses.Inaddition,aPhaseIIItrialwasconductedinhealthy femaleparticipantsaged16–40yearswithmRNA-1647 (NCT05085366).140
Humanpapillomavirus: Thedistinctivepropertiesofcertain viruses,suchascarcinogenicity,rendermRNAvaccinesencoding viralproteinsapromisingstrategyforcombatingtumors.HPV infectioniswidelyrecognizedastheprimaryfactorcontributingto cervicalcancer.141,142 TheE6andE7proteinsofhuman papillomavirus(HPV)havebeenestablishedtomodulatecell cycleandexhibitahighassociationwithcervicalcancer.Inlightof this,Leeetal.143 designedanmRNAvaccineencodingtheE6and E7proteins,whichwassubsequentlyadministeredtoC57BL/6J miceviaintramuscularorsubcutaneousinjection.Their findings revealedthatthemRNAvaccinemarkedlyelicitedrobustT-cellmediatedimmuneresponsesintumor-bearingmice,leadingtoa significantinhibitionoftumorgrowth.Importantly,theexperimentalresultsdemonstratedthatthevaccinenotonlyexhibited therapeuticpotentialagainstexistingtumorsbutalsodisplayed preventiveefficacy.
Epstein–Barrvirus: Epstein–Barrvirus(EBV),anoncogenicvirus inhumans,isfrequentlyassociatedwithnasopharyngeal
carcinoma(NPC).LMP2isoneofthemainviralproteins.Xiang etal.144 deliveredLMP2-mRNALNPstotumor-draininglymph nodes(TDLN)forthepurposeofinducingactivationand cytotoxicityofCD8+ TcellsagainsttumorcellsexpressingLMP2. Zhaoetal.145 developedthreetherapeuticEBVmRNAvaccines thatencodedtruncatedlatentEBVproteinregionscontaining abundantT-cellepitopes,includingtruncatedformsoflatent membraneprotein2A(LMP2A),EBVnuclearantigen1(EBNA1), andEBVnuclearantigen3A(EBNA3A).Their findingsdemonstratedthattheseEBVmRNAvaccinescouldeffectivelyelicit antigen-specificimmuneresponses,therebysuppressingtumor progressionandprolongingthesurvivaltimeoftumorbearingmice.
Rabiesvirus: Theneurotropicrabiesvirus(RABV),amemberof theLyssavirusfamilyandasingle-strandedRNAvirus,146 hasthe abilitytoinfectallwarm-bloodedanimals,147 includinghumans, leadingtothedevelopmentofrabies.Rabiesisafatalneurological disease,andoncetheinitialsymptomsmanifest,thereisminimal timetopursuetreatmentoptions,asthemortalityrate approaches100%.146 Rabiescausesanestimated59,000fatalities annuallyonaglobalscale.148 Thecurrentlymostwidelyused rabiesvaccinesareallinactivated,requiringindividualstoreceive threeto fivedosesforoptimalimmuneprotection. 149,150 In summary,despiteadvancementsinrabiesvaccinedevelopment, thecurrentavailabilityofvaccinesisconstrainedbyfactorssuch ashighcosts,limitedproductioncapacityandstoragerequirements,aswellasthenecessityformultipledoses.147 ThemRNA vaccinesrepresentapromisingapproachthathasthepotentialto reducecostsandlowertherequireddosageforachieving effectiveimmuneprotection. 150 RABVglycoprotein(RABV-G), beingtheonlyvirion-surfaceproteinofRABV,playsacrucialrole asanantigeninvaccinedevelopment.151 In2013,CureVac conductedtheinitialPhaseIclinicaltrialforanmRNA-based rabiesvaccineinhealthyadults(NCT02241135).Thetrial findings indicatedthatthemRNAvaccine(CV7201)encodingtheRABV-G demonstratedafavorablesafetyprofile.13 Subsequently,CureVac alsoprogressedamRNAvaccinenamedCV7202,encodingthe RABV-Gprotein,intoPhaseIclinicaltrial(NCT03713086).Currently, researchonthemRNAvaccineforRABV-Gisongoing.Caoetal.152 developedanovelmRNALNPsthatencodesRABV-Gwiththe H270Pmutation,whichcanstabilizetheprefusionconformation ofRABV-G.Their findingsdemonstratedthatthisvaccineelicited superiorhumoralandcellularimmuneresponsescomparedto mRNALNPsencodingRABV-G,indicatingthatstructured-guided vaccinedesignmaybethefuturedirectionforvaccine development.
Humanimmunodeficiencyvirus: Acquiredimmunodeficiency syndrome(AIDS),resultingfrominfectionwiththehuman immunodeficiencyvirus(HIV),remainsafataldiseasefor humans.153 Althoughcurrentantiretroviraltherapies154 and therapeuticvaccinescanimproveHIV-relatedmorbidityand mortality,theyarestillunabletocompletelyeradicateHIV.155 At present,theHIVmRNAvaccinesthathavebeendevelopedand enteredclinicaltrialsincludetheeOD-GT860mermRNAvaccine (mRNA-1644,NCT05414786)156 andtheCore-g28v260mermRNA vaccine(mRNA-1644v2-Core,NCT05001373).157 AsofJune2024, thesevaccinesarestillundergoingPhaseIclinicaltrials.Despite theevaluationofvariousHIVvaccinesinpreclinicalandclinical studies,theoveralloutcomeshavebeenunsatisfactory. 158 Further endeavorsareimperativeforthedevelopmentofaneffectiveHIV vaccine.Mandaletal.159 designedLNPscontainingmRNAthat encodedmultipleepitopesofHIVviralproteasecleavagesites. ThemRNALNPsexhibitedlong-termstabilityatcold-chain temperaturesandcouldelicitpotentcellularimmunity,making itasapromisingcandidateforaprophylacticHIVmRNAvaccine.A majorobstacleintheeradicationofHIVliesinthevirus’sabilityto concealitselfwithinhostcells,includingmyeloidcellsandCD4+ Tcells.160 Itappearsthatvaccinesalonemaynotbesufficientfor
curingHIV,promptingconsiderationofcombiningvaccineswith othertreatmentmodalities.155,160 Theextensivegeneticdiversity ofHIVanditscapacitytointegrateintothehostcellgenome undoubtedlyposesignificantchallengesforthedevelopmentof HIVvaccines.161,162
Monkeypoxvirus: Monkeypoxisacommunicabledisease causedbythemonkeypoxvirus(MPXV),whichcanbetransmitted betweenhumansandanimals.163,164 MPXVisatypeofdoublestrandedDNAvirus163,165 thatbelongstothe Orthopoxvirus genus.165,166 Currently,amultivalentmRNAvaccine(BNT166) encodingMPXVantigensA35,B6,H3,andM1hasenteredPhaseI clinicaltrial(NCT05988203)167.Severalpreclinicalstudiesare underwaytodevelopnovelmRNAvaccinestargetingvarious antigensofthevirus.Tianetal.168 designedanmRNA-based vaccineencodingtheMPXVA29Lantigen.Suetal.169 developeda quadrivalentmRNAvaccinethatencodedtheantigensA27,L1, A33,andB5ofvacciniavirus.Itisnoteworthythattheserafrom miceimmunizedwiththisvaccinedemonstratedreactivitywith theantigensofvariousorthopoxvirusesinvitro.Thissuggeststhat themRNAvaccineholdspromiseforsafeguardinghumansagainst MPXVandotherorthopoxvirusinfections.
TumorantigenmRNAvaccine:Cancerisamajorcauseofglobal mortality.170 TheinceptionofantitumormRNAvaccinescanbe tracedbackto1995,whenConryetal.171 constructedanmRNA encodingthetumorantigen–humancarcinogenicantigen(CEA) thatcouldbedirectlyinjectedintotheskintocombattumorsin mousemodels.In2004,aclinicaltrialwasinitiatedto intradermallyadministermRNA-encodingmelanoma-associated antigenstostageIII/IVmelanomapatients(NCT00204607).9 In 2009,Weideetal.10 reportedtheresultsofthePhaseI/IItrial, demonstratingthatthefeasibilityandsafetyofdirectinjectionof protamine-protectedmRNA,therebyencouragingfurtherclinical studiesonmRNAvaccines.
Acriticalstepinthedevelopmentofcancervaccinesinvolves theidentificationandselectionofappropriatetumorantigens, encompassingbothTAAsandtumor-specificantigens(TSAs).172
TAAsarenon-mutatedproteinsthatexhibithighexpressionin tumorswhileshowingno-to-lowexpressioninnormaltissues.173 TheRNA-LPXvaccine(BNT111),whichhassuccessfullycompleted PhaseIclinicaltrial(NCT02410733)andisnowprogressingto PhaseII(NCT04526899),isatumorvaccinedesignedtoencode TAAs(NewYorkesophagealsquamouscellcarcinoma1, melanoma-associatedantigen3,tyrosinase,andtransmembrane phosphatasewithtensinhomology)formelanoma.174,175 The resultsoftheclinicaltrialdemonstratedthattheintravenous administrationofBNT111vaccineinpatientscanelicitarobust andbroadT-cellresponseagainstTAAs.117 However,theuseof TAAsastumorantigensislimitedbytheirexpressioninnormal tissuestosomeextent,whichmayhinderthedevelopmentof effectiveantitumorimmuneresponsesowingtotheself-tolerance mechanismsandthepotentialforoff-targeteffectsthatmaylead toautoimmunetoxicity.173,176
TSAs,whichresultfrommutationsinsomaticcells,hold significantpotentialforinducingspecificT-cellresponsesagainst tumors.173 Forinstance,Moderna’smRNA-4157isanmRNA vaccinethatencodesupto34patient-specifictumorneoantigens.177 Itbecamethe firstmRNAcancervaccinetoenterPhaseIII clinicaltrial(NCT05933577).TheclinicalIIbtrialofmRNA-4157in combinationwithPembrolizumabtreatmentdemonstrateda49% reductionintheriskofmortalityamonghigh-riskmelanoma patients.176 TSAsarepromisingtargetsforcancervaccines.178 However,onlyasmallfractionofsomaticmutationsincancercells couldberecognizedbyspontaneouslyoccurringTcells,andthe efficacyoftheseneoepitopesinmediatingantitumoreffects varies,posingchallengesfortheirpreciseutilization.173
Toaddressthechallengeoflimitedavailabilityoftargetable neoantigensandantigentargetlossintumors,itisimperativeto
investigateandutilizethefullspectrumoftumorantigens,to developpersonalizedcancervaccines.Trivedietal.179 established animmunogenomicspipelinecalled “OpenReadingFramework AntigenNetwork(O.R.A.N.)” toeffectivelyidentifyimmunogenic antigenswithhighlikelihoodofbecomingtherapeutictargets.In addition,theydevelopedaplatformcalled “TumorOpenreading FramesthatareUnique(TOFU)” whichutilizesIVTmRNA technologyforencodingmultipletumorantigensintoasingle mRNAvaccine,therebyenablingthecustomizationofvirtually limitlessquantitiesofantigensspecifictoeachtumortype.BenAkivaetal.180 developedaclassofbioreduciblenanocarriers utilizinglipophilicpoly(beta-aminoester)toencapsulateantigenencodingmRNAandToll-likereceptor(TLR)agonistadjuvantsfor thetreatmentofmurinemelanomaandcolonadenocarcinoma. DuetoitsmRNAsequence-independentencapsulationcapacity, thisplatformcanalsobeextendedtoaddressothercancer diseases.
ThestandalonemRNAcancervaccinemayserveasaneffective treatmentoptionforearly-stagecancer.However,inthecaseof advancedcancerpatients,thetumormicroenvironmentoften exhibitsahighlevelofimmunesuppression,therebydiminishing theefficacyofmRNAmonotherapy.181 Instead,combining therapeuticcancermRNAvaccineswithotherimmunotherapies,182 suchasthecombinationofmRNA-4157andPembrolizumabtotreathigh-riskmelanoma,holdspromiseforsuccess.183 DespitethefactthatmRNAvaccinesencodingtumorantigens enteredPhaseItrialsearlierthanviralmRNAvaccines,itis disappointingthatfewmRNAvaccinesagainstcancerseemto haveadvancedtoPhaseIIIorIVtrials(Fig. 3b).184 Thereasonsare summarizedin “Conclusionsandprospects” section.Weanticipate aninfluxofapproveddrugsandmethodologiesforcancer treatment,instillingrenewedoptimisminpatients.
BacterialantigenmRNAvaccine:Theconventionalapproachto eradicatingbacteriainvolvestheadministrationofantibiotics. However,duetotheoveruseofthesedrugs,wehavebeen alarmedbytheemergenceofantibiotic-resistantbacteriaand eventhedevelopmentofhighlyresistantstrains.Nevertheless,itis importanttonotethattheresearchandapprovalprocessfor creatinganewantibioticisexceedinglytime-consumingand necessitatessubstantial financialresources.Regrettably,bacteria candevelopresistanceatamuchfasterratethannewdrugscan bedeveloped.Consequently,despiteourawarenessregardingthe imperativeneedforantibioticscontrolmeasures,wemay find ourselvesinasituationwherenoeffectivedrugexiststocombat bacterialinfections.Therefore,itisessentialtoproposean innovativeantimicrobialtherapy.GiventhatmammalianorganismsarecapableoftranslatingmRNA-encodingbacterialproteins, mRNAvaccinesofferapromisingandefficaciousavenuefor preventingbacterialdiseases.185,186 LymediseaseisaprevalentinfectiousailmentintheU.S.that currentlylacksaspecificvaccine.Amongvariouscandidates,outer surfaceproteinA(OspA)thatexpressedonthepathogenBorrelia burgdorferihasemergedasmostpromisingantigenfordevelopingaplatformtocombatLymedisease.Therefore,Pineetal.187 developedamRNALNPsencodingOspAandobservedthatits protectiveefficacysurpassedthatoftheOspAproteinsubunit vaccine.ThetreatmentregimenofmRNA-1975andmRNA-1982 developedbyModernaTX,Inc.forLymediseaseiscurrentlyin PhaseI/IIclinicaltrial(NCT05975099).188
Currently,theapplicationofantibacterialmRNAvaccinesin preclinicalandclinicalattemptsislimited,possiblyduetothe intricatenatureofbacterialinfectionscomparedtoviral infections.Bacterialinfectionsex hibitdistinctmolecularexpressioncharacteristicsatdifferentstagesofinfection,makingit virtuallyimpossibleforasingleantigentoeffectivelycoverall thesestages. 193 Moreover,bacterialpathogensdisplaydiversity andthevariabilityinantigenexpressionwhilealsoevolving multiplemechanismstoevadeorsuppressimmune responses. 185 Therefore,ifmRNAvaccinesareintendedfor furtherapplicationinpreventingandtreatingbacterialinfections,carefulconsiderationmustbegiventorationalantigen selectionalongwiththeincorporationofadjuvantsandother optimizationstrategies. 193 TheresearchconductedbyMeulewaeteretal. 194 demonstratedthattheincorporationofadjuvant α GCintothe Listeriamonocytogenes mRNALNPsresultedina synergisticprotectiveeffectagainstlisteriosis,underscoringthe therapeuticadvantagesofco-activatinginvariantnaturalkillerT (iNKT)cellsinantibacterialmRNAvaccines.Wearelooking forwardtothesuccessfuldevelopmentofthe fi rstantibacterial mRNAvaccineproduct.
ParasiteantigenmRNAvaccine:Inadditiontoviralinfections, parasiticdiseasesarealsoinfectiousillnessesthatdebilitate individuals.Parasiticdiseasescanbegenerallycategorizedinto threegroups:ectoparasitic,protozoal,andhelminthicdiseases. Theseconditionscanbemanagedthroughproactivevector control,diseasemonitoring,theuseofeffectivevaccines/ medications,andtheimplementationofappropriatesanitation infrastructure.195 However,thelackofpublicawarenessandthe absenceofappropriatetreatmentoptionshaveresultedin widespreadparasiticinfections.196
Malariaisthemostdeadlyparasiticvector-bornedisease197 causedbyatleast fivespeciesof Plasmodium parasites.198–200 Overtheyears,researchershaveendeavoredtodevelopvaccines targetingdifferentstagesofthemalariaparasite’slifecycle. However,theonlyapprovedvaccinetodateisMosquirix,whichis basedonrecombinantproteins.Nevertheless,Mosquirixhas encounteredseverallimitations,includingsuboptimalefficacyin specificagegroupsandthenecessityformultipleboostershotsto achieveasatisfactorylevelofprotection.Fortunately,themRNA vaccine(BNT165b1)developedbyBioNTech,whichencodesa segmentofthe Plasmodiumfalciparum circumsporozoiteprotein (PfCSP),hasprogressedtoPhaseIclinicaltrial(NCT05581641).201 Kunkeawetal.202 developedtheLNPsplatformtodeliver nucleotide-modifiedmRNAencodingthePvs25antigenof Plasmodiumvivax,apotentialvaccineagainstmalariatransmission.Pvs25isanantigencandidateforblockingmalaria transmission.TheydiscoveredthatthemRNALNPsplatform couldelicitstrongerandmoreenduringfunctionalimmunity comparedtothePvs25recombinantproteinvaccine.Additional mRNAvaccinesagainstmalariaarecurrentlyundergoingpreclinicalresearch.203–205
Thelackofinterestinthecommercialdevelopmentof parasitevaccinesmaybeattributedtothefactthatparasitic diseasesprimarilyaffecteconomicallydisadvantagedpopulations,andmostparasitescausechronicillnessesthatarenonlethaltothehost,withtheexc eptionofthedeadlymalaria. Parasiteinfectionsareintricate,andthedevelopmentof conventionalvaccinesentailshighcosts. 206 Intheseregards, mRNA-basedvaccinespresentapromisingapproachtoaddress thesechallenges.
Asasignificantinfectiousdisease,Tuberculosis(TB),causedby MycobacteriumTuberculosis (M.TB),189 continuestopresenta graveglobalpublichealthmenace.Currently,theonlylicensed vaccineforTBisBacillusCalmette–Guerin(BCG),whichexhibits limitedefficacyinpreventingthedisease.190 Theabsenceof effectivevaccinestrategiesandtheemergenceanddissemination ofmultidrug-resistantTB(MDR-TB)bacteriahavefurthercomplicatedendeavorstopreventandtreatTB.SimilartoCOVID-19,TB alsorepresentsarespiratoryinfection.CanthemRNAvaccine strategysuccessfullyemployedforCOVID-19bereplicatedfor TB?191 Fortunately,in2023,BioNTechSEcommencedPhaseI/II clinicaltrial(NCT05547464)foranmRNAapproachtargetingTB (BNT164a1andBNT164b1),185,192 andweexpectasatisfactory therapeuticefficacyfromthisstrategy.
Autoimmunediseaseantigentherapy:Theimmunesystemplays acriticalroleindefendingthebodyagainstinfectionscausedby viruses,bacteria,fungi,andparasites.Additionally,itsurveilsand eliminatescancerouscellstomaintainthebody’shealth. Autoimmunedisordersarisewhentheimmunesystemerroneouslytargetshealthytissuesandcellsinthebody.207,208 An essentialcharacteristicofautoimmunediseasesisthepresenceof autoantibodiesthathavetheabilitytospecificallybindtothe antigenspresentinthepatient’shealthycellsortissues.207,209 Therearemorethan80autoimmunedisorders,includingmultiple sclerosis(MS),210 type1diabetes(T1D),211 systemiclupus erythematosus(SLE),212 inflammatoryboweldisease(IBD),213 andrheumatoidarthritis(RA).214 Theobjectiveoftreating autoimmunediseasesistoregulatetheactivityofautoreactive cellsinthebodywithoutinducingsystemicimmune suppression.215
Krienkeetal.210 utilizedanon-inflammatorylipidcomplex carriertoencapsulate N1-methyl-pseudouridine-modifiedmRNA (m1Ψ mRNA)encodingdisease-relatedautoantigens.Their findingsindicatedthattheuseofthism1Ψ mRNAvaccinecould stimulateantigen-specificregulatoryTcells(Tregs)andmitigate theseverityofmultiplesclerosisinamousemodel.216 This strategyseemscapableofinducingcross-toleranceinautoimmuneTcellswhilepreservingthenormalimmuneresponseofthe immunesystem.217 Thisalsoimpliedthatbyreducingunnecessary immunogenicity,mRNAvaccinesencodingautoantigenscanbea meanstoinduceandsustainnaturalperipheralimmune tolerance.218
Type1diabetesisanautoimmuneconditioninwhichthe immunesystemmistakenlyattacksanddestroysthepancreatic islet β-cells,resultingininsufficientinsulinproduction.211,219 Fosteretal.220 discoveredthattheutilizationofanovelmRNA vaccineencodingproinsulinIIcouldtransientlydelaydiabetes symptomsinnonobesediabeticmice.Thiseffectmaybe attributedtotheabilityofthemRNAvaccinetorestoreimmune toleranceinnonobesediabeticmice.
ThemRNAtherapiesholdsignificantpromiseintherealmof autoimmunediseases.221,222 Forinstance,themRNAdrugscanbe tailoredtoencodeproteinsorpeptidescapableofbindingand neutralizingautoantibodies.Inaddition,mRNAcanbeengineered tospecificallytargetplasmacellsandexpresspro-apoptotic moleculeswithinthem,therebyselectivelydisruptingoreliminatingtheirfunctionandsurvival.Furthermore,giventhepivotalrole ofTregsinsuppressingimmuneresponses,mRNAcanbe designedtobolsterthefunctionalityofTregcells.207
Therapeuticantibodytherapy.Antibodies,alsoreferredtoas immunoglobulins,areeffectormoleculesgeneratedbythe humoralimmuneresponsesthatcanneutralizeantigens223 and playacrucialroleintheprevention,control,andeliminationof infections.224 Theemergenceofthetherapeuticantibodycanbe tracedbackto1975,whenKöhlerandMilsteinpioneeredthe hybridomatechnologyandlaidthefoundationfortheprogressof monoclonalantibodies(mAbs).225 Currently,therapeuticantibodieshaveemergedasapotentarmamentariumagainstavariety ofdiseases,223 demonstratingremarkableefficacyintreatingviral illnesses,solidtumors,hematologicalmalignancies,autoimmune disorders,andotherindications.Inthelastfewdecades, antibodieshaveexperiencedunprecedentedgrowthasnew drugsfortheseindications.226
However,protein-baseddrugssuchasmAbsencounter challengesintermsofproductionandcost,includingintricate manufacturingprocess,highpurificationexpenses,anddifficulties inpost-translationalmodificationofproteins.Inaddition,the humanbodyharborsatotalof22distinctaminoacids,anddueto variationsintheirtypes,quantities,andarrangements,proteins canexhibitdiversephysicochemicalproperties.Toensureprotein storagestability,specializedbuffersolutionsoptimizedforthis
purposeareindispensable.227 Thenucleicacids,incontrast,carrya negativechargeandexhibitsimilarphysicochemicalcharacteristics.Therefore,theproductionandpurificationprocessofnucleic aciddrugsdoesnotnecessitatespecificcustomization,anditis easytoobtainthenaturalstructureofthedesiredproteinowing tothetargetcell-endogenousexpressionmechanisms.227
DeliveringmRNAintothebodyfortranslationintoantibodies, ratherthandirectlyadministeringthemAbs,circumventsthe hasslesassociatedwithproteinproductionandpurification. Moreover,thisapproachenablestheencodingofproteinsthat arechallengingtosynthesizeinvitro.Dealetal.228 engineeredan mRNAsequenceencodingthepathogen-specificimmunoglobulin A(IgA)mAbs,whichwasencapsulatedinLNPsanddeliveredto mucosalsecretions.Intriguingly,thepharmacodynamicsof lgAmRNA encodedbythismRNAcloselyresemblethoseof endogenoushumanlgAratherthanrecombinantIgA(IgAR). These findingssuggestedthatthemRNAantibodytechnology heldpromiseforinterceptingpathogensonmucosalsurfaces, offeringanovelandeffectiveapproachforthepreventionand treatmentofdiseases.
Theintravenousadministrationofanti-vascularendothelial growthfactor(VEGF)antibodiestypicallyresultsintheirpredominantdistributioninthevasculatureandinterstitialspaces, withlimitedaccumulationinthetargetorgan thelungs.This limitedlocalizationimpairstheirtherapeuticefficacyfornon-small celllungcancers(NSCLCs)andmayhaveadverseeffectson normaltissues.AteamledbyLeetal.229 developedapulmonarytargetingnanoparticlefordeliveringmRNA-encodingBevacizumab,ananti-VEGFantibodywidelyusedintheclinic.These nanoparticlesutilizedtheinherentpropertiesofpoly(beta-amino esters)(PBAEs)toachievetheirpulmonary-targetingfunction.This innovativeapproacheffectivelysuppressesangiogenesisin NSCLCs,offeringapromisingtherapeuticstrategyforthe treatmentofthisdisease.
The Orthopoxvirus genus,includingMPXVandvariolavirus (VARV),constitutesasignificantglobalhealththreatthatcauses severepoxdiseasesinbothhumansandanimals.Chietal.230 constructedmRNAcombinationsencodingfourmAbs(mAbs22, 283,26,and301)specificallydesignedtotargetandneutralize vacciniavirus(VACV)A33,VACVB5,MPXVM1andVACVA27 proteins.Thiswasthe firstapplicationofmRNAantibodiesagainst Orthopoxvirusinvivo.Theresultsindicatedthatasingleinjection ofLNPsencapsulatedwithmRNAinmicecouldrapidlyinducethe productionofcorrespondingneutralizingantibodies,which demonstratedsignificantprotectiveeffectsintheVACVlethal challengemousemodelandreducedmortalityrates.
Inthelastdecade,therehavebeensignificantadvancementsin thetreatmentofadvancedcancerswithimmunecheckpoint inhibitors(ICIs).Currently,clinicallyapprovedICIsconsistof innovativemedicationsthattargetprogrammedcelldeath protein-1(PD-1),programmeddeathligand-1(PD-L1),cytotoxic T-lymphocyte-associatedprotein4(CTLA-4),andlymphocyte activationgene-3(LAG-3).231,232 Nevertheless,ICIsstillpossess certainlimitations,suchasthepotentialforimmune-related adverseevents.233,234 Inordertoaddressthesesafetyconcerns, researchershaveexploredtheuseofmRNAtherapiesencoding ICIs.235 Pruittetal.236 transfectedDCswithmRNAencodingthe heavyandlightchainsofanti-CTLA-4andanti-GITRmAbs,aswell asmRNA-encodingtumorantigens.Their findingsdemonstrated thatthesemRNA-engineeredDCcellssignificantlyaugmented antitumorimmunityinmelanoma-bearingmicewithouteliciting anysignsofautoimmunity.Utilizingthistechnology,aPhaseI clinicaltrialforpatientswithmetastaticmelanomaispresently underassessment(NCT01216436).TheIVTmRNAplatformalso enablesthecontinuousendogenoussynthesisofbispecific antibodiesthatbindtoTcells.Zengetal.237 establishedand optimizedanmRNAsequencecalledZ15-0-2thatcodesfora bispecificnanobodyofanti-PD-1andanti-CTLA-4.Moreover,there
aremRNA-basedtherapeuticsencodinganti-PD-L1mAbfor cancertreatment238 andmRNA-6981encodingPD-L1forautoimmunediseases.239
Rituximabisahuman/murinechimericglycosylatedIgG1-κ mAbwithspecificaffinityforthetransmembraneproteinCD20on Blymphocytes.240 Thranetal.241 developedLNPsformulations containingmRNA-encodingRituximab(anti-CD20mAb)tocombat B-celllymphoma.TheyobservedthatthemRNALNPstreatment exhibitedapronouncedandpotentantitumoreffectcomparable tothatofrecombinantantibodytherapy.79 ThemRNAdrugs encodinganti-CD20mAbmayalsoofferpromisingtherapeutic optionsforautoimmuneconditionssuchasmultiplesclerosisand rheumatoidarthritis.207 Antibody-basedmRNAtherapieshold significantpotentialforthetreatmentoftumors,chronic inflammation,andautoimmunedisorders.242
Cytokine.Theoretically,mRNAhasthepotentialtoencodeany protein,includingcytokinesthatcanbeusedasstandalone therapiesorincombinationwithothertreatmentmodalitiesfor diseasemanagement.243
Cytokinesplayapivotalroleinregulatingvariousbiological processessuchascellsurvival,proliferation,differentiationand immunecellactivitybyfacilitatingcrucialintercellularcommunicationwithinshortdistances.244 Thepotentialofcytokinesinthe realmofantitumorresearchisexemplifiedbytheircapacityto impedetheproliferationoftumorcells,facilitatetheinductionof apoptosis,andmodulatebothinnateandadaptiveimmunity.245 Furthermore,cytokinesmayexhibitimmunosuppressiveeffects, offeringapotentialtherapeuticapproachforconditionsderived fromhyperactiveimmuneresponsessuchasautoimmune diseases.ThecytokinesubgroupscommonlyencompassIL, interferons(IFNs),chemokines,granulocyte-macrophagecolonystimulatingfactor(GM-CSF)andsoon.244
Immune-potentiatingcytokine: IL-2,IL-21,andIL-15: TheFDA grantedapprovalfortheuseofrecombinanthumanIL-2in1992 forthetreatmentofmetastaticrenalcancer,andin1998forthe managementofmetastaticmelanoma.246 However,intravenous administrationofIL-2exhibitslimitedtumoraccumulation247 and possessesashorthalf-life(only5to7min).Inordertoachieve enhancedantitumoreffects,administrationofhighdosesofIL-2is imperative,leadingtoelevatedconcentrationsofIL-2inthe bloodstreamandsubsequentmanifestationofadversereactions inpatients,includingasthenia,pyrexia,andpotentiallylifethreateningtoxicitysuchascapillaryleaksyndrome.248 To mitigatethesystemictoxicityassociatedwithIL-2proteindelivery, Shinetal.249 proposedanovelapproachinvolvingintratumoral administrationofIL-2mRNANPs.TheseNPsarecomposedof polyethyleneimine-modifiedporoussilicaandeffectivelyminimize off-targettranslationofmRNA.Jiangetal.250 developedmRNA sequencesencodingfusionproteinsconsistingofIL-2,CD25(IL2Rα),andacleavablelinker,whichwereencapsulatedwithin ionizablelipidU-101–derivedNPs.Thedesignedlinkerwas susceptibletocleavagebytumor-specificmatrix metalloproteinase-14(MMP-14).Furthermore,theresearchers observedthatU-101–derivedNPsexhibitedsuperiortransfection efficacycomparedtoapprovedALC-0315–LNPs,therebycontributingtotheplatform’sabilitytoachieveenhancedantitumor efficacywithreducedtoxicity.Becketal.251 combinedlong-lasting mRNA-encodedIL-2withtumor-targetingmAbtherapy,thereby inducingahighlypro-inflammatoryTMEandovercomingtumor resistanceresultingfromtheabsenceofMHCI.
InadditiontoIL-2,othercytokinesthatbelongtothegammachainreceptorfamilyincludeIL-4,IL-7,IL-15,IL-21.252 Theroleof IL-21intheclearanceofhepatitisBvirus(HBV)issignificant.The mRNALNPsencodingIL-21,deliveredbyShenetal.253,demonstratedremarkableefficacyininducingeffectiveclearanceofHBV anditscovalentlyclosedcircularDNA(cccDNA).
IL-15sharesastructuralresemblancewithIL-2254 andplaysa crucialroleintheregulationofbothinnateandadaptive immunity.255 IL-15iswidelyacknowledgedasaT-cellgrowth factorthatgovernstheactivation,proliferation,andcytotoxicityof Tcells,Bcells,andnaturalkiller(NK)cells,therebyenhancingthe productionofIFN-γ andTNF-α.Moreover,duetoitsunlikely inductionofTregcellactivityduringimmunestimulation,254 IL-15 hasbeenregardedasapromisingcandidateinoncology.255 Nevertheless,IL-15isassociatedwithsignificantdrawbackssuch asseveretoxicitiesandashorthalf-life.Thesechallengescanbe addressedthroughefficientdeliveryofmRNA-encodingIL-15to thetumor.Wangetal.256 designedananoplatformtospecifically targetPD-L1forthedeliveryofIL-15mRNA,andintegrateditwith anultrasound-targetedmicrobubbledestructiontherapy approach.Thistherapeuticapproachnotonlyeffectivelyfacilitates theexpressionofIL-15,butalsosignificantlyenhancesintracellular reactiveoxygenspecies(ROS)levels,inducesimmunogeniccell death(ICD),therebyeffectivelysuppressingtumorgrowthand recurrence.Furthermore,thisintegratedtherapyoffersreal-time ultrasoundimagingguidance.Gaviganetal.257 developeda combinationtherapycomprisingIFNα,IL-7,IL-15,andaTNF receptorsuperfamilyagonist.Their findingsdemonstratedthatcodeliveryofmRNAmixtureencodingIFNα,IL-7,aproteinfused withIL-15anditsreceptor α chain,andOX40Lcouldelicitpotent antitumorimmuneresponsesinmice.
IL-12andIL-27: Liuetal.258 endeavoredtosynergizeIL-12 mRNAwithOxaliplatinprodrugforthemanagementofcolorectal cancer(CRC).Hewittetal.259 discoveredinpreclinicalinvestigationsthatintratumoraladministrationofLNPsloadedwithmRNAencodingIL-12couldaugmenttheantitumoreffectsbyinducing thereleaseofIFN-γ andpromotingthetransformationofTh1cells withintheTME.ThePhaseItrialofhumanIL-12mRNA(MEDI1191) hasbeensuccessfullycompleted(NCT03946800).Tofurther enhancetumorinfiltrationofIL-12andmitigatesystemictoxicity causedbyitsextratumoralpresence,Tranietal.260 engineered mRNAsencodingsingle-chainIL-12alongwithtwoadditional components:aratanti-mouseAFS98mAbvariableregionthat targetscolony-stimulatingfactor-1receptor(CSF1R)andthe variableregionofAvelumab(anti-PD-L1antibody),which significantlyaugmentpost-transcriptionalbindingofIL-12to thetumor.
IL-27,belongingtotheIL-12family,exhibitscomparable antitumoreffectsasIL-12.TheactivationofTcellsandNKcells byIL-12andIL-27occursthroughdistinctmechanisms,whereby IL-12activatesTcellsviathesignaltransducerandactivatorof transcription(Stat)4pathway,whileIL-27engagesTcellsthrough boththeStat1andStat3pathways.Liuetal.261 developedLNPs loadedwithmRNAandobservedthatco-deliveringIL-12 + IL-27 mRNAsusingthesameLNPscarrierresultedinsuperiortumor suppressioncomparedtothesingledeliveryofIL-12mRNA. Furthermore,theincorporationofIL-27,ananti-inflammatory cytokine,couldmitigatepotentialtoxicinflammationassociated withmono-administrationofIL-12.Thiscombinationnotonly enhancedefficacybutalsoreducedsystemictoxicity.
GM-CSF: GM-CSFisacytokinethatpromotesthegenerationof variousmyeloidcellsubpopulations,suchasDCs,monocytes, macrophages,andneutrophils.Excessiveorinadequatelevelsof GM-CSFcouldenhancethemalignancyofcancer.262 ThemRNA mixture(SAR441000)encodingIL-12,IFNalpha-2b,GM-CSF,and IL-15wasadministeredintratumorallyasamonotherapyorin combinationwithCemiplimabduringthePhaseItrial (NCT03871348)conductedin2019forthetreatmentofadvanced solidtumors.Theresultsdemonstratedfavorabletolerabilityand discernibleimmunomodulatoryeffectsforbothSAR441000 monotherapyanditscombinationwithCemiplimab.263
Toextendtheserumhalf-lifeofGM-CSF,itcanbeconjugated withbiologicallysafeandstructurallystableproteins.Yeapuri etal.264 developedmRNALNPsencodingthealbumin-GM-CSF
fusionprotein,therebyprolongingthehalf-lifeofthetarget proteinandenhancingdrugbioavailabilitytooptimizeits therapeuticefficacy.
Immune-suppressingcytokine: IL-2: AlthoughmRNA-based cytokinetherapiesarecommonlyemployedinthe fieldof antitumorresearch,theirpotentialapplicationsinthetreatment ofotherdiseasesshouldnotbeunderestimated.TheIL-2receptor existsintwoformswithvaryingaffinities,theformexpressedby TregcellsexhibitingahigheraffinityforIL-2.Consequently,atlow concentrations,IL-2preferentiallyactivatesTregs.118,119 However, athigherconcentrations,italsotriggerstheactivationofproinflammatoryTcellsandNKcells.Tregcellsrepresentasubsetof CD4+ Tlymphocyteswithsignificantimmunosuppressivecapabilities.265 ImpairmentsinthefunctionofTregcellsora deficiencyintheirnumberscanresultinthebreakdownof immunetoleranceandthedevelopmentofautoimmunediseases withinthebody.266 Consequently,inducedTregcellsholdpromise forthetreatmentofautoimmunediseasesandtherestorationof immunologicalself-tolerance. 267,268 Picciottoetal.118 engineered mRNAtoencodeafusionproteinofhumanserumalbuminIL-2 mutein(HSA-IL2m)withanextendedhalf-life.Their findings demonstratedthatdeliveringthislipid-encapsulatedmRNAcould selectivelyexpandTregsinvivowithoutactivatingNKcellsor conventionalTcells.Thisapproachoffersanovelstrategyfor suppressingautoreactiveTcellsandrestoringimmunebalancein autoimmunediseases.ThemRNA-6231,encodingHSA-IL2m,has alreadyprogressedtoPhaseIclinicaltrial(NCT04916431).221
IL-4: IL-4isinvolvedintheregulationoftheactivation, proliferation,differentiation,andsurvivalofvariousT-cellsubtypes.269 ItsupportsthedifferentiationofTh2cellsand antagonizesthefunctionofTh1cellsassociatedwithnumerous autoimmunedisorders.270 ThemodulationofTh-cellssubgroups, particularlythebalancebetweenTh1andTh2,exertsasignificant influenceonthepathogenesisoftype1diabetes.271,272 Creusot etal.270 reportedanoveltherapythatdeliveredtranslationally enhancedIL-4mRNAintoDCsusingelectroporation.Theyhave shownthatmodifiedDCscontainingmRNAcouldmodulate autoimmunediabetesinnonobesediabeticmicebyboostingthe functionalityofTregcellsandinducingashiftintheproportionof Thcellpopulations.
IL-10: IL-10isacytokinewithanti-inflammatoryproperties, capableofsuppressingtheexpressionofpro-inflammatory cytokinesandinhibitingthepresentationofalloantigensby APCs.273 Chenetal.274 developedanoveldeliverysystemwith self-protectionandactivetargetingcapabilitiesforencapsulating mRNAencodingIL-10.Nucleicacidswerecombinedwith polyphenolstomitigateenzymaticdegradation.Duetothe susceptibilityofhyaluronicacidtooxidationintheinflamedcolon andsubsequentinactivation,itisessentialtocombinebilirubin, knownforitspotentantioxidantactivity,withhyaluronicacidin ordertoensureeffectivetargetingofCD44.Theydemonstrated thatrectaladministrationoftheIL-10mRNAdeliverysystemcould effectivelyinducetherapeuticeffectsinamurinemodelofcolitis. Atherosclerosisisachronicinflammatorycondition.Buetal.275 developedanexosome-baseddeliveryplatformforloading engineeredIL-10mRNA.Theyobservedthatthisplatformcould effectivelymitigateatherosclerosisinApoE / (Apolipoprotein E-deficient)mice.
Ligand.ThemRNAcanalsoencodeimmune-stimulatingligands, therebyfacilitatinganimmunogenicresponse.TheTriMixtherapy consistsofacombinationofmRNAencodingthreedistinct immune-stimulatingproteins,namelyCD40ligand(CD40L),CD70, andconstitutivelyactiveTLR4.276 ThisinnovativemRNA-based vaccinecanbeadministeredviaintratumoralinjectionforpatients withearly-stage,resectablebreastcancer,whichiscurrently undergoingPhaseIclinicaltrial(NCT03788083).
TheTriMixcompoundnotonlyservesasadirectmRNAvaccine butalsofunctionsasanadjuvantinimmunizationresearchdueto itscapacitytoencodeDC-activatingproteins.TheECI-006vaccine consistsofacombinationofmRNA-encodingadjuvantproteins (TriMix)andmRNA-encodingmelanoma-specificTAAs(tyrosinase, gp100,MAGE-A3,MAGE-C2,andPRAME).APhaseIclinicaltrialhas beenconductedtoevaluatethismRNAvaccineinpatientswith stageIIc/III/IVmelanomawhohaveundergonesurgicalresection (NCT03394937).Theresultsdemonstratedfavorabletolerability profileswhenadministeringECI-006atdosesof600or1800 μgto thepatients,andimmunogenicitywasobservedinasubsetof patients.277
Tumorsuppressorprotein.Theoptimalgoalofcancertreatment istoeradicatetumorcellswhileminimizingtheharmtohealthy tissuesandcells.Inpursuitofthisobjective,suicidegenetherapy, anovelapproachtocancertreatment,hasgarneredattention.278 Cancersuicidegenetherapiescanbecategorizedintothree groups:enzyme/prodrugsystems,pro-apoptoticgenes,and toxins.279 Theenzyme/prodrugsysteminvolvesthetransferof geneticmaterialencodingenzymestotumorcells,leadingtothe conversionofnontoxicprodrugsbytheseenzymesintocytotoxic metabolitesthatinduceapoptosisintumorcells.278,280 For instance,theinnovativehumanherpessimplexvirus–thymidine kinase(HSV-TK)/ganciclovirsuicidegenesystemshowspromise. However,theHSV-TKsystemishamperedbysignificantlimitationsassociatedwithitsimmunogenicity.281 Furthermore, enzyme/prodrugsystemsalsoencounterthechallengeofofftargeteffectsonnormaltissues,resultingintoxicity,aswellas suboptimalefficacyagainstslow-dividingtumorcells.Toaddress thesechallenges,theapproachofdevelopinggenesencoding pro-apoptoticproteinsandbacterialtoxinsassuicidegeneswas employed.282
Enzyme-encodingmRNAforenzyme/prodrugsystems:The combinationofcytosinedeaminaseanduridinephosphoryltransferase(UPRT)/5-fluorocytosine(5-FC)formsanenzyme/prodrug system.Thecytosinedeaminaseiscapableofconvertingthe nontoxic5-FCintothetoxicmetabolite5-fluorouracil(5-FU).The geneencodingcytosinedeaminaseiscommonlyfusedwiththe UPRTgenetoenhanceitsefficacy.279 Mizraketal.283 obtained microvesicles(MVs)loadedwithcytosinedeaminase-UPRTmRNA/ proteinbytransfectingthecytosinedeaminase-UPRT-EGFP plasmidintoHEK-293Tcells.Subsequently,theyobservedthat intratumoralinjectionofcytosinedeaminase-UPRT-mRNA/proteincontainingMVsandtreatmentwith5-FCsignificantlysuppressed tumorgrowthintumor-bearingmice.
Induciblecaspase-9(iC9)isanengineeredversionofcaspase-9 thatcanbedimerizedandactivateduponexposuretothe chemicalinducersofdimerization(CID),suchastheAP1903 molecule,subsequentlytriggeringdownstreamapoptoticpathwaysandleadingtocelldeath.284 Nakashimaetal.285 developed LNPscarryingiC9mRNA.Theydiscoveredthatthecombinationof iC9mRNAandCIDexhibitedcytotoxiceffectsonthreebreast cancercelllinesinvitro.Ontheotherhand,Saitoetal.286 engineeredliposomesforthedeliveryofiC9mRNAandcombined themwithCIDforthetreatmentofT-cellmalignancies.Itwas foundthatthetreatmentregimenexhibitedanti-leukemia therapeuticeffectsbothinvitroandinvivo.
Pro-apoptoticprotein: p53andPTEN:Itiswidelyacknowledged thatcanceroriginatesfromthemutationofsomaticcells,andthat oncogenicmutationsorabnormalexpressionofcellularprotooncogenescantriggercarcinogenesis.Adistinctcategoryof tumorsuppressorgenecancounteractthesecarcinogeniceffects andimpedetumordevelopment.Notably,p53,retinoblastoma (Rb),andphosphataseandtensinhomologdeletedonchromosometen(PTEN)arethreepivotaltumorsuppressorproteinswith
interconnectedfunctions.287 Themajorityofhumancancers exhibitloss-of-functionmutationsinthep53protein.However, duetothefactthatp53isatranscriptionfactor,ithaslongbeen deemedundruggable.288 Nevertheless,theemergenceofmRNA therapieshasfacilitatedthedevelopmentofnumerousp53-based cancertreatmentsutilizingmRNA.
Toaugmentthetherapeuticefficacyofp53mRNAtherapy,it canbesynergisticallycombinedwithotherwell-established antitumormodalities.Zhangetal.289 developedpaclitaxelamino fat-derivedNPsforencapsulatingp53mRNAandchemotherapy drugs,demonstratingremarkableantitumoreffectsinanorthotopictriple-negativebreastcancer(TNBC)mousemodel.Zhou etal.290 werethepioneersinreportingtheintegrationofmRNA therapywithphotodynamictherapy(PDT)fortumortreatment. TheydevelopedaROS-responsiveNPsplatformencapsulatingp53 mRNAandindocyaninegreen(ICG).TheseNPscanbetriggered byROStoreleasep53mRNA,therebyaugmentingp53expression andinducingapoptosisinlungcancercell.Simultaneously,laser irradiationcouldactivatethereleasedICGtofacilitatePDT.To enhancetheexpressionofintracellulartargetproteins,Cao etal.291 employedanovelstrategybydesigningtheCRISPR/ dCasRx-SINEB2platformtoaugmentthetranslationofendogenousmRNA-encodingtumorsuppressorproteins(includingPTEN andp53),therebyinducingsuppressedproliferationandincreased apoptosisinbladdercancercells.Liuetal.292 establisheda nanoparticleplatformtoencapsulatePTENmRNAforbrain delivery.TheNPsexhibitedenhancedcapabilitytocrossthe blood-brainbarrierandtargettumorcells,demonstratingthe potentialofusingmRNA-basedtechnologiesfortreatingbrain diseases.
BimandBax: Bimisasignificantpro-apoptoticmemberwithin theBcl-2proteinfamily.293 Gaoetal.294 developedadelivery systemthatcombinedcell-penetratingpeptides(CPPs),cRGD-R9, andcationicnano-sizedDOTAP-mPEG-PCLscaffoldstodeliver mRNA-encodingBim.TheBimmRNAdeliverysystemexhibited potentinhibitoryeffectsontumorsinvariouscoloncancermodels throughtheinductionofmitochondrialapoptosis.
Baxisapro-apoptoticmoleculethatcanserveasatumor suppressorprotein.Okumuraetal. 295 developedliposomesto delivermRNA-encodingBaxandcomparedtheantitumor effectswiththoseofaBaxplasmidintumor-bearingmice. Their fi ndingsindicatedthattheuseofBaxmRNAtherapyvia liposomesexhibitedstronger antitumoreffectsthantheBax plasmid.
TRAIL: Tumornecrosisfactor-relatedapoptosis-inducingligand (TRAIL)cantriggerapoptoticcelldeathintumorcellswhile sparingnormalcells.Guetal.296 developedmRNA-basedLNPs encodingafusionproteinofTRAILandthereceptor-binding domain(RBD)fromtheSARS-CoV-2spikeprotein,whichwere administeredviaintratumoralinjectionincoloncancermice models.TheyobservedthattheRBD-TRAILmRNALNPseffectively inhibitedtumorgrowthinmice.Silvaetal.297 discoveredthatthe directintratumoralinjectionofLNPsloadedwithTRAILmRNA couldeffectivelyinducetumorcelldeath,particularlywhen combinedwithLosartanorangiotensin1–7.
Apoptin: Apoptinisaproteinencodedbythegeneofthe chickenanemiavirus.298 Itiscapableofinducingapoptosisin tumorcellsthroughap53-independentpathway.299 Itis noteworthythatApoptincantriggerapoptosisintumorcells whilesparingnormaldiploidcells.298 Therefore,asatumor suppressorprotein,Apoptinholdspromiseasasafeanticancer medication.300 However,thecollectionandpurificationprocessof thisproteinishighlyintricateandcostly.299 Therefore,thegene therapybeingdevelopedforantitumorApoptinprimarilyrelieson DNA301 orviralvectors.298 Tangetal.299 engineerednanospheres withself-assemblycapabilitiestoencapsulatemRNA-encoding Apoptin.ThecombinationofApoptinmRNAwithDoxorubicin exhibitedremarkablesynergisticantitumoreffects.
ThemRNA-basedtherapythatencodestumorsuppressor proteinsiscurrentlyinitsearlystagesofdevelopment.Ongoing explorationsarebeingconductedregardingnumerousoncogenes andtheircorrespondingtumorsuppressorproteins.Quetal.302 proposedthatHuntingtin-associatedprotein-1(HAP1)mayfunctionasapotentialtumorsuppressoringastriccancer.Zhengand Song303 believedthatSynaptopodin2(SYNPO2)functionsasboth astructuralproteininmuscletissueandanemergingtumor suppressorprotein,supportedbyitspositivecorrelationwith favorablecancerprognosis,therebyindicatingitscrucialrolein cancerpreventionandtreatment.Withtheidentificationof additionaltumorsuppressorproteins,itisanticipatedthat mRNA-basedtherapiesencodingtheseproteinswillgradually emergeasapromisingavenueincancerresearch.
Immunotoxin:Immunotoxinsaretypicallychimericproteins composedofaproteintoxinconjugatedtoanantibody fragment,304 enablingspecifictargetingandeliminationof antigen-bearingcells.305 Thetoxiccomponentsinimmunotoxins typicallyoriginatefromavarietyofsources,includingbacteria, plants,andhumancells.Bacterial-derivedtoxinssuchas diphtheriatoxinandpseudomonasexotoxinA(PE),aswellas plant-derivedtoxinslikericinandgelonin,arecommonlyused. Human-derivedtoxinsincludegranzymesandRNases.Among these,theapplicationofbacterialandplanttoxinsislimiteddue totheirpotentialimmunogenicityinhumans.306 Variousstrategies havebeendevelopedtomitigatetheimmunogenicityof immunotoxins.Theseincludeemployingimmunosuppressive therapy,utilizinghuman-derivedtoxinproteins,andmodifying toxinmoietytoevadedetectionbythehumanimmunesystem.307
Theshorthalf-lifeoftheimmunotoxininthecirculatorysystem maylimititstherapeuticactivity.Toextendthehalf-lifeof immunotoxinincirculation,Guoetal.308 fuseditwiththe albumin-bindingdomain.Theproductionofrecombinantimmunotoxinsistypicallyconductedinbacteria.However,itisgenerally challengingtoproducesolubleproteinswithmolecularweights exceeding80kDainbacterialsystems.309 mRNA-basedimmunotoxintherapypresentsapromisingalternative.
Theapplicationofimmunotoxinsforthetreatmentofcanceris currentlyunderinvestigation,whichis,however,constrainedby theirlargemolecularweight,limitedtumorpenetration,andthe presenceofcellularresistance.Consequently,immunotoxinshave notyetreceivedapprovalforclinicaluseagainstsolidtumors.To addressthesechallenges,Granot-Matoketal.310 developedaLNPs systemthatdeliveredmodifiedmRNAencodingthePEdomain. Thisinnovativeapproachemployedtoxin-encodingmRNAto overcomethelimitationsassociatedwithimmunotoxintherapy, offeringimprovedsafetyandenhancedtherapeuticefficacy.
PE38,aderivativeofthepotenttoxinPEproducedby Pseudomonasaeruginosa,hasbeenengineeredtoremoveits targetingdomainwhileretainingitstoxicity.ThetoxicityofPElies initsspecificinhibitionofelongationfactor2(EF-2)inthecytosol ofeukaryotes.Eggersetal.311 utilizedPE38inthedevelopmentof immunotoxinsbyfusingitwithhumanVEGFandananti-human epidermalgrowthfactorreceptor-2(HER2)/neusingle-chain variablefragment(scFv).TheytransfectedhumanprimaryTcells withmRNA-encodingimmunotoxinsanddemonstratedthatthe engineeredTcellsdisplayedsignificantlyenhancedcytotoxicity againstcancercellsinvitrowhencombinedwithbispecific antibodies.
Thesubtilasecytotoxin,diphtheriatoxin,andabrin-abelongto theABtoxinfamily.TheirB-subunitinitiallybindstothetargetcell, followedbytheentryoftheA-subunitintothecell,whereitexerts toxicitybyinhibitingproteinsynthesis,ultimatelyleadingtothe demiseofthetargetcell.Hirschbergeretal.312 developedthree chemicallymodifiedmRNAsencodingsubtilasecytotoxin, diphtheriatoxin,andabrin-a.TheydemonstratedthatthemRNA therapyencodingabrin-aexhibitedsuperiorefficacyinreducing
theviabilityoftumorcellsinvitrocomparedtotheothertwo mRNAtherapies.
Furthermore,immunotoxinsofferapromisingtherapeutic approachforantiviraltreatment.Theirmechanisminvolves targetinganderadicatinginfectedcells,ratherthantheinhibition ofviralorcellularpathwaysessentialforvirusreplicationand spread.313 Thereisgreatpotentialforachievingsignificant advancementsinthe fieldsofantitumorandantiviralresearches, amongothers,throughtheapplicationofimmunotoxins.
Adoptivecelltherapy.Adoptivecelltherapyinvolvestheextractionofthepatient’simmunecells,followedbyexvivoeditingand activation,andsubsequentreintroductionintothepatientfor diseasetreatment.Thisapproachaimstoenhancetheidentificationandeliminationoftumorcells.Additionally,thereisongoing developmentofinsituadoptivecelltherapy.314 Itisnoteworthy thatthesubsequentadoptivecelltherapiesarefoundedupon RNAmethods,asopposedtoconventionalDNAmethodologies. Specifically,CAR-TtherapyshouldbefurthersubdividedintoRNA chimericantigenreceptorTcells(rCAR-T).
CAR-T:Inthepastdecade,chimericantigenreceptor(CAR)expressingT-cell(CAR-T-cell)therapyhasmademajorbreakthroughsinthetreatmentofhematologicalcancers.Disappointingly,itseffectivenessintreatingsolidtumorsisstilllimiteddueto alackofcomprehensiveunderstandingoftumor-specificantigens,thesuppressionofT-cellinfiltrationandkillingabilitybythe TME,andlimitedexpansionpotentialofTcells.315 Therefore, Mackensenetal.designedCAR-Tcellstargetingthetumor-specific antigenClaudin6(CLDN6)anddemonstratedpotentialclinical activity.However,duetothelimiteddurabilityofasingledose, theyintegrateditwithaCAR-T-cellAmplifyingRNAVaccine (CARVac)foradministration.Thiscombinationapproachexhibited goodtolerabilityinsubjectsandshowedpromiseofenhancing CAR-T-cellexpansionandimprovingtumortreatmentefficacy. Currently,thestudyisinPhaseI/IIclinicaltrial (NCT04503278).120,316 Despitepromisingresultsobservedin clinicaltrial,the findingsfellshortofmeetingexpectations, underscoringtheurgentchallengesthatstillneedtobeaddressed intargetingCLDN6CAR-TtherapycombinedwithCARVac administration.315 Themethodologyemployedinthisstudyfor CAR-T-cellproductionalignswithclinicalpractice,encompassing exvivoculturingofCAR-Tcellsfollowedbytheirinfusioninto patients.Thisapproachentailssignificantexpendituresfor manufacturing.Hence,thereisanurgentimperativetodevelop aswift,robust,andeconomicallyefficientalternativestrategyfor manufacturingCAR-Tcells.Apromisingavenueinvolvesthedirect deliveryofmRNAintothebodytoinduceinsituformationofCARTcells.
Despitethechallengesassociatedwithtransfectingexogenous mRNAintoTcells,Tombáczetal.317 discoveredthatthe applicationofCD4antibody-conjugatedmRNALNPsencoding Crerecombinaseor fireflyluciferasesignificantlyaugmentedthe signalofmRNAby~30-foldinspleenTcellsandincreasedthe expressionofreportergenesinCD4+ Tcellsinvivowhen comparedtonon-targetedmRNALNPs.Zhouetal.318 usedCD3 antibody-modifiedLNPsloadedwithIL-6shorthairpinRNA(IL6shRNA)andCD19-CAR(basedonplasmidDNA)fortargeted deliverytoCD3+ Tcells,whichresultedinthedownregulationof IL-6withinCAR-Tcellsandareductionincytokinerelease syndrome(CRS),therebyenhancingthesafetyprofileofleukemia treatment.Ruriketal.319 developedCD5-targetedLNPsencapsulatingmRNAencodingaCARagainst fibroblastactivationprotein (FAP).ByadministeringtheseCD5-targetedLNPs,potentantifibroticCAR-Tcellscouldbegeneratedinvivo,whichmitigated cardiac fibrosisandrestoredcardiacfunction.320
GiventhepivotalroleplayedbyautoreactiveTandBcellsin autoimmunedisorders,CAR-T-celltherapyhasalsobecomea
therapeuticoptionwithintherealmofautoimmunediseases.321 Thepathogenesisofmyastheniagravis(MG)involvesthepresence ofpathogenicplasmacellsandautoantibodies,makingita prototypicalautoimmunedisorder.TheongoingPhaseIb/IIatrial (NCT04146051)involvingDescartes-08rCAR-Tcellsforthe treatmentofgeneralizedMGentailedtransfectingmRNAencodinganti-BCMA(B-cellmaturationantigen)intoCD8+ Tcells.The findingsdemonstratedthatDescartes-08,which expressedanti-BCMAtargetingCARproteinonautologousCD8+ Tcells,exhibitedfavorablesafetyandtolerabilityprofilesinMG patients.Furthermore,sustainedreductioninMGseveritywas observedwithcontinuedadministrationofDescartes-08infusions overafollow-upperiodofupto9months.Thesepromising outcomeswarrantedfurtherinvestigationintothepotential therapeuticefficacyofthisapproachinotherautoimmune disorders.121 Excitingly,theDescartes-08anti-BCMArCAR-T therapyforsystemiclupuserythematosus(SLE-001)hassuccessfullyprogressedintoPhaseIIasofFebruary2024 (NCT06038474).322 Ontheotherhand,Thatteetal.323 administeredFoxp3mRNALNPstoCD4+ Tcellsinordertogenerate immunosuppressiveFoxp3-Tcells.Thesecellshavethecapacityto suppresstheproliferationofeffectorTcells,highlightingthe potentialofmRNA-engineeredimmunosuppressiveTcellsinthe managementofautoimmunedisorders.
TCR-T:InadditiontoCAR-T-celltherapy,therealsoexisttargeted adoptivecelltherapiesemployingT-cellreceptor(TCR)engineeredTcell(TCR-Tcell).Toaddresshepatocellularcarcinoma (HCC)associatedwithHBVfollowinglivertransplantation,Yang etal.324 employedelectroporationtointroducemRNA-encoding HBV-specificTCRintoexvivoTcells,whichweresubsequently transferredtothepatients.CurrentlyinPhaseIclinicaltrial (NCT02719782),thestudydemonstratedfavorabletolerabilityof thistreatmentapproach.
Maggadottiretal.325 conductedastudyonthetreatmentof metastaticmicrosatelliteinstability-high(MSI-H)CRC,whereinthey employedanmRNATCR-modifiedT-celltherapyapproach.This involvedadministeringautologousTcellselectroporatedwithIVT Radium-1TCRmRNA,specificallytargetingthe-1Aframeshift mutationinthe TGFβRII gene,topatientswithadvancedMSI-H CRC.Theresultsdemonstratedafavorablesafetyprofileforthis TCR-T-celltherapy(NCT03431311).
Inaddition,alsoforthetreatmentofviral-associatedtumor diseases,suchasHPV-associatedcervicalcancer,Lingetal.326 designedapH-responsivenonviralnano-carriertodeliverCas9 mRNAandtheguideRNAs(gRNAs)ofoncogenesE6andE7that targetHPV,whichcaneffectivelyknockouttheE6/E7oncogenes, reversethetumor’simmunosuppressiveenvironment,andpromoteCD8+ T-cellsurvival.Therefore,genomeeditingtherapies co-deliveringCas9mRNAandgRNAsthattargetoncogenescan alsobecombinedwithadoptiveT-celltransfertoimprovecancer treatmentoutcomes.
CAR-M:ThetherapeuticefficacyofCAR-Ttherapyintreating solidtumorsislimited,whichisgreatlyderivedfromthelimited infiltrationcapacityofTcellswithintheTME.Conversely, macrophagespossesstheabilitytoinfiltratesolidtumortissue andengagewithalmostallcellsintheTME,includingtumorcells anddiverseimmunecells.Consequently,exploringthepotential ofCAR-expressingmacrophages(CAR-M)representsanovel avenueforimmunotherapy.327 TheinvestigationalagentCT0058,apro-inflammatorymacrophagecellproduct,iscurrently undergoingPhaseIclinicaltrialforthetreatmentofsolidtumors (NCT04660929).Theanti-HER2CARexpressedinCAR-Mcellswas obtainedviaadenoviralvectorsratherthanmRNAtransfection.328 Meanwhile,theMCY-M11,currentlyundergoingclinicalPhaseIfor advancedovariancancerandperitonealmesotheliomatreatment, isderivedfromthetransfectionofanti-mesothelinCAR(Meso-
CAR)mRNAintoperipheralbloodmononuclearcells(PBMCs) (NCT03608618).329
CAR-Mtherapynotonlyholdsimmensepotentialincombating cancer,butalsoexhibitspromisingapplicationsinconducting cutting-edgeresearchonbacterialeradication.Tangetal.330 developedLNPssystemencapsulatingmRNAthatencodedaCAR specificallytargetingmethicillin-resistant Staphylococcusaureus (MRSA).TheLNPssurfacewasmodifiedwiththeCRVpeptide (sequenceCRVLRSGSC)tofacilitatemacrophagestargeting.This antibacterialCAR-Mtherapydemonstratedpromisingpotentialin eradicatingMRSA.
mRNA-engineeredDCs:DCsareacrucialsubsetofAPCs responsibleforpresentingTAAstoTcells,andtheirfunctionality canbecompromisedbyTME.AlthoughengineeredDCstherapy hasgainedattention,itsstandaloneefficacyremainsunsatisfactory,necessitatingcombinationwithothertherapiestocounteract theinhibitoryeffectsoftheTME.331 Theyear2002witnesseda clinicaltrialevaluatingtheefficacyaIVTmRNADCvaccineagainst melanoma(NCT01278940).332 In2006,Kyteetal.333 reportedthe resultsofthisPhaseI/IItrial,indicatingthatthetreatmentof tumor-mRNAtransfectedDCswassafeandfeasible,andthatthe DCvaccinewasabletoinduceantigen-specificT-cellresponsesin ~50%ofpatients.
ToreprogramtheTMEandinitiatetumor-specificT-cell responses,Zhangetal. 331 designedtwomRNALNPs.Oneof thesemRNALNPsencodedCD40ligand,whichelicitedpotent ICDintumortissues,resultingintheexpressionofTAAsandCD40 ligandonthesurfaceoftumorcells.TheotherLNPscarriedCD40 mRNAwiththeaimtobeinternalizedbyDCsforgenerating insituengineeredDCs,leadingtoincreasedexpressionofCD40 proteinandactivationuponinteractionwithCD40ligandon tumorcells.
Themajorityofpatientsdiagnosedwithacutemyeloid leukemia(AML)exhibitapersistentandrecurrentmanifestation ofthediseaseattributedtoresidualleukemiccells,evenfollowing standardchemotherapy,resultinginasurvivalrateoflessthan5 years.Consequently,supplementarytherapeuticinterventionsare imperativeforeradicatingminimalresidualdisease(MRD).The significantoverexpressionofWilmstumor1(WT1)inAMLandits associationwiththepathogenesisofthediseaserenderita promisingtargetforTcells.Inlightofthis,aPhaseIIclinicaltrial wasconductedin2010toevaluatetheefficacyofloading autologousDCswithWT1antigenviamRNAelectroporationasan adjunctivetreatmentstrategyforAMLpatientswhohad completedchemotherapy(NCT00965224).The findingsreported byAnguilleetal.334 demonstratedthatthisvaccinationapproach effectivelyelicitsrobustT-cellimmuneresponsesinAMLpatients athighriskofrelapse,therebyestablishingboththesafetyand potentialutilityofautologous WT1 mRNA-electroporatedDC vaccinefollowingchemotherapy.
Non-immunotherapy
TheemergenceofmRNAtherapieshasinfusedconsiderablehope intothebattleagainstpreviouslyincurablediseases.Theoretically, optimallydesignedIVTmRNAcanbeintroducedintocellseither throughinvivoorexvivotransfectionandsubsequently translatedintobiologicallyactivepeptide/protein.335 ThenonimmunotherapydescribedinthisarticleentailsdirectlytranscriptionofmRNAtocomplementdeficientoraberrantproteinswithin theorganism,aswellasforgeneeditingtechnology,while evadinganyimmuneresponsefromtherecipient(Fig. 4).
TheeffectivetreatmentofgeneticdefectdiseaseswithIVT mRNAreliesonmultiplefactors,encompassingthestabilityand translationalpotencyofthemRNA,theef fi cacyandbiological activityoftheencodedprotein,as wellasitscirculationhalf-life. Importantly,itisworthnotingthatthetherapeuticthreshold necessitatesanactiveproteinquantityrangingfrommilligrams
tograms,whereasevenatthemilligramornanogramlevel, antigenscanprovokeanimmuneresponseinthebody. 336 To mitigatetheimmunogenicityofmRNAtherapies,several optimizationscanbeimplemen tedforIVTmRNA,including re fi ningthenucleotidesequenc e,employingdiversemRNA nucleosidemodi fi cations,optimizingreac tionconditionsofthe IVTconditionstominimizebyproductsgeneration,andpurifying thesynthesizedmRNA. 337
Therepeatedadministrationremainseffectiveinmaintaining highproteinexpressionandensuringinvivosafety,whichis crucialforthetransformationofmRNAvaccinesintomRNA therapeutics.Long-termorevenlifelongrepeatedadministration isnecessaryfortreatingchronicdiseases.338 However,delivery vectors,suchasLNPs,constituteacrucialcomponentinmRNAbasedtherapeutics,necessitatingcarefulconsiderationoftheir immunogenicpotential.
Thepattern-recognitionreceptorfamilyonthecellmembrane includesTLR4,whichisacrucialmemberknowntobeactivated bydamage-andpathogen-associatedmolecularpatterns(DAMPs andPAMPs).PAMPsencompasslipopolysaccharide(LPS)339 and monophosphoryllipidA(MPLA;anontoxicTLR4agonistapproved forclinicaluse).340 Kedmietal.341 discoveredthatthesystemic administrationofpositivelychargedNPscarryingsmallinterfering RNA(siRNA)couldtriggerTLR4-dependentimmuneresponses, leadingtotoxicity.Furthermore,theydemonstratedthatthe inflammatoryreactionwasprimarilycausedbycationiccomponentsratherthanthesiRNA.ThecationiclipidDiC14-amidine, synthesizedbyLonezetal.,339 wasshowntoactivateTLR4. Moreover,competitionexperimentsconfirmedthatthebinding siteofthiscationiclipidtoTLR4differedfromthatofLPS.Lonez etal.342 synthesizedacationiclipid,RPR206252,whicheffectively triggeredtheNF-κBpathwayandelicitedTNF-α,IL-1β,IL-6,and IFN-γ productioninhumanormousemacrophages.These cascadeswerereliantonTLR2/CD14andNOD-likereceptor protein3(NLRP3)signaling.
Therefore,itisimperativetodeveloplow-immunogenicLNPs withdiversecompositionsandenhancedorgan-selectivity,or explorealternativedeliveryvehiclestoamplifythetherapeutic efficacyofmRNAtherapiesfornon-immunediseases.343 In addition,thecombinationofmRNAtherapywithimmunosuppressantssuchasDexamethasone(asteroidalanti-inflammatory drug)notonlyholdsthepotentialtoenhancemRNAtransfection efficiency344 butalsoexhibitspromiseinaugmentingthesafety andefficacyofnon-immunotherapy.
InconsiderationofthesafetyofmRNAdrugs,itisrecommendedthatpreclinicalstudiesencompassthefollowingareas:(1) investigatingthecorrelationbetweenmRNAdosage,carrier properties,andinvivolevelsofcytokinesecretionaswellas complementactivation;(2)assessingthepotentialdevelopment ofanti-drugantibodiesuponrepeatedadministration;(3) evaluatingriskoforgandamage,particularlyfocusingontarget organsandconcernsrelatedtolivertoxicity,alongwithpotential accumulationrisksassociatedwithcarriers.337
Proteinreplacementtherapy.Proteinreplacementtherapyisa broadtermencompassingthesupplementationofproteinswith functionaldefectsorthesubstitutionofdeficientproteinsto achievetherapeuticefficacy.345 Thedeliveryoftherapeutic proteinsdirectlytothetargettissueissignificantlyimpededby factorssuchasproteinsizeandbiochemicalproperties.346 In contrast,mRNAtherapiesaremorelikelytobypassthese challenges.Atpresent,theuseofmRNAtranslationinvivoto replacethedirectdeliveryofproteinshasbecomeanewpillarof proteinreplacementtherapy,andhasbeenextensivelystudiedin variousdiseaseareas,includingblooddiseases(suchasHemophiliaA,HemA),andmetabolicdiseases(suchasornithine transcarbamylasedeficiency,OTCD;Fabrydisease,FD;Propionic acidaemia,PA).335

Fig.4 OverviewdiagramofmRNA-basednon-immunotherapy.BDNFbrain-derivedneurotrophicfactor,NEPneprilysin,CFTRcystic fibrosis transmembraneconductanceregulator,HNF4Ahumanhepatocytenuclearfactor α,COL1A1extracellular-matrix α1type-Icollagen,VEGF-A vascularendothelialgrowthfactor-A,TEtropoelastin,BMP-2bonemorphogeneticprotein-2,RUNX1runt-relatedtranscriptionfactor1,OTC ornithinetranscarbamylase,G6Pase-α glucose-6-phosphatase-alpha,AGLamylo-α-1,6-glucosidase4-alpha-glucanotransferase,IGF-1insulinlikegrowthfactor1,ZFNsZinc fingernucleases,CRISPR/Cas9clusteredregularlyinterspacedshortpalindromicrepeats/associatedprotein9. ThegraphiciscreatedwithBioRender.com
mRNAtherapyprovidesapromisingtreatmentoptionfor refractorygeneticdiseases.HemA,aformofhemophiliacaused byinsuf fi cientexpressionorgenemu tationofcoagulation factorVIII(FVIII),resultsinimpairedbloodclottingabilityand canleadtolife-threateningbleedingepisodes,including intracranialhemorrhage.Currentproteinreplacementtherapies arecostlyandrequirefrequentadministrationduetotheshort half-lifeofFVIIIprotein. 347 In2023,theFDAapprovedRoctavian asthe fi rstgenetherapydrugforsevereHemAinadults, utilizingadeno-associatedvirusvectors;however,concernsarise regardingpotentialriskssuchaslivercancerassociatedwiththe introductionofDNAsequence sfromRoctavianproducts. 348 mRNAtherapycanexpressthetargetproteininthecytoplasm withoutenteringthenucleus orinsertingthetargetcell genome,whichismuchsaferthanviralvectorandDNA therapy. 1 Chenetal. 347 designedanLNPsencapsulating
mRNA-encodingFVIIIprotein,whicheffectivelyprolongedthe durationofFVIIIproteinexpression.
Lowlevelsofkeyenzymeproteinsorlackofenzymeactivity resultingfromgeneticdefectscangiverisetoinheritedmetabolic disorders(IMDs).Amongthese,OTCDiscausedbythelossof crucialenzymesinvolvedintheureacyclewithintheliver,leading toimpairedammoniametabolism.Elevatedlevelsofammoniain thebloodstreamcanresultinnervedamageandevenfatality. Existingapproaches,includingdietarycontrolsandammonia scavengers,failtoaddresstherootcause.349 Basedonthis,Prieve etal.349 designedaHybridmRNATechnologydeliverysystem (HMT)thatprotectedOTC-encodingmRNAagainstdegradationby nucleaseswhileexhibitinghepatocellular-specifictargetingcapabilities.HMTconsistsoftwotypesofnanoparticles:di-block polymermicellesandinertLNPs.Thepolymercomprisesthree functionaldomains:(1)GalNAc,whichservesasatargetingligand
forliver-specificuptakebybindingtotheasialoglycoprotein receptorabundantlyexpressedinlivercells;(2)hydrophilic polymersegmentsthatmaintainthesolubilityofthepolymer; (3)polymersegmentscontainingbutylmethacrylate(hydrophobic monomer),2-propylacrylicacid,and2-(dimethylamino)ethyl methacrylate.Thispolymericvesiclewasdesignedtoachieve liver-specifictargetingandfurtherfacilitatethepH-dependent releaseofmRNAfromendosomalorganellestothecytosol.The inertLNPscanshieldmRNAfromnucleases.Thisplatformisnot onlysafebutalsoextendsthetherapeuticeffectsforOTCD treatment.Currently,ARCT-810(OTCmRNALNPs)hasentereda PhaseIIclinicaltrial(NCT05526066)inOCTpatientsaged12years andolder.350
FDisanX-linkedlysosomalstoragedisorder(LSD).351 Itsroot causeliesinthepathogenicmutationoftheGLAgene(Xq21.3q22),whichleadstoalossofenzymeactivityencodinglysosomal enzyme α-galactosidaseA.Thisresultsinabnormalmetabolismof relatedglycolipidsandthesubsequentaccumulationofglycolipidsthroughoutthebody,causingstructuraldamageand functionallossinvarioustissuesandorgans,particularlyaffecting theheart,kidney,andnervoussystem.Theresultingcardiac dysfunctionandcerebrovasculareventsposelife-threateningrisks. Althoughthereareclinicallyapprovedenzymereplacement therapies(ERTs),theyfailtomeetmedicalneedsduetotheir inabilitytopenetratetheblood-brainbarrier.352 Tothisend,in 2019,DeRosaetal.351 andZhuetal.353,respectively,reported systemicallydeliveryofmRNA-encodinghumanalphagalactosidaseA(H-α-galA)usingLNPs,bothofwhichindicated thatmRNALNPswasapotentialtreatmentmodalityforFD.
PAisalife-threateningIMDscausedbyapathogenicmutation inthepropionyl-coenzymeAcarboxylase α or β (PCCAorPCCB) subunitsgene,andtherearecurrentlynoapproveddrugsto addressthisenzymedeficiency.Aninnovativeapproachinvolving twomRNAsencodingnormalhumanPCCAandPCCBprotein subunitshasenteredPhaseI/IIclinicaltrials(NCT04159103). EncapsulatedwithinLNPs,thesemRNAsarespecificallydesigned fortargeteddeliverytothelivertorestorePCCenzymes. Promisinginterimresultsfromthistrialhavedemonstrateda favorablesafetyprofileofmRNA-3927inPApatients.Notably, dose-optimizationstudieshaverevealedaremarkable70% reductioninrelativeriskassociatedwithmetabolicdecompensationevents(MDEs),highlightingthetherapeuticefficacy.354
Hormonereplacementtherapy.Hormonesproducedbyvarious glandsinthebodyserveascrucialsignalingmoleculesthatare transportedthroughthebloodstreamtotargetorgans,tissues, andcells,playingapivotalroleinmaintainingphysiological balance.Disruptionsinhormonalregulationcangiveriseto diversediseases.355 Duringmenopause,hormonal fluctuations leadtothemanifestationofmenopausalsymptomsandan increasedriskofcardiovasculardisorders.Toalleviatethese symptomsandslowdowntheprogressionofcardiovascular diseases,non-proteinhormoneslikeestrogencanbeadministered orallyortopicallyviagelapplication.Similarly,forconditionssuch asandrogendeficitinagingmen(ADAM)ormalehypogonadism, supplementationthroughsimilarmeansmayalsobeconsidered.356 However,duetotheirsizeandspatialstructure,protein hormonescannotbeeffectivelyadministeredorallyastheywould undergodegradationwithinthedigestivesystem.Surprisingly,in 1992,Jirikowskietal.357 injectedmRNA-encodingvasopressininto Brattlebororatswithsuccessfulexpressionofvasopressininthe hypothalamusandshowedtherapeuticeffect(temporaryreversal ofdiabetesinsipidusforupto5days).
Insulin-likegrowthfactor1(IGF-1)isaversatilegrowthfactor primarilysynthesizedintheliver.358 Itcanregulatethe chondrogenesisofmesenchymalstemcells(MSCs)bystimulating theirproliferationandfacilitatingcartilagedifferentiation.Wu etal.359 usedmodifiedmRNA(modRNA)encodingIGF-1to
engineeradipose-derivedstemcells(ADSCs).Thetherapeutic effectofengineeredADSCsonOsteoarthritis(OA)issuperiorto thatofnaturalADSCs.
Althoughtherehavebeenlimitedpreclinicalinvestigationson mRNA-encodedprotein-likehormones,itisexcitingthatthat mRNA-0184(encodingtheRelaxin-2-variableLightChainKappa) developedbyModernaTX,Inc.forthetreatmentofchronicheart failurehasenteredPhaseIclinicaltrialsin2023(NCT05659264).
Regenerativemedicineapplication
Myocardialinfarction:Inhumans,myocardialinfarctionresultsin theocclusionofaportionoftheheart’sbloodsupplyandthe subsequentdeathofbillionsofcardiomyocytes,leadingtoahigh mortalityrateduetothechallengingregenerationoflost cardiomyocytes.Thisdifficultyhinderstherepairofdamaged heartfunction.Thevascularendothelialgrowthfactor(VEGF-A) hasbeenidentifiedashavingangiogenicproperties,360 makingit apotentialtherapeuticagentforpatientswithischemicheart disease.However,itssystemicadministrationisassociatedwith long-termsideeffectsandposeschallengesinspecifically targetingtheheart.361 In2013,Zangietal.360 designedmodRNA encodingVEGF-Aandfoundthatasingleintracardialinfusionof VEGF-AmodRNAcouldincreasethedensityofbloodvessels aroundinfarction,reduceinfarctsizeandcelldeath.Inaddition, comparedtomicetreatedwithVEGF-ADNA,thosereceiving VEGF-AmodRNAshowedimprovedsurvivalrates.Thisimprovementcanbeattributedtocarefulconsiderationregardingtiming anddosagesinceprolongedexposuretoVEGF-AintheDNA groupresultedinincreasedvascularpermeabilityandcardiac edema.Furthermore,theydiscussedhowmobilizationofepicardialprogenitorcellsplayedacrucialroleinenhancingcardiac functionthroughexpansionanddifferentiationintocardiovascular lineages.
TheVEGF-A165 mRNA(AZD8601),dissolvedinbiocompatible citratesaline,hascommencedclinicaltrials.Specifically,thePhase IIaclinicaltrial(NCT03370887)aimstoenhanceoutcomesin coronaryarterybypassgraftpatientsthroughendocardial injectionofAZD8601.362 Inaddition,AZD8601exhibitspromise fortreatingtype2diabetesmellitus(T2DM)andiscurrently undergoingPhaseIclinicaltrials(NCT02935712).363 Nawazetal.364 comparedVEGF-AproteinproductioninLNPscontainingthe sameamountofVEGF-AmRNAorinextracellularvesicles(EVs) secretedbythreedifferenttypesofcells(cardiacprogenitorcells, CPCs;humanlungepithelialHTB-177cells;humanumbilicalvein endothelialcells,HUVECs)treatedwithVEGF-AmRNALNPs.Their findingsrevealedthatwhendeliveredtoendothelialcellsinvitro, theLNPscarrierproducedthehighestlevelofVEGF-AwhileCPCEVsdemonstratedthelowestproteinyield.However,CPC-EVswas themosteffectiveinpromotingangiogenesispergivenamountof VEGF-Aproduced.Intriguingly,duringintramyocardialinjection, EVs-basedcarriersdisplayedthehighestexpressionofVEDF-A. ConsideringthatCPC-EVsinduceminimalinflammatorycytokine expressioncomparedtoothervectors,theyarebettersuitedfor deliveringmRNAtotheheart.
TheT-boxtranscriptionfactor18(TBX18)playsapivotalrolein theformationanddifferentiationofthesinoatrialnode(SAN). 365 Wolfsonetal. 366 discoveredthatdirectinjectionofnakedTBX18 mRNAintothemyocardiumofratscouldeffectivelytransfect cardiomyocytes,leadingtotransientexpressionofTBX18and subsequentreprogrammingofthecardiomyocytesintopacemakercells.Furthermore,theyobservedthatcomparedto adenoviralvectors,mRNAtransfectionexhibitedasigni fi cant reductioninoff-targetgeneexpressionandlower immunogenicity.
Liver fibrosisandcirrhosis:Inthecontextofliverdiseases, humanhepatocytenuclearfactor α (HNF4A)hasbeenrecognizedasapivotalregulatoroflivercellphenotype,exertingits
in fl uenceonhepaticstellatecellsandlivermacrophagesby targetingparaoxoase-1.Thistargetedregulationeffectively mitigatesliver fi brosis.Yangetal.367 designedHNF4AmRNAloadedLNPstoimproveliver fi brosisandcirrhosisinvivo.Itwas noteworthythattheuseofhumanHNF4AmRNAnotonly restoredtheexpressionof HNF4A inmouseliverbutalso avoidedadverseimmunereactions,therebyfurtherenhancing itsanti- fi broticef fi cacy.
Cystic fibrosis:Thecystic fibrosistransmembraneconductance regulator(CFTR)geneencodesepithelialionchannelsresponsible forthetransportofchlorideandbicarbonate,playingacrucialrole inmaintainingnormalphysiologicalfunctions.Cystic fibrosisisa monogenicdiseasecausedbymutationsintheCFTRgenethat causesthelungsandotherorganstoproducethickmucusthat blockstheairwaysofthelungsandmakesbreathingdifficult, leadingtolungdamage,respiratoryfailureandchroniclung infections.Inaddition,cystic fibrosisalsoaffectsotherorganssuch asthepancreasresultingindigestiveproblemsandmalnutrition. Furthermore,cystic fibrosiscangiverisetovariouscomplications includingdiabetes,liverdisease,andinfertility.Unfortunately, thereiscurrentlynocureforthislifelongcondition.276,368
In2018,TranslateBio,Inc.conductedaPhaseIItrial (NCT03375047)involvingadultsandseniorsaged18yearsor olderwithcystic fibrosistoinvestigatethesafetyandtherapeutic efficacyofMRT5005 anaerosolcontainingcodon-optimized CFTRmRNA.Itwasfoundthattheoverallsafetyofpatients receivingMRT5005wasgood,butfeverandallergicreactions occurred.Theetiologyandmechanismoffeverremainunclear, necessitatingfurtherresearch.369 Additionally,twomoremRNA therapies,namelyARCT-032(encodingCFTRprotein, NCT05712538)andVX-522mRNAtherapy(NCT05668741),have commencedclinicaltrialsin2023,withtheoutcomesyettobe disclosed.
Degenerativedisease:Thetreatmentofbonedefectsresulting fromnonunion,trauma,orcraniofacialmalformationsischallengingandaffectsmillionsofindividuals.Currently,thedeliveryof bonemorphogeneticprotein-2(BMP-2)showspromiseasa treatmentapproachtoaddressthesedefects.However,ithas beenobservedthatexcessiveadministrationofBMP-2canleadto severesideeffectssuchassignificantinflammationandswelling. Forheterotopicossification,localdeliveryandprecisetranslation ofBMP-2mRNAtoproducefunctionalproteinscanbeachieved. Wangetal.370 employedadualdeliverystrategybysimultaneouslyadministeringBMP-2mRNAandnon-structuralprotein-1 (NS1)mRNAinamassratioof3:1.Remarkably,their findings demonstratedthatthisapproachinducedhighexpressionlevels ofBMP-2surpassingpreviouslyreportedyields.Notably,theyare the firsttouseunmodifiedmRNAinthe fieldofregenerative medicinesincetheco-deliveredNS1mRNAencodesanimmune evasionproteinoriginallyexpressedby influenzaA viruses(A/ Texas/36/1991),whicheffectivelyinhibitsRNAsensorswhile reducingtheproductionofimmunefactorstopreventactivation ofharmfulimmuneresponses.
Wangetal.371 furtherexploredthedeliveryplatformofBMP-2/ NS1mRNAbyincorporatingalipopolyplex(Lip100/His-lPEI/RNA ternarycomplex,LPR)loadedwithBMP-2/NS1mRNAintoa collagen-nanohydroxyapatitescaffolds.Theresultingready-to-use mRNA-activatedmatrices(RAMs),obtainedthroughfreeze–drying, exhibitaremarkableenhancementinthereleasetimeofmRNA, extendingupto16days.Thisapproachenablesinsituexpression andcontinuousproductionofBMP-2protein,therebypromoting boneformation.Gengetal.372 foundthatcomparedwiththe deliveryofrecombinantproteinorsinglemodRNAalone,thecodeliveryofhumanBMP-2(hBMP-2)andVEGF-AmodRNA-modified bonemarrowstemcells(BMSCs)increasedtheexpressionlevelof osteogenic-relatedgeneandenhancedtheformationofnew
boneinratsundergoingskulldefectsurgery.These findingsoffer apromisingtherapeuticoptionforregeneratingbonetissue.
Runt-relatedtranscriptionfactor1(RUNX1)isacartilageanabolicfactor,whichpromotestheproliferationofchondrocytes andincreasestheexpressionofcartilage-anabolicmarkersof chondrocytes.Furthermore,RUNX1enhancescoccygealdisc hydrationcontentwhilemitigatingdiscdegenerationbyminimizinglossofdisccartilageandotherconstituents.Inthisregard, Linetal.373 developedRUNX1mRNAnanomicellesforthe treatmentofintervertebraldisc(IVD)degeneration.Comparedto thecontrolgroup,administrationofRUNX1mRNAnanomicelles significantlymaintainedahigherdischeightinratswithcoccygeal discdegenerationandprevented fibrosisofthedisctissue.
Alzheimer’sdiseaseisadegenerativedisorderresultingfroman imbalanceinthemetabolicprocessesofamyloid-beta(Aβ) synthesisandclearance.374 Neprilysin(NEP)isknowntoplayan importantroleintheclearanceprocessofAβ.Therefore,Lin etal.375 designedpolyplexnanomicellesbasedonNEP-encoding mRNA,whichsignificantlyreducedtheconcentrationofAβ inthe brain,demonstratingthepotentialofmRNA-basedtherapyin braintherapy.Inaddition,Lietal.376 engineeredanmRNA encodingbrain-derivedneurotrophicfactor(BDNF)forADthat waspackagedonapoly(β aminoesters)(PBAE)nanoplatformand delivereddirectlytothecentralnervoussystem.Toprevent excessiveneuronalactivationcausedbyhightranslationofBDNF mRNA,theymodifiedthe3’UTRofthismRNAwithneuron-specific miRNA-124targetsequences,ensuringdegradationbymiRNA upondeliverytoneurons.ByexpressingandreleasingBDNFin astrocytestosupportneurons,theBDNFmRNAeffectively enhancedmemoryfunctioninADmodelmice,thushighlighting thepotentialofmRNAtherapyinthetreatmentofneurological diseases.
Connectivetissuedisorder:Elastin,oneofthemostenduring proteins(withahalf-lifeofapproximately74years),ispredominantlyexpressedduringtheneonatalperiod.However,withage, elastinsynthesisgraduallydiminishesandeventuallyceasesin adults.Elastinplaysapivotalroleinendowingtissuesandorgans withelasticity,therebycontributingsignificantlytothenormal functioningofelasticconnectivetissue.Unfortunately,genetic disorderslikeWilliams–Beurensyndrome(WBS)canleadto mutationsinelastin-relatedgenes,resultinginareductionof over50%inelastinsynthesis.Homozygouselastinnullmutants (ELN / )succumbshortlyafterbirth.Inaddition,factorssuchas agingandsunburncanalsoleadtoelastinreduction.Lescan etal.377 synthesizedandmodifiedthemRNA-encodinghuman tropoelastin(TE).Their findingsdemonstratedthatdeliveryofTE mRNAincreasedthesynthesisofelastininpigskinby20%. Furthermore,Golombeketal.378 carriedoutcodonoptimization andnaturalnucleotidemodificationonTEmRNAtoimprovethe translationefficiencyandstabilityofmRNA,thusimprovingthe expressionlevelofTEproteininvivoandinvitro.Thisstudynot onlyprovidesvaluableinsightsforotherconditionsnecessitating denovoelastinsynthesisbutalsoholdspromisefordiseaseslike myocardialinfarction.
Anotherkeyproteininconnectivetissueiscollagen.379 You etal.380 designedanexosome-basedextracellular-matrix α1type-I collagen(COL1A1)mRNAforanti-agingandtreatmentof photoagingskinthatsuccessfullyalleviatedUV-inducedskin agingthroughintradermaldeliveryviamicroneedlearrays.
Targetedgenomeengineering.Targetedgenomeengineeringis theuseofgeneeditingtechnologytoknockout,insertand replacethetargetgenomesequencetoachievechangesin geneticinformation,381 whichbringsanewwayforthetreatment ofdiseases(especiallygeneticdiseasescausedbygene defects).382 Zinc fingernucleases(ZFNs)andtranscriptional activator-likeeffectornucleases(TALENs)arewidelyemployedin
geneeditingtechniquesoveradecadeago.383 However,their applicationiscomplexedandnecessitatesthedesignofproteins thatspecificallybindtotargetgenes.384 Theadventofclustered regularlyinterspacedshortpalindromicrepeats(CRISPR)/associatedprotein9(CRISPR/Cas9)systemshassignificantlypropelled theadvancementofgeneeditingtechnology.CRISPR/Cas9 obviatestheneedforalteringtheproteinsequencesandonly requiresthedesignofalternativegRNAsforcustomization purposes.385 TherearethreetypicalformsoftheCRISPR/ Cas9system:plasmidDNA(pDNA),Cas9mRNA/sgRNA,and ribonucleoprotein(RNP,Cas9proteincomplexedwithgRNA). CRISPR/Cas9pDNAfacesthechallengeofnuclearlocalizationand hastherisksofoff-targetrepeatexpressionandgenome integration;Cas9RNPdeliveryhastosurmountobstaclesrelated tomacromolecularsizeandinstability;whileCas9mRNA/sgRNA needstoaddresstheinstabilityofsingle-strandednucleicacid.386
TheCRISPR/Cas9technologycantreatdiseasesbyknockingout abnormalgenes.Thehallmarkofwetage-relatedmacular degeneration(wAMD)isvasculardysplasia.Atpresent,anti-VEGF reagents,the first-linedrugforthetreatmentofwAMD,are expensiveandrequirerepeatedorevenlifelonginjection.Inlight ofthis,Lingetal.387 designedaplatformthatusedalentiviral systemtopackageCas9mRNAandVEGF-A-targetinggRNA.The areaofchoroidalneovascularization(CNV)wasreducedby63% withnodetectableoff-targeteffect.Legumain,encodedbythe LGMNgenelocatedonhumanchromosome14,hasbeen identifiedinvarioustumorssuchasbreastandgastriccancers whereitisassociatedwithtumoraggressiveness,migratory behavior,andpoorprognosis.Wangetal.388 usedLNPstocodeliverCas9mRNAandLGMNgene-targetinggRNA,andfound thatthisplatformheldpromiseasatherapeuticapproachto inhibitbreasttumormetastasis.
TheCRISPR/Cas9technologycanalsoremoveviralDNAfrom thebody.Thereare296millionpatientswithchronicHBV infectionintheworld,andcurrentclinicaltreatmentcanslowthe replicationofthevirustoacertainextentanddelaythe progressionofthedisease,buttheviralDNAininfectedcells cannotbecleared,andHBVDNAintegratedintothehostbodyis consideredtobeasignificantsourceofcancerrisk.Moreover,the formationofcccDNAinthelivernucleusandcontinuous productionofprogenyvirusposedachallengetotheradical treatmentofHBV.Toaddressthisissue,Yietal.389 usedSM-102basedLNPstodeliverCas9mRNAandgRNAstogether,and employedthisCRISPR/Cas9geneeditingtechnologytoachieve targetedsite-specificediting.ThisapproachprovidedanopportunityforcontinuouseliminationofcccDNAandintegratedHBV DNA,therebyfacilitatingaradicaltreatmentstrategyagainstHBV. Inaddition,totreatHPV-relatedcervicalcancer,Lingetal.326 designedapH-responsivenonviralnanonucleusforco-deliveryof Cas9mRNAandgRNAstargetingHPVoncogenesE6andE7.This platformallowedforcombiningCas9mRNA/gRNAwithadoptive celltherapytoeffectivelytreatcancerdiseases.
AlthoughCRISPR/Cas9technologyholdsimmensepotentialfor thetreatmentofgeneticallyrelateddiseasesandvirusclearance, itsdevelopmenthasbeenhinderedbythechallengesassociated withdeliveringmRNA/gRNA.Currently,CRISPR/Cas9ispredominantlyusedintheformofCas9RNPorpDNAanddeliveredvia viralvectorsorelectroporationinclinicaltrials.386 However,there areactiveeffortstodevelopmRNA/gRNAdeliverystrategiessuch asLNPs,388–390 lentivirus,andretroviralvectors.387,391 Welook forwardtodevelopingvariousdeliveryvectorstoadvancethe clinicalapplicationofmRNA/gRNA.
ClinicaltrialsbasedonCas9mRNA/gRNAhavebeenconducted. Transthyretin(TTR)amyloidosis(abbreviatedATTRamyloidosis)is alife-threateningdiseasecausedbytheaccumulationof misfoldedTTRproteinsintissues,particularlyintheheartand nerves.NTLA-2001representsageneeditingtherapybasedon theCRISPR-Cas9systemthatincludesLNPsencapsulatedwith
mRNA-encodingCas9proteinandTTR-targetinggRNA.The interimtrialresultsfromPhaseIstudy(NCT04601051)demonstratedthatNTLA-2001effectivelyreducedserumTTRconcentrationwithonlymildadverseevents.392 Otherexamplescanbe foundinTables 2 and 3.Currently,mRNA-basedtherapiesfor encodingZFN,TALEN,andCas9aregenerallyinthedevelopmentalstageandhavethepotentialtoplayacrucialrolein diseasetreatment.393
THEIMPACTSFROMINDIVIDUALPHYSIOLOGICALAND PATHOLOGICALCHARACTERISTICS
Beginninginlate2019,patientsinfectedwithSARS-CoV-2virus willprogresstoCOVID-19disease,rangingfromasymptomatic infectiontolife-threateningdisease,withparticularlyhigh mortalityamongvulnerablepopulations(suchastheelderlywith compromisedimmunity,individualswithchronicdiseases,those useimmunosuppressants,andcancerpatients).394 TheU.S.FDA andtheEuropeanMedicinesAgency(EMA)approvedmRNA-1273 (Moderna)andBNT162b2(Pfizer/BioNTech)forelicitingpotent B-cellandT-cellimmuneresponsesinhealthypeopletoprevent SARS-CoV-2infection.395,396 However,theprotectiveeffectofthe vaccinewanesovertime,whichcanbeobservedinhealthy subjectsandismorepronouncedinimmunocompromised subjects.Therefore,itbecomesimperativetoconsideradministeringathirdorevenfourthdoseofthevaccine.
Specifically,Rizzietal.394 recruitedpatientsreceivingimmunosuppressivetherapyforafollow-uptrial.Theyfoundanabsenceof protectiveantibodyresponseaftertwoprimaryvaccinations,and detectableantibodytiterswerenotproduceduntilathird vaccination.Moreover,giventhattheinducedimmuneresponse diminishesgraduallyafterthethirdvaccination,dependingonthe patient’scondition,evenafourthimmunizationwasnecessary. Nugentetal.397 studiedtheantibodyresponseandpseudovirus neutralizationagainstSARS-CoV-2wild-typestrain,OmicronBA.1, andBA.5variantsinnursinghomeresidentsandhealthcare workersafterprimarymRNAvaccination, firstandsecond boosters.Theyfoundthatantibodytitersandneutralizingability wereprogressivelyincreasingwitheachbooster,butsubsequently diminishedover3–6months.Consideringthatindividualswith humanimmunodeficiencyvirus(HIV)havesignificantlycompromisedimmunity,manycountrieshaveprioritizedSARS-CoV-2 mRNAvaccinesforthispopulation.Ithasbeenobservedthatafter receivingtwodosesofBNT162b2vaccine,HIV-infectedones exhibitamorepronouncedweakeningintheantibodyresponses thantheirhealthycounterparts,therefore,athirdvaccinationis recommended.Heftdaletal.398 investigatedthepersistenceof cellularandhumoralimmunityinHIVpatientsandcontrolsafter thethirddoseofvaccineandfoundnosignificantdifferencesin antibodytitersandcellularresponsesbetweenHIVpatientsand controlsat4monthsafterthethirddoseofBNT162b2vaccine.In conclusion,repeatedvaccinationismoreimperativeinsusceptible individualsthanintheirhealthycounterpartsfortheestablishmentofenduringimmuneprotection.394
Theaboveresultsareconsistentwiththeresultsofepidemiologicalstudiesonhospitalizedpatientswithsevereandhigh-risk COVID-19(includingtheelderlyandpatientswithotherdiseases). However,therestillexistsignificantvariationsinclinicaloutcomes amongepidemiologicalpatients,suggestingthattheunderlying causeforsymptomdisparitiesbetweensevereCOVID-19patients andasymptomaticcarriersmaybemoreprofound.Through differentialgenescreening,Zhangetal.399 identifiedmutationsin type-IIFNgenesamongsevereCOVID-19patients,andtheyfound thatatleast3.5%ofpatientswithsevereCOVID-19hadgenetic defectsingenesassociatedwithTLR3-andregulatoryfactor7 (IRF7)-dependentinductionandamplificationoftype-IIFN.
Furthermore,Bastardetal.400 foundthatsomeindividualswho remainedseverelyaffectedbyCOVID-19evenafterreceivingtwo
Table2. Representativecompletedandongoingclinicalstudies(non-immunotherapy)
PhaseStatusSponsorNCTnumber
Study started
TherapyDiseasemRNAmRNA-encodedproteinDeliverysystemAdministration route
NCT05526066
2022-07-06PhaseIIRecruitingArcturus Therapeutics,Inc.
LNPsIntravenous infusion
ARCT-810Ornithine transcarbamylase(OTC)
2019-12PhaseI/IIWithdrawnTranslateBio,Inc.NCT03767270
MRT5201LNPsIntravenous administration
Ornithine transcarbamylase de fi ciency(OTCD)
Protein replacement therapy
2021-04-15PhaseI/IIRecruitingModernaTX,Inc.NCT04159103
Intravenous infusion
LNPs(SM-86,DSPC, cholesterol,and PEGlipid)
mRNA-3927Propionyl-coenzymeA carboxylase α or β (PCCA orPCCB)subunits
Propionicacidaemia (PA)
2022-06-01PhaseI/IIRecruitingModernaTX,Inc.NCT05095727
LNPsIntravenous infusion
mRNA-3745Glucose-6-phosphatase- alpha(G6Paseα )
Glycogenstorage disease1a(GSD1a)
NCT04990388
2021-10-18PhaseI/IITerminatedUltragenyx PharmaceuticalInc
LNPsIntravenous infusion
UX053Amyloα -1,6-glucosidase 4-alpha- glucanotransferase(AGL)
Glycogenstorage diseasetypeIII
2019-05-28PhaseI/IIWithdrawnModernaTX,Inc.NCT03810690
mRNA-3704UndisclosedLNPsIntravenous infusion
Methylmalonic acidemia(MMA)
2021-08-06PhaseI/IIRecruitingModernaTX,Inc.NCT04899310
Intravenous injection
Injection2022-03-08PhaseI/IIRecruitingModernaTX,Inc.NCT05295433
LNPs(SM-86,DSPC, cholesterol,and PEGlipid)
mRNA-3705Methylmalonyl- coenzymeAmutase
2022-12-05PhaseIRecruitingModernaTX,Inc.NCT05659264
UndisclosedIntravenous infusion
ChronicheartfailuremRNA-0184Relaxin-2-variablelight chainkappa
2024-02-16PhaseIRecruitingModernaTX,Inc.NCT06243770
HealthyparticipantsUndisclosedIntravenous infusion
Hormone replacement therapy
2018-02-05PhaseIIaCompletedAstraZenecaNCT03370887
NoneEpicardial injection
AZD8601Vascularendothelial growthfactor-A(VEGF-A)
2016-12-16PhaseICompletedAstraZenecaNCT02935712
NoneIntradermal injection
TranslateBio,Inc.NCT03375047
LNPsInhalation2018-05-10PhaseI/IIUnknown status
NCT05712538
ARCT-032LNPsInhalation2023-02-15PhaseIRecruitingArcturus Therapeutics,Inc.
NCT05668741
Myocardial infarction
Type2diabetes mellitus(T2DM)
Regenerative medicine application
Cystic fi brosisMRT5005Cystic fi brosis transmembrane conductanceregulator (CFTR)protein
2023-02-27PhaseI/IIRecruitingVertex
Pharmaceuticals Incorporated
2023-12-13PhaseIIIRecruitingIntelliaTherapeuticsNCT06128629
UndisclosedLNPsOralinhalation usingnebulizer
VX-522mRNA therapy
Intravenous infusion
NTLA-2001Cas9proteinLNPs(ionizable lipid,DSPC, cholesterol, PEG2000-DMG)
Transthyretin amyloidosis(ATTR) with cardiomyopathy
Targeted genome engineering
IntelliaTherapeuticsNCT05120830
2021-12-10PhaseI/IIActive,not recruiting
NTLA-2002LNPsIntravenous injection
Hereditary angioedema(HAE)
NCT04560790
CompletedShanghaiBDgene Co.,Ltd.
2020-11-04Not applicable
NCT02500849
CityofHope MedicalCenter
NCT03432364
SpCas9LentiviralparticlesCorneal injection
BD111CRISPR/ Cas9mRNA
Infusion2016-03-10PhaseIActive,not recruiting
Autologous hematopoieticstem andprogenitorcells (HSPCs)
Infusion2018-03-29PhaseI/IICompletedSangamo Therapeutics
Refractoryviral keratitis
HIVSB-728mR-HSPCC-Cmotifchemokine receptor5(CCR5) -speci fi czinc fi nger nucleases
ZFNsAutologous hematopoieticstem andprogenitorcells (HSPCs)
ST-400 investigational product
Transfusion- dependentbeta- thalassemia(TDT)
clusteredregularlyinterspacedshortpalindromicrepeats/associatedprotein9, HIV humanimmunode fi ciency virus, ZFNs Zinc fi ngernucleases
LNPs lipidnanoparticles, DSPC distearoylphosphatidylcholine, PEG polyethyleneglycol, CRISPR/Cas9
Table3. Representativepreclinicalstudies(non-immunotherapy)
TherapyTargetorgan/tissueDiseasemRNA-encodedproteinDeliverysystemAdministrationrouteRef.
Intravenousinjection
BloodHemophiliaACoagulationfactorVIIILNPs(ionizablelipid:DSPC: cholesterol:PEGlipid,50:10:38.5:1.5)
Proteinreplacement therapy
Intrahepaticdelivery
LNPs(DOTAP,cholesteryl hemisuccinate,cholesterol,PEG lipid);di-blockpolymermicelle
Ornithinetranscarbamylase (OTC)
LiverOrnithinetranscarbamylase de fi ciency(OTCD)
Intravenousinjection
Fabrydisease(FD) α -galactosidaseALNPs(C12-200,DOPE,cholesterol, dimyristoylglycerol-polyethylene glycolanalog)
Wholebody(especially heart,kidneys,andbrain)
Intravenousinjection
Wholebody(especially heart,kidneys,andbrain) FD α -galactosidaseALNPs(ionizable:helper:structural: PEG,50:10:38.5:1.5)
BrainDiabetesinsipidusVasopressinNoneInjectionintothehypothalamus
BoneOsteoarthritis(OA)Insulin-likegrowthfactor1 (IGF-1)
Hormone replacementtherapy
NoneIntramyocardialinjection
HeartMyocardialinfarctionVascularendothelialgrowth factor-A(VEGF-A)
Regenerative medicineapplication
LiverLiver fi brosisandcirrhosisHepatocytenuclearfactor alpha(HNF4A) LNPsIntravenousinjection
LipopolyplexSubcutaneouslyimplant 371
BoneBonedefectsBonemorphogenetic protein-2(BMP-2)
Administeredintoratcoccygealdisks
Polyplexnanomicelles(PEG- polyaminoacidblockcopolymers)
Intervertebraldisk(IVD)IVDdegenerationRunt-relatedtranscription factor1(RUNX1)
375
Intracerebrovetricularadministration
BrainAlzheimer ’ sdiseaseNeprilysin(NEP)Polyplexnanomicelles(PEG- polyaminoacidblockcatiomer)
PBAEpolymersDeliverytothecentralnervoussystem bybrainventriclepumping
NervoussystemAlzheimer ’ sdiseaseBrain-derivedneurotrophic factor(BDNF)
EVsIntradermaldelivery(microneedle array)
SkinPhotoagedskinExtracellular-matrix α 1type-I collagen(COL1A1)
Tropoelastin(TE)NoneIntradermalinjection
ConnectivetissueWilliams –Beurensyndrome (WBS)
Cas9LentiviralsystemSubretinalinjection
EyeWetage-relatedmacular degeneration
Targetedgenome engineering
TumorBreastcancerCas9LNPsIntravenousinjection
Intravenousinjection
ViralcarcinogenesisHBVCas9LNPs(SM-102:DSPC:cholesterol: PEGlipid,50:10:38.5:1.5)
LNPs lipidnanoparticles, DSPC distearoylphosphatidylcholine, PEG polyethyleneglycol, DOTAP (2,3-dioleoyloxy-propyl)-trimethylammoniumchloride, DOPE 1,2-dioleyl-sn-glycero-3-phosphoethanolamine, ADSCs adipose-derivedstemcells, EVs extracellularvesicles, HBV hepatitisBvirus

Fig.5 Immunizationbackgroundmap.Thevariationsinindividuals’ immunologicalbackgroundsmayserveasapotentialmechanism forthediversityinvaccineefficacyandadversereactionsfollowing mRNAvaccination.Anindividual’simmunebackgroundisshaped byamultitudeoffactors,encompassingbothphysiological conditionsandpathologicalconditions.Moreover,itiscrucialto considerthepotentialadverseeffectsofrepeatedorintensive vaccinationusingthesameormultiplevaccines.Thegraphicis createdwithBioRender.com
dosesofSARS-CoV-2mRNAvaccineexhibitednotonlyneutralizingantibodiestothevirusbutalsoautoantibodiestargetingtype-I IFN.Thelackoftype-IIFNmaybethecauseofseverehypoxemic pneumoniaofCOVID-19.Theaforementionedevidenceimplies thatitisimperativetofocusmoreonthedistinctgeneticimmune characteristicsofvulnerablepopulations(Fig. 5).
Age
Vaccination,asapowerfulweaponinthepreventionand treatmentofdeadlyinfectiousdiseases,cansavehundredsof millionsoflivesbyharnessingthehumanimmuneresponse.401 However,humanimmunesystemisnotstatic,rather,itundergoes profoundchangeswithage.402 Age-dependentimmunesystem alterationsintheelderlyincludeimmunesenescenceininnate immuneresponses(i.e.,changesinthenumber,function,and distributionofneutrophils,NKcells,monocytes,andDCs),403 and adaptiveimmuneresponses(e.g.,decreasedTCRdiversityofaging naïveTcells,shortenedtelomeresofmemoryTcells,decreased B-cellpooldiversity,anddecreasedresponsetoforeign antigens).404
However,thereasonsfordecreasedvaccineeffectivenessinthe elderlygofarbeyondthis,thatis,itisnotonlyassociatedwith impairedantibodyresponse,decreasedT-cellresponse,and alteredantigenpresentationoftheimmunesystem,butalso relatedtothechronicandsystemicasepticinflammatorystate accompaniesaging.405 ResearchconductedbyPuzianowskaKuźnickaetal.406 hasshownthattwopro-inflammatorycytokines IL-6andC-reactiveprotein(CRP),increaseintheelderlyin anage-dependentmanner,highlightingtheconnectionbetween chronicinflammationandaging.Nakayaetal.407 conducted studiesthatrevealedanage-relateddisparityinantibody responsefollowinginfluenzavaccination,irrespectiveofraceor gender,andfoundthatolderadults(>65years)hadarelatively
reducedB-cellresponseaftervaccinationcomparedtothatof youngeradults(<65years).However,theseolderadultsdisplayed increasedmonocytesandactivatedcytotoxicNKcells.Notably, monocyteswerealsoincreasedinolderadultspriortovaccination, suggestingthatthebaselinestateoftheimmunesysteminolder adults(characterizedbyage-relatedlowinflammation)isa potentialmechanismforthereducedvaccineresponse. Age-dependentlow-gradechronicin fl ammationcanarise fromvariouspotentialsources.First,withage,theaccumulation ofdamagedcellsandthereleaseofmacromoleculessuchas advancedglycationend-products(AGE)continuetoactivate theinnateimmunesystemandtriggerthereleaseofdiverse pro-in fl ammatoryfactors.Second,immuneagingintheelderly mayalsoincreasetheburdenofantigenexposure.Forinstance, chronicCMVinfectionnotonlycontinuouslystimulatethe immunesystem,butalsoexacerbatebothimmuneagingand in fl ammation. 408 Comparedtoyoungerindividuals,theelderly andthepatientswithchronicdiseaseshaveapro-in fl ammatory statusandaremorepronetotriggeringcytokinestorms followingCOVID-19infection,leadingtosevereCOVID-19 clinicalsymptoms. 408 Immuneagingisaninevitablemajorrisk factorinvariouschronicdisea ses,particularlychronicin fl ammatoryconditionsincludingneurodegenerativediseases,cardiovasculardiseases,andchron ickidneydiseases.Inaddition, chronicin fl ammationplaysacrucialroleinthepathogenesisof variouscancersthatshareacommonfactor immuneaging. Theincidenceofthesepathologicalconditionssigni fi cantly increaseswithage. 409 Moreover,immuneagingcanexplainthe highermortalityrateobservedinolderCOVID-19patientsdue toineffectiveT-cellresponsesandtheinabilitytoproduce antibodiesagainstSARS-CoV-2.Therefore,identifyingmarkers thatreshapeimmuneresponseinolderadultscouldserveas potentialtargetsforpatientswithCOVID-19andotheragerelatedailments. 410 Immunesenescenceleadstothedisruption ofimmunecheckpointmolecules,suchasPD-1andCTLA-4,and cytokinessuchasIL-6andIL-1 β 411 , 412 Furthermore,immune senescenceisalsocloselyass ociatedwithmanyautoimmune diseases.Theincidenceofautoimmunediseasesappearstorise withage.Inturn,autoimmunediseasessuchasrheumatoid arthritismayalsoacceleratetheprocessofaging.Ononehand, aginginducesastateofage-dependentlow-gradechronic in fl ammation,whichinturntrigge rsimmunesuppression.This exacerbatesimmunesenescence andincreasestheprevalence ofvariousailmentsamongolderin dividuals,includingchronic in fl ammatoryconditionsthatfurtherhastenhumanaging. 409 Age-relatedimmunesenescenceandthepresenceofchronic inflammationinolderindividualspresentsignificantchallengesfor diseasetreatment.Despitetheavailabilityofvaccinesspecifically designedforthispopulation,theiroveralleffectivenessremains inadequate,particularlyininfectiousdiseasessuchasinfluenza. Researchersareexploringvarioustherapeuticapproachestargetingthepre-vaccinationagingcharacteristicssuchasinflammation, immunesenescence,andmitochondrialdysfunction.Notably, mRNAvaccineshavedemonstratedpromisingbenefitsduringthe COVID-19pandemic,includingenhancedefficacyamongelderly individuals.413
Duringearlychildhood,thethymuspredominantlyharborsa substantialpopulationofnaiveTcells,whichsubsequentlyundergo maturationprocesses.Duringthisperiod,whenencountering pathogens,memoryTcellsgraduallyaccumulateandovertake theoriginalTcells.404 Throughouttheprocessofmaturationfrom infancytoadulthood,agradualdeclineisobservedintheoverall percentageoflymphocytes,aswellasintheabsolutecountofT andBcells.Inaddition,thereisadecreaseinthenumberofNK cells.Interestingly,elderlyindividualsexhibitsignificantlyhigher levelsofNKcells,pro-inflammatorycytokines(INF-α,IL-6),and monocytechemoattractantprotein-1(MCP-1),whiledemonstrating lowerlevelsofepidermalgrowthfactor(EGF).414
TheclinicaltrialsofmRNAvaccinesaretypicallyconducted acrossdiverseagecohorts,includingpediatric,adult,andgeriatric populations(Table 4).Thismaybeattributedtovariationsintheir distinctimmunologicalprofiles.Forinstance,mRNA-1273developedbyModernaTX,Inc.underwentclinicaltrialsindifferent phases.Initially,itwastestedinPhaseI(NCT04283461)andPhase IIIclinicaltrials(NCT04470427)forindividualsaged18yearsand older.Subsequently,itunderwentPhaseIIandIIItrialsfor adolescentsaged12to18years(NCT04649151),aswellas childrenaged6monthsto11years(NCT04796896).Encouragingly,olderadultsincludingparticipantsaged71yearsandolder exhibitedcomparableimmuneresponsestoyoungeradultsupon receivingtheseconddoseofthemRNA-1273vaccine (NCT04283461).415 BNT162b2,developedbyBioNTechSE,has encompassedagegroupsandhascompletedseveralclinicaltrials (NCT04368728,NCT04754594,NCT04816643).The findings revealedadecreaseinimmunogenicityofBNT162b1orBNT162b2 withadvancingage,resultinginacomparativelyattenuated overallhumoralresponseamongolderadults(aged65–85years) comparedtotheiryoungercounterparts(aged8to55years). Encouragingly,theadministrationoftheseconddoseofthese vaccinescouldenhanceantibodyresponsesinbothyoungand elderlyadults(NCT04368728).416
Epidemiologicaldataindicatesthatindividualsaged60years andaboveexhibitadisproportionatelyhigherpropensityfor severeclinicalsymptomsandincreasedratesofhospitalization followingSARS-CoV-2infectionduringtheCOVID-19pandemic. Whilecurrentvaccineshavedemonstratedfavorableefficacyin youngercohorts,theyfailtoelicitsustainedimmunityinthe elderlypopulation.Despitepreviousdiscussionsonpotential reasonsforthisphenomenon,furtherexplorationiswarrantedto uncoverdeeperunderlyingfactors.Theobjectiveofsuch investigationistoultimatelydevelophighlyeffectivevaccines withminimaladversereactionsspecificallytailoredforolder adults.Tofurtherenhancetheefficacyofthevaccine,inaddition toexploringnovelstrategiesagainstimmunosenescenceand inflammation,itisalsoimperativetodevelopandemploymore potentadjuvants.405 DuringtheCOVID-19pandemic,mRNA vaccineshaveaccumulatedvaluableinsightsintoage-related efficacyandadversereactionsofvaccination,thuspavingtheway fortheirextensiveapplicationinotherinfectiousdiseases,tumors, andbeyond.
Gender
Genderdimorphismsarepervasiveinhumandevelopmentand physiology.Thephenotypicdiscrepanciesofgenderderivefroma complexedmixtureofendogenousandexogenousfactors, particularlyhormonessuchasestrogenandandrogen.Inthe eraofprecisionmedicine,itbecomescrucialtoconsiderthe relationshipbetweengenderandimmuneresponsesfordisease preventionandtreatment.417 Theexistingliteraturesuggeststhat malepatientsdemonstrateahigherpropensityfordeveloping severeclinicalsymptomsofSARS-CoV-2comparedtotheirfemale counterparts.418 Thisphenomenonmaybeattributedtothe immunomodulatoryeffectsofestrogen,whereasandrogenand progesteroneexertimmunosuppressiveactions.404 However,the relationshipbetweengenderanddiseaseseverityisintricate, encompassingtheinfluenceofsexhormones,expressionof X-linkedgenes,andotherimmuneregulatoryfactors.Therefore,a comprehensiveunderstandingoftheCOVID-19infectionand symptomseveritycanbeachievedbyinvestigatinggenetic, hormonal,andspecificbehavioralfactorsassociatedwithgender andage.Moreover,suchresearchescancontributetothefuture developmentofmRNAvaccines.418
GenderplaysapivotalroleindeterminingtheriskofHIV infectionanditspathogenicprogression.Reproductivedisparities betweengenderscontributetoanaugmentedsusceptibilityof womentowardHIVinfection.However,duringtheearlystagesof
HIVinfection,womenexhibitheightenedactivationofCD8+ T cellsandincreasedexpressionofinterferon-stimulatedgenes. Nonetheless,post-HIVinfection,womenfaceanelevatedriskof non-acquiredimmunodeficiencysyndrome(AIDS)morbiditysuch ascerebrovascularevents.419
Comparedtofemalemice,malemicedemonstrateahigher susceptibilitytoinfluenzaBvirus(FLUBV),mirroringtheepidemiologicalfeaturesobservedinhumans.Cardenas-Garciaetal.420 conductedastudyencompassingvariousvaccinedesignsand foundthatfemalemiceexhibitedmorerobustlgGandlgA responsesandincreasedCD4+ Tcellscomparedtotheirmale counterparts.Furthermore,theyreportedthatboththequality andquantityofimmuneresponsewereinfluencedbyfactorssuch asvaccineplatform,gender,andinclusionofadjuvants,thereby impactingthevaccineefficacyagainstFLUBV.The findings suggestthat,ingeneral,malesdemonstratehighermorbidity andmortalityratesfromviralinfectiousdiseases.421 However,itis noteworthythatincertaininfectiousdiseasessuchasmeaslesand dengue,femalesactuallyexhibithighermorbidityandmortality rates.404
Forcardiovasculardisease,therearewell-establishedmodifiable riskfactorssuchassmoking,obesity,diabetes,hypertension,and hyperlipidemia.Inadditiontothesefactors,non-modifiablerisk factorssuchasgenetics,age,andgenderplayasignificantrolein cardiovasculardiseasedevelopment.Theriskofcardiovascular diseasesignificantlyincreasesformalesaged45yearsandabove, aswellasforfemaleswhoundergooophorectomyorexperience naturalmenopause.422
Itiswidelyacknowledgedthatsexhormonesplayapivotalrole inhormone-dependentorgandiseases,suchasbreastandovarian cancersinfemales,aswellasprostateandtesticularcancersin males.Theincidenceratesofvariousnon-reproductiveorgan cancersmayalsoexhibitasignificantassociationwithgender.423 Lietal.417 conductedananalysisutilizingdatafromtheUK Biobankandidentified119diseasesexhibitingagenderbias(P adjusted<0.05).Notably,stomach,kidneyandlungmalignancies demonstratedhigherincidenceratesinmen,whileasthma displayedahigherincidencerateinwomen.
Theimmunesystemisintricatelyinterconnectedwithcancer treatment,andvariationsinhormonalandXchromosomegene expressioncanleadtodiffe rentimmuneresponsesamong distinctpopulationsofinnateandadaptiveimmunecells. 424 For example,inpatientswithKRASmutationsinlungadenocarcinoma,femalesdemonstrateagreaterabundanceofCD4 + Tand CD8 + Tcellscomparedtomales. 425 Thestudyconductedby Thompsonetal. 426 revealedvariationsinthefunctionalityofthe transcriptionfactorFOXO3,whichisassociatedwithtumorin fi ltratingDCstolerance,betweengenders.Thesedisparities mayserveascrucialconsidera tionsforaugmentingcancer immunotherapy.Observationsfromclinicaltrialindicatethat immunecheckpointblockadeconfersgreaterbene fi tsinthe treatmentofmalecancerpatients. 427 However,certainstudies havereportednostatisticallysigni fi cantgender-baseddifferencesintheef fi cacyofICIs. 428 Additionally,clinicalinvestigationshavedemonstratedthatICIsampli fi edtherapeutic outcomesinfemalepatientswhencombinedwithCisplatin and/orradiotherapy. 429 Thesecon fl ictingexperimental fi ndings suggestthattheunderlyingmechanismin fl uencinggender disparitiesincancerincidenceratesandtreatmentoptionsare multifacetedandcomplex.
Insummary,womenusuallyexhibitstrongerimmune responsesagainstinfectiousdiseasesandmalignanttumors thanman.Inaddition,followingvaccination,womendemonstratesuperiorantibodyresponses,therebyreducingtheir susceptibilitytoinfectionsandloweringthemortalityrates. However,thebetterimmuneresponseofwomenalsopredisposesthemtoafourfoldincreasedriskofdevelopingautoimmunediseases. 430, 431 Forexample,theincidenceratiosof
Table4. Clinicaltrialswereconductedaccordingtodifferentagegroups
StatusSponsor
PhaseNCTnumberStudystarted (actual)
AgesSex/ gender
mRNADiseasemRNAencodedproteinEnrollment (actual)
AllPhaseIIINCT044704272020-07-27CompletedModernaTX,Inc.
mRNA-1273COVID-19SARS-CoV-2spikeprotein3041518yearsandolder(adult, olderadult)
AllPhaseII/IIINCT046491512020-12-09Active,not recruiting
433112yearsto18years(child, adult)
119506monthsto11years(child)AllPhaseII/IIINCT047968962021-03-15Completed
AllPhaseII/IIINCT043687282020-04-29CompletedBioNTechSE
4707912yearsandolder(child, adult,olderadult)
COVID-19SARS-CoV-2receptor- bindingdomain,SARS-CoV- 2spikeprotein
BNT162b1, BNT162b2
AllPhaseIIINCT049556262021-07-01Completed
BNT162b2SARS-CoV-2spikeprotein1638512yearsandolder(child, adult,olderadult)
FemalePhaseIIINCT047545942021-02-16Completed
68318yearsandolder(adult, olderadult,healthy pregnantwomen)
118376monthsto15years(child)AllPhaseII/IIINCT048166432021-03-24Completed 072daysto102days(child)AllPhaseINCT056303522025-01-06 (estimated) Withdrawn
AllPhaseII/IIINCT051274342021-11-17Active,not recruiting ModernaTX,Inc.
3655760yearsandolder(adult, olderadult)
mRNA-1345RSVRSVprefusionstabilizedF (preF)glycoprotein
AllPhaseIIINCT053309752022-04-01Active,not recruiting
380050yearsandolder(adult, olderadult)
AllPhaseIIINCT060672302023-10-06Recruiting
210(estimated)5monthsto24months (child)
18yearsandolder(adult, olderadult)
AllPhaseINCT057438812023-02-15Active,not recruiting 1150 (estimated)
340(estimated)2yearsto17years(child)AllPhaseIINCT060972992023-10-24Active,not recruiting
360(estimated)18yearsto40years(adult, pregnantwomenand infants)
AllPhaseIINCT061430462023-11-15Recruiting RSV respiratorysyncytialvirus
Note:Vaccinationsafetyandimmunogenicityarecloselyrelatedtoage,andclinicaltrialsatdifferentagesareneededtodetermineef fi cacy
multiplesclerosis,scleroderma,andrheumatoidarthritisin femalescomparedtomalesrangefrom2:1to3:1.However, thegenderdistributionofsystemiclupuserythematosusis remarkablyskewedwitharatioof9:1,representingthemost pronouncedgender-baseddisparityamongautoimmunediseases.432 Theetiologyofthegenderdisparityinautoimmune diseaseincidenceismultifacetedandintricate.Forinstance,the potentialexacerbatingeffectofestrogenonsystemiclupus erythematosus,doesnotprecludeitspotentialimmuneprotectiveeffectonrheumatoidarthritis. 433 Itisnoteworthythat thegender-speci fi cvariationsinintestinalmicrobiotamay underpincertaingender-relatedphysiologicalandpathological conditions,thusprovidingabiologicalbasisforsuch disparities. 434
Despitethehigherprevalenceofautoimmunediseasesin women,thereisnosignificantgenderdisparityintheincidenceof immune-relatedadverseevents(IrAEs)amongpatientsreceiving ICIsforskin,gastrointestinal,andlacrimalgland-relatedconditions.However,notablegenderdifferencesexistinspecific endocrine-relatedIrAEs.Forexample,thyroiddysfunctionismore commonlyseeninwomen,whereashypophysitisismore frequentlyobservedinmen.432
Previously,theroleofgenderinthedevelopmentand treatmentofdiseaseswasoverlooked.Forinstance,in1977,the U.S.FDArecommendedexcludingwomenofreproductiveage fromPhaseIandearlyPhaseIItrialsundertheguiseof safeguardingwomenandchildren.Nevertheless,itledtoalack ofresearchandinsufficientawareness.432 Fortunately,in2015,the NationalInstitutesofHealth(NIH)issuedadirectiveurging researcherstoincorporategenderasabiologicalvariableinto theirresearchdesigns,datacollectionprotocols,andoutcome analysis.435
Currently,therearerelativelyfewmRNAvaccinesdesigned specificallyforgenderdifferences.However,thedisparitiesin immuneresponsesresultingfromdifferencesinX-linkedgenes andsex-basedhormonalvariationsdoindeedexist,leadingto variationsindiseasesusceptibilityandclinicalmanifestationsas wellasvaccineefficacy.Thesedifferencesareincreasinglybeing recognized.436 Researchintotheinteractionsofageandgender mayaidinthedesignofpersonalizedmRNAvaccinetreatment strategiestailoredtoindividualpatient.422
Pathologicalconditionandvulnerablepopulation
Inadditiontoageandgender,thereareotherintricatefactors affecttheefficacyofvaccination.Levinetal.437 foundthat individualsagedover65years,males,andgroupswith immunosuppression-relatedconditionsexhibitedsignificantly lowerlevelsofhumoralimmunity6monthsafterreceivingthe seconddoseofBNT162b2.Fureretal.438 revealedthatpatients withautoimmuneinflammatoryrheumaticdisordersdisplayeda lowerhumoralresponsetothetwo-doseBNT162b2mRNAvaccine regimencomparedtoimmunocompetentindividuals.Although seropositivelevelswererestoredinimmunocompetentindividuals afterreceivingthethirdvaccinedose,only80.47%ofpatients experiencedrestorationoftheirhumoralresponse.Notably,all patientswhoreceivedanti-cytokinebiologics,Methotrexate monotherapy,AbataceptandJanuskinaseinhibitorshadtheir humoralimmunityrestored.However,onlyone-thirdofpatients whoreceivedRituximabwereabletoregainimmuneprotection. Theclinicaltrialsregardingvaccineadministrationinpatients receivingimmunosuppressantsarelistedinTable 5. Lestonetal. 439 classi fi edimmunosuppressionandcorrelated itwiththemortalityrateofCOVID-19.Their fi ndingsrevealed thatpatientswithsolidorgantra nsplantsandmalignanttumors exhibitedasigni fi cantlyhighermortalityriskfollowingCOVID19infectioncomparedtothatofimmunocompetentindividuals.Furthermore,incomparisontoimmunocompetent individuals,patientswithrheu matologicalconditionsandHIV
demonstratedaslightlyelevatedmortalityrisk.Thestudy establishedacloseassociationbetweenspeci fi csubgroupsof immunosuppressionandthemo rtalityriskassociatedwith COVID-19infection.Thiscategorizationmethodholdssubstantialreferencevaluefortargetedtreatmentstrategiesand focusedvaccinationprevention.Meerausetal. 440 discovered thatindividualswithcomorbidi tiesandvulnerablepopulations exhibitedreducedvaccineeffectivenessfollowingadministrationofAZD1222(ChAdOx1nCov-19)incomparisontothose withnormalimmunesystems,whileimmunosuppressed individualsdemonstratedthelowestvaccineeffectivenessafter theinitialdoseofAZD1222.Obeidetal. 441 conducteda comparativeanalysisonthepersistenceofhumoralresponses againstSARS-CoV-2anditsvariantsofconcern(VOCs)in immunocompromisedpatientswhoreceivedtwodosesof BNT162b2ormRNA-1273vaccines,aswellasinhealthy individuals.The fi ndingsrevealedthatapproximately50%of patientswithsolidtumorsandhematologicalmalignancies, about70%ofautoimmunediseasepatientsandsolidorgan transplantrecipients,and40%ofhealthyindividualshadlost protectivenAbs6monthsaftervaccination.Moreover,itwas observedthatthedurabilityof bindingIgGanti-spikeantibodiesagainstSARS-CoV-2wasfourtoninetimesgreaterthan thatofnAbs.Furthermore,var iationswerenotedintheimmune ef fi cacybetweendifferentmRNAvaccines,withBNT162b2 inducinglowermagnitudeandshorterdurationofnAbs comparedtomRNA-1273.Therefore,itisimperativetoselect appropriatemRNAvaccinesfordiversevulnerablepopulations inordertoensureeffectiveadministrationofvaccinations. InadditiontoCOVID-19virusinfection,similarscenariosseem toariseinotherinfectiousvirusesaswell.Astudyconductedby Mbondeetal.442 revealedthatimmunosuppressedindividuals withneuroinvasiveWestNilevirus(NWNV)exhibitedmoresevere clinicalmanifestationscomparedtoimmunocompetentpopulations,therebyindicatingaworseprognosisandhigherriskof adversereactions.Thesurvivalrateofsepsissurvivorsis significantlydiminishedfollowingsecondaryinfection,primarily duetotheprolongedstateofimmunosuppressionthatensues afteracuteinfection.AcomprehensivestudyconductedbyLiao etal.443 revealedacloseassociationbetweenIL-10productionby Siglec-F+ neutrophilsandthesuppressionofT-lymphocyte activityinthisphenomenon.Furthermore,their findingsindicated thatdepletionofneutrophilscouldenhanceT-lymphocyte proliferationandimproveT-lymphocyteactivity,therebyamelioratingthesurvivalrateamongimmunosuppressedmicesubjected tosecondaryinfection.However,furtherinvestigationisrequired toassessthesystemiceffectsassociatedwithneutrophils depletion.
PersistentimmunesuppressionisobservedinpeoplewithHIV, whichiscloselyassociatedwithlowCD4countsorabnormalCD4/ CD8ratios.ThepreventionandtreatmentofcancerinHIVinfectedindividualsfacechallengesduetodisparitiesinhealth status.444 EvidencessuggestedthatindividualsinfectedwithHIV mightundergoprematureaging.Theresearchconductedby Gianesinetal.445 furtherdemonstratedthatthisphenomenon extendedtoHIV-infectedchildren,resultinginaccelerated biologicalandimmunologicalsenescence,particularlyaffecting theCD8+ cellsubpopulation.Vergorietal.446 discoveredthatthe administrationofathirddoseoftheCOVID-19mRNAvaccineto individualswithHIVcouldelicitarobustimmuneresponse. However,themagnitudeoftheSARS-CoV-2-specificT-cell responseinHIV-positivesubjectswascomparativelylowerthan thatobservedintheHIV-negativecontrolgroup.Inaddition,they providedquantitativeanalysisregardingthepotentialaugmentationofimmunelevelsthroughextraboosterdosesforindividuals withHIV.
Pregnantwomenandinfantsarealsoconsideredvulnerable populations.AntibodiesderivedfromCOVID-19vaccinescanoffer
Table5. OngoingandcompletedclinicaltrialsofmRNAvaccinesforthetreatmentofimmunosuppressantpatients/patientswithautoimmunediseases
BackgrounddiseaseTrialpopulationmRNAvaccineImmunosuppressantPhaseNCTnumberSponsorLastupdate posted
OmicronXBB.1.5vaccineEverolimusPhaseIVNCT05924685UniversityMedical CenterGroningen 2024-03-04
KidneytransplantRecipientswhohadakidneytransplant atleast6monthsago
OfatumumabPhaseIVNCT04878211Novartis Pharmaceuticals 2024-02-08
OfatumumabtreatedparticipantsP fi zerorModernamRNA COVID-19vaccine
Relapsingmultiplesclerosis (MS)
SiponimodPhaseIVNCT04792567Novartis Pharmaceuticals 2022-12-14
BasiliximabPhaseINCT00626483GaryArcherPh.D.2021-03-09
SecondaryprogressiveMSPatientswithsecondaryprogressiveMSCOVID-19modRNA vaccine
ObservationalNCT04818892Universityof Wisconsin,Madison 2022-12-07
2023-06-08
2024-03-26
Cytomegalovirus(CMV) pp65-LAMPmRNA-loaded dendriticcell(DC)vaccine
MalignantneoplasmsbrainGlioblastomamultiformepatients treatedwithTemozolomide
PatientswithIBDCOVID-19vaccineNon-systemicimmunosuppressive therapy(Mesalamine/Vedolizumab/ Vedolizumabcombinationtherapy withMethotrexateorAzathioprine); systemicimmunosuppression (Azathioprine/In fl iximab/ Golimumab/Adalimumab/ Certolizumab/Ustekinumab/ Tofacitinib/Corticosteroid)
In fl ammatoryboweldisease (IBD)
cDCvaccineBasiliximabPhaseIINCT02366728MustafaKhasraw, MBChB,MD,FRCP, FRACP
fi
CMV-speci
Glioblastoma(GBM)GBMpatientswhounderwent resection,Temozolomide(TMZ)therapy, andradiationtherapywerealsopre- treatedwithtetanusandgiven Basiliximab
COVID-19vaccine/PhaseIINCT05000216NationalInstituteof AllergyandInfectious Diseases(NIAID)
Autoimmunedisease5autoimmunediseasesinadults [systemiclupuserythematosus(SLE)/ rheumatoidarthritis(RA)/MS/systemic sclerosis/pemphigus],4autoimmune diseasesinpediatricparticipants [systemiclupuserythematosus(SLE)/ juvenileidiopathicarthritis(JIA)/ pediatric-onsetmultiplesclerosis (POMS)/juveniledermatomyositis (JDM)]
PhaseIIINCT05415267KirbyInstitute2024-03-15
e.g.,Rituximab,Ocrelizumab, Ofatumumab
COVID-19vaccine, diphtheria/tetanus toxoidsvaccine
Hematologicalmalignancy + immunosuppressant/systematic autoimmunity
Immunosuppress/systematic autoimmunity
COVID-19vaccineTacrolimusPhaseIINCT05077254NIAID2024-03-29
SolidorgantransplantKidneytransplantrecipients,liver transplantrecipients
ObservationalNCT05060354BrighamandWomen ’s Hospital 2024-01-25
PhaseINCT00978913IngeMarieSvane2015-08-19
MSMSpatientsonimmunotherapyCOVID-19vaccineOfatumumab,Ocrelizumab, Fingolimod,Siponimod
DCvaccineCyclophosphamide(background drugs,asvaccineadjuvants, commonlyusedasanticancerdrugs)
Patientswithmetastaticbreastcancer ormalignantmelanoma
Breastcancer,malignant melanoma
/ObservationalNCT05020145P fi zer2024-02-12
COVID-19vaccine (BNT162b2)
Patientswithimmunocompromising conditionsintheUnitedStates
Immunocompromised, immunosuppressed
DCvaccine/PhaseINCT03396575UniversityofFlorida2023-11-18
BrainstemgliomaBrainstemgliomapatientstreatedwith radiotherapyandTemozolomide
Note:Followallentriesfoundunder “ Searchfor:mRNAvaccine,immunosuppressant|CardResults|ClinicalTrials.gov ”
protectionagainstseverevirusinfectionsinnewbornsthroughthe transferofplacentalantibodies.Thereislimiteddataonthe antibodylevelsofinfants,particularlypreterminfants,following maternalvaccination.Therefore,Kachikisetal.447 conducteda studywhichrevealedthattherewasnodisparityinmaternally derivedSARS-CoV-2anti-spikeIgGlevelsbetweenfull-termand preterminfants.However,theselevelswerecloselyassociated withtheconcentrationofthematernalanti-spikeantibodies.In addition,itwasobservedthatreceivingtwoorfewerdosesofthe COVID-19vaccinemightnotprovideoptimalimmuneprotection forpregnantwomen,norforinfantsviacordblood.Consequently, carefulconsiderationshouldbegiventothetimingofvaccination forpregnantwomen.
Adversereaction
Johnstonetal.448 discoveredanadversereactionmanifestedasa delayedhypersensitivityattheinjectionsitesubsequentto administrationoftheModernaCOVID-19vaccine.CappellettiMontanoetal.449 discoveredthatthemajorityofsevereadverse reactionsreportedafterCOVID-19vaccinationwereassociated withcardiaccomplications,particularlyamongmaleadolescents. Inaddition,thrombosisanddyspneaemergedasprevalentserious symptomsfollowingCOVID-19vaccination.Incontrast,the adversereactionsaftervaccinationwithHPVandinfluenza seemedtobemorediverse.Dizziness,lossofconsciousness, dyspnea,andconvulsionsoccurredafterHPVvaccination,and Guillain-Barrésyndromeoccurredafterinfluenzavaccination. VaccinationwithCOVID-19vaccine(BNT162b2mRNAormRNA1273)canalsobeassociatedwiththedevelopmentofvarious autoimmunediseases,suchasautoimmunehepatitisornephritis, rheumatoidarthritis,andnew-onsetsystemiclupuserythematosus.Heil450 endeavoredtoinvestigatetheunderlyingfactors contributingtoadiverserangeoflife-threateningcomplicationsin patientsinfectedwithSARS-CoV-2.AlthoughtheCOVID-19 pandemicseemstobereceding,thelessonslearnedfromthe developmentofCOVID-19mRNAvaccinesareexpectedtohave implicationsfornon-COVID-19diseases.
ThestudyconductedbyPettinietal.451 demonstratedthat multipleadministrationofmRNA-1273vaccineeffectively enhancedthespecificmemoryB-cellandantibodyresponses againstSARS-CoV-2inallogeneichematopoieticcelltransplantationpatients.Furthermore,theyemphasizedthesignificanceof repeatedvaccination.Thephenomenonofextensiveandconsecutiveimmunizationhasbecomeapparentowingtorepetitive vaccinationsintendedtoaugmentvaccineefficacy,alongwith advancementsinvaccinesdesignedfordiversediseases.Nonetheless,thisintricacypresentsdifficultiesinevaluatingvaccine safetyaccurately.Interactionsbetweenvaccineshavethe potentialtoproducefavorableordetrimentaloutcomesalike. MawsonandCroft452 postulatedthatmultiplevaccinationsmight induceactivationoftheretinoidcascade,resultinginasequence ofunfavorablereactions.Theuncertaintiesoftherisksassociated withvaccinationnecessitatefurtherresearchtooptimizevaccine safety.
Thesafetyandimmunogenicitypro fi lesfollowingvaccination wereassessedinclinicaltrialsthroughtheadministrationoftwo distinctvaccineformulationsinapredeterminedsequence.For example,thePhaseItrialsoftheinvestigationalvaccines BNT164a1andBNT164b1haver ecentlycommencedwith volunteerswhohavepreviouslyreceivedtheBCGvaccine (NCT05547464). 453 Severalclinicaltrialsarecurrentlyunderway toassessthesafetyandimmunogenicityofco-administering twovaccinessimultaneously(Table 6 ).Moreover,mRNA vaccinescanbeengineeredtoencodeseveralepitopesfrom multiplepathogenssimultaneously. 454 Currently,thereis ongoingdevelopmentofmulti- componentvaccinesaimedat achievingprogressivelymorecomprehensivediseaseprevention(Table 7 ).
SignalTransductionandTargetedTherapy(2024)9:322
Table6. Concurrentlyadministeredvaccines
VaccineDiseaseStudystarted(actual)PhaseStatusSponsorNCTnumber 9vHPV + mRNA-1273PapillomavirusinfectionandCOVID-192022-03-28PhaseIIICompletedMerckSharp&DohmeLLCNCT05119855 mRNA-1345 + in fl uenzavaccineRSVandin fl uenza2023-09-25PhaseIIIActive,notrecruitingModernaTX,Inc.NCT06060457 V110/V114 + mRNA-1273PneumococcalinfectionandCOVID-192022-01-12PhaseIIICompletedMerckSharp&DohmeLLCNCT05158140 ARCT-2303 + in fl uenzavaccineCOVID-19andin fl uenza2024-03(estimated)PhaseIIINotyetrecruitingArcturusTherapeutics,Inc.NCT06279871 BNT162b2(OmiXBB.1.5) + RIVCOVID-19andin fl uenza2024-01-31PhaseIIActive,notrecruitingP fi zerNCT06237049 HPV humanpapillomavirus, RSV respiratorysyncytialvirus
Table7. Multi-componentvaccines
VaccineDiseaseStudystarted(actual)PhaseStatusSponsorNCTnumber
mRNA-1045InfluenzaandRSV2022-10-14PhaseICompletedModernaTX,Inc.NCT05585632 mRNA-1230Influenza,RSVandCOVID-192022-10-14PhaseIICompletedModernaTX,Inc.NCT05585632 mRNA-1083InfluenzaandCOVID-192023-04-14PhaseI/IIActive,notrecruitingModernaTX,Inc.NCT05827926 mRNA-1073InfluenzaandCOVID-192022-05-13PhaseI/IICompletedModernaTX,Inc.NCT05375838 RSV respiratorysyncytialvirus
CONCLUSIONSANDPROSPECTS
ChallengesinmRNAdrugapplication
Despitesubstantialadvancementsinthe field,effectivelyand safelydeliveringmRNAtherapeuticstothetargetsiteremainsa significantchallenge.Thehalf-lifeofdirectintravenousadministrationofmRNAisveryshortduetotheirsusceptibilityto degradationbynucleases.Thenegativechargeandhigh molecularweightofmRNAhindercellulartranscytosisacrossthe biologicalmembrane.Additionalbarriersincludehighrenal clearance,non-specifictissuedistribution,andoff-targeteffects. Inaddition,mRNAthatentercellsfacethechallengeofescaping fromendosomes.455 Furthermore,exogenouslyintroducedmRNA canberecognizedbytheTLRsandcytosolicnucleicacid receptors,triggeringinnateimmuneresponsesandaccelerating thedeactivationofIVTmRNAwithinthebody.181
AlthoughtheapplicationofmRNAdeliverysystems,LNPsin particular,mitigatescertainoftheaboveobstacles,itisimportant toremaincautiousofthepotentialhazardsassociatedwith deliveryvehicles,suchasinflammation,immunogenicity,and cytotoxicity.105 Inadditiontothetoxicitycausedbythedelivery system,ithasbeendiscoveredthattheproductionmethods, routesofadministration,andevenproteinsgeneratedbythe complexedmRNAdrugspresenttoxicityconcerns.456
MainreasonsforfailedmRNAapplication Followingintravenousorintramuscularadministration,mRNA LNPsareextensivelydistributedintheliverandspleen,potentially resultinginpathologicalalterationswithintheseorgans,suchas thedisruptionofhepaticcellregulationoffattyacidmetabolism. Inaddition,mRNAnanomedicinesmayelicitadverseimmune reactions,suchassystemiccomplementactivation,hypersensitivityresponses,andcytokine-mediatedeffectspostvaccination.98,456 TheadverseimmunogenicitycausedbyLNPs, besidesthelipidcomponents,iscloselyassociatedwiththeirsize, charge,andaggregationcharacteristics.SmallerLNPsaremore advantageousinmitigatingtheactivationofundesiredimmune responses.Ontheotherhand,itisimportanttoinvestigatethe translationaccuracyofnucleotide-modifiedmRNAtherapeutics,as unintendedproteinsynthesismayresultinunforeseenoutcomes.457 Mulroneyetal.458 discoveredthattheuseofm1ΨmodifiedIVTmRNAledtoanotableincreaseinthe +1ribosomal frameshiftduringtranslation.Understandingthetranslation processofnucleotide-modifiedmRNAisessentialforfuturemRNA designandoptimizationtomitigatepotentialreductionsin efficacyandincreasesintoxicity.
ThesuccessapplicationofmRNAtherapiesisintricatelylinked tothecomplexityandpublicunderstandingoftargeteddisease. TaketheextensivelystudiedcancermRNAvaccineasanexample. Todate,thereisfewPhaseIIImRNAvaccineavailablefortumors, whichmaybeduetothefollowingreasons:(1)ThemRNA encodingasingletumorantigenmayinadvertentlyinduce mutationsintumorstoevadeimmuneresponse,necessitating theneedfordevelopingmRNAvaccinescapableofsimultaneouslytargetingmultipleTAAsorTSAs;(2)Thesurfaceantigens aredistinctacrossdifferenttumortypes,callingforpersonalized tumor-mRNAvaccinesforindividualpatient.However,the
productionandimplementationofpersonalizedvaccinesare oftenassociatedwithhighcostsandposechallengestotheir widespreadclinicalapplication;(3)Tumorsexertimmunosuppressiveeffectsbyimpedingtherecognitionofneoantigensand suppressingtheviabilityofantitumorimmunecells,emphasizing theimportanceofmeticulousselectionandapplicationof adjuvantsforpotentiatedimmuneresponses;(4)Theefficacyof mRNAvaccinesislargelylimitedbyitsinstability,inefficient delivery,andpoortransfectionefficiency.Inthesecases,iterative optimizationofthemRNAmoleculeanddeliveryvehicleis needed;(5)Tumorpatientsoftenexhibitcompromisedimmune responsesduetoamultitudeoffactors,includingadvancedage, concurrentmedication(e.g.,chemotherapy),andcomorbidity (e.g.,HIV).Hence,inadditiontobolsteringtheimmuneresponse withadjuvants,vigilanceagainstpotentialadversereactions shouldbetakenintoseriousconsideration;(6)Theformidable challengeoferadicatingadvancedtumorsusingmRNAvaccines alonenecessitatestheintegrationofmultipletherapiesfor synergistictherapeuticeffects,suchasadoptivecelltherapy.459
Effortsandimprovementsmadetoaddressthesechallenges ThecurrentlandscapeofmRNAvaccineswithpromisingclinical prospectsoftencomprisesthreecomponents:themRNA sequenceencodingtargetprotein,deliveryvector,andadjuvant.460 Incertaincases,themRNAcarrieritselffunctionsas vaccineadjuvant.460 Notably,althoughtheincreasedimmunogenicityofmRNAdrugsboostsimmuneresponse,ithampers mRNAtranslationandsuppressestargetproteinproduction.In thisconsideration,thetechnologyofimmune-silencingIVTmRNA byreplacingnaturallyoccurringnucleosidesintothemRNA sequencehasbeendeveloped.461 EmployingmodifiedmRNA representsastrategicapproachtobothenhanceprotein expressionandmitigateaberrantimmunogenicity.462 Inaddition, byoptimizingthemRNAsequence,suchasintroducingmultiple adeninesatthePoly(A)tail,mRNAstabilitycanbefurther enhancedwiththeproteintranslationefficiencyimproved. Moreover,purificationmethodsincludingcelluloseandfast proteinliquidchromatographycanbeemployedtoeliminate theimmunogenicdouble-strandedRNAgeneratedduringmRNA manufacturing,therebyreducingtheinflammatoryresponses unfavorabletomRNAstability.463
Inthecontextofimmunotherapy,toavoidtheinsufficient activationofAPCs,especiallyDCs,withnucleoside-modified immune-silencedmRNAfollowingvaccination,115 adjuvantscan beincorporatedintothedeliverysystem.Anidealadjuvantcan lowerthedoseofantigen-encodingmRNApervaccinedose, reducethefrequencyofvaccination,enhancetherobustnessand specificityofimmuneresponses,andincertaincases,assumethe roleofacarrierfortheefficientdeliveryofmRNAandcontribute tothestabilizationofthevaccineformulation.464,465 Guetal.466 usedTLR2/6agonistPam2Cys(asimplesyntheticmetabolizable lipoaminoacid)asanadjuvanttofacilitatemRNAencodingCT26 neoantigenpeptideorSARS-CoV-2spikeproteinantigenfor inductionofeffectiveimmuneresponsesagainstcanceror infectiousdiseases.Ontheotherhand,theadjuvantcanbe incorporateddirectlyintothemRNAsequence.Lietal.395
developedamultiplyadjuvantedmRNAvaccinebyfusing antigen-encodingmRNAwithC3d(theterminaldegradation productofmammaliancomplementcomponentC3)-basedmRNA adjuvant,whichevokedaprotectiveimmuneresponseagainst SARS-CoV-2atadosagetentimeslower.Ofnote,anincreasing numberofstudieshaverevealedthatadjuvantnotonlyenhances themagnitudeofimmuneresponsetovaccines,butguidethe typeofadaptiveimmuneresponse.467 Zhuetal.468 fabricated mRNALNPsandinvestigatedthedifferentialimmuneresponses elicitedbymRNALNPssupplementedwiththenaturalSTING agonist2'3’-cyclicGMP-AMP(cGAMP)and/orthemucosal adjuvantalpha-galactosylceramide(αGC).Theresultsindicated thatmRNALNPscontainingcGAMPaloneinducedastronger cellularimmuneresponsethanmRNALNPscontainingboth cGAMPand αGC,whichwasconsistentwithhigherlevelsofIgG andIgG2aantibodyresponses,aswellasbetterprotectionagainst homologousviralchallenge.Thestudyalsodemonstratedthat mRNALNPscontainingcGAMPcouldaccumulateCD4+ Tcellsin thelung,whilemRNALNPscontaining αGCcouldenlargethe iNKTcellsinthespleen.ActivatediNKTcellsmayexhibitpotent cytotoxicity,indicatingtheparamountimportanceofthejudicious selectionandapplicationofadjuvants.Atthecellularlevel,itis well-establishedthatActinidiaerianthapolysaccharide(AEPS) elicitsamixedCD4+ Th1andCD4+ Th2immuneresponse,while AluminducesastrictTh2response.Nevertheless,manyintricate molecularmechanismsremainunclear.Duetal.469 conducteda comparativeanalysisoftheinnateimmuneresponseselicitedby thetwoadjuvants,andfoundthatAEPSinducedhighermRNA expressionlevelsofC-X-Cmotifchemokineligand(CCL)2,CCL3, CCL4,CXCL10,IL-12β,IL-23α inimmuneeffectorprocess,and rapidlyrecruitedneutrophilsandmonocytes.Incomparison,Alum inducedIL-7A,IL-17F,andIL-17RA,andrecruitedneutrophilsand eosinophils.
ThedeliveryandstoragechallengesofmRNAcanberesolved throughoptimizationofthedeliveryvehicle.115 Todate,aplethora ofdeliverysystemsformRNAhavebeendeveloped.Amongthem, LNPshasprogressedinclinicalpracticemostrapidly.LNPsnot onlypossessesthecapacitytoencapsulateandtransportmRNA, butalsoshieldsthemRNAfromnucleasedegradation.However, theuseofLNPsstillpresentscertainissues,suchasthepotential damagetocellmembranesandorganellesduetothecationic characteristicsoftheionizablelipid.Thedevelopmentof biodegradableionizablelipidsappearstooffersomesolutions tothisproblem.102 105 Itiscrucialtorecognizethatnoionizable lipidisuniversallyoptimalforallnucleicacidformats,and variationsinnucleicacidmodification,size,andstructurecan impacttheeffectivenessofLNPsdelivery.470 Ontheotherhand, theoff-targetaccumulationofmRNAdrugsmayleadto suboptimaloutcomes.Inthiscase,variousstimulus-responsive nanotechnologieshavebeendevelopedtoutilizespecificinternal stimuluswithinthecellularmicroenvironment,includingthe expressionofspecificenzymes,increasedlevelsofROS,hypoxic environments,andchangesinthepHortemperature,aswellas externalstimulussuchaslightirradiation,magnetic fields,and ultrasound.Thesestimuli-responsivenanoplatformshavethe potentialtoenhancetissuetargeting,promoteexosomeescape ofmRNA,improvethetherapeuticeffectsofmRNAtherapy,and reducetoxicityandsideeffects.471 TheactivetargetingofmRNA drugstodesiredbiologicalsitesthroughLNPssurfacemodificationisalsowidelyused.Severalpreclinicalstudieshavealready demonstratedthesuccessfuldeliveryofmRNALNPstotarget tissuesandcells.472–474 Forinstance,Kimetal.475 utilizedLNPs modifiedwithtumor-targetingpeptidestoencapsulatemRNAencodingPETN.ThisPETNmRNALNPsspecificallyinducesICDin mice4T1breasttumor,therebyelicitingeffectiveantitumor immuneresponses.Tangetal.476 engineeredLNPswithsialicacid forDCstargetingandefficientendosomalescape.Furthermore,it isanticipatedthatthenext-generationLNPswiththeabilityto
targetdrugsspecificallytodistinctintracellularorganelles,suchas mitochondriaandthenucleus,willserveasaninnovative paradigm.472 Inadditiontotheoptimizationstrategiesmentioned above,thedeliverysystemformRNAcanbeoptimizedtoenhance theprecisionofmRNA-basedtherapiesfordiseasesbyadjusting factorssuchasdrugdissolution,diffusionrate,pharmacokinetics, toxicity,andhalf-life.477
PotentialofmRNAdrugstotreatvariousdiseases
ThemRNAvaccinehasemergedasaforefrontlineindisease preventionandtreatment.276 TherapiddevelopmentandregulatoryapprovalofmRNAvaccinesagainstSARS-CoV-2duringthe COVID-19pandemichavedemonstratedtheadvantagesofmRNA technology,478 exertingaprofoundinfluenceonitsapplicationin infectiousdiseasesandcancerimmunotherapy.ThePhaseIII clinicaltrialofSARS-CoV-2mRNAvaccineiscurrentlythemost clinicallyavailable.Additionally,aseriesofmRNAvaccinesagainst otherinfectiousdiseasesareunderdevelopment.Forexample,the PhaseIstudy(NCT04528719)ofmRNA-1345encodingthe prefusionstabilizedF(preF)glycoproteinofRSVdemonstrates favorabletolerabilityprofilesinbothyoungandelderlyindividuals, providingthefoundationforfurtherinvestigationswherehigh-risk adultsandsolidorgantransplantpatientsareenrolled(PhaseIII, NCT06067230).479 Meanwhile,comparedtomRNA-1345,the developmentofmRNA-1010forseasonalinfluenzaisprogressing atafasterpace,whichhassuccessfullycompletedaPhaseIIItrial with22,510adultsagedover50years(NCT05566639).mRNAbasedimmunotherapieshavealsobeenextensivelyresearchedfor antibacterialandanti-parasiteapplications.Ofnote,aggressive fungalinfectionsactuallyresultinahigherannualmortalitythan malaria,yetthereareveryfewmRNA-basedtreatmentsavailable forfungalinfections.Weaimtoincreaseawarenessofthepotential ofmRNA-basedtherapiesfortreatingfungaldiseases.480
Inthecontextofantitumorimmunotherapy,increasingmRNA vaccineshasenteredtheclinic.Forexample,mRNA-4157encodes upto34patient-specifictumorneoantigensisusedincombinationwithPembrolizumabforthetreatmentofmelanoma,which hasenteredPhaseIIbclinicaltrial(NCT03897881).481 Presently,the primaryfocusofresearchliesintheidentificationanddesignof mRNAsequencesthattargetspecificcancerantigensforthe purposeofachievingpersonalizedcancermRNAvaccinetherapy. Furthermore,whilethemajorityofexistingcancermRNAvaccines aredesignedfortherapeuticpurposesratherthanpreventive measures,thereisalsosignificantpotentialforprophylacticcancer mRNAvaccines.181 Giventhedesign flexibilityandadaptabilityof mRNA,thedevelopmentofpersonalizedcancermRNAvaccinesto optimizeantitumoreffectsbasedondiversetumortypesand individualpatientvariationsrepresentsacrucialavenueforfuture advancement.482
ItshouldbementionedthatmRNA-basedimmunotherapynot onlyhasthepotentialtoenhanceimmuneresponsesagainsta widerangeofinfectiousdiseasesandcancers,butalsooffersthe possibilityofmodulatingtheimmuneresponseforthetreatment ofautoimmuneconditions.mRNAtherapeuticsdesignedfor autoimmunediseasescanbetailoredtoencodedisease-specific antigensorimmunosuppressivecytokines.Forinstance,the mRNA-6231encodingHSA-IL2m,intendedforthetreatmentof autoimmunedisorders,hasenteredPhaseIclinicaltrial (NCT04916431).221
Incontrasttoimmunotherapywheretheincorporationof adjuvantsisimperative,itisofvitalimportancefornonimmunotherapytomitigatetheimmunogenicityofmRNAdrugs andtoamplifytheexpressionofencodedtargetproteins.483 mRNA-basedtherapeuticsfunctiontoreplenishdeficientproteins orsubstituteabnormalproteinsthatexhibitdiminishedfunctionality/activity.Forexample,mRNAtherapiesforOTCD(ARCT-810, PhaseII,NCT05526066;MRT5201,PhaseI/II,NCT03767270),PA (mRNA-3927,PhaseI/II,NCT04159103),MMA(mRNA-3705,Phase
I/II,NCT05295433),andmyocardialinfarction(AZD8601,PhaseIIa, NCT03370887)haveenteredclinicaltrials(Table 2).
Inthisreview,wesummarizethepreclinicalandclinical progressesofmRNAdrugsinbothimmunotherapyandnonimmunotherapy,andhighlighttheimportanceoffocusingon host-specificvariationsformaximizedefficacyandsafety. Althoughintheearlystagesofdevelopment,thetherapeutic useofmRNAhasdemonstratedgreatpotentialincombating multiplediseases.484 ThemRNAdrugsdescribedinthisreview primarilyencompasstraditionalIVTmRNA.However,asmRNA technologyconstantlyinnovatingandadvancing,otherformsof mRNAdrugs,suchassaRNA,trans-amplifyingmRNA(taRNA),and circRNA,holdimmenseapplicability.Itisworthnotingthat successfulclinicalimplementationofthesenext-generationmRNA drugsrequirestheinvolvementofsuitabledeliveryvehiclesand furthermodificationstothemRNAmoleculeitselfforbetter tolerabilityandefficacy.485
ACKNOWLEDGEMENTS
ThisworkwassupportedbytheNationalKeyR&DProgramofChina (2023YFC340200),theNationalNaturalScienceFoundationofChina(No.82404520, 82273862),theChinaPostdoctoralScienceFoundation(2024M752834),andthe ChinaNationalPostdoctoralProgramforInnovativeTalents(BX20230321).
AUTHORCONTRIBUTIONS
Conceptualization:YingyingShi.Literaturecollection:YingyingShiandMeixingShi. Resources:YiWang.Writing originaldraft:YingyingShiandMeixingShi.Writing reviewandediting:YingyingShiandMeixingShi.Visualization:YingyingShiand MeixingShi.Supervision:YiWangandJianYou.Fundingacquisition:JianYouand YingyingShi.Allauthorshavereadandapprovedthearticle.
ADDITIONALINFORMATION
Competinginterests: Theauthorsdeclarenocompetinginterests.
REFERENCES
1.Muslimov,A.etal.ThedualroleoftheinnateimmunesystemintheeffectivenessofmRNAtherapeutics. Int.J.Mol.Sci. 24,14820(2023).
2.Bonelli,M.etal.AdditionalheterologousversushomologousboostervaccinationinimmunosuppressedpatientswithoutSARS-CoV-2antibodyseroconversionafterprimarymRNAvaccination:arandomisedcontrolledtrial. Ann.Rheum. Dis. 81,687–694(2022).
3.Mrak,D.etal.HeterologousvectorversushomologousmRNACOVID-19booster vaccinationinnon-seroconvertedimmunosuppressedpatients:arandomized controlledtrial. Nat.Commun. 13,5362(2022).
4.Brenner,S.,Jacob,F.&Meselson,M.Anunstableintermediatecarryinginformationfromgenestoribosomesforproteinsynthesis. Nature 190,576–581 (1961).
5.Wolff,J.A.etal.Directgenetransferintomousemuscleinvivo. Science 247, 1465–1468(1990).
6.Hou,X.,Zaks,T.,Langer,R.&Dong,Y.LipidnanoparticlesformRNAdelivery. Nat.Rev.Mater. 6,1078–1094(2021).
7.DukeUniversity.Asafetyandfeasibilitystudyofactiveimmunotherapyin patientswithmetastaticprostatecarcinomausingautologousdendriticcells pulsedwithRNAencodingprostatespecificantigen,PSA. https:// clinicaltrials.gov/study/NCT00004211 (2013).
8.Heiser,A.etal.Autologousdendriticcellstransfectedwithprostate-specific antigenRNAstimulateCTLresponsesagainstmetastaticprostatetumors. J.Clin. Investig. 109,409–417(2002).
9.UniversityHospitalTuebingen.Inductionofspecificimmuneresponsesagainst melanoma-associatedantigensinvivobyintradermalvaccinationwithstabilizedtumormRNA aclinicalPhaseI/IItrial. https://clinicaltrials.gov/study/ NCT00204607 (2007).
10.Weide,B.etal.Directinjectionofprotamine-protectedmRNA:resultsofaphase 1/2vaccinationtrialinmetastaticmelanomapatients. J.Immunother. 32, 498–507(2009).
11.Karikó,K.,Buckstein,M.,Ni,H.&Weissman,D.SuppressionofRNArecognition bytoll-likereceptors:theimpactofnucleosidemodificationandtheevolutionaryoriginofRNA. Immunity 23,165–175(2005).
12.Dolgin,E.ThetangledhistoryofmRNAvaccines. Nature 597,318–324(2021).
13.Alberer,M.etal.SafetyandimmunogenicityofamRNArabiesvaccinein healthyadults:anopen-label,non-randomised,prospective, first-in-human phase1clinicaltrial. Lancet 390,1511–1520(2017).
14.Lu,C.etal.Safety,Immunogenicity,andmechanismofarotavirusmRNA-LNP vaccineinmice. Viruses 16,211(2024).
15.Yang,L.,Tang,L.,Zhang,M.&Liu,C.Recentadvancesinthemoleculardesign anddeliverytechnologyofmRNAforvaccinationagainstinfectiousdiseases. Front.Immunol. 13,896958(2022).
16.Han,G.etal.AdvancesinmRNAtherapeuticsforcancerimmunotherapy:from modificationtodelivery. Adv.DrugDeliv.Rev. 199,114973(2023).
17.Boreikaitė,V.&Passmore,L.A.3′-endprocessingofeukaryoticmRNA: machinery,regulation,andimpactongeneexpression. Annu.Rev.Biochem. 92, 199–225(2023).
18.Shen,G.,Liu,J.,Yang,H.,Xie,N.&Yang,Y.mRNAtherapies:pioneeringanew erainraregeneticdiseasetreatment. J.ControlRelease 369,696–721(2024).
19.Chaudhary,N.,Weissman,D.&Whitehead,K.A.mRNAvaccinesforinfectious diseases:principles,deliveryandclinicaltranslation. Nat.Rev.DrugDiscov. 20, 817–838(2021).
20.Kwon,S.,Kwon,M.,Im,S.,Lee,K.&Lee,H.mRNAvaccines:themostrecent clinicalapplicationsofsyntheticmRNA. Arch.Pharm.Res. 45,245–262(2022).
21.Bourke,A.M.,Schwarz,A.&Schuman,E.M.De-centralizingthecentraldogma: mRNAtranslationinspaceandtime. Mol.Cell 83,452–468(2023).
22.Bai,C.,Wang,C.&Lu,Y.NovelvectorsandadministrationsformRNAdelivery. Small 19,2303713(2023).
23.Su,L.-J.etal.DeliveryofmRNAforcancertherapy:progressandprospects. NanoToday 53,102013(2023).
24.Ye,Z.etal.ThemRNAvaccinerevolution:COVID-19haslaunchedthefutureof vaccinology. ACSNano 17,15231–15253(2023).
25.Pan,S.,Fan,R.,Han,B.,Tong,A.&Guo,G.ThepotentialofmRNAvaccinesin cancernanomedicineandimmunotherapy. TrendsImmunol. 45,20–31(2024).
26.Metkar,M.,Pepin,C.S.&Moore,M.J.Tailormade:theartoftherapeuticmRNA design. Nat.Rev.DrugDiscov. 23,67–83(2024).
27.Kawamoto,Y.,Wu,Y.,Takahashi,Y.&Takakura,Y.Developmentofnucleicacid medicinesbasedonchemicaltechnology. Adv.DrugDeliv.Rev. 199,114872 (2023).
28.Cao,Q.,Fang,H.&Tian,H.mRNAvaccinescontributetoinnateandadaptive immunitytoenhanceimmuneresponseinvivo. Biomaterials 310,122628 (2024).
29.Sun,H.,Li,K.,Liu,C.&Yi,C.Regulationandfunctionsofnon-m6AmRNA modifications. Nat.Rev.Mol.CellBiol. 24,714–731(2023).
30.Rodell,R.,Robalin,N.&Martinez,N.M.WhyUmatters:detectionandfunctions ofpseudouridinemodificationsinmRNAs. TrendsBiochem.Sci. 49,12–27 (2024).
31.Lin,S.&Kuang,M.RNAmodification-mediatedmRNAtranslationregulationin livercancer:mechanismsandclinicalperspectives. Nat.Rev.Gastroenterol. Hepatol. 21,267–281(2024).
32.Flamand,M.N.,Tegowski,M.&Meyer,K.D.TheproteinsofmRNAmodification: writers,readers,anderasers. Annu.Rev.Biochem. 92,145–173(2023).
33.Qu,Y.etal.Advancednano-basedstrategiesformRNAtumorvaccine. Acta Pharm.Sin.B 14,170–189(2024).
34.Fan,Y.etal.Encodinganddisplaytechnologiesforcombinatoriallibrariesin drugdiscovery:thecomingofagefrombiologytotherapy. ActaPharm.Sin.B 14,3362–3384(2024).
35.Liu,X.,Huang,P.,Yang,R.&Deng,H.mRNAcancervaccines:constructionand boostingstrategies. ACSNano 17,19550–19580(2023).
36.Son,S.,Park,M.,Kim,J.&Lee,K.ACEmRNA(additionalchimericelement incorporatedIVTmRNA)forenhancingproteinexpressionbymodulating immunogenicity. Adv.Sci. 11,2307541(2024).
37.Kim,Y.-K.RNAtherapy:richhistory,variousapplicationsandunlimitedfuture prospects. Exp.Mol.Med. 54,455–465(2022).
38.Wang,C.&Yuan,F.AcomprehensivecomparisonofDNAandRNAvaccines. Adv.DrugDeliv.Rev. 210,115340(2024).
39.Minnaert,A.-K.etal.Strategiesforcontrollingtheinnateimmuneactivityof conventionalandself-amplifyingmRNAtherapeutics:gettingthemessage across. Adv.DrugDeliv.Rev. 176,113900(2021).
40.Liu,C.-X.&Chen,L.-L.CircularRNAs:characterization,cellularroles,andapplications. Cell 185,2016–2034(2022).
41.Silva-Pilipich,N.,Beloki,U.,Salaberry,L.&Smerdou,C.Self-amplifyingRNA:a secondrevolutionofmRNAvaccinesagainstCOVID-19. Vaccines 12,318(2024).
42.Krähling,V.etal.Self-amplifyingRNAvaccineprotectsmiceagainstlethalEbola virusinfection. Mol.Ther. 31,374–386(2023).
43.McGee,J.E.etal.CompletesubstitutionwithmodifiednucleotidesinselfamplifyingRNAsuppressestheinterferonresponseandincreasespotency. Nat. Biotechnol https://doi.org/10.1038/s41587-024-02306-z (2024).
44.Kim,J.,Eygeris,Y.,Gupta,M.&Sahay,G.Self-assembledmRNAvaccines. Adv. DrugDeliv.Rev. 170,83–112(2021).
45.Comes,J.D.G.,Pijlman,G.P.&Hick,T.A.H.RiseoftheRNAmachines selfampli fi cationinmRNAvaccinedesign. TrendsBiotechnol. 41 ,1417 –1429 (2023).
46.Androsavich,J.R.FrameworksfortransformationalbreakthroughsinRNA-based medicines. Nat.Rev.DrugDiscov. 23,421–444(2024).
47.Blakney,A.K.,Ip,S.&Geall,A.J.Anupdateonself-amplifyingmRNAvaccine development. Vaccines 9,97(2021).
48.Dastgerdi,N.K.etal.Chargeneutralizedpoly(β-aminoester)polyplexnanoparticlesfordeliveryofself-amplifyingRNA. NanoscaleAdv. 6,1409–1422(2024).
49.Hu,C.etal.AmplifyingmRNAvaccines:potentialversatilemagiciansfor oncotherapy. Front.Immunol. 14,1261243(2023).
50.Young,T.L.,Wang,K.C.,Varley,A.J.&Li,B.ClinicaldeliveryofcircularRNA: lessonslearnedfromRNAdrugdevelopment. Adv.DrugDeliv.Rev. 197,114826 (2023).
51.Hwang,H.J.&Kim,Y.K.MolecularmechanismsofcircularRNAtranslation. Exp. Mol.Med. 56,1272–1280(2024).
52.Unti,M.J.&Jaffrey,S.R.HighlyefficientcellularexpressionofcircularmRNA enablesprolongedproteinexpression. CellChem.Biol. 31,163–176(2024).
53.Zhang,F.,Li,L.&Fan,Z.circRNAsandtheirrelationshipwithbreastcancer:a review. WorldJ.Surg.Oncol. 20,373(2022).
54.Niu,D.,Wu,Y.&Lian,J.CircularRNAvaccineindiseasepreventionandtreatment. SignalTransduct.Target.Ther. 8,341(2023).
55.Zhang,J.&Chen,J.CircularmRNAs:MorestableRNAsleadtomorepersistent proteinexpression. Mol.Ther.NucleicAcids 30,357–358(2022).
56.Liu,T.etal.Components,formulations,deliveries,andcombinationsoftumor vaccines. ACSNano 18,18801–18833(2024).
57.Shui,M.etal.Engineeringpolyphenol-basedcarriersfornucleicaciddelivery. Theranostics 13,3204–3223(2023).
58.Puri,S.etal.Evolutionofnanomedicineformulationsfortargeteddeliveryand controlledrelease. Adv.DrugDeliv.Rev. 200,114962(2023).
59.Sun,B.etal.EngineeringnanoparticletoolkitsformRNAdelivery. Adv.Drug Deliv.Rev. 200,115042(2023).
60.Huayamares,S.G.,Loughrey,D.,Kim,H.,Dahlman,J.E.&Sorscher,E.J.Nucleic acid-baseddrugsforpatientswithsolidtumours. Nat.Rev.Clin.Oncol. 21, 407–427(2024).
61.Saiding,Q.etal.Nano-biointeractionsinmRNAnanomedicine:challengesand opportunitiesfortargetedmRNAdelivery. Adv.DrugDeliv.Rev. 203,115116 (2023).
62.Malla,R.,Srilatha,M.,Farran,B.&Nagaraju,G.P.mRNAvaccinesandtheir deliverystrategies:ajourneyfrominfectiousdiseasestocancer. Mol.Ther. 32, 13–31(2024).
63.delosReyes,E.etal.Single-doseAAV9-CLN6genetransferslowsthedeclinein motorandlanguagefunctioninvariantlateinfantileneuronalceroidlipofuscinosis6:interimresultsfromphase1/2trial. Mol.Genet.Metab. 132,S32–S33 (2021).
64.Gu,J.etal.Buildingabettersilverbullet:currentstatusandperspectivesofnon‐viralvectorsformRNAvaccines. Adv.Healthc.Mater. 13,2302409(2024).
65.Masarwy,R.,Stotsky-Oterin,L.,Elisha,A.,Hazan-Halevy,I.&Peer,D.Deliveryof nucleicacidbasedgenomeeditingplatformsvialipidnanoparticles:clinical applications. Adv.DrugDeliv.Rev. 211,115359(2024).
66.Jiang,Z.,Xu,Y.,Du,G.&Sun,X.Emergingadvancesindeliverysystemsfor mRNAcancervaccines. J.ControlRelease 370,287–301(2024).
67.Kong,B.,Kim,Y.,Kim,E.H.,Suk,J.S.&Yang,Y.mRNA:apromisingplatformfor cancerimmunotherapy. Adv.DrugDeliv.Rev. 199,114993(2023).
68.Zhong,Y.,Du,S.&Dong,Y.mRNAdeliveryincancerimmunotherapy. Acta Pharm.Sin.B 13,1348–1357(2023).
69.Yang,W.,Mixich,L.,Boonstra,E.&Cabral,H.Polymer-basedmRNAdelivery strategiesforadvancedtherapies. Adv.Healthc.Mater. 12,2202688(2023).
70.Percec,V.&Sahoo,D.FromFrank–Kasper,quasicrystals,andbiologicalmembranemimicstoreprogramminginvivothelivingfactorytotargetthedelivery ofmRNAwithone-componentamphiphilicJanusdendrimers. Biomacromolecules 25,1353–1370(2024).
71.Zhai,J.,Fong,C.,Tran,N.&Drummond,C.J.Non-lamellarlyotropicliquid crystallinelipidnanoparticlesforthenextgenerationofnanomedicine. ACS Nano 13,6178–6206(2019).
72.Iscaro,J.etal.Lyotropicliquidcrystallinephasenanostructureandcholesterol enhancelipidnanoparticlemediatedmRNAtransfectioninmacrophages. Adv. Funct.Mater. https://doi.org/10.1002/adfm.202405286 (2024).
73.Borrajo,M.L.etal.IonizablenanoemulsionsforRNAdeliveryintothecentral nervoussystem – importanceofdiffusivity. J.ControlRelease 372,295–303 (2024).
74.Huang,T.etal.Lipidnanoparticle-basedmRNAvaccinesincancers:current advancesandfutureprospects. Front.Immunol. 13,922301(2022).
75.Wang,J.,Fang,Y.,Luo,Z.,Wang,J.&Zhao,Y.EmergingmRNAtechnologyfor liverdiseasetherapy. ACSNano 18,17378–17406(2024).
76.DeJulius,C.R.etal.EngineeringapproachesforRNA-basedandcell-based osteoarthritistherapies. Nat.Rev.Rheumatol. 20,81–100(2024).
77.Ji,P.etal.Modularhydrogelvaccineforprogrammableandcoordinateelicitationofcancerimmunotherapy. Adv.Sci. 10,2301789(2023).
78.Neshat,S.Y.etal.PolymericnanoparticlegelforintracellularmRNAdeliveryand immunologicalreprogrammingoftumors. Biomaterials 300,122185(2023).
79.Huang,P.,Deng,H.,Wang,C.,Zhou,Y.&Chen,X.Cellulartraffickingofnanotechnology‐mediatedmRNAdelivery. Adv.Mater. 36,2307822(2024).
80.Jeong,M.,Lee,Y.,Park,J.,Jung,H.&Lee,H.Lipidnanoparticles(LNPs)forinvivo RNAdeliveryandtheirbreakthroughtechnologyforfutureapplications. Adv. DrugDeliv.Rev. 200,114990(2023).
81.Neary,M.T.etal.NebuliseddeliveryofRNAformulationstothelungs:From aerosoltocytosol. J.ControlRelease 366,812–833(2024).
82.Wang,Z.etal.ExosomesdecoratedwitharecombinantSARS-CoV-2receptorbindingdomainasaninhalableCOVID-19vaccine. Nat.Biomed.Eng. 6,791–805 (2022).
83.Liu,M.,Hu,S.,Yan,N.,Popowski,K.D.&Cheng,K.Inhalableextracellularvesicle deliveryofIL-12mRNAtotreatlungcancerandpromotesystemicimmunity. Nat.Nanotechnol. 19,565–575(2024).
84.Cotto,H.A.M.etal.Cationic-motif-modifiedexosomesformRNAdeliveryto retinalphotoreceptors. J.Mater.Chem.B 12,7384–7400(2024).
85.Esih,H.etal.Mucoadhesive filmfororaldeliveryofvaccinesforprotectionof therespiratorytract. J.ControlRelease 371,179–192(2024).
86.Luo,P.-K.etal.pH-responsive β-glucans-complexedmRNAinLNPsasanoral vaccineforenhancingcancerimmunotherapy. Adv.Mater. 36,2404830(2024).
87.Wang,K.etal.DeliveryofmRNAvaccinesandanti-PDL1siRNAthroughnoninvasivetranscutaneousrouteeffectivelyinhibitstumorgrowth. Compos.PartB Eng. 233,109648(2022).
88.Gao,K.etal.InuterodeliveryofmRNAtotheheart,diaphragmandmusclewith lipidnanoparticles. Bioact.Mater. 25,387–398(2023).
89.Suzuki,Y.,Katsurada,Y.&Hyodo,K.Differencesandsimilaritiesoftheintravenouslyadministeredlipidnanoparticlesinthreeclinicaltrials:potentiallinkage betweenlipidnanoparticlesandextracellularvesicles. Mol.Pharm. 20, 4883–4892(2023).
90.Zimmermann,C.M.etal.SpraydryingsiRNA-lipidnanoparticlesfordrypowder pulmonarydelivery. J.ControlRelease 351,137–150(2022).
91.Zai,W.etal.OptimizedRNAinterferencetherapeuticscombinedwith interleukin-2mRNAfortreatinghepatitisBvirusinfection. SignalTransduct. Target.Ther. 9,150(2024).
92.Albertsen,C.H.etal.Theroleoflipidcomponentsinlipidnanoparticlesfor vaccinesandgenetherapy. Adv.DrugDeliv.Rev. 188,114416(2022).
93.Han,X.etal.AnionizablelipidtoolboxforRNAdelivery. Nat.Commun. 12,7233 (2021).
94.Han,J.etal.Lipidnanoparticle-basedmRNAdeliverysystemsforcancer immunotherapy. NanoConverg. 10,36(2023).
95.Kulkarni,J.A.,Witzigmann,D.,Leung,J.,Tam,Y.Y.C.&Cullis,P.R.Ontheroleof helperlipidsinlipidnanoparticleformulationsofsiRNA. Nanoscale 11, 21733–21739(2019).
96.Cárdenas,M.,Campbell,R.A.,Arteta,M.Y.,Lawrence,M.J.&Sebastiani,F. Reviewofstructuraldesignguidingthedevelopmentoflipidnanoparticlesfor nucleicaciddelivery. Curr.Opin.ColloidInterfaceSci. 66,101705(2023).
97.Su,K.etal.Reformulatinglipidnanoparticlesfororgan-targetedmRNAaccumulationandtranslation. Nat.Commun. 15,5659(2024).
98.Gyanani,V.&Goswami,R.Keydesignfeaturesoflipidnanoparticlesandelectrostaticcharge-basedlipidnanoparticletargeting. Pharmaceutics 15,1184 (2023).
99.Han,X.etal.Fastandfacilesynthesisofamidine-incorporateddegradablelipids forversatilemRNAdeliveryinvivo. Nat.Chem https://doi.org/10.1038/s41557024-01557-2 (2024).
100.Carrasco,M.J.etal.IonizationandstructuralpropertiesofmRNAlipidnanoparticlesinfluenceexpressioninintramuscularandintravascularadministration. Commun.Biol. 4,956(2021).
101.Uchida,S.,Lau,C.Y.J.,Oba,M.&Miyata,K.Polyplexdesignsforimprovingthe stabilityandsafetyofRNAtherapeutics. Adv.DrugDeliv.Rev. 199,114972 (2023).
102.Jörgensen,A.M.,Wibel,R.&Bernkop-Schnürch,A.Biodegradablecationicand ionizablecationiclipids:aroadmapforsaferpharmaceuticalexcipients. Small 19,2206968(2023).
103.Ripoll,M.etal.AnimidazolemodifiedlipidconfersenhancedmRNA-LNPstabilityandstrongimmunizationpropertiesinmiceandnon-humanprimates. Biomaterials 286,121570(2022).
104.Tang,Z.,Yu,F.,Hsu,J.C.,Shi,J.&Cai,W.Soybeanoil-derivedlipidsforefficient mRNAdelivery. Adv.Mater. 36,2302901(2024).
105.Yuan,Z.,Yan,R.,Fu,Z.,Wu,T.&Ren,C.Impactofphysicochemicalpropertieson biologicaleffectsoflipidnanoparticles:aretheycompletelysafe. Sci.Total Environ. 927,172240(2024).
106.Papi,M.,Pozzi,D.,Palmieri,V.&Caracciolo,G.Principlesforoptimizationand validationofmRNAlipidnanoparticlevaccinesagainstCOVID-19using3D bioprinting. NanoToday 43,101403(2022).
107.Lu,J.etal.Screeninglibrariestodiscovermoleculardesignprinciplesforthe targeteddeliveryofmRNAwithone-componentionizableamphiphilicJanus dendrimersderivedfromplantphenolicacids. Pharmaceutics 15,1572(2023).
108.Seo,Y.etal.Recentprogressoflipidnanoparticles-basedlipophilicdrug delivery:focusonsurfacemodifications. Pharmaceutics 15,772(2023).
109.Li,W.,Wang,C.,Zhang,Y.&Lu,Y.Lipidnanocarrier‐basedmRNAtherapy: challengesandpromiseforclinicaltransformation. Small 20,2310531(2024).
110.Lin,Z.,Zou,Z.,Pu,Z.,Wu,M.&Zhang,Y.ApplicationofmicrofluidictechnologiesonCOVID-19diagnosisanddrugdiscovery. ActaPharm.Sin.B 13, 2877–2896(2023).
111.Zhang,H.etal.Microfluidicsfornano-drugdeliverysystems:fromfundamentals toindustrialization. ActaPharm.Sin.B 13,3277–3299(2023).
112.Fan,Y.etal.Automatedhigh-throughputpreparationandcharacterizationof oligonucleotide-loadedlipidnanoparticles. Int.J.Pharm. 599,120392(2021).
113.Wang,H.etal.Combinedhelical-blade-strengthenedco-flowfocusingand high-throughputscreeningforthesynthesisofhighlyhomogeneousnanoliposomes. NanoToday 56,102301(2024).
114.Chehelgerdi,M.&Chehelgerdi,M.TheuseofRNA-basedtreatmentsinthe field ofcancerimmunotherapy. Mol.Cancer 22,106(2023).
115.Han,X.etal.Adjuvantlipidoid-substitutedlipidnanoparticlesaugmentthe immunogenicityofSARS-CoV-2mRNAvaccines. Nat.Nanotechnol. 18, 1105–1114(2023).
116.Gote,V.etal.AcomprehensivereviewofmRNAvaccines. Int.J.Mol.Sci. 24, 2700(2023).
117.Yang,W.etal.Nanoformulationstargetingimmunecellsforcancertherapy: mRNAtherapeutics. Bioact.Mater. 23,438–470(2023).
118.dePicciotto,S.etal.SelectiveactivationandexpansionofregulatoryTcells usinglipidencapsulatedmRNAencodingalong-actingIL-2mutein. Nat. Commun. 13,3866(2022).
119.Xu,L.etal.NewtherapeuticstrategiesbasedonIL-2tomodulateTregcellsfor autoimmunediseases. Int.Immunopharmacol. 72,322–329(2019).
120.Mackensen,A.etal.958BNT211:aphaseI/IItrialtoevaluatesafetyand effi cacyofCLDN6CAR-Tcellsandvaccine-mediatedinvivoexpansionin patientswithCLDN6-positiveadvancedsolidtumors. J.Immunother.Cancer 9 , A1008(2021).
121.Granit,V.etal.SafetyandclinicalactivityofautologousRNAchimericantigen receptorT-celltherapyinmyastheniagravis(MG-001):aprospective,multicentre,open-label,non-randomisedphase1b/2astudy. LancetNeurol. 22, 578–590(2023).
122.Hussain,A.etal.mRNAvaccinesforCOVID-19anddiversediseases. J.Control Release 345,314–333(2022).
123.Lamb,Y.N.BNT162b2mRNACOVID-19vaccine: firstapproval. Drugs 81, 495–501(2021).
124.Huang,X.etal.ThelandscapeofmRNAnanomedicine. Nat.Med. 28,2273–2287 (2022).
125.WorldHealthOrganization.COVID-19vaccinetrackerandlandscape. https:// www.who.int/publications/m/item/draft-landscape-of-covid-19-candidatevaccines (2023).
126.Li,Y.etal.Ananoparticlevaccinedisplayingvaricella-zostervirusgEantigen inducesasuperiorcellularimmuneresponsethanalicensedvaccineinmice andnon-humanprimates. Front.Immunol. 15,1419634(2024).
127.Yang,S.etal.IdentificationandcharacterizationofVaricellaZosterViruscircular RNAinlyticinfection. Nat.Commun. 15,4932(2024).
128.Huang,L.etal.HerpeszostermRNAvaccineinducessuperiorvaccineimmunity overlicensedvaccineinmiceandrhesusmacaques. Emerg.MicrobesInfect. 13, 2309985(2024).
129.Meissner,H.C.Disarmingtherespiratorysyncytialvirus. NewEngl.J.Med. 383, 487–488(2020).
130.Nam,H.H.&Ison,M.G.respiratorysyncytialvirus. Semin.Respir.Crit.CareMed. 42,788–799(2021).
131.Shaw,C.A.etal.Safety,tolerability,andimmunogenicityofanmRNA-based respiratorysyncytialvirusvaccineinhealthyyoungadultsinaphase1clinical trial. J.Infect.Dis https://doi.org/10.1093/infdis/jiae035 (2024).
132.Qiu,X.etal.DevelopmentofmRNAvaccinesagainstrespiratorysyncytialvirus (RSV). CytokineGrowthFactorRev. 68,37–53(2022).
133.Hutchinson,E.C.Influenzavirus. TrendsMicrobiol. 26,809–810(2018).
134.Lee,I.T.etal.Safetyandimmunogenicityofaphase1/2randomizedclinical trialofaquadrivalent,mRNA-basedseasonalinfluenzavaccine(mRNA-1010)in healthyadults:interimanalysis. Nat.Commun. 14,3631(2023).
135.ModernaTX,Inc.Aphase3,randomized,observer-blind,active-controlledstudy toevaluatethesafetyandefficacyofmRNA-1010candidateseasonalinfluenza vaccineinadults50yearsandolder. https://clinicaltrials.gov/study/ NCT05566639 (2024).
136.ModernaTX,Inc.Aphase3,randomized,stratified,observer-blind,activecontrolledstudytoevaluatetheimmunogenicity,reactogenicityandsafetyof mRNA-1010seasonalinfluenzavaccineinadults18yearsandolder. https:// clinicaltrials.gov/study/NCT05827978 (2024).
137.Wu,K.etal.Characterizationofhumoralandcellularimmunologicresponsesto anmRNA-basedhumancytomegalovirusvaccinefromaphase1trialofhealthy adults. J.Virol. 98,e01603–e01623(2024).
138.Fierro,C.etal.SafetyandimmunogenicityofamessengerRNA-basedcytomegalovirusvaccineinhealthyadults:resultsfromaphase1,randomized, clinicaltrial. J.Infect.Dis https://doi.org/10.1093/infdis/jiae114 (2024).
139.Hu,X.etal.HumancytomegalovirusmRNA-1647vaccinecandidateelicits potentandbroadneutralizationandhigherantibody-dependentcellularcytotoxicityresponsesthanthegb/mf59vaccine. J.Infect.Dis https://doi.org/ 10.1093/infdis/jiad593 (2024).
140.ModernaTX,Inc.Aphase3,randomized,observer-blind,placebo-controlled studytoevaluatetheefficacy,safety,andimmunogenicityofmRNA-1647 cytomegalovirus(CMV)vaccineinhealthyparticipants16to40yearsofage. https://clinicaltrials.gov/study/NCT05085366 (2023).
141.Sivars,L.etal.Cell-freehumanpapillomavirusDNAisasensitivebiomarkerfor prognosisandforearlydetectionofrelapseinlocallyadvancedcervicalcancer. Clin.CancerRes. 30,2764–2771(2024).
142.Malagón,T.,Franco,E.L.,Tejada,R.&Vaccarella,S.EpidemiologyofHPVassociatedcancerspast,presentandfuture:towardspreventionandelimination. Nat.Rev.Clin.Oncol. 21,522–538(2024).
143.Lee,S.etal.mRNA-HPVvaccineencodingE6andE7improvestherapeutic potentialforHPV-mediatedcancersviasubcutaneousimmunization. J.Med. Virol. 95,e29309(2023).
144.Xiang,Y.etal.LMP2-mRNAlipidnanoparticlesensitizesEBV-relatedtumorsto anti-PD-1therapybyreversingTcellexhaustion. J.Nanobiotechnol. 21,324 (2023).
145.Zhao,G.-X.etal.mRNA‐basedvaccinestargetingtheT-cellepitope-richdomain ofEpsteinBarrviruslatentproteinselicitrobustanti-tumorimmunityinmice. Adv.Sci. 10,2302116(2023).
146.Armbruster,N.,Jasny,E.&Petsch,B.AdvancesinRNAvaccinesforpreventive indications:acasestudyofavaccineagainstrabies. Vaccines 7,132(2019).
147.Aleem,M.T.,Munir,F.,Shakoor,A.&Gao,F.mRNAvaccinesagainstinfectious diseasesandfuturedirection. Int.Immunopharmacol. 135,112320(2024).
148.Li,M.etal.AnmRNAvaccineagainstrabiesprovidesstronganddurableprotectioninmice. Front.Immunol. 14,1288879(2023).
149.Long,J.etal.ArabiesmRNAvaccineprovidesarapidandlong-termimmune responseinmice. NanoToday 53,102038(2023).
150.Hellgren,F.etal.UnmodifiedrabiesmRNAvaccineelicitshighcross-neutralizing antibodytitersanddiverseBcellmemoryresponses. Nat.Commun. 14,3713 (2023).
151.Wan,J.etal.Asingleimmunizationwithcore–shellstructuredlipopolyplex mRNAvaccineagainstrabiesinducespotenthumoralimmunityinmiceand dogs. Emerg.MicrobesInfect. 12,2270081(2023).
152.Cao,H.etal.ArabiesmRNAvaccinewithH270Pmutationinitsglycoprotein inducesstrongcellularandhumoralimmunity. Vaccine 42,1116–1121(2024).
153.Gómez,C.E.etal.EnhancementoftheHIV-1-specificimmuneresponseinduced byanmRNAvaccinethroughboostingwithapoxvirusMVAvectorexpressing thesameantigen. Vaccines 9,959(2021).
154.Mu,Z.,Haynes,B.F.&Cain,D.W.HIVmRNAvaccines progressandfuture paths. Vaccines 9,134(2021).
155.Usero,L.etal.ThecombinationofanmRNAimmunogen,aTLR7agonistanda PD1blockingagentenhancesin-vitroHIVT-cellimmuneresponses. Vaccines 11, 286(2023).
156.Leggat,D.J.etal.VaccinationinducesHIVbroadlyneutralizingantibodyprecursorsinhumans. Science 378,eadd6502(2022).
157.Tarrés-Freixas,F.,Clotet,B.,Carrillo,J.&Blanco,J.Nucleicacidvaccinesencoding proteinsandvirus-likeparticlesforHIVprevention. Vaccines 12,298(2024).
158.Zhang,P.etal.Amulticladeenv–gagVLPmRNAvaccineelicitstier-2HIV-1neutralizingantibodiesandreducestheriskofheterologousSHIVinfectionin macaques. Nat.Med. 27,2234–2245(2021).
159.Mandal,S.etal.Along-termstablecold-chain-friendlyHIVmRNAvaccine encodingmulti-epitopeviralproteasecleavagesiteimmunogensinducing immunogen-specificprotectiveTcellimmunity. Emerg.MicrobesInfect. 13, 2377606(2024).
160.Esteban,I.etal.IntheEraofmRNAvaccines,isthereanyhopeforHIVfunctional cure? Viruses 13,501(2021).
161.Morris,L.mRNAvaccinesofferhopeforHIV. Nat.Med. 27,2082–2084(2021).
162.Wu,F.,Qin,M.,Wang,H.&Sun,X.Nanovaccinestocombatvirus-relateddiseases. WileyInterdiscip.Rev.Nanomed.Nanobiotechnol. 15,e1857(2023).
163.Crunkhorn,S.MonkeypoxmRNAvaccineprotectsmiceandmacaques. Nat.Rev. DrugDiscov. 23,251(2024).
164.Shah,M.etal.Decipheringtheimmunogenicityofmonkeypoxproteinsfor designingthepotentialmRNAvaccine. ACSOmega 8,43341–43355(2023).
165.Sang,Y.etal.MonkeypoxvirusquadrivalentmRNAvaccineinducesimmune responseandprotectsagainstvacciniavirus. SignalTransduct.Target.Ther. 8, 172(2023).
166.Hou,F.etal.mRNAvaccinesencodingfusionproteinsofmonkeypoxvirus antigensprotectmicefromvacciniaviruschallenge. Nat.Commun. 14,5925 (2023).
167.Zuiani,A.etal.AmultivalentmRNAmonkeypoxvirusvaccine(BNT166)protects miceandmacaquesfromorthopoxvirusdisease. Cell 187,1363–1373(2024).
168.Tian,Y.etal.AnMPXVmRNA-LNPvaccinecandidateelicitsprotectiveimmune responsesagainstmonkeypoxvirus. Chin.Chem.Lett. 35,109270(2024).
169.Su,C.etal.AquadrivalentmRNAimmunizationelicitspotentimmune responsesagainstmultipleorthopoxviralantigensandneutralizationofmonkeypoxvirusinrodentmodels. Vaccines 12,385(2024).
170.Tadic,S.&Martínez,A.Nucleicacidcancervaccinestargetingtumorrelated angiogenesis.CouldmRNAvaccinesconstituteagamechanger? Front.Immunol. 15,1433185(2024).
171.Conry,R.M.etal.CharacterizationofamessengerRNApolynucleotidevaccine vector. CancerRes 55,1397–1400(1995).
172.Sobhani,N.etal.Therapeuticcancervaccines:frombiologicalmechanismsand engineeringtoongoingclinicaltrials. CancerTreat.Rev. 109,102429(2022).
173.Yuan,Y.,Gao,F.,Chang,Y.,Zhao,Q.&He,X.AdvancesofmRNAvaccinein tumor:amazeofopportunitiesandchallenges. Biomark.Res. 11,6(2023).
174.Loquai,C.etal.549AnRNA-lipoplex(RNA-LPX)vaccinedemonstratesstrong immunogenicityandpromisingclinicalactivityinaphaseItrialincutaneous melanomapatientswithnoevidenceofdiseaseattrialinclusion. J.Immunother. Cancer 9,A579(2021).
175.Sahin,U.etal.AnRNAvaccinedrivesimmunityincheckpoint-inhibitor-treated melanoma. Nature 585,107–112(2020).
176.Yao,R.,Xie,C.&Xia,X.RecentprogressinmRNAcancervaccines. Hum.Vaccin Immunother. 20,2307187(2024).
177.Nierengarten,M.B.MessengerRNAvaccineadvancesprovidetreatmentpossibilitiesforcancer. Cancer 128,213–214(2022).
178.Sayour,E.J.,Boczkowski,D.,Mitchell,D.A.&Nair,S.K.CancermRNAvaccines: clinicaladvancesandfutureopportunities. Nat.Rev.Clin.Oncol. 21,489–500 (2024).
179.Trivedi,V.etal.mRNA-basedprecisiontargetingofneoantigensandtumorassociatedantigensinmalignantbraintumors. GenomeMed. 16,17(2024).
180.Ben-Akiva,E.etal.BiodegradablelipophilicpolymericmRNAnanoparticlesfor ligand-freetargetingofsplenicdendriticcellsforcancervaccination. Proc.Natl. Acad.Sci.USA 120,e2301606120(2023).
181.Liu,Y.,Yan,Q.,Zeng,Z.,Fan,C.&Xiong,W.AdvancesandprospectsofmRNA vaccinesincancerimmunotherapy. Biochim.Biophys.ActaRev.Cancer 1879, 189068(2024).
182.Tian,Y.,Hu,D.,Li,Y.&Yang,L.Developmentoftherapeuticvaccinesforthe treatmentofdiseases. Mol.Biomed. 3,40(2022).
183.Lin,F.etal.Advancingpersonalizedmedicineinbraincancer:exploringtherole ofmRNAvaccines. J.Transl.Med. 21,830(2023).
184.Searchfor:mRNA,Phase:3,4|ListResults|ClinicalTrials.gov. https:// clinicaltrials.gov/search?intr=mRNA&aggFilters=phase:3%204 (2024).
185.Bergstrom,C.,Fischer,N.O.,Kubicek-Sutherland,J.Z.&Stromberg,Z.R.mRNA vaccineplatformstopreventbacterialinfections. TrendsMol.Med. 30,524–526 (2024).
186.Maruggi,G.etal.ImmunogenicityandprotectiveefficacyinducedbyselfamplifyingmRNAvaccinesencodingbacterialantigens. Vaccine 35,361–368 (2017).
187.Pine,M.etal.DevelopmentofanmRNA-lipidnanoparticlevaccineagainstLyme disease. Mol.Ther. 31,2702–2714(2023).
188.ModernaTX,Inc.Aphase1/2,randomized,observer-blind,placebo-controlled, dose-rangingstudytoevaluatethesafetyandimmunogenicityofheptavalent mRNA-1975(SR1-7)andMonovalentmRNA-1982(SR1)inparallelagainstLyme diseaseinhealthyparticipants18through70yearsofage. https:// clinicaltrials.gov/study/NCT05975099 (2023).
189.Matarazzo,L.&Bettencourt,P.J.G.mRNAvaccines:anewopportunityfor malaria,tuberculosisandHIV. Front.Immunol. 14,1172691(2023).
190.Zhou,F.&Zhang,D.Recentadvanceinthedevelopmentoftuberculosisvaccinesinclinicaltrialsandvirus-likeparticle-basedvaccinecandidates. Front. Immunol. 14,1238649(2023).
191.Fan,X.-Y.&Lowrie,D.B.WherearetheRNAvaccinesforTB? Emerg.Microbes Infect. 10,1217–1218(2021).
192.Larsen,S.E.etal.AnRNA-basedvaccineplatformforuseagainstmycobacteriumtuberculosis. Vaccines 11,130(2023).
193.Xu,S.,Yang,K.,Li,R.&Zhang,L.mRNAvaccineera mechanisms,drugplatformandclinicalprospection. Int.J.Mol.Sci. 21,6582(2020).
194.Meulewaeter,S.etal.Alpha-galactosylceramideimprovesthepotencyofmRNA LNPvaccinesagainstcancerandintracellularbacteria. J.ControlRelease 370, 379–391(2024).
195.Singh,B.etal.Host-directedtherapiesforparasiticdiseases. FutureMed.Chem. 11,1999–2018(2019).
196.AlGabbani,Q.Nanotechnology:apromisingstrategyforthecontrolofparasitic infections. Exp.Parasitol. 250,108548(2023).
197.You,H.etal.ThemRNAvaccinetechnologyeraandthefuturecontrolof parasiticinfections. Clin.Microbiol.Rev. 36,e00241–21(2023).
198.Chuang,Y.-M.etal.AmosquitoAgTRIOmRNAvaccinecontributestoimmunity againstmalaria. NPJVaccines 8,88(2023).
199.Hassert,M.&Harty,J.T.Alt-RNAtivevaccineselicitanti-malarialTRMcells. Nat. Immunol. 24,1397–1398(2023).
200.Waghela,I.N.etal.Exploringinvitroexpressionandimmunepotencyinmice usingmRNAencodingthe Plasmodiumfalciparum malariaantigen. CelTOS. Front.Immunol. 13,1026052(2022).
201.Tsoumani,M.E.,Voyiatzaki,C.&Efstathiou,A.Malariavaccines:fromthepast towardsthemRNAvaccineera. Vaccines 11,1452(2023).
202.Kunkeaw,N.etal.APvs25mRNAvaccineinducescompleteanddurable transmission-blockingimmunitytoPlasmodiumvivax. NPJVaccines 8,187 (2023).
203.Makoni,M.mRNAvaccineagainstmalariaeffectiveinpreclinicalmodel. Lancet Microbe 4,e970(2023).
204.Ganley,M.etal.mRNAvaccineagainstmalariatailoredforliver-resident memoryTcells. Nat.Immunol. 24,1487–1498(2023).
205.Scaria,P.V.etal.mRNAvaccinesexpressingmalariatransmission-blocking antigensPfs25andPfs230D1induceafunctionalimmuneresponse. NPJVaccines 9,9(2024).
206.Versteeg,L.,Almutairi,M.M.,Hotez,P.J.&Pollet,J.EnlistingthemRNAvaccine platformtocombatparasiticinfections. Vaccines 7,122(2019).
207.Niazi,S.K.Anti-idiotypicmRNAvaccinetotreatautoimmunedisorders. Vaccines 12,9(2024).
208.Cao,W.&Xia,T.mRNAlipidnanoparticlesinduceimmunetolerancetotreat humandiseases. Med.Rev. 3,180–183(2023).
209.Pisetsky,D.S.Pathogenesisofautoimmunedisease. Nat.Rev.Nephrol. 19, 509–524(2023).
210.Krienke,C.etal.AnoninflammatorymRNAvaccinefortreatmentofexperimentalautoimmuneencephalomyelitis. Science 371,145–153(2021).
211.Herold,K.C.etal.Theimmunologyoftype1diabetes. Nat.Rev.Immunol. 24, 435–451(2024).
212.Parayath,N.N.etal.Geneticinsituengineeringofmyeloidregulatorycells controlsinflammationinautoimmunity. J.ControlRelease 339,553–561(2021).
213.Kim,A.,Xie,F.,Abed,O.A.&Moon,J.J.Vaccinesforimmunetoleranceagainst autoimmunedisease. Adv.DrugDeliv.Rev. 203,115140(2023).
214.Lodde,V.,Floris,M.,Zoroddu,E.,Zarbo,I.R.&Idda,M.L.RNA-bindingproteinsin autoimmunity:fromgeneticstomolecularbiology. WileyInterdiscip.Rev.RNA 14,e1772(2023).
215.Flemming,A.mRNAvaccineshowspromiseinautoimmunity. Nat.Rev.Immunol. 21,72(2021).
216.Wardell,C.M.&Levings,M.K.mRNAvaccinestakeonimmunetolerance. Nat. Biotechnol. 39,419–421(2021).
217.Furlan,R.AtolerizingmRNAvaccineagainstautoimmunity? Mol.Ther. 29, 896–897(2021).
218.Villanueva,M.T.SuppressingautoimmunitywithmRNAvaccines. Nat.Rev.Drug Discov. 20,99(2021).
219.Krishnamurthy,B.&Thomas,H.E.METTL3restrainsautoimmunityin β-cells. Nat. CellBiol. 26,321–322(2024).
220.Foster,T.P.,Haller,M.J.,Schatz,D.,Wasserfall,C.&Sayour,E.743-P:delayed diabeteswithproinsulinmRNAvaccinesinNODmice. Diabetes 72,743–74 (2023).
221.Deyhimfar,R.etal.TheclinicalimpactofmRNAtherapeuticsinthetreatmentof cancers,infections,geneticdisorders,andautoimmunediseases. Heliyon 10, e26971(2024).
222.Shi,J.etal.DeliveryofmRNAforregulatingfunctionsofimmunecells. J.Control Release 345,494–511(2022).
223.Sharma,P.,Joshi,R.V.,Pritchard,R.,Xu,K.&Eicher,M.A.Therapeuticantibodies inmedicine. Molecules 28,6438(2023).
224.Deal,C.E.,Carfi,A.&Plante,O.J.AdvancementsinmRNAencodedantibodies forpassiveimmunotherapy. Vaccines 9,108(2021).
225.An,Z.MagicBullets” atthecenterstageofimmunetherapy:aspecialissueon therapeuticantibodies. ProteinCell 9,1–2(2018).
226.Hafeez,U.,Gan,H.K.&Scott,A.M.Monoclonalantibodiesasimmunomodulatorytherapyagainstcancerandautoimmunediseases. Curr.Opin.Pharmacol. 41,114–121(2018).
227.VanHoecke,L.&Roose,K.HowmRNAtherapeuticsareenteringthemonoclonal antibody field. J.Transl.Med. 17,54(2019).
228.Deal,C.E.etal.AnmRNA-basedplatformforthedeliveryofpathogen-specific IgAintomucosalsecretions. CellRep.Med. 4,101253(2023).
229.Le,N.D.etal.AntiangiogenictherapeuticmRNAdeliveryusinglung-selective polymericnanomedicineforlungcancertreatment. ACSNano 18,8392–8410 (2024).
230.Chi,H.etal.Rapiddevelopmentofdouble-hitmRNAantibodycocktailagainst orthopoxviruses. SignalTransduct.Target.Ther. 9,69(2024).
231.Sun,Q.etal.Immunecheckpointtherapyforsolidtumours:clinicaldilemmas andfuturetrends. SignalTransduct.Target.Ther. 8,320(2023).
232.Chen,W.,Huang,Y.,Pan,W.,Xu,M.&Chen,L.StrategiesfordevelopingPD-1 inhibitorsandfuturedirections. Biochem.Pharmacol. 202,115113(2022).
233.Zhao,Y.,Gan,L.,Ke,D.,Chen,Q.&Fu,Y.Mechanismsandresearchadvancesin mRNAantibodydrug-mediatedpassiveimmunotherapy. J.Transl.Med. 21,693 (2023).
234.Hamilton,A.G.etal.Ionizablelipidnanoparticleswithintegratedimmune checkpointinhibitionformRNACARTcellengineering. Adv.Healthc.Mater. 12, 2301515(2023).
235.VanHoecke,L.etal.mRNAincancerimmunotherapy:beyondasourceof antigen. Mol.Cancer 20,48(2021).
236.Pruitt,S.K.etal.Enhancementofanti‐tumorimmunitythroughlocalmodulationofCTLA‐4andGITRbydendriticcells. Eur.J.Immunol. 41,3553–3563 (2011).
237.Zeng,J.etal.AntitumoractivityofZ15-0-2,abispecificnanobodytargetingPD1andCTLA-4. Oncogene 43,2244–2252(2024).
238.Chung,E.etal.Abstract1368:novelmRNAencodinganti-PD-L1monoclonal antibodiesforcancerimmunotherapy. CancerRes. 84,1368(2024).
239.ModernaTX,Inc.Modernabuildsonclinicalvalidationofsystemicdeliverywith twoadditionaldevelopmentcandidatesinnewautoimmunetherapeuticarea. https://investors.modernatx.com/news/news-details/2020/Moderna-Builds-onClinical-Validation-of-Systemic-Delivery-with-Two-Additional-DevelopmentCandidates-in-New-Autoimmune-Therapeutic-Area/default.aspx (2020).
240.Salles,G.etal.RituximabinB-cellhematologicmalignancies:areviewof20 yearsofclinicalexperience. Adv.Ther. 34,2232–2273(2017).
241.Thran,M.etal.mRNAmediatespassivevaccinationagainstinfectiousagents, toxins,andtumors. EMBOMol.Med. 9,1434–1447(2017).
242.Wu,L.etal.IntravenousdeliveryofRNAencodinganti-PD-1humanmonoclonal antibodyfortreatingintestinalcancer. J.Cancer 13,579–588(2022).
243.Miao,L.,Zhang,Y.&Huang,L.mRNAvaccineforcancerimmunotherapy. Mol. Cancer 20,41(2021).
244.Ramesh,P.,Shivde,R.,Jaishankar,D.,Saleiro,D.&LePoole,I.C.Apaletteof cytokinestomeasureanti-tumorefficacyofTcell-basedtherapeutics. Cancers 13,821(2021).
245.Bentebibel,S.-E.&Diab,A.Cytokinesinthetreatmentofmelanoma. Curr.Oncol. Rep. 23,83(2021).
246.Cho,J.,Ritz,J.&Zylberberg,C.Comparingthefunctionalityofproleukin® and Akroninterleukin-2throughananalysisofkeyTcellsubsets. Cytotherapy 22, S121–S122(2020).
247.Wang,H.etal.Viralvectorsexpressinginterleukin2forcancerimmunotherapy. Hum.GeneTher. 34,878–895(2023).
248.Ko,B.,Takebe,N.,Andrews,O.,Makena,M.R.&Chen,A.P.Rethinkingoncologic treatmentstrategieswithinterleukin-2. Cells 12,1316(2023).
249.Shin,H.,Kang,S.,Won,C.&Min,D.-H.EnhancedlocaldeliveryofengineeredIL2mRNAbyporoussilicananoparticlestopromoteeffectiveantitumorimmunity. ACSNano 17,17554–17567(2023).
250.Jiang,Y.etal.Tumor-activatedIL-2mRNAdeliveredbylipidnanoparticlesfor cancerimmunotherapy. J.ControlRelease 368,663–675(2024).
251.Beck,J.D.etal.Long-lastingmRNA-encodedinterleukin-2restoresCD8+ Tcell neoantigenimmunityinMHCclassI-deficientcancers. CancerCell 42,568–582 (2024).
252.VanAcker,H.H.etal.Theroleofthecommongamma-chainfamilycytokinesin γδ Tcell-basedanti-cancerimmunotherapy. CytokineGrowthFactorRev. 41, 54–64(2018).
253.Shen,Z.etal.Lipidnanoparticle-mediateddeliveryofIL-21-encodingmRNA inducesviralclearanceinmousemodelsofhepatitisBviruspersistence. J.Med. Virol. 95,e29062(2023).
254.Lei,S.etal.EfficientcolorectalcancergenetherapywithIL-15mRNAnanoformulation. Mol.Pharm. 17,3378–3391(2020).
255.Yu,J.etal.TargetedLNPsdelivermRNAencodingIL-15superagoniststobalanceefficacyandtoxicityincancertherapy.Preprintat biorxiv https://doi.org/ 10.1101/2024.01.11.575299 (2024).
256.Wang,X.etal.AcombinationofPD-L1-targetedIL-15mRNAnanotherapyand ultrasound-targetedmicrobubbledestructionfortumorimmunotherapy. J. ControlRelease 367,45–60(2024).
257.Gavigan,J.-A.etal.Abstract1711:inductionofanti-tumorimmunitybyintratumoraldeliveryofmRNAencodingcytokinesandTNFRSFagonists. CancerRes. 81,1711(2021).
258.Liu,H.etal.OxaliplatinlipidatedprodrugsynergisticallyenhancestheanticolorectalcancereffectofIL12mRNA. DrugDeliv.Transl.Res https://doi.org/ 10.1007/s13346-024-01540-x (2024).
259.Hewitt,S.L.etal.IntratumoralIL12mRNAtherapypromotesTh1transformation ofthetumormicroenvironment. Clin.CancerRes. 26,6284–6298(2020).
260.DiTrani,C.A.etal.IntratumoralinjectionofIL-12-encodingmRNAtargetedto CSF1RandPD-L1exertspotentanti-tumoreffectswithoutsubstantialsystemic exposure. Mol.Ther.NucleicAcids 33,599–616(2023).
261.Liu,J.-Q.etal.IntratumoraldeliveryofIL-12andIL-27mRNAusinglipid nanoparticlesforcancerimmunotherapy. J.ControlRelease 345,306–313 (2022).
262.Kumar,A.,TaghiKhani,A.,SanchezOrtiz,A.&Swaminathan,S.GM-CSF:a double-edgedswordincancerimmunotherapy. Front.Immunol. 13,901277 (2022).
263.Bechter,O.etal.391A first-in-humanstudyofintratumoralSAR441000,an mRNAmixtureencodingIL-12sc,interferonalpha2b,GM-CSFandIL-15sushias monotherapyandincombinationwithcemiplimabinadvancedsolidtumors. J. Immunother.Cancer 8,A237–A238(2020).
264.Yeapuri,P.etal.Developmentofanextendedhalf-lifeGM-CSFfusionproteinfor Parkinson’sdisease. J.ControlRelease 348,951–965(2022).
265.Eggenhuizen,P.J.,Ng,B.H.&Ooi,J.D.Tregenhancingtherapiestotreat autoimmunediseases. Int.J.Mol.Sci. 21,7015(2020).
266.Beheshti,S.A.,Shamsasenjan,K.,Ahmadi,M.&Abbasi,B.CARTreg:anew approachinthetreatmentofautoimmunediseases. Int.Immunopharmacol. 102,108409(2022).
267.Mikami,N.,Kawakami,R.&Sakaguchi,S.NewTregcell-basedtherapiesof autoimmunediseases:towardsantigen-specificimmunesuppression. Curr. Opin.Immunol. 67,36–41(2020).
268.Goswami,T.K.etal.RegulatoryTcells(Tregs)andtheirtherapeuticpotential againstautoimmunedisorders advancesandchallenges. Hum.Vaccin Immunother. 18,2035117(2022).
269.Dong,C.,Fu,T.,Ji,J.,Li,Z.&Gu,Z.Theroleofinterleukin-4inrheumatic diseases. Clin.Exp.Pharmacol.Physiol. 45,747–754(2018).
270.Creusot,R.J.etal.AshortpulseofIL-4deliveredbyDCselectroporatedwith modifiedmRNAcanbothpreventandtreatautoimmunediabetesinNODmice. Mol.Ther. 18,2112–2120(2010).
271.Ozgur,B.A.etal.255-LB:theroleofTh1,Th2,Th17,andTregcellsinvarious clinicalphasesoftype1diabetes. Diabetes 68,255–2(2019).
272.Vaseghi,H.&Jadali,Z.Th1/Th2cytokinesintype1diabetes:relationtoduration ofdiseaseandgender. IndianJ.Endocrinol.Metab. 20,312–316(2016).
273.Aviña,A.E.etal.IL-10modifiedmRNAmonotherapyprolongssurvivalafter compositefacialallograftingthroughtheinductionofmixedchimerism. Mol. Ther.NucleicAcids 31,610–627(2023).
274.Chen,Z.etal.Apolyphenol-assistedIL-10mRNAdeliverysystemforulcerative colitis. ActaPharm.Sin.B 12,3367–3382(2022).
275.Bu,T.etal.Exosome-mediateddeliveryofinflammation-responsiveIL-10mRNA forcontrolledatherosclerosistreatment. Theranostics 11,9988–10000(2021).
276.Zhang,G.,Tang,T.,Chen,Y.,Huang,X.&Liang,T.mRNAvaccinesindisease preventionandtreatment. SignalTransduct.Target.Ther. 8,365(2023).
277.AranceFernandez,A.M.etal.AphaseIstudy(E011-MEL)ofaTriMix-based mRNAimmunotherapy(ECI-006)inresectedmelanomapatients:Analysisof safetyandimmunogenicity. J.Clin.Oncol. 37,2641(2019).
278.Wu,T.,Huang,C.,Yao,Y.,Du,Z.&Liu,Z.Suicidegenedeliverysystemmediated byultrasound-targetedmicrobubbledestruction:apromisingstrategyfor cancertherapy. Hum.GeneTher. 33,1246–1259(2022).
279.Nguyen,Q.M.,Dupré,P.-F.,Haute,T.,Montier,T.&d’Arbonneau,F.Suicidegene strategiesappliedinovariancancerstudies. CancerGeneTher. 30,812–821 (2023).
280.Song,N.etal.Suicidegenedeliverybymorphology-adaptableenantiomeric peptideassembliesforcombinedovariancancertherapy. ActaBiomater. 175, 250–261(2024).
281.Falcon,C.etal.Combinatorialsuicidegenestrategiesforthesafetyofcell therapies. Front.Immunol. 13,975233(2022).
282.Saeb,S.etal.SuicidegenetherapyincancerandHIV-1infection:analternative toconventionaltreatments. Biochem.Pharmacol. 197,114893(2022).
283.Mizrak,A.etal.GeneticallyengineeredmicrovesiclescarryingsuicidemRNA/ proteininhibitschwannomatumorgrowth. Mol.Ther. 21,101–108(2013).
284.Mohammadi,S.,Akbari‐Birgani,S.,Nikfarjam,N.&Rasekhian,M. Polyethyleneimine-decoratedgrapheneoxidequantumdotasacarrierfor
suicidegenedeliverytothebreastcancerthree-dimensionalmodel. J.Drug Deliv.Sci.Technol. 88,104849(2023).
285.Nakashima,I.etal.Non-viralinduciblecaspase9mRNAdeliveryusinglipid nanoparticlesagainstbreastcancer:aninvitrostudy. Biochem.Biophys.Res. Commun. 635,144–153(2022).
286.Saito,S.etal.Tumor-tropicliposome-mediatedtherapeuticdeliveryofmRNAfor Tcellmalignancies. Blood 136,21–22(2020).
287.Chen,L.,Liu,S.&Tao,Y.Regulatingtumorsuppressorgenes:post-translational modifications. SignalTransduct.Target.Ther. 5,90(2020).
288.Peuget,S.,Zhou,X.&Selivanova,G.Translatingp53-basedtherapiesforcancer intotheclinic. Nat.Rev.Cancer 24,192–215(2024).
289.Zhang,C.etal.Chemotherapydrugsderivednanoparticlesencapsulating mRNAencodingtumorsuppressorproteinstotreattriple-negativebreast cancer. NanoRes. 12,855–861(2019).
290.Zhou,H.etal.ROS-responsivenanoparticledeliveryofmRNAandphotosensitizerforcombinatorialcancertherapy. NanoLett. 23,3661–3668(2023).
291.Cao,C.etal.EnhancementofproteintranslationbyCRISPR/dCasRxcoupled withSINEB2repeatofnoncodingRNAs. NucleicAcidsRes. 51 ,e33(2023).
292.Liu,Y.etal.Non-invasivePTENmRNAbraindeliveryeffectivelymitigatesgrowth oforthotopicglioblastoma. NanoToday 49,101790(2023).
293.Ma,P.etal.Localandsystemicdeliveryofthebimsgenenano-complexfor efficientoralsquamouscellcarcinomatherapy. Int.J.Nanomed. 17,2925–2941 (2022).
294.Gao,Y.etal.FunctionalizedDMP-039hybridnanoparticleasanovelmRNA vectorforefficientcancersuicidegenetherapy. Int.J.Nanomed. 16,5211–5232 (2021).
295.Okumura,K.etal.BaxmRNAtherapyusingcationicliposomesforhuman malignantmelanoma. J.GeneMed. 10,910–917(2008).
296.Gu,T.etal.IntratumouraldeliveryofTRAILmRNAinducescoloncancercell apoptosis. Biomed.Pharmacother. 174,116603(2024).
297.daSilva,W.N.etal.Ionizablelipidnanoparticle-mediatedTRAILmRNAdelivery inthetumormicroenvironmenttoinhibitcoloncancerprogression. Int.J. Nanomed. 19,2655–2673(2024).
298.vanderEb,M.M.etal.GenetherapywithApoptininducesregressionof xenograftedhumanhepatomas. CancerGeneTher. 9,53–61(2002).
299.Tang,Y.etal.Self-assembledsmallmessengerRNAnanospheresforefficient therapeuticapoptinexpressionandsynergisticgene-chemotherapyofbreast cancer. J.ColloidInterfaceSci. 603,191–198(2021).
300.Castro,J.,Ribo,M.,Benito,A.&Vilanova,M.Apoptin,Aversatileproteinwith selectiveantitumoractivity. Curr.Med.Chem. 25,3540–3559(2018).
301.Bae,Y.,Lee,J.,Kho,C.,Choi,J.S.&Han,J.ApoptingenedeliverybyaPAMAM dendrimermodi fi edwithanuclearlocalizationsignalpeptideasagene carrierforbraincancertherapy. KoreanJ.Physiol.Pharmacol. 25 ,467– 478 (2021).
302.Qu,Y.-M.etal.Huntingtin-associatedprotein1isapotentialtumorsuppressor forgastriccancer. Mol.Biol.Rep. 50,1517–1531(2023).
303.Zheng,Z.&Song,Y.Synaptopodin-2:apotentialtumorsuppressor. CancerCell Int. 23,158(2023).
304.Polito,L.,Djemil,A.&Bortolotti,M.Planttoxin-basedimmunotoxinsforcancer therapy:ashortoverview. Biomedicines 4,12(2016).
305.Kreitman,R.J.&Pastan,I.Immunotoxins:fromdesigntoclinicalapplication. Biomolecules 11,1696(2021).
306.Akbari,B.etal.Immunotoxinsincancertherapy:reviewandupdate. Int.Rev. Immunol. 36,207–219(2017).
307.Dashtiahangar,M.etal.Anti-cancerimmunotoxins,challenges,andapproaches. Curr.Pharm.Des. 27,932–941(2021).
308.Guo,R.etal.Fusionofanalbumin-bindingdomainextendsthehalf-lifeof immunotoxins. Int.J.Pharm. 511,538–549(2016).
309.Stöcker,M.etal.Secretionoffunctionalanti-CD30-angiogeninimmunotoxins intothesupernatantoftransfected293T-cells. ProteinExpr.Purif. 28,211–219 (2003).
310.Granot-Matok,Y.etal.Lipidnanoparticles-loadedwithtoxinmRNArepresentsa newstrategyforthetreatmentofsolidtumors. Theranostics 13,3497–3508 (2023).
311.Eggers,R.,Philippi,A.,Altmeyer,M.O.,Breinig,F.&Schmitt,M.J.PrimaryTcells formRNA-mediatedimmunotoxindelivery. GeneTher. 25,47–53(2018).
312.Hirschberger,K.etal.ExploringcytotoxicmRNAsasanovelclassofanti-cancer biotherapeutics. Mol.Ther.MethodsClin.Dev. 8,141–151(2018).
313.Spiess,K.,Jakobsen,M.H.,Kledal,T.N.&Rosenkilde,M.M.Thefutureofantiviral immunotoxins. J.Leukoc.Biol. 99,911–925(2016).
314.Li,Y.etal.ThepotentialandpromiseforclinicalapplicationofadoptiveTcell therapyincancer. J.Transl.Med. 22,413(2024).
315.Chehrazi-Raffle,A.,Budde,L.E.&Pal,S.K.BoostingCARTcellswithanti-tumor mRNAvaccines. Nat.Med. 29,2711–2712(2023).
316.Mackensen,A.etal.CLDN6-speci ficCAR-TcellsplusamplifyingRNAvaccinein relapsedorrefractorysolidtumors:thephase1BNT211-01trial. Nat.Med. 29, 2844–2853(2023).
317.Tombácz,I.etal.HighlyefficientCD4+ TcelltargetingandgeneticrecombinationusingengineeredCD4+ cell-homingmRNA-LNPs. Mol.Ther. 29, 3293–3304(2021).
318.Zhou,J.etal.LipidnanoparticlesproducechimericantigenreceptorTcellswith interleukin-6knockdowninvivo. J.ControlRelease 350,298–307(2022).
319.Rurik,J.G.etal.CARTcellsproducedinvivototreatcardiacinjury. Science 375, 91–96(2022).
320.Liuzzo,G.&Patrono,C.InvivogeneratedchimericantigenreceptorTcells reduce fibrosisandrestorecardiacfunctioninexperimentalheartfailure. Eur. HeartJ. 43,1531–1532(2022).
321.Blache,U.,Tretbar,S.,Koehl,U.,Mougiakakos,D.&Fricke,S.CARTcellsfor treatingautoimmunediseases. RMDOpen 9,e002907(2023).
322.CartesianTherapeutics.Descartes-08forpatientswithsystemiclupuserythematosus. https://clinicaltrials.gov/study/NCT06038474 (2024).
323.Thatte,A.S.etal.mRNAlipidnanoparticlesforexvivoengineeringofimmunosuppressiveTcellsforautoimmunitytherapies. NanoLett. 23,10179–10188 (2023).
324.Yang,F.etal.MessengerRNAelectroporatedhepatitisBvirus(HBV)antigenspeci fi cTcellreceptor(TCR)redirectedTcelltherapyiswell-toleratedin patientswithrecurrentHBV-relatedhe patocellularcarcinomapost-liver transplantation:resultsfromaphaseItrial. Hepatol.Int. 17 ,850 – 859 (2023).
325.Maggadottir,S.M.etal.TransientTCR-basedTcelltherapyinapatientwith advancedtreatment-resistantMSI-highcolorectalcancer. Mol.Ther. 32, 2021–2029(2024).
326.Ling,K.etal.GenomeeditingmRNAnanotherapiesinhibitcervicalcancer progressionandregulatetheimmunosuppressivemicroenvironmentfor adoptiveT-celltherapy. J.ControlRelease 360,496–513(2023).
327.Chen,Y.etal.CAR-macrophage:anewimmunotherapycandidateagainstsolid tumors. Biomed.Pharmacother. 139,111605(2021).
328.Reiss,K.etal.951Aphase1 firstinhumanstudyofadenovirallytransduced anti-HER2CARmacrophagesinsubjectswithHER2overexpressingsolidtumors: preliminarysafety,pharmacokinetics,andTMEreprogrammingdata. J. Immunother.Cancer 9,A1000(2021).
329.Kasimsetty,S.,Gatla,H.&Chinnasamy,D.108MCY-M11,aCAR-PBMCcell producttransientlyexpressingamesothelintargetedmRNACAR,exhibits desirablefunctionalandimmunephenotypeattributedtosustainedantitumor immunityinvitro. J.Immunother.Cancer 8,A67–A68(2020).
330.Tang,C.etal.mRNA-ladenlipid-nanoparticle-enabledinsituCAR-macrophage engineeringfortheeradicationofmultidrug-resistantbacteriainasepsismouse model. ACSNano 18,2261–2278(2024).
331.Zhang,Y.etal.Closethecancer–immunitycyclebyintegratinglipid nanoparticle–mRNAformulationsanddendriticcelltherapy. Nat.Nanotechnol. 18,1364–1374(2023).
332.Dueland,S.PhaseI/IItrialofvaccinetherapywithmRNA-transfecteddendritic cellsinpatientswithadvancedmalignantmelanoma. https://clinicaltrials.gov/ study/NCT01278940 (2016).
333.Kyte,J.A.etal.PhaseI/IItrialofmelanomatherapywithdendriticcellstransfectedwithautologoustumor-mRNA. CancerGeneTher. 13,905–918(2006).
334.Anguille,S.etal.Dendriticcellvaccinationaspostremissiontreatmenttopreventordelayrelapseinacutemyeloidleukemia. Blood 130,1713–1721(2017).
335.Qin,S.etal.mRNA-basedtherapeutics:powerfulandversatiletoolstocombat diseases. SignalTransduct.Target.Ther. 7,166(2022).
336.Sahin,U.,Karikó,K.&Türeci,Ö.mRNA-basedtherapeutics developinganew classofdrugs. Nat.Rev.DrugDiscov. 13,759–780(2014).
337.Vlatkovic,I.Non-immunotherapyapplicationofLNP-mRNA:maximizingefficacy andsafety. Biomedicines 9,530(2021).
338.Rohner,E.,Yang,R.,Foo,K.S.,Goedel,A.&Chien,K.R.Unlockingthepromiseof mRNAtherapeutics. Nat.Biotechnol. 40,1586–1600(2022).
339.Lonez,C.etal.CriticalresiduesinvolvedinToll-likereceptor4activationby cationiclipidnanocarriersarenotlocatedatthelipopolysaccharide-binding interface. Cell.Mol.LifeSci. 72,3971–3982(2015).
340.Romerio,A.&Peri,F.Increasingthechemicalvarietyofsmall-molecule-based TLR4modulators:anoverview. Front.Immunol. 11,1210(2020).
341.Kedmi,R.,Ben-Arie,N.&Peer,D.Thesystemictoxicityofpositivelychargedlipid nanoparticlesandtheroleofToll-likereceptor4inimmuneactivation. Biomaterials 31,6867–6875(2010).
342.Lonez,C.etal.CationiclipidnanocarriersactivateToll-likereceptor2andNLRP3 inflammasomepathways. Nanomed.Nanotechnol.Biol.Med. 10,775–782(2014).
343.Qin,Y.,Ou,L.,Zha,L.,Zeng,Y.&Li,L.Deliveryofnucleicacidsusingnanomaterials. Mol.Biomed. 4,48(2023).
344.Ohto,T.etal.Inhibitionofthein fl ammatorypathwayenhancesboththe invitroandinvivotransfectionactivityofexogenousinvitro-transcribed mRNAsdeliveredbylipidnanoparticles. Biol.Pharm.Bull. 42 ,299 – 302 (2019).
345.Vavilis,T.etal.mRNAinthecontextofproteinreplacementtherapy. Pharmaceutics 15,166(2023).
346.Schwarze,S.R.,Ho,A.,Vocero-Akbani,A.&Dowdy,S.F.Invivoproteintransduction:deliveryofabiologicallyactiveproteinintothemouse. Science 285, 1569–1572(1999).
347.Chen,C.-Y.etal.TreatmentofhemophiliaAusingfactorVIIImessengerRNA lipidnanoparticles. Mol.Ther.NucleicAcids 20,534–544(2020).
348.Commissioner,O.ofthe.FDAapproves firstgenetherapyforadultswithsevere hemophiliaA. FDA https://www.fda.gov/news-events/press-announcements/ fda-approves-first-gene-therapy-adults-severe-hemophilia (2023).
349.Prieve,M.G.etal.TargetedmRNAtherapyforornithinetranscarbamylase deficiency. Mol.Ther. 26,801–813(2018).
350.ArcturusTherapeutics,Inc.Phase2,randomized,double-blind,placebo-controlled,nestedsingleandmultipleascendingdosestudytoevaluatethesafety, tolerabilityandpharmacokineticsofARCT-810inadolescentandadultparticipantswithornithinetranscarbamylasedeficiency. https://clinicaltrials.gov/ study/NCT05526066 (2023).
351.DeRosa,F.etal.Improvedefficacyinafabrydiseasemodelusingasystemic mRNAliverdepotsystemascomparedtoenzymereplacementtherapy. Mol. Ther. 27,878–889(2019).
352.Rodríguez-Castejón,J.,Beraza-Millor,M.,Solinís,M.Á.,Rodríguez-Gascón,A.& delPozo-Rodríguez,A.Targetingstrategieswithlipidvectorsfornucleicacid supplementationtherapyinFabrydisease:asystematicreview. DrugDeliv. Transl.Res. 14,2615–2628(2024).
353.Zhu,X.etal.SystemicmRNAtherapyforthetreatmentoffabrydisease:preclinicalstudiesinwild-typemice,fabrymousemodel,andwild-typenon-human primates. Am.J.Hum.Genet. 104,625–637(2019).
354.Koeberl,D.etal.Interimanalysesofa first-in-humanphase1/2mRNAtrialfor propionicacidaemia. Nature 628,872–877(2024).
355.Behyar,M.B.,Mirzaie,A.,Hasanzadeh,M.&Shadjou,N.Advancementsinbiosensingofhormones:recentprogressandfuturetrends. TrendsAnal.Chem. 173,117600(2024).
356.Kielb,J.etal.Transformationorreplacement effectsofhormonetherapyon cardiovascularrisk. Pharmacol.Ther. 254,108592(2024).
357.Jirikowski,G.F.,Sanna,P.P.,Maciejewski-Lenoir,D.&Bloom,F.E.Reversalof diabetesinsipidusinBrattlebororats:intrahypothalamicinjectionofvasopressin mRNA. Science 255,996–998(1992).
358.Huang,R.,Shi,J.,Wei,R.&Li,J.Challengesofinsulin-likegrowthfactor-1testing. Crit.Rev.Clin.Lab.Sci. 61,388–403(2024).
359.Wu,H.etal.Engineeredadipose-derivedstemcellswithIGF-1-modifiedmRNA amelioratesosteoarthritisdevelopment. StemCellRes.Ther. 13,19(2022).
360.Zangi,L.etal.ModifiedmRNAdirectsthefateofheartprogenitorcellsand inducesvascularregenerationaftermyocardialinfarction. Nat.Biotechnol. 31, 898–907(2013).
361.Collén,A.etal.VEGFAmRNAforregenerativetreatmentofheartfailure. Nat. Rev.DrugDiscov. 21,79–80(2022).
362.Anttila,V.etal.SyntheticmRNAencodingVEGF-Ainpatientsundergoingcoronaryarterybypassgrafting:designofaphase2aclinicaltrial. Mol.Ther. MethodsClin.Dev. 18,464–472(2020).
363.Yu,Z.etal.Cell-mediateddeliveryofVEGFmodifiedmRNAenhancesblood vesselregenerationandamelioratesmurinecriticallimbischemia. J.Control Release 310,103–114(2019).
364.Nawaz,M.etal.lipidnanoparticlesdeliverthetherapeuticVEGFAmRNAinvitro andinvivoandtransformextracellularvesiclesfortheirfunctionalextensions. Adv.Sci. 10,2206187(2023).
365.Kapoor,N.,Galang,G.,Marbán,E.&Cho,H.C.Transcriptionalsuppressionof Connexin43byTBX18underminescell-cellelectricalcouplinginpostnatal cardiomyocytes. J.Biol.Chem. 286,14073–14079(2011).
366.Wolfson,D.W.etal.Transientpacinginpigswithcompleteheartblockvia myocardialinjectionofmRNAcodingfortheT-boxtranscriptionfactor18. Nat. Biomed.Eng. https://doi.org/10.1038/s41551-024-01211-9 (2024).
367.Yang,T.etal.TherapeuticHNF4AmRNAattenuatesliver fibrosisinapreclinical model. J.Hepatol. 75,1420–1433(2021).
368.Shteinberg,M.,Haq,I.J.,Polineni,D.&Davies,J.C.Cystic fibrosis. Lancet 397, 2195–2211(2021).
369.Rowe,S.M.etal.InhaledmRNAtherapyfortreatmentofcystic fibrosis:interim resultsofarandomized,double‐blind,placebo‐controlledphase1/2clinical study. J.Cyst.Fibros. 22,656–664(2023).
370.Wang,P.etal.Co-deliveryofNS1andBMP2mRNAstomurinepluripotentstem cellsleadstoenhancedBMP-2expressionandosteogenicdifferentiation. Acta Biomater. 108,337–346(2020).
371.Wang,P.etal.InVivobonetissueinductionbyfreeze-driedcollagen-nanohydroxyapatitematrixloadedwithBMP2/NS1mRNAslipopolyplexes. J.Control Release 334,188–200(2021).
372.Geng,Y.etal.BMP-2andVEGF-AmodRNAsincollagenscaffoldsynergistically drivebonerepairthroughosteogenicandangiogenicpathways. Commun.Biol. 4,82(2021).
373.Lin,C.-Y.etal.Treatmentofintervertebraldiskdiseasebytheadministrationof mRNAencodingacartilage-anabolictranscriptionfactor. Mol.Ther.NucleicAcids 16,162–171(2019).
374.Sanger,H.L.,Klotz,G.,Riesner,D.,Gross,H.J.&Kleinschmidt,A.K.Viroidsare single-strandedcovalentlyclosedcircularRNAmoleculesexistingashighly base-pairedrod-likestructures. Proc.Natl.Acad.Sci.USA 73,3852–3856(1976).
375.Lin,C.-Y.etal.MessengerRNA-basedtherapeuticsforbraindiseases:ananimal studyforaugmentingclearanceofbeta-amyloidbyintracerebraladministration ofneprilysinmRNAloadedinpolyplexnanomicelles. J.ControlRelease 235, 268–275(2016).
376.Li,H.etal.Engineeringbrain-derivedneurotrophicfactormRNAdeliveryforthe treatmentofAlzheimer’sdisease. Chem.Eng.J. 466,143152(2023).
377.Lescan,M.etal.Denovosynthesisofelastinbyexogenousdeliveryofsynthetic modifiedmRNAintoskinandelastin-deficientcells. Mol.Ther.NucleicAcids 11, 475–484(2018).
378.Golombek,S.etal.Improvedtropoelastinsynthesisintheskinbycodonoptimizationandnucleotidemodificationoftropoelastin-encodingsyntheticmRNA. Mol.Ther.NucleicAcids 33,642–654(2023).
379.Ghazanfari,S.,Khademhosseini,A.&Smit,T.H.Mechanismsoflamellarcollagen formationinconnectivetissues. Biomaterials 97,74–84(2016).
380.You,Y.etal.IntradermallydeliveredmRNA-encapsulatingextracellularvesicles forcollagen-replacementtherapy. Nat.Biomed.Eng. 7,887–900(2023).
381.Sun,N.,Abil,Z.&Zhao,H.Recentadvancesintargetedgenomeengineeringin mammaliansystems. Biotechnol.J. 7,1074–1087(2012).
382.Yang,W.etal.ProgressofdeliverymethodsforCRISPR-Cas9. ExpertOpin.Drug Deliv. 19,913–926(2022).
383.Bjurström,C.F.etal.Reactivatingfetalhemoglobinexpressioninhumanadult erythroblaststhroughBCL11Aknockdownusingtargetedendonucleases. Mol. Ther.NucleicAcids 5,e351(2016).
384.Shen,B.etal.EfficientgenomemodificationbyCRISPR-Cas9nickasewith minimaloff-targeteffects. Nat.Methods 11,399–402(2014).
385.Cho,S.W.,Kim,S.,Kim,J.M.&Kim,J.-S.Targetedgenomeengineeringinhuman cellswiththeCas9RNA-guidedendonuclease. Nat.Biotechnol. 31,230–232 (2013).
386.Cheng,H.,Zhang,F.&Ding,Y.CRISPR/Cas9deliverysystemengineeringfor genomeeditingintherapeuticapplications. Pharmaceutics 13,1649(2021).
387.Ling,S.etal.Lentiviraldeliveryofco-packagedCas9mRNAandaVegfatargetingguideRNApreventswetage-relatedmaculardegenerationinmice. Nat.Biomed.Eng. 5,144–156(2021).
388.Wang,Y.,Peng,Y.,Zi,G.,Chen,J.&Peng,B.Co-deliveryofCas9mRNAandguide RNAsforeditingofLGMNgenerepressesbreastcancercellmetastasis. Sci.Rep. 14,8095(2024).
389.Yi,J.etal.Co-deliveryofCas9mRNAandguideRNAseditshepatitisBvirus episomalandintegrationDNAinmouseandtreeshrewmodels. Antivir.Res. 215,105618(2023).
390.Liu,J.etal.FastandefficientCRISPR/Cas9genomeeditinginvivoenabledby bioreduciblelipidandmessengerRNAnanoparticles. Adv.Mater. 31,1902575 (2019).
391.Yadav,M.,Atala,A.&Lu,B.Developingall-in-onevirus-likeparticlesforCas9 mRNA/singleguideRNAco-deliveryandaptamer-containinglentiviralvectors forimprovedgeneexpression. Int.J.Biol.Macromol. 209,1260–1270(2022).
392.Gillmore,J.D.etal.CRISPR-Cas9invivogeneeditingfortransthyretinamyloidosis. NewEngl.J.Med. 385,493–502(2021).
393.Zhang,H.-X.,Zhang,Y.&Yin,H.GenomeeditingwithmRNAencodingZFN, TALEN,andCas9. Mol.Ther. 27,735–746(2019).
394.Rizzi,M.etal.SARS-CoV-2infectionriskishigherinvaccinatedpatientswith inflammatoryautoimmunediseasesorlivertransplantationtreatedwith mycophenolateduetoanimpairedantiviralimmuneresponse:resultsofthe extendedfollowupoftheRIVALSAprospectivecohort. Front.Immunol. 14, 1185278(2023).
395.Li,B.etal.Enhancingtheimmunogenicityoflipid-nanoparticlemRNAvaccines byadjuvantingtheionizablelipidandthemRNA. Nat.Biomed.Eng. https:// doi.org/10.1038/s41551-023-01082-6 (2023).
396.Kon,E.,Ad-El,N.,Hazan-Halevy,I.,Stotsky-Oterin,L.&Peer,D.Targetingcancer withmRNA–lipidnanoparticles:keyconsiderationsandfutureprospects. Nat. Rev.Clin.Oncol. 20,739–754(2023).
397.Nugent,C.etal.SecondmonovalentSARS-CoV-2mRNAboosterrestores Omicron-specificneutralizingactivityinbothnursinghomeresidentsand healthcareworkers. Vaccine 41,3403–3409(2023).
398.Heftdal,L.D.etal.Humoralandcellularimmuneresponseselevenmonths afterthethirddoseofBNT162b2anmRNA-basedCOVID-19vaccineinpeople withHIV aprospectiveobservationalcohortstudy. EBioMedicine 93,104661 (2023).
399.Zhang,Q.etal.InbornerrorsoftypeIIFNimmunityinpatientswithlifethreateningCOVID-19. Science 370,eabd4570(2020).
400.Bastard,P.etal.VaccinebreakthroughhypoxemicCOVID-19pneumoniain patientswithauto-AbsneutralizingtypeIIFNs. Sci.Immunol. 8,eabp8966 (2022).
401.Hou,Y.etal.Insightsintovaccinesforelderlyindividuals:fromtheimpactsof immunosenescencetodeliverystrategies. NPJVaccines 9,77(2024).
402.Goronzy,J.J.&Weyand,C.M.Understandingimmunosenescencetoimprove responsestovaccines. Nat.Immunol. 14,428–436(2013).
403.Aiello,A.etal.Howcanweimprovevaccinationresponseinoldpeople?PartI: targetingimmunosenescenceofinnateimmunitycells. Int.J.Mol.Sci. 23,9880 (2022).
404.Garnica,M.etal.Howcanweimprovethevaccinationresponseinolderpeople?PartII:targetingimmunosenescenceofadaptiveimmunitycells. Int.J.Mol. Sci. 23,9797(2022).
405.Pereira,B.,Xu,X.-N.&Akbar,A.N.Targetinginflammationandimmunosenescencetoimprovevaccineresponsesintheelderly. Front.Immunol. 11,583019 (2020).
406.Puzianowska-Kuźnicka,M.etal.Interleukin-6andC-reactiveprotein,successful aging,andmortality:thePolSeniorstudy. Immun.Ageing 13,21(2016).
407.Nakaya,H.I.etal.Systemsanalysisofimmunitytoinfluenzavaccinationacross multipleyearsandindiversepopulationsrevealssharedmolecularsignatures. Immunity 43,1186–1198(2015).
408.Tizazu,A.M.,Mengist,H.M.&Demeke,G.Aging,in fl ammagingandimmunosenescenceasriskfactorsofsevereCOVID-19. Immun.Ageing 19 ,53 (2022).
409.Salminen,A.Clinicalperspectivesontheage-relatedincreaseofimmunosuppressiveactivity. J.Mol.Med. 100,697–712(2022).
410.Cunha,L.L.,Perazzio,S.F.,Azzi,J.,Cravedi,P.&Riella,L.V.Remodelingofthe immuneresponsewithaging:immunosenescenceanditspotentialimpacton COVID-19immuneresponse. Front.Immunol. 11,1748(2020).
411.Müller,L.&DiBenedetto,S.FromagingtolongCOVID:exploringtheconvergenceofimmunosenescence,inflammaging,andautoimmunity. Front. Immunol. 14,1298004(2023).
412.Cisneros,B.etal.Immunesystemmodulationinaging:molecularmechanisms andtherapeutictargets. Front.Immunol. 13,1059173(2022).
413.Cadar,A.N.,Martin,D.E.&Bartley,J.M.Targetingthehallmarksofagingto improveinfluenzavaccineresponsesinolderadults. Immun.Ageing 20,23 (2023).
414.Valiathan,R.,Ashman,M.&Asthana,D.Effectsofageingontheimmunesystem: infantstoelderly. Scand.J.Immunol. 83,255–266(2016).
415.Anderson,E.J.etal.SafetyandimmunogenicityofSARS-CoV-2mRNA-1273 vaccineinolderadults. NewEngl.J.Med. 383,2427–2438(2020).
416.Walsh,E.E.etal.SafetyandimmunogenicityoftwoRNA-basedCovid-19vaccinecandidates. NewEngl.J.Med. 383,2439–2450(2020).
417.Li,F.etal.Sexdifferencesorchestratedbyandrogensatsingle-cellresolution. Nature 629,193–200(2024).
418.Haitao,T.etal.COVID-19andsexdifferences:mechanismsandbiomarkers. MayoClin.Proc. 95,2189–2203(2020).
419.Scully,E.P.SexdifferencesinHIVinfection. Curr.HIV/AIDSRep. 15,136–146 (2018).
420.Cardenas-Garcia,S.etal.Impactofsexonhumoralimmunitywithliveinfluenza Bvirusvaccinesinmice. NPJVaccines 9,45(2024).
421.Forsyth,K.S.,Jiwrajka,N.,Lovell,C.D.,Toothacre,N.E.&Anguera,M.C.The conneXionbetweensexandimmuneresponses. Nat.Rev.Immunol. 24,487–502 (2024).
422.Kanuri,B.,Biswas,P.,Dahdah,A.,Murphy,A.J.&Nagareddy,P.R.Impactofage andsexonmyelopoiesisandinflammationduringmyocardialinfarction. J.Mol. Cell.Cardiol. 187,80–89(2024).
423.Costa,A.R.etal.Thesexbiasofcancer. TrendsEndocrinol.Metab. 31,785–799 (2020).
424.Bhattacharya,S.,Sadhukhan,D.&Saraswathy,R.Roleofsexinimmune responseandepigeneticmechanisms. Epigenet.Chromatin 17,1(2024).
425.Li,X.etal.Sex-biasedmoleculardifferencesinlungadenocarcinomaareethnic andsmokingspecific. BMCPulm.Med. 23,99(2023).
426.Thompson,M.G.,Peiffer,D.S.,Larson,M.,Navarro,F.&Watkins,S.K.FOXO3, estrogenreceptoralpha,andandrogenreceptorimpacttumorgrowthrateand infiltrationofdendriticcellsubsetsdifferentiallybetweenmaleandfemalemice. CancerImmunol.Immunother. 66,615–625(2017).
427.Xiao,T.etal.Hallmarksofsexbiasinimmuno-oncology:mechanismsand therapeuticimplications. Nat.Rev.Cancer 24,338–355(2024).
428.Wallis,C.J.D.etal.Associationofpatientsexwithefficacyofimmunecheckpointinhibitorsandoverallsurvivalinadvancedcancers:asystematicreview andmeta-analysis. JAMAOncol. 5,529–536(2019).
429.Pinto,J.A.,Araujo,J.M.&Gómez,H.L.Sex,immunity,andcancer. Biochim. Biophys.ActaRev.Cancer 1877,188647(2022).
430.Dodd,K.C.&Menon,M.Sexbiasinlymphocytes:implicationsforautoimmune diseases. Front.Immunol. 13,945762(2022).
431.Xing,E.,Billi,A.C.&Gudjonsson,J.E.Sexbiasandautoimmunediseases. J. Investig.Dermatol. 142,857–866(2022).
432.Wilkinson,N.M.,Chen,H.-C.,Lechner,M.G.&Su,M.A.Sexdifferencesin immunity. Annu.Rev.Immunol. 40,75–94(2022).
433.Moulton,V.R.Sexhormonesinacquiredimmunityandautoimmunedisease. Front.Immunol. 9,2279(2018).
434.Wu,Y.etal.Sexhormonesinfluencetheintestinalmicrobiotacompositionin mice. Front.Microbiol. 13,964847(2022).
435.Natl.Inst.Health.NOT-OD-15-102:considerationofsexasabiologicalvariablein NIH-fundedresearch. https://grants.nih.gov/grants/guide/notice-files/not-od15-102.html (2015).
436.Arumugam,G.S.,Damodharan,K.,Doble,M.&Thennarasu,S.Significantperspectivesonvariousviralinfectionstargetedantiviraldrugsandvaccines includingCOVID-19pandemicity. Mol.Biomed. 3,21(2022).
437.Levin,E.G.etal.WaningimmunehumoralresponsetoBNT162b2Covid-19 vaccineover6months. N.Engl.J.Med. 385,e84(2021).
438.Furer,V.etal.Immunogenicityinducedbytwoandthreedosesofthe BNT162b2mRNAvaccineinpatientswithautoimmuneinflammatoryrheumatic diseasesandimmunocompetentcontrols:alongitudinalmulticentrestudy. Ann. Rheum.Dis. 81,1594–1602(2022).
439.Leston,M.etal.DisparitiesinCOVID-19mortalityamongsttheimmunosuppressed:asystematicreviewandmeta-analysisforenhanceddiseasesurveillance. J.Infect. 88,106110(2024).
440.Meeraus,W.etal.AZD1222effectivenessagainstsevereCOVID-19inindividuals withcomorbidityorfrailty:theRAVENcohortstudy. J.Infect. 88,106129(2024).
441.Obeid,M.etal.HumoralresponsesagainstvariantsofconcernbyCOVID-19 mRNAvaccinesinimmunocompromisedpatients. JAMAOncol. 8,e220446 (2022).
442.Mbonde,A.A.etal.NeuroinvasiveWestNilevirusinfectioninimmunosuppressedandimmunocompetentadults. JAMANetw.Open 7,e244294(2024).
443.Liao,C.etal.Siglec-F+ neutrophilsinthespleeninduceimmunosuppression followingacuteinfection. Theranostics 14,2589–2604(2024).
444.Suk-Ouichai,C.etal.AclinicaloverviewofpeoplelivingwithHIVandgenitourinarycancercare. Nat.Rev.Urol. 21,373–383(2024).
445.Gianesin,K.etal.PrematureagingandimmunesenescenceinHIV-infected children. AIDS 30,1363–1373(2016).
446.Vergori,A.etal.ImmunogenicitytoCOVID-19mRNAvaccinethirddosein peoplelivingwithHIV. Nat.Commun. 13,4922(2022).
447.Kachikis,A.etal.TimingofmaternalCOVID-19vaccineandantibodyconcentrationsininfantsbornpreterm. JAMANetw.Open 7,e2352387(2024).
448.Johnston,M.S.,Galan,A.,Watsky,K.L.&Little,A.J.DelayedlocalizedhypersensitivityreactionstotheModernaCOVID-19vaccine. JAMADermatol 157, 716–720(2021).
449.Cappelletti-Montano,B.,Demuru,G.,Laconi,E.&Musio,M.Acomparative analysisonseriousadverseeventsreportedforCOVID-19vaccinesinadolescentsandyoungadults. Front.PublicHealth 11,1145645(2023).
450.Heil,M.Self-DNAdriveninflammationinCOVID-19andaftermRNA-based vaccination:lessonsfornon-COVID-19pathologies. Front.Immunol. 14,1259879 (2024).
451.Pettini,E.etal.Spike-specificmemoryBcellresponseinhematopoieticcell transplantationrecipientsfollowingmultiplemRNA-1273vaccinations:alongitudinalobservationalstudy. Vaccines 12,368(2024).
452.Mawson,A.R.&Croft,A.M.Multiplevaccinationsandtheenigmaofvaccine injury. Vaccines 8,676(2020).
453.BioNTechSE.APhaseIb/IIatwo-part,randomized,placebo-controlled,observerblind,dose-findingevaluationtrialtodescribethesafety,reactogenicity,and immunogenicityoftwoinvestigationalvaccinesagainsttuberculosisinBCG vaccinated,HIV-negativesubjectsandpeoplelivingwithHIV. https:// clinicaltrials.gov/study/NCT05547464 (2024).
454.Park,J.K.,Lee,E.B.&Winthrop,K.L.Whatrheumatologistsneedtoknowabout mRNAvaccines:currentstatusandfutureofmRNAvaccinesinautoimmune inflammatoryrheumaticdiseases. Ann.Rheum.Dis. 83,687–695(2024).
455.Mendonça,M.C.P.,Kont,A.,Kowalski,P.S.&O’Driscoll,C.M.Designoflipidbasednanoparticlesfordeliveryoftherapeuticnucleicacids. DrugDiscov.Today 28,103505(2023).
456.Bitounis,D.,Jacquinet,E.,Rogers,M.A.&Amiji,M.M.Strategiestoreducethe risksofmRNAdrugandvaccinetoxicity. Nat.Rev.DrugDiscov. 23,281–300 (2024).
457.Tursi,N.J.&Weiner,D.B.Modifiedmessenger-RNAcomponentsalterthe encodedprotein. Nature 625,37–38(2024).
458.Mulroney,T.E.etal.N1-methylpseudouridylationofmRNAcauses +1ribosomal frameshifting. Nature 625,189–194(2024).
459.Ni,L.AdvancesinmRNA-basedcancervaccines. Vaccines 11,1599(2023).
460.Xie,C.,Yao,R.&Xia,X.TheadvancesofadjuvantsinmRNAvaccines. NPJ Vaccines 8,162(2023).
461.Buschmann,M.D.etal.NanomaterialdeliverysystemsformRNAvaccines. Vaccines 9,65(2021).
462.Melamed,J.R.etal.Lipidnanoparticlechemistrydetermineshownucleoside basemodificationsaltermRNAdelivery. J.ControlRelease 341,206–214(2022).
463.Swetha,K.etal.Recentadvancesinthelipidnanoparticle-mediateddeliveryof mRNAvaccines. Vaccines 11,658(2023).
464.Zhuang,L.,Ye,Z.,Li,L.,Yang,L.&Gong,W.Next-generationTBvaccines: progress,challenges,andprospects. Vaccines 11,1304(2023).
465.Pulendran,B.,Arunachalam,P.S.&O’Hagan,D.T.Emergingconceptsinthe scienceofvaccineadjuvants. Nat.Rev.DrugDiscov. 20,454–475(2021).
466.Gu,Y.etal.IncorporationofaToll-likereceptor2/6agonistpotentiatesmRNA vaccinesagainstcancerandinfectiousdiseases. SignalTransduct.Target.Ther. 8, 273(2023).
467.Coffman,R.L.,Sher,A.&Seder,R.A.Vaccineadjuvants:puttinginnateimmunity towork. Immunity 33,492–503(2010).
468.Zhu,W.etal.cGAMP-adjuvantedmultivalentinfluenzamRNAvaccinesinduce broadlyprotectiveimmunitythroughcutaneousvaccinationinmice. Mol.Ther. NucleicAcids 30,421–437(2022).
469.Du,J.,Chen,X.,Ye,Y.&Sun,H.Acomparativestudyonthemechanismsof innateimmuneresponsesinmiceinducedbyAlumand Actinidiaeriantha polysaccharide. Int.J.Biol.Macromol. 156,1202–1216(2020).
470.Kimura,S.&Harashima,H.Nano–biointeractions:exploringthebiological behaviorandthefateoflipid-basedgenedeliverysystems. BioDrugs 38, 259–273(2024).
471.Zhou,H.etal.Stimuli-responsivenanotechnologyforRNAdelivery. Adv.Sci. 10, 2303597(2023).
472.Sato,Y.,Nakamura,T.,Yamada,Y.&Harashima,H.Theimpactof,andexpectationsfor,lipidnanoparticletechnology:fromcellulartargetingtoorganelle targeting. J.ControlRelease 370,516–527(2024).
473.Khare,P.,Edgecomb,S.X.,Hamadani,C.M.,Tanner,E.E.L.&Manickam,D.S. Lipidnanoparticle-mediateddrugdeliverytothebrain. Adv.DrugDeliv.Rev. 197,114861(2023).
474.Lu,J.etal.TargetedandequallydistributeddeliveryofmRNAtoorganswith pentaerythritol-basedone-componentionizableamphiphilicJanusdendrimers. J.Am.Chem.Soc. 145,18760–18766(2023).
475.Kim,Y.etal.DesignofPD-L1-targetedlipidnanoparticlestoturnonPTENfor efficientcancertherapy. Adv.Sci. 11,2309917(2024).
476.Tang,X.etal.Simultaneousdendriticcellstargetingandeffectiveendosomal escapeenhancesialicacid-modi fiedmRNAvaccineefficacyandreduceside effects. J.ControlRelease 364,529–545(2023).
477.Lin,Y.,Chen,X.,Wang,K.,Liang,L.&Zhang,H.AnoverviewofnanoparticlebaseddeliveryplatformsformRNAvaccinesfortreatingcancer. Vaccines 12, 727(2024).
478.Lorentzen,C.L.,Haanen,J.B.,Met,Ö.&Svane,I.M.Clinicaladvancesand ongoingtrialsofmRNAvaccinesforcancertreatment. LancetOncol. 23, e450–e458(2022).
479.Chen,G.L.etal.234.SafetyandimmunogenicityofmRNA-1345,anmRNAbasedRSVvaccineinyoungerandolderadultcohorts:resultsfromaphase1, randomizedclinicaltrial. OpenForumInfect.Dis. 9,ofac492.312(2022).
480.Bruch,A.,Kelani,A.A.&Blango,M.G.RNA-basedtherapeuticstotreathuman fungalinfections. TrendsMicrobiol 30,411–420(2022).
481.Khattak,A.etal.Distantmetastasis-freesurvivalresultsfromtherandomized, phase2mRNA-4157-P201/KEYNOTE-942trial. J.Clin.Oncol. 41 ,LBA9503 (2023).
482.Wu,L.etal.Lipidnanoparticle(LNP)deliverycarrier-assistedtargetedcontrolled releasemRNAvaccinesintumorimmunity. Vaccines 12,186(2024).
483.Kowalski,P.S.,Rudra,A.,Miao,L.&Anderson,D.G.Deliveringthemessenger: advancesintechnologiesfortherapeuticmRNAdelivery. Mol.Ther. 27,710–728 (2019).
484.Dong,Y.&Anderson,D.G.OpportunitiesandchallengesinmRNAtherapeutics. Acc.Chem.Res. 55,1(2022).
485.Liu,C.etal.mRNA-basedcancertherapeutics. Nat.Rev.Cancer 23,526–543 (2023).
486.Baden,L.R.etal.EfficacyandsafetyofthemRNA-1273SARS-CoV-2vaccine. NewEngl.J.Med. 384,403–416(2021).
487.Thomas,S.J.etal.SafetyandefficacyoftheBNT162b2mRNACovid-19vaccine through6months. NewEngl.J.Med. 385,1761–1773(2021).
488.Soens,M.etal.1639.Areviewofclinicalsafety,reactogenicity,andimmunogenicityofanmRNA-basedseasonalinfluenzavaccine(mRNA-1010)inadults. OpenForumInfect.Dis. 10,ofad500.1473(2023).
489.Panther,L.etal.2892.SafetyandimmunogenicityofmRNA-1647,anmRNAbasedcytomegalovirusvaccineinhealthyadults:resultsofaphase2,randomized,observer-blind,placebo-controlled,dose-findingtrial. OpenForumInfect. Dis. 10,ofad500.2475(2023).
490.Essink,B.etal.ThesafetyandimmunogenicityoftwoZikavirusmRNAvaccine candidatesinhealthy flavivirusbaselineseropositiveandseronegativeadults: theresultsoftworandomised,placebo-controlled,dose-ranging,phase1clinicaltrials. LancetInfect.Dis. 23,621–633(2023).
491.Shaw,C.A.etal.Aphase1,randomized,placebo-controlled,dose-rangingstudy toevaluatethesafetyandimmunogenicityofanmRNA-basedchikungunya virusvaccineinhealthyadults. Vaccine 41,3898–3906(2023).
492.Feldman,R.A.etal.mRNAvaccinesagainstH10N8andH7N9influenzaviruses ofpandemicpotentialareimmunogenicandwelltoleratedinhealthyadultsin phase1randomizedclinicaltrials. Vaccine 37,3326–3334(2019).
493.Aldrich,C.etal.Proof-of-conceptofalow-doseunmodifiedmRNA-basedrabies vaccineformulatedwithlipidnanoparticlesinhumanvolunteers:aphase1trial. Vaccine 39,1310–1318(2021).
494.Parhiz,H.,Atochina-Vasserman,E.N.&Weissman,D.mRNA-basedtherapeutics: lookingbeyondCOVID-19vaccines. Lancet 403,1192–1204(2024).
495.InternationalAIDSVaccineInitiative.Aphase1,randomized, first-in-human, open-labelstudytoevaluatethesafetyandimmunogenicityofeOD-GT860mer mRNAVaccine(mRNA-1644)andCore-g28v260mermRNAvaccine(mRNA1644v2-Core)inHIV-1uninfectedadultsingoodgeneralhealth. https:// clinicaltrials.gov/study/NCT05001373 (2024).
496.Peng,X.AphaseIstudyofmRNAvaccineforpatientswithEBV-positive advancedmalignanttumors. https://clinicaltrials.gov/study/NCT05714748 (2023).
497.Klinghammer,K.etal.155PBNT113 + pembrolizumabas first-linetreatmentin patientswithunresectablerecurrent/metastaticHNSCC:preliminarysafetydata fromAHEAD-MERIT. Immuno-Oncol.Technol. 16,100267(2022).
498.Peng,X.AphaseIstudyofmRNAvaccineforpatientswithHBV-positive advancedhepatocellularcarcinoma. https://clinicaltrials.gov/study/ NCT05738447 (2023).
499.Linch,M.etal.421A first-in-human(FIH)phaseI/IIaclinicaltrialassessinga ribonucleicacidlipoplex(RNA-LPX)encodingsharedtumorantigensfor immunotherapyofprostatecancer;preliminaryanalysisofPRO-MERIT. J. Immunother.Cancer 9,A451(2021).
500.BioNTechSE.LuCa-MERIT-1: first-in-human,openlabel,phaseIdoseconfirmationtrialevaluatingthesafety,tolerabilityandpreliminaryefficacyofBNT116 aloneandincombinationsinpatientswithadvancednon-smallcelllungcancer. https://clinicaltrials.gov/study/NCT05142189 (2024).
501.Killock,D.PersonalizedneoantigenmRNAvaccinemitigatesmelanomarecurrence. Nat.Rev.Clin.Oncol. 21,168(2024).
502.Rojas,L.A.etal.PersonalizedRNAneoantigenvaccinesstimulateTcellsin pancreaticcancer. Nature 618,144–150(2023).
503.ShanghaiZhongshanHospital.ClinicalstudyofmRNApersonalizedtumor vaccineencodingneonatalantigencombinedwithSintilimabinjectionliver cancer. https://clinicaltrials.gov/study/NCT05761717 (2023).
504.StemirnaTherapeutics.Clinicaltrialonthesafetyandefficacyofneoantigen antigenmRNAtumorvaccineinthetreatmentofadvancedesophagealcancer andnon-smallcelllungcancer. https://clinicaltrials.gov/study/NCT03908671 (2023).
505.Palmer,C.D.etal.Individualized,heterologouschimpanzeeadenovirusand self-amplifyingmRNAneoantigenvaccineforadvancedmetastaticsolidtumors: phase1trialinterimresults. Nat.Med. 28,1619–1629(2022).
506.August,A.etal.Aphase1trialoflipid-encapsulatedmRNAencodinga monoclonalantibodywithneutralizingactivityagainstChikungunyavirus. Nat. Med. 27,2224–2233(2021).
507.Papadopoulos,K.P.etal.AphaseI/IIdoseescalationandexpansiontrialto evaluatesafetyandpreliminaryefficacyofBNT141inpatientswithclaudin-18.2positivesolidtumors. J.Clin.Oncol. 41,TPS2670(2023).
508.Yap,T.A.etal.AphaseI/IIdoseescalationtrialwithexpansioncohortsto evaluatesafetyandpreliminaryefficacyofBNT142inpatientswithprospectivelyconfirmedclaudin6-positivesolidtumors. J.Clin.Oncol. 41,TPS2669 (2023).
509.Patel,M.R.etal.AphaseIstudyofmRNA-2752,alipidnanoparticleencapsulatingmRNAsencodinghumanOX40L,IL-23,andIL-36γ,forintratumoral(iTu) injectionaloneandincombinationwithdurvalumab. J.Clin.Oncol. 38,3092 (2020).
510.Berraondo,P.,Gomis,G.&Melero,I.Theliverasacytokinefactoryworkingon mRNAblueprintsforcancerimmunotherapy. CancerCell 42,502–504(2024).
511.ModernaTX,Inc.APhase1,Dose-escalationstudytoevaluatethesafety,tolerability,pharmacokinetics,andpharmacodynamicsofmRNA-6231,encoding forahumanserumalbumin– interleukin-2muteinfusionprotein(HSA-IL2m),in healthyadults. https://clinicaltrials.gov/study/NCT04916431 (2022).
512.UniversitairZiekenhuisBrussel.Aphaseistudyonthesafetyandimmunemodulatoryeffectofintratumoral(i.t.)administrationofmRNA(messengerRNA) encodingdendriticcellactivatingproteinsinpatientswithearly,resectable breastcancer. https://clinicaltrials.gov/study/NCT03788083 (2022).
513.Chen,W.etal.273phaseIstudyofLioCyx-M,autologoushepatitisBvirus(HBV)specificTcellreceptor(TCR)T-cells,inrecurrentHBV-relatedhepatocellular carcinoma(HCC)post-livertransplantation. J.Immunother.Cancer 8,A167 (2020).
514.ArgosTherapeutics.AphaseIIstudytestingtheactivityandsafetyofAGS-004 asanimmunotherapeuticinsuccessfullyART-treatedsubjectsinfectedwith HIV-1incombinationwithARTfollowedbyARTinterruption. https:// clinicaltrials.gov/study/NCT00672191 (2013).
515.VanAcker,H.H.etal.Dendriticcell-basedimmunotherapyofacutemyeloid leukemia. J.Clin.Med. 8,579(2019).
516.Svane,I.M.EvaluationofdendriticcellstransfectedwithSurvivin,hTERTand p53mRNAasatreatmentforpatientswithmetastaticbreastcancerormalignantmelanoma. https://clinicaltrials.gov/study/NCT00978913 (2015).
517.Sampson,J.H.etal.ReproducibilityofoutcomesinsequentialtrialsusingCMVtargeteddendriticcellvaccinationforglioblastoma. J.Clin.Oncol. 40,2005 (2022).
518.Lockard,R.E.&Lingrel,J.B.Thesynthesisofmousehemoglobinchainsina rabbitreticulocytecell-freesystemprogrammedwithmousereticulocyte9S RNA. Biochem.Biophys.Res.Commun. 37,204–212(1969).
519.Muthukrishnan,S.,Both,G.W.,Furuichi,Y.&Shatkin,A.J.5′-Terminal 7-methylguanosineineukaryoticmRNAisrequiredfortranslation. Nature 255, 33–37(1975).
520.Steinle,H.etal.DeliveryofsyntheticmRNAsfortissueregeneration. Adv.Drug Deliv.Rev. 179,114007(2021).
521.Sahin,U.etal.PersonalizedRNAmutanomevaccinesmobilizepoly-specific therapeuticimmunityagainstcancer. Nature 547,222–226(2017).
522.BioNTechRNAPharmaceuticalsGmbH.First-in-humanstudyevaluatingthe safety,tolerabilityandimmunogenicityofi.n.administrationofapersonalized vaccinationwithIVACMUTANOMEvaccinew/oinitialtreatmentwithRBL001/ RBL002vaccineinpatientswithadvancedmelanoma. https://clinicaltrials.gov/ study/NCT02035956 (2020).
523.Sun,N.etal.ModifiedVEGF-AmRNAinducessustainedmultifacetedmicrovascularresponseandacceleratesdiabeticwoundhealing. Sci.Rep. 8,17509 (2018).
524.Deng,Z.,Tian,Y.,Song,J.,An,G.&Yang,P.mRNAvaccines:thedawnofanew eraofcancerimmunotherapy. Front.Immunol. 13,887125(2022).
OpenAccess ThisarticleislicensedunderaCreativeCommons Attribution4.0InternationalLicense,whichpermitsuse,sharing, adaptation,distributionandreproductioninanymediumorformat,aslongasyougive appropriatecredittotheoriginalauthor(s)andthesource,providealinktotheCreative Commonslicence,andindicateifchangesweremade.Theimagesorotherthirdparty materialinthisarticleareincludedinthearticle’sCreativeCommonslicence,unless indicatedotherwiseinacreditlinetothematerial.Ifmaterialisnotincludedinthe article’sCreativeCommonslicenceandyourintendeduseisnotpermittedbystatutory regulationorexceedsthepermitteduse,youwillneedtoobtainpermissiondirectly fromthecopyrightholder.Toviewacopyofthislicence,visit http:// creativecommons.org/licenses/by/4.0/
©TheAuthor(s)2024