
Emergingrolesofexosomesinoraldiseasesprogression
JiayiWang1,JunjunJing2,ChenchenZhou3 andYiFan 1 ✉
Oraldiseases,suchasperiodontitis,salivaryglanddiseases,andoralcancers,significantlychallengehealthconditionsduetotheir detrimentaleffectsonpatient’sdigestivefunctions,pronunciation,andestheticdemands.Delayeddiagnosisandnon-targeted treatmentprofoundlyinfluencepatients’ prognosisandqualityoflife.Theexplorationofinnovativeapproachesforearlydetection andprecisetreatmentrepresentsapromisingfrontierinoralmedicine.Exosomes,whicharecharacterizedasnanometer-sized extracellularvesicles,aresecretedbyvirtuallyalltypesofcells.Astheresearchcontinues,thecomplexrolesoftheseintracellularderivedextracellularvesiclesinbiologicalprocesseshavegraduallyunfolded.Exosomeshaveattractedattentionasvaluable diagnosticandtherapeutictoolsfortheirabilitytotransferabundantbiologicalcargosandtheirintricateinvolvementinmultiple cellularfunctions.Inthisreview,weprovideanoverviewoftherecentapplicationsofexosomeswithinthe fieldoforaldiseases, focusingoninflammation-relatedbonediseasesandoralsquamouscellcarcinomas.Wecharacterizetheexosomealterationsand demonstratetheirpotentialapplicationsasbiomarkersforearlydiagnosis,highlightingtheirrolesasindicatorsinmultipleoral diseases.Wealsosummarizethepromisingapplicationsofexosomesintargetedtherapyandproposedfuturedirectionsforthe useofexosomesinclinicaltreatment.
InternationalJournalofOralScience (2024)16:4 ;https://doi.org/10.1038/s41368-023-00274-9
INTRODUCTION
Theoralcavityistheinitialsegmentofthedigestivesystem, secondsourceofrespiration,andacrucialorganforpronunciation,mastication,andfacialesthetics.Poororalhealthmayhave animpactonaperson’soverallhealth,causingpain,discomfort, anddisfigurement.1 Oraldiseases,suchasdentalcaries,periodontaldiseases,andoralcancers,affectnearly3.5billionpeople, whichareglobalburdensthatcausepatientssuffering,especially thosewithalowsocioeconomicstatus.2 Toalleviatethese burdens,researchershavecomeupwithinnovativemethodsfor earlydiagnosisandeffectivetreatment.
Extracellularvesicles(EVs)arederivedfromcellularmembranes andreleasedintotheextracellularspace;theyplaycriticalrolesin intercellularcommunication.3 Therearetwomaincategoriesof EVs,includingexosomesandectosomes.4 Exosomes,whichare principalconstituentsofEVs,arederivedfromtheendosomal systemandpossessbilayerlipidencapsulation,withdiameters rangingfrom30to150nm.5 Comparedwithectosomes,which assemblecargosonthecytosolicsurfaceandtransientreleasein “outwardbudding” , 6 exosomesexhibitmoreintricateinteractions withcyto-inclusionsandhavegarneredsignificantattentionfrom biologicalresearchersworldwidefortheirabundantcargosand variousfunctionsassociatedwithphysiologicalorpathological processes.5
Thebiogenesisofexosomesistightlyregulatedthrougha complexnetworkofprocesses.Uponendocytosis,thepotential cargosareinternalizedbythecellsandgiverisetoearly-sorting endosomes(ESEs).Thesubsequentinteractionswithorganelles, suchastheendoplasmicreticulum(ER)andGolgiapparatus,lead
tothematurationofESEsintolate-sortingendosomes(LSEs). Followingthis,thecargosaccumulatenearthelimitingmembrane ofmultivesicularbodies(MVBs)andgenerateintraluminalvesicles (ILVs),whichwilleventuallybereleasedasexosomesvia exocytosis.5,7,8 ItshouldbenotedthatsomeILVsmayalso undergointeractionswithlysosomesorautophagosomes.5,7,8 Throughouttheentireprocess,variousregulators,suchasthe endosomalsortingcomplexrequiredfortransport(ESCRT), tetraspaninCD9/CD63/CD81,andAlix/programmedcelldeath 6-interactingprotein(PDCD6IP),areinvolvedintheintricate mechanismsofsortingandsecretion.5,7–9 Accordingly,an extensivebodyofresearchhasconfirmedthatthe finalversion oftheexosomescontainsdiversifiedcontents,includingamino acids,proteins,nucleicacids,andcellularmetabolites.These moleculesplaydistinctrolesinintercellularsignalingtransmission, immune-modulation,stromaladaptation,andmultiplebiological events.9
Therefore,exosomesexhibitsignificantpotentialinmanaging diseaseprocesses.Previousresearchhaselucidatedtheclose correlationbetweenexosomesandoraldiseases,including periodontalinflammation,oralsquamouscellcarcinomas(OSCCs), oralmucosadiseases,etc.Theapplicationofexosomesinvolves monitoringtheprogressionofthediseases,earlydiagnosis, detectionthroughspecificmanifestationsin fluid,andadvanced targetedtherapyviaprecisemoleculedelivery.Thisreview concludestherecentstudiesontheapplicationsofexosomesin oraldiseasesandaimstoprovideacomprehensiveinsightinto thelatestdevelopmentsinexosomealterations,functions,and applicationsinoral-relatedphysiologicalandpathological
1StateKeyLaboratoryofOralDiseases&NationalCenterforStomatology&NationalClinicalResearchCenterforOralDiseases&DepartmentofCariologyandEndodontics,West ChinaHospitalofStomatology,SichuanUniversity,Chengdu,China; 2StateKeyLaboratoryofOralDiseases&NationalCenterforStomatology&NationalClinicalResearchCenter forOralDiseases&WestChinaHospitalofStomatology,SichuanUniversity,Chengdu,Chinaand 3StateKeyLaboratoryofOralDiseases&NationalCenterforStomatology& NationalClinicalResearchCenterforOralDiseases&DepartmentofPediatricDentistry,WestChinaHospitalofStomatology,SichuanUniversity,Chengdu,China Correspondence:YiFan(yifan@scu.edu.cn)
Received:26October2023Revised:11December2023Accepted:26December2023
conditions.Theultimategoalistoidentifynewopportunitiesfor theeffectiveutilizationofexosomesinthepreventionand treatmentoforaldiseases.
EXOSOMESINTHEPROGRESSIONOFORALDISEASES
Asresearchershavedemonstratedtheintricaterolesofexosomes inbiologicalevents,theirdistinctalterationsaresignificant componentsinthepathologicalprocessesoforaldiseases.At theinitialstage,analyzingtheexosomalinformationhelpsto improveourearlyawarenessoforaldiseases.Duringthe developmentandprognosisstages,summarizingtheexosomerelatedmanifestationscanenhanceourcomprehensionofthe selectionandresponseoftreatments.Therefore,exosomesserve asacrucialindicatorinthediagnosis,monitoring,andtreatment ofseveraloraldiseases.Inthispart,wesummarizetherolesof exosomesindeterminingtheprogressionoforaldiseases,witha focusonperiodontaldiseasesandoralcancers.
Periodontalandbone-relatedpathologicalstatus
Periodontalinflammationandboneresorption.Followingexposuretoriskfactors(intrinsicand/oracquired),thepathological changesinperiodontitisareinitiatedbyimmune-inflammatory responses,leadingtothereleaseofinflammatorymolecules,such ascytokinesandmatrixmetalloproteinases(MMPs).These moleculesexerttheireffectsonperiodontaltissues,thereby inducingclinicalmanifestations.10 Osteoclastsareactivatedin inflammatorymicroenvironmentsandleadtothedestructionof thesurroundingalveolarbone.Subsequently,theseirreversible destructionsofperiodontalstructuresacceleratetheprogression ofperiodontitisandleadtotoothmobilityoreventoothloss, severelyimpactingthepatients’ qualityoflife.11 Theprevious studieshavedemonstratedthesignificanceofinflammatory factorsinperiodontitis.10 Itisnoteworthythatexosomesplay importantrolesinthemodulationandalterationofperiodontal inflammationandboneresorption.12
Periodontalligamentstemcell(PDLSC)-derivedexosomes significantlyimprovedangiogenesisininflammatoryregionsby upregulatingthevascularendothelialgrowthfactor(VEGF)in humanumbilicalveinendothelialcells(HUVECs)viamiR-17-5p.13 SalivaryexosomalmiR-223-3pincreasedtheinterleukin(IL)-1β and IL-6levelsbymediatingNLRP3geneexpressionandpyroptosis.14 Oxidativestressisinvolvedinperiodontitisprogressionwith abnormalreactiveoxygenspecies(ROS).Proteinargininemethyltransferase1(PRMT1)inducedbyoxidativestressinhibited exosomesecretionfromperiodontalligamentcells(PDLCs), resultinginreducedosteogenicdifferentiation.15
Theinteractionsbetweenthehostin fl ammatoryresponse andmicrobearealsocloselyinvolvedintheprogressionof periodontitis. 10 SimilartoexosomalmicroRNAs(miRNAs) derivedfromhostcells,smallRNAsofmiRNAsize(msRNAs) frompathogens( A.actinomycetemcomitans,P.gingivalis,andT. denticola )weredetectedinthebacterialoutermembrane vesicles. 16 P.gingivalis canalsoassignasenescence-associated secretoryphenotype(SASP)todendriticcells(DCs)andTcells byexosomes,andultimately,thi sresultsinalveolarboneloss. 17 Moreover,mechanicalstimuliareapromoterofperiodontal in fl ammatoryandtissue/boneimpairment,mainlyactingon PDLCs. 18 PDLCssecreteexosomalmiR-9-5pwhenfacingcyclic stretchingandpromotetheM1(pro-in fl ammatory)polarization ofmacrophagesthroughthemiR-9-5p/SIRT1/NF-kBpathwayin murinemodels. 19 TheM1macrophagewasalsoinducedby periodontalligament fi broblast-derivedexosomeswhena compressiveforcewasapplied.Theunderlyingmechanism wasassociatedwiththeYes-associatedprotein(YAP), 20 whichis acrucialcomponentintheHi pposignalingpathwayand performssigni fi cantrolesincellularmechanotransduction. 21 In theimmune-modulationofthein fl ammatoryresponse,the
YAP/Hippopathwayactsasakeyupstreamregulator. 22 These studieshighlightthecomplexinteractionsbetweenexosomes andtheclinicalmanifestationsofperiodontaldiseases,accordingtowhichweshouldtakemorestepstoattenuatethe progressionofperiodontitis.
Orthodonticmovement.Orthodontictreatmentinvolvesthe complexprocessesofalveolarboneremodelinguponthe applicationofmechanicalforces.Duringmovement,theexpressionofgingivalcrevicular fluid(GCF)exosomalmiR-29is significantlyincreased.23 Meanwhile,thePDLSC-derivedexosomal miRNAsarelargelyaltered,24 25 andthequantityofexosomal proteinsannexinA3(ANXA3)increases,whichinducesosteoclast differentiationbytheactivationofextracellularregulatedprotein kinase(ERK).26 Whenorthodonticmovementstopsandteeth positionsatisfiesourneeds,PDLSC-derivedexosomesalso contributetoteethstabilization.Forinstance,Simvastatin,a bone-formation-enhancingdrug,hasbetterbioavailabilityin conjunctionwithPDLSC-derivedexosomes.27
Oralsquamouscellcarcinomas
Withincreasingincidenceandmortalityrates,oralcancersrankas the13thmostcommoncancerworldwide,withanestimated 377,713newcasesand177,757deathsin2020.28,29 The consumptionoftobaccoandarecanutsignificantlyincreases theriskoforalcancers.Specifically,oralcancerscauselarger burdensindevelopingcountriesduetodelayeddiagnosisand limitedtreatmentopportunities.29 Amongallthetypesoforal cancers,OSCCsarethemostcommon,withanestimated40% higherincidenceratein2040.30 Summarizingthealterationsinthe exosomesinOSCCscouldenhanceourunderstandingof malignantprogression.Here,wediscussexosomalrolesin malignization,angiogenesis,andtumormicroenvironment(TME) modificationinOSCCprogressionandthepost-treatment response(Fig. 1).
Malignization.Accordingtotranscriptomeanalysis,headand necksquamouscellcarcinoma(HNSCC)-associatedexosomesplay asignificantroleinvariousprocessesthroughoutcancerdevelopment.31 AsthemostcommonmalignancytypesinHNSCCs,OSCCs exhibitvariousexosomalalterations.Fromtheoutset,theinjection ofOSCC-tumor-derivedexosomesacceleratedthemalignancy progressionofprecancerouslesionsinmurinemodels,32 andthis phenomenonwasattributedtoexosomalmiR-10bthroughAKT signaling.33 Thesameinitiationofmalignancyalsooccursin recurrentOSCCswithincreasedserumexosomallongnon-coding RNA(lncRNA)-CCDC144NL-AS1andMAGI2-AS3viathePI3K-AKTmTORpathway34 (Fig. 1a).Uponthemanifestationoftheseearly malignancysymptoms,thesubsequentprogressionofOSCCs ensuesthroughdiverseexosomalalterations.
Angiogenesis.Inducingthevasculatureisanimportanthallmark ofcancer,35 andtheexosomesacceleratethisprocessthrough severalpathways(Fig. 1b).Phosphataseandtensinhomolog deletedonchromosometen(PTEN)isatumor-suppressingfactor, anditsexpressionisdownregulatedinOSCCs.36 ExosomalmiR130b-3pderivedfromOSCCscellsandmiR-23b-3pfromsalivary adenoidcysticcarcinomas(SACCs)cellsnegativelyregulatePTEN expression,promotingmigrationandangiogenesisinHUVECs.37 38 miR-221sandmiR-210-3palsoregulatedHUVECsangiogenesis throughthePI3K/AKTpathway.39,40 Besidescancercells,the mesenchymalstemcells(MSCs)inoralcarcinomascansecrete angiogenesis-stimulativeexosomes.OSCC–MSC-derivedexosomal matrixmetalloproteinases1(MMP1)significantlyenhancesthe functionofHUVECs.41
TMEmodification.Inadditiontotumorcells,TMEexertsa dominantinfluenceonthedevelopmentofOSCCs,involving

Malignization Angiogenesis
miR-10b, lncRNAs...
PI3K-AKT-mTOR
TME modifictaion c
PI3K/AKT pathway
miR-130b-3p miR-23b-3p
miR-221s miR-210-3p

Epithelial cells migration and angiogenesis
M1 M2 polarization polarization
THBS-1 (p38, Akt and SAPK/ JNK signaling)
miR-382-5p,miR-146b-5p

d Post-treatment reaction
miR-21, miR-24... STAT3, PTEN pathways miR-196a
miR-30a inhibitor of miR-155
Enhance EMT UCA1, ERHSP-90,CMTM6,miR-29a-3p,(PD-L1)stress Cytotoxicity
circ_0069313(PD-L1) immune escaping

Fig.1 ExosomesinOSCCs.ExosomesplaycrucialrolesinseveralkeyprocessesthroughOSCCsprogression. a AdditionofexosomalmiR-10band increasedlevelofseveralexosomallncRNAs(targetingPI3K-AKT-mTORpathway)leadtoinitiationofOSCCs. b OSCCcellsderivedexosomalmiR130b-3pandmiR-23b-3ppromotedangiogenesisthroughdownregulatingPTEN,whilemiR-221sandmiR-210-3pactivatedthroughPI3K/AKT pathway.MSCs-derivedMMP1playedthesameroleinangiogenesis. c DuringtheprogressionofOSCCs,TMEexhibitsintricateinteractionswith tumors.ExosomesderivedfromOSCCcellspromoteddifferentiationofCAFs,whileCAFssecretedexosomalmiR-382-5pandmiR-146b-5pto enhancetumordevelopment.Inimmuneregulations,cancer-derivedexosomalTHBS-1inducedpolarizationofTAMstowardM1type.Exosomal UCA1,miR-29a-3p,CMTM6,HSP-90andPD-L1(underERstress)leadTAMstoM2type.BothM1andM2macrophagescontributetothe progressionofmalignancy.Tcellswerealsomodulatedbycancercellsthroughexosomalcirc_0069313,targetingPD-L1.Inaddition,Tregsplayed acrucialroleinfacilitatingimmuneevasioninOSCCs. d ExosomescanregulatetreatmentresponseofOSCCtochemotherapyandradiotherapy
intricateinteractionswithexosomes(Fig. 1c).TheTMEis composedoftheextracellularmatrix(ECM)andrelevantcells, includingcancer-associated fibroblasts(CAFs),endothelialcells, andimmunecells.42 InOSCCs,tumor-derivedexosomesinduce
CAFdifferentiation.43 Inturn,theCAFshavereceivedgreat attentionfortheirsignificanceinpromotingtumordevelopment throughintracellularcommunications,primarilyviaexosome secretion.44 InOSCCs,theCAF-derivedmiR-382-5p45 andmiR-
146b-5p46 exosomesareupregulated,leadingtotheinvasionof cancercellsandmetastasis.Inaddition,themiR-34a-5p-devoid exosomesfromCAFspromotemalignancybytargetingtheAXL(a componentofthereceptortyrosinekinase)ofcancercells.47
ByanalyzingthegenesrelatedtoEVformationintheHNSCCs samplesandtheirimpactoncellularbehaviors,otherscientists havefoundasignificantcorrelationbetweenEVsandimmune modification(T/Bcells,macrophage,andneutrophils)whena malignancyoccurs.48 Thetumor-associatedmacrophages(TAMs) playacrucialroleasimmunecellswithintheTME.Generally,the TAMsmainlypolarizeintotwostates theM1andM2subtypes.49 Accordingtotheconventionalperspective,theM1macrophages performanti-tumorfunctionsbydirectcytotoxicityorantibodydependentcell-mediatedcytotoxicity(ADCC),whiletheM2 macrophagespromotecancerprogressionandmetastasisby secretingcytokinesandrelatedmolecules,suchasILs,epithelial growthfactors(EGFs),andMMPs.50 However,theinvolvementof M1macrophagesintheprocessofmalignancyinvasionhasbeen recentlyobserved,suggestingthattheirpresencemaycontribute tomoreaggressivemalignization,butnotahighersurvivalrate.51
InOSCCs,theTAMshavecomplexinteractionswiththetumor cells.Theexosomaltransforminggrowthfactorbeta(TGF-β) derivedfromHNSCCscellscanpromoteangiogenesisbyboth interactingwithepithelialcellsandmodulatingTAMschemotaxis forpro-angiogenicfunctions.52 OSCC-derivedexosomalthrombospondin1(THBS-1)activatesanM1-likemacrophagethrough p38,Akt,andSAPK/JNKsignaling,whichpromotescancer progression.53 M1-likeTAMsenhancetheOSCC epithelial–mesenchymaltransition(EMT)andcancerstemcell formationthroughtheIL-6/Jak/signaltransducerandtheactivator oftranscription3(Stat3)/THBS-1axis.54
Furthermore,oralcancercellsarecloselyassociatedwiththe conventionaloncogenicM2macrophagesthroughmultiplepathways.50 OSCCcancerstemcell-derivedexosomespolarizeTAMs intoM2macrophagesbytheurothelialcarcinoma-associated1 (UCA1)secretiontargetingLAMC2-PI3K/AKTsignalingpathway. Theseexosomesalsosuppressanti-tumorimmunity,including CD4+ Tcellsactivationandinterferon-γ (IFN-γ)production.55 In addition,OSCCcancercellssecreteexosome-enclosedcargos, inducingM2macrophages.MiR-29a-3p,amemberofthemiR-29 familythatsignificantlyincreasesinOSCCs,56 exertseffectsonM2 polarizationthroughthesuppressorofcytokinesignaling1 (SOCS1)/signaltransductionandthetranscriptionalactivator (STAT)pathway.57 TheCKLF-likeMARVELtransmembrane domain-containing6(CMTM6)58 andheatshockprotein-90 (HSP-90)59 areimportantproteinicinfluencersofM2macrophage conversion,indicatingnovelcrosstalkbetweencancercellsand immune-modulation.ERstress,afunctionalproteinaceous responsethatreactstocellulareventslikeoncogenesis,drives OSCCcellstosecreteexosomalprogrammeddeathligand1(PDL1)andactivatetheM2polarizationofTAMs.60
BesidesTAMs,Tcellsarealsoimportantimmuneregulatorsin OSCCs.T-effector(Teff)cellsandT-regulatory(Treg)cellsarethe twomainclassificationsofTcells.61 Teffcellsprimarilyexecute killingfunctionstowardpathogensor,anomaly,self-antigens.Treg cellsmodulateover-functioningTeffcellsandmaintainimmune homeostasis.However,intheoncogenesisprocess,Tregcellsmay leadtoimmuneevasion.61 InOSCCs,exosomalcircularRNA circ_0069313couldincreasethePD-L1expressionincancercells withmiR-325-3pspongingandinteractwithTregcells.Thus,the Teffcellsaresuppressed,whiletheTregcellsareactivated, resultingintheimmuneescapingofmalignancy.62
Besidesresistance,theprofileofexosomesinOSCCsaltersin responsetotreatment.Aftersurgeryand/orchemo-radiotherapies,monitoringimmune-relatedexosomalproteins(suchasPDL1)couldaccuratelyindicatethetreatmentreactionand recurrencepossibility.73,74 Melatonin,ahormonesecretedbythe pinealgland,playscrucialrolesinmultiplephysiological processes.75 Therecentresearchhashighlighteditspotential functioninOSCCtherapyasanadjuvant,owingtoitsabilityto inhibittumorprogressionbymodulatingkeyregulators,suchas MMP-9,p53,andepidermalgrowthfactorreceptor(EGFR),aswell asenhancingimmunefunctions.76,77 TheexpressionofOSCCcellderivedexosomes(miR-21andmiR-155)undergoesalterations followingmelatoninapplication,indicatingtheirpotentialfor assessingthetreatmentresponseandpredictingtheprognosis.78 Inconclusion,exosomesexhibitvariouscharacteristicsduring thedevelopmentandprognosisofOSCCs.Byimprovingour comprehensionofthesealterations,wecanapproachabetter understandingoftheenigmasurroundingOSCCoccurrenceand conductfurtherinvestigationsontherapeuticinterventions.
EARLYDIAGNOSTICMETHODSUTILIZINGEXOSOMESINORAL DISEASES
Accordingtotheabove,itisconvincingthatexosomesplaya crucialroleintheprogressionoforaldiseases.Ourparticular emphasisliesinexosomalapplicationforearlydiagnosisdueto thepotentialexacerbationofpatients’ sufferingcausedby delayeddetection.Incontrasttothemoreapparentbiomarkers, suchasinflammatorymoleculesofperiodontitisandgene expressionchangesinOSCCs,exploringthefulladvantagesof exosomesrepresentsapromisingavenue.Liquidbiopsyisan emergingdiseasediagnosticmethodthatprimarilyinvolvesthe isolationandevaluationof fluidentities,suchasDNAs/RNAs, proteins,andextracellularvesiclesinhumansaliva,blood,and urine.79 Comparedwiththeotherpatternsofbiomarkers, exosomesprotecttheircargos,remarkablyenhancingthe accuracyandpracticabilityofdetection.80 Inthe fieldoforal medicine,exosome-associatedliquidbiopsyhasdemonstrated valueinthediagnosisofmultiplediseases.81 Theidentificationof novelbiomarkersandreliabledetectivetechniquesarepotential researchprospects.
Biomarkersforperiodontitis
Thetraditionaldiagnosticcriteriaforperiodontitisprimarilyrelyon clinicalsymptoms,suchastheperiodontalpocketdepthandthe pathologicallossofthealveolarbone.However,thepossibilitiesof “overdiagnosis” or “underdiagnosis” remainunsolved,asthese clinicalvariablesmayfailtoaccuratelypredictthedisease
Post-treatmentreaction.Thetraditionalnon-surgicaltreatments forOSCCsincludechemotherapyandradiotherapy.63 However, resistanceandunwillingtreatmentresponseswillimpactthe prognosisandmortality.Therefore,itisimperativetoidentify precisemarkersthatcaneffectivelyassesstheefficacyofthese therapies.Chemoresistanceoccursinnearlyallanti-tumordrugs, andtheunderlyingmechanismcanbeintrinsic(genemutations) oracquired(TME,epigeneticalteration).64 Accordingtorecent studies,theexosomesplayacrucialroleinchemoresistanceof OSCCsthroughseveralpathways65 (Fig. 1d).ExosomalmicroRNAs (suchasmiR-21andmiR-24)derivedfromOSCCcelllines contributetochemoresistancebytargetingmultiplesignaling molecules,includingSTAT3andPTEN.65,66 Macrophage-derived exosomesandCAF-derivedexosomalmiR-196acanalsoreduce drugsensitivity.67,68 Inaddition,theexosomescaninfluence chemoresistancebymodulatingthedrugefflux,vesicularpH,antiapoptoticsignaling,DNAdamagerepair(DDR),aswellasthe EMT.65 Inreverse,thedeliveryofexosomalmiR-30aandthe inhibitorofexosomalmiR-155showedtheabilitytoenhancethe sensitivityofcisplatin-resistantOSCCs,69,70 highlightingtheir potentialroleinimprovingcancertherapy.Cancercells’ reactions towardradiotherapyarealsoassociatedwithexosomes(Fig. 1d), mainlythroughmodulatingDDR,celldeathsignals,andthe EMT.71 InHNSCCradiation-resistancecases,thefunctionsof tumor-promotingexosomesarestrengthenedafterradiation.72
progressionandtreatmentresponse.82 Theidentificationof exosomalbiomarkershasthepotentialtoenhanceourunderstandingoftheintricatebiologicalmechanismsunderlying periodontitisprogressionandfacilitatethedevelopmentof advancedclinicalmanagementstrategiesforpatients.Generally, theconcentrationofEVsfromtheGCFofperiodontitispatientsis evidentlyhigherwhencomparedtothatofhealthysamples.83
Nucleicacids,asprominentconstituentsofexosomalcargos, canprovidevaluablediagnosticinsights.InadditiontoDNA/RNAs thatdirectlyencodeproteins,non-codingRNAsplayimportant rolesinregulatingcellulareventsthroughdiversepathways,such asgenesilencingandpost-translationalmodification.84 MiRNAs aresmall,non-codingRNAsthatmodulatemRNAexpressionby formingRNA-inducedsilencingcomplexes(RISCs)ordirectly bindingtomRNAsthroughbasepairing.85
AccordingtoKamaletal.,86 1995salivaryexosomalmiRNAsand 333plasmaexosomesweresignificantlyalteredintheirperiodontitissamples.Amongthesepotentialbiomarkers,serum exosomalmiR-let-7d,miR-126-3,miR-199a-3,andsalivaryexosomalmiR-125a-3werenotablefordistinguishingthediseasestatus andcorrelationwiththeclinicalstages.86 Inaddition,researchers reportedthatserumexosomalmiR-1304-3p,miR-200c-3p,small nucleolarRNASNORD57,SNODB1771,87 salivaryexosomalmiR223-3p,14 OsxmRNA88 andGCFexosomalmiR-122689 were downregulatedinperiodontitis.However,salivaryexosomalmiR140-5p,miR-146a-5,miR-628-5p,90 miR-381-3p,91 tumornecrosis factor-alpha(TNF-α),88 andPD-1mRNAsexhibitedhigherexpressionlevelsintheperiodontitissamples.92 Asforproteins,the levelsofthetetraspaninsCD9andCD81weredecreasedinthe salivaryexosomesofperiodontitis,whichisassociatedwithan inflammatoryreaction.93 Thelevelsofimmune-relatedproteins, suchascomplementcomponents(C6,C8A,andC8B)and chemokines,wereincreasedinthesalivaryexosomesofyoung severeperiodontitispatients,94 implyingthatimmunechangesare responsibleforthispathologicalalteration.
Biomarkersfororalcancers
Scalpelbiopsiesandhistologicalexaminationshavelongbeen regardedasthegoldenstandardformalignancyresearch.95 However,oralcancers,particularlyOSCCs,usuallydevelop imperceptibly,withminimalclinicalmanifestationsintheearly stages.Therefore,bythetimethesymptomshavebeenidentified, themalignancymayhavealreadyappeared,leadingtoapoor prognosis.96 Inthemeantime,thepursuitofnon-invasive detectionmethodshasbecomeaprevailingtrendinthemedical field.Thesestatusesemphasizethenecessityfortheapplicationof exosomalbiomarkersinOSCCdiagnosis.Comparedwiththe samplesfromhealthycontrols,theexosomesfromOSCCpatients showedanincreasedconcentrationandlargerdiameter,with higherCD63andlowerCD9/CD81expressionlevels,revealing basicevidencefordistinguishment.97 However,themostcomprehensiveandconvincibledistinctionsarethecargosofthe exosomes.Wehavesummarizedthesebiomarkersandthe relevantresearchinTable 1.
InOSCCs,thealteredsecretionofexosomalmiRNAscansignal thediseasestatus.Basedonthestatisticalevidence,thelevelsof serum/plasmaexosomalmiR-19a/27b/20a/28-3p/200c/151-3p/ 223/20b,98 miR-130a,99 miR-155,miR-21,100 miR-3168,miR-125a5p,miR-451a,andmiR-16-2-3p,101 andsalivaryexosomalmiR-4865p,miR-486-3p,miR-24-3p,102 miR-1307-5p,103 miR-200a,andmiR134104 weresignificantlyelevatedinthepatientswithOSCCs, performingpotentialoncogenicroles.However,theserum exosomalmiR-370/139-5p/let-7e/30c,98 miR-126,100 andsalivary exosomalmiR-10b-5p105 106 expressionlevelswerereduced,as theyaretumorsuppressors.Throughtheinvitroculturingof OSCCcelllines,miR-365andothermiRNAsareproducedin exosomesaberrently107 andcanbeusedtoassesshuman papillomavirus(HPV)involvement.101 Tissue-derivedexosomal
circRNA_047733canbeusedtoindicatethelymphnode metastasis(LNM)outcomesofOSCCcaseswithsatisfying specificityandsensitivity.108 Theinvivoapplicationofthese biomarkersnecessitatesfurtherresearch.CirRNAsarebacksplicingformedRNAsthatinfluenceproteintranslationthrough interactingwithmiRNAs,RNA-bindingproteins,andRNAPol.109 Serumexosomalcirc_0000199showedahigherlevelinOSCC patientsandisassociatedwiththeTumorNodeMetastasis(TNM) stageandprognosis.110
Regardingtheproteincargosoftheexosomes,thereare notabledifferencesbetweentheOSCCpatientsandhealthy individuals.TGFβ,awell-knowncancerbiomarker,providesmuch morediagnosticandprognosticinformationforOSCCsinan exosomalformthaninasolubleform.111 Theleveloftheseraand salivaryexosomalmarkerAlixincreasessignificantlyinOSCC patients,butthesensitivityinearlycancer(stageI)detectionisnot satisfying.Moreover,exoAlixbehavesdifferentlyinseraandsaliva inastage-dependentmanner;onlyserumexoAlixpresents prognosisinformation.112 Inadditiontosingle-exosomalprotein biomarkerdetection,Lietal.113 demonstratedtheadvantagesof combinedexosomalC-reactiveprotein(CRP),vonWillebrand factor(VWF),andleucine-richalpha-2-glycoprotein(LRG)inthe determiningspecificityandsensitivityofearlyOSCCsdiagnosis. Theserumexosomalplateletfactor4variant(PF4V1),C-X-Cmotif chemokine(CXCL7),coagulationfactorXIII,A(F13A1)and ApolipoproteinA-I(ApoA1)notonlyenablediscrimination betweentheOSCCcasesandhealthycontrols,butalsoprovide informationonthelymphnodemetastasisstatus.Thecombinationofthesefourbiomarkerscouldalsoincreasethe preciseness.114
Biomarkersforotheroraldiseases
Exosomalbiomarkershavealsobeendiscoveredinotheroral diseases.Viralinfectioushand,foot,andmouthdisease(HFMD) mostlyaffectsyoungpatientsunder5yearsoldwithherpes.115 In theseraofpatientswithHFMD(boththemildandseveretypes), thereisanelevatedlevelofexosomalmiR-16-5p,whilethemiR671-5pandmiR-150-3plevelsweredecreased.116 Thesestatistical datademonstratedthesatisfyingsensitivityandspecificityof exosomesasbiomarkersinHFMDdiagnosis.
Orallichenplanus(OLP)isanimmune-relatedmucosadisease thatiswellrecognizedasapotentiallymalignantdisorder.117 Therefore,itsearlydiagnosiswouldinhibittheprogressiontoward oralcancersandbenefitthepatients’ prognosis.Theexosomal alterationin fluidshasprovidedvaluableinformationregarding OLPdetection.Basedontheevidencefromthepolymerasechain reaction(PCR)technique,theserumexosomalmiR-34a-5p118 and salivaryexosomalmiR-4484119 weresignificantlyupregulatedin theOLPsamples.Furthermore,thehumancytomegalovirus (HCMV)-encodedmiR-UL59manifestedahigherlevelintheOLP samples,120 suggestingtheunderlyingconnectionsbetween HCMVinfectionandtheunclearetiologyofOLP.
Asanautoimmunediseaserelatedtothesalivaryglands, Sjögren’ssyndromecausesalterationsinvariouscontentsof patients’ fluids.Since2010,scientistshavereportedthepotentialof exosomalmiRNAbiomarkersusedfordiagnosingSjögren’s syndrome.121 Novelsequencingevidencehasrevealedthatthe levelsofexosomalcircRNAscirc-IQGAP2andcirc-ZC3H6increased intheserumsamplesfromprimarySjögren’ssyndromepatients.122 Inaddition,inmurinemodels,thelevelsofserumexosomal miRNA-127-3p,miRNA-409-3p,miRNA-410-3p,miRNA-541-5p,and miRNA-540-5pwereupregulated.123 These findingsdeservefurther researchontheunderlyingmechanismviahumanstudies.
Analysistechniqueforexosomes Priortoourevaluationofexosomalbiomarkers,theprimaryfocus wasthedevelopmentofefficientandprecisedetectiontechniques.Theseparationandquantitativeanalysisofexosomesserve
Table1. Exosomalcargosasbiomarkersfororalcancerdiagnosis
TissueSampleExo-biomarkerAlternationStatisticscaleMechanismOtherinformationRef
Tongue SCCs
PlasmamiR-19a/27b/20a/ 28-3p/200c/151-3p/ 223/20b
miR-370/139-5p/let7e/30c Downregulated
OSCCsPlasmamiR-130aUpregulated184patients 196controls N/AAssociatedwithpoor prognosis (advancedTNMstages/ poorlydifferentiation)
OSCCsSerummiR-155/21Upregulated35patients 11controls Downregulatingtumor suppressorsPTENandBcl-6 N/A
miR-126DownregulatedInhibitingoncogeneEGFL7 expression LowmiR-126wasassociated withpoorprognosis
HNSCCsSerummiR-3168/125a-5p/ 451a/16-2-3p Upregulated22patients 10controls (withbenign neoplasm)
OOCsSalivamiR-486-5pUpregulated25patients 25controls N/AHigherlevelinstageII
miR-10b-5pDownregulatedN/A
OSCCsSalivamiR-24-3pUpregulated49patients 14controls Targetingcircadiangene-
OSCCsSalivamiR-1307-5pUpregulated12patients 7controls Suppressingonco-related genesTHOP1,EHF,RNF4, GET4andRNF114
OSCCsSerumcirc_0000199Upregulated108patients 50controls AssociatedwithmiR-145-5p andmiR29b-3p
OSCCsSerum/ saliva AlixUpregulatedSerum 29patients 21controls Saliva 23patients 20controls
OSCCsSerumCombinedCRP,VWF andLRG Upregulated40patients 20controls N/ACombinedbiomarkersshow greatersensitivityand specificitythanindividual ones.
OSCCsSerumPF4V1,CXCL7, F13A1andApoA1 Downregulated (F13A1 upregulated) 10patients (noLNM) 10patients (withLNM) 10controls
N/APF4V-tumordifferentiation level
PF4V1/F13A1-positivenode number ApoA1-smokingand drinking
SCC squamouscellcarcinoma, OSCC oralsquamouscellcarcinoma, HNSCC headandnecksquamouscellcarcinoma, OOC oralandoropharyngealcancer, miR micro-RNA, IL interleukin, circRNA circularRNA, TGF-β transforminggrowthfactorbeta, Alix programmedcelldeath6-interactingprotein(PDCD6IP), CRP C-reactiveprotein, VWF vonWillebrandfactor, LRG leucine-richalpha-2-glycoprotein, PF4V1 plateletfactor4variant, CXCL7 C-X-Cmotifchemokine, F13A1 coagulationfactorXIII,A, ApoA1 apolipoproteinA-I, PTEN chromosometen, PER1 Period1
ascrucialstepsinclinicalapplications.124 Centrifugationisthe conventionalmethodusedforexosomeseparation.Toimprove efficiency,differentialcentrifugationisthemostcommonlyusedand practicaltechnique.Thisapproachallowsfortheisolationofnucleic acidcargosatfractionsof0.3×103 and2.0×103,whileproteincargos appearatdifferentfractions;Alixpredominantlyappearsatthe 160.0×103 fraction,andHSP70exhibitsanevendistributionacrossa widerangefrom0.3×103 to160.0×103124 125 (Fig. 2a).
Therequirementsforexosomalquantitativeanalysisvary dependingonspecificobjectives,suchasparticleenumeration, proteinquantification,RNAquantification,etc.124 Consequently,
therelevantmethodologiesincludenanoparticletrackinganalysis (NTA)and flowcytometryforparticleenumeration,bicinchoninic acid(BCA)assayingandPAGE-SDSstainingforproteinquantification.124 Aimingatenhancedefficiency,otherresearchershave comeupwithmorepracticalandprecisemethodsfororal exosomalquantitativeanalysis.SurfaceenhancementRaman spectroscopy(SERS)isamodifiedformofRamanspectroscopy (theinelasticscatteringoflight),whichshowsanamplified vibrationalRamanspectrumwhenthetestingsampleisinclose proximitytoaplasmonicnanostructuredsurface(Fig. 2b).Based ontheanalysisofsalivaexosomes,SERSexhibitsexceptional

Differential centrifugation

Modified raman spectroscopy

Modified mass spectrometry with CD63 capturing (1) (2) & (Nucleic acids)

Raman shift/cm–1
SERS spectra differences between HNSCC cancer and control groups127
Copyright 2023, Faul et al. J Pers Med
Au nanoparticle with labeling DNA modification
modified electrode Cholesterol modified primer DNA and padlock DNA
Salivary exosomes

CD63 capturing exosome
Ag nanoparticle with CD63 modification
Fig.2 Schematicillustrationofexosomaldetectiontechniques. a Differentialcentrifugationcanisolateexosomecargosatdifferentfractions. b SurfaceenhancementRamanspectroscopy(SERS)demonstratesdistinctRamanspectrabetweensalivasamplesfromHNSCCandhealthy controlgroups. c ModifiedmassspectrometrywithCD63capturingallowsforquantitativeanalysisofexosomes. c-1Detectionofexosomal signalisachievedthroughcholesterol-basedrollingcircleamplificationandgold-nanoparticle-labeledDNA. c-2Redbloodcellmembrane (RBCM)-modifiedelectrodecanproduceelectrochemicalsignalsofexosomeswithAunanoparticles
sensitivityandspecificityindistinguishingmalignantandnormal ones,enablingtheearlydiagnosisofheadandneckcancers.126 Chengetal.introducedanewtechniqueforinductivelycoupled plasmamassspectrometry,performingexcellentlyinoralexosomesquantitativeanalysis.127 Theycapturedexosomeswiththe CD63antibodyanddetectedasignalwithcholesterol-based rollingcircleamplificationandgold-nanoparticle-labeledDNA (Fig. 2c-1).AlsoassociatedwithCD63capturing,redbloodcell membrane(RBCM)-modifiedelectrodecouldproduceelectrochemicalsignalsonceconfrontingexosomes,showinggreatprecision insalivaexosomesdetection128 (Fig. 2c-2).
Althoughsignificantprogresshasbeenmadeintheidentificationofexosomalbiomarkersfordiagnosingoraldiseases,certain limitationsstillexist.Themajorityofstudieslacksufficient evidenceduetoinadequatesamplecollectionandclassifications forexosomalbiomarkers.Thesedeficienciesposechallengesin standardizingtheirclinicalapplications.Furthermore,thetechniquesusedforisolatingandanalyzingexosomesfromhuman fluidsareimpracticalformostbasicmedicalinstitutions,anda validconsensushasnotyetbeenreached.Toaddresstheseissues, itisimperativetofurtherdeveloptechnicalcapabilitiesandgain deeperinsightsintotheroleofexosomesintheprogressionof oraldiseases,whichwillundoubtedlyinspiremorereliable diagnosticstandards.
EXOSOMESINTARGETEDTHERAPYFORORALDISEASES
Overrecentyears,exosomeshavebeenextensivelyinvestigated inthetreatmentofmultipleoraldiseases.Theprimaryresearch areasencompasstheutilizationofengineeredexosomesasan innovativedrugdeliverytoolwithspecificcargosandtheclinical applicationofexosomesderivedfromorofacialstemcellsintissue regeneration.Inthissession,wesummarizethecurrentresearch onexosomaltherapiestowardinfections,oralcancers,andthe regenerationofpulpandbone.
Engineeredexosomes
Anti-infection.Infectiouspathogensplayasignificantroleas causativeagentsandriskfactorsinvariousoraldiseases.Recent studieshaveunveiledthepotentialoftheapplicationofexosomes asinnovativetherapiesagainstmicrobialinfections.Aninfection withEnterovirus71(EV-71)servesastheprimarytriggerforHFMD, leadingtoanelevatedlevelofexosomesinthepatients’ sera samples.116 Consequently,theutilizationoftheexosomeinhibitor GW4869couldeffectivelyreduceinfectiousactivities. 129 Exosomal miR-155exhibitsacomparableantiviraleffectbytargetingthe phosphatidylinositolclathrinassemblyprotein(PICALM).130 Asthe firstinhabitantmicrobesintheoralcavity,streptococciprominentlyinfluenceoralhealthstatus,wheredysbacteriosismaylead tocariesandotheroralinflammatory-relateddiseases.The
Table2. Exosomalcargosexhibitinganti-tumoreffectonOSCCs
Exo-cargoOriginFunctionMechanismResearchmodelRef
miR-1294OSCCtissueInhibitingOSCCcells proliferationandmigration
miR-101-3pBonemarrowmesenchymal stemcells(BMSCs)
miR-6887-5pEldecalcitol(ED71)-induced OSCCcells
miR-34aEngineeredexosomesfrom HEK-293TcellswithmiR-34a loading
circRNAGDP dissociation inhibitor2 (circGDI2)
Engineeredexosomesfrom OSCCcellswithcircGDI2 loading
LncRNALBX1-AS1ImmunoglobulinkappaJ region(RBPJ)overexpressed macrophages
InhibitingOSCCoccurrence andprogression
InhibitingOSCCcells proliferation
InhibitingOSCCcells proliferation,migration,and invasion
InhibitingOSCCcells proliferation,migration, invasionandglycolysis
InhibitingOSCCcells proliferation,andinvasion
exosomesseparatedfromhoneycontainantimicrobialagentsthat havemorepotenteffectson Streptococcusmutans incomparison tothoseoftheotherstrains.131
Anti-cancer.Traditionalchemo-/immunotherapiesforOSCCsare oftennon-specifictothemalignancyandincompatiblewiththe hosttissue.However,exosomes,whichactasphysiological “packages” betweencells,mayofferasolutiontotheseissues.132 TheapplicationofengineeredexosomesinOSCCtreatmentcan disruptvariousprocessesinvolvedinoncogenesisandtumor microenvironmentmodulation,therebyeffectivelyinhibiting cancerprogression.Accordingtorecentstudies,manycargosof exosomesattenuatetheoncogenesisofOSCCsthroughcomplex signalingpathways133–138 (Table 2).
Engineeredexosomessecretedfromdiversecelltypesexert inhibitoryeffectsonOSCCdevelopmentthroughadministrating differentdrugsormolecules.Macrophage-derivedexosomal miR144/451(tumorsuppressive)connectedwithchitosannanoparticlesexhibitananti-tumoreffectinOSCCs.139 Theexosomes secretedbymenstrualstemcellsperformedanti-angiogenesisin OSCCs.140 Inadditiontohost-derivedexosomes,otherresearchers havealsoexploredalternativesourcesoftherapeuticexosomes forOSCCtreatment.Milkexosomesarewidelyrecognizedfortheir exceptionalresilienceinacidicconditionswithinthedigestive systemandtheirabilitytotraversephysiologicalbarriers.141 The engineeredexosomesofmilkcombinedwithdoxorubicinandan anthraceneendoperoxidederivativedemonstrateremarkable efficacyineradicatingOSCCscells,142 showinggreatpotentialin clinicalapplications.
Noveldeliverysystembasedonengineeredexosomes.Besidesthe dentaltissue-derivedandnaturaloriginalexosomesmentioned above,engineeredexosomeshavedemonstratedgreatvalueasa noveldeliverysystem.Theprocedureofexosomeengineering mainlyconsistsofcargoencapsulationandsurfacemodification, witheachstepencompassingvariousmethodologiesandindications.143 Exosomalcargopackingcouldbeinducedinsituby interactionsbetweenthecargosanddonorcellcomponentsor invitroafterexosomepurification.132 Generally,theinvitro methodsshowmore flexibilityandpracticalityinapplications, includingelectroporation,incubation,sonication,extrusion,etc.80 InOSCCtreatment,Epstein–BarrVirusInduced 3(EBI3)transfected fibroblastswereelectroporatedwithanti-tumorsmallinterfering RNAs(siRNAs),theproductiveengineeredexosomesofwhich significantlytargetingOSCCscellsbydiminishingtheir
Targetingoncogenec-MycOSCCcelllines
TargetingcollagentypeXalpha1chain (COL10A1)
TargetingHeparin-bindingprotein17/ fibroblastgrowthfactor–bindingprotein1(HBp17/FGFBP-1)
TargetingspecialAT-richsequencebindingprotein2(SATB2)
RegulatingmiR-424-5pandsuppressorof cancercellinvasion(SCAI)
OSCCcelllines Nudemice 135
OSCCcelllines Nudemice
OSCCcells-HN6
OSCCcelllines BALB/cmice
RegulatingmiR-182-5p/FOXO3pathwayOSCCcelllines Nudemice
133
proliferations.144 TheincubationofmiRNA-34awithHEK-293T cellsalsoacquireseffectiveexosomesagainstOSCCs.137
Surfacemodificationisanotherimportantstepinexosome engineering,aimingatenhancingexosomaltargetingtoward certainreceptors.Multiplecomponentscanbeaddedtothe exosomalmembrane,suchasproteins,antigens,antibodies,and DNA/RNAaptamers.132 Therelevantresearchhasprovedthatthe surface-modifiedexosomeswithpeptidescancrossblood–brain barrierandtreatcerebralischemia.145,146 Althoughsimilar researchonoralmedicineisunderway.However,exosomemimeticnanoparticleshavereceivedgreatattentioninoralcancer treatmentfortheirconvenienceinsurfaceengineering.147,148 Thesebiomimeticparticlescouldresemblemembranestructures ofmultiplehostcells(bloodandstemcells)andescapefrom immuneclearance.148
Dentalstemcell-derivedexosomesinregenerativetherapy Dentalstemcells(DSCs)refertoagroupofprimitivecellsderived fromdentaltissue,withthepotentialtoproliferateand differentiate.DSCsaregenerallyclassifiedintodentalpulpstem cells(DPSCs),stemcellsfromhumanexfoliateddeciduousteeth (SHED),stemcellsfromapicalpapilla(SCAPs),PDLSCs,dental folliclecells(DFCs),andoralmesenchymalstemcells(OMSCs), basedontheirdistincthistologicorigin.149–151 Theapplicationof DSCsinoralregenerationtreatmenthaslongbeenembraced,and stemcell-derivedexosomeshaverecentlyshowngreatpromise forhealingdentaldefectsandorofacialtissues.
Pulpregeneration .Duetoinfectiousortraumaticetiologies, pulpaland/orapicaldiseasesinvariablyresultintheirreversible impairmentofblood,neural,andnutrientsuppliestothenatural teeth.152 Despitethewell-establishedefficacyofrootcanal treatment(RCT),thequestforachievingbiologicalpulpregenerationwithcompletephysiologicalfunctionalityremainsceaseless. Thereareaseriesofcrucialstepsinachievingdentalpulp regenerationandformingaphysiologicalpulpodentinalcomplex, forinstance,differentiationfromMSCstofunctionaldentalpulp cells(DPCs),thepromotionofangiogenesis,andthefacilitationof neuralreconstruction. 153 Suchasstemcellsfrompulptissue, DPSC-derivedexosomespositivelystimulatedthedifferentiation ofstemcellstowardDPCsthroughtheP38/MAPK154 and miR 150 Tlr4pathways.155 Meanwhile,Schwanncellsarerecruited toenhanceneurogenesiswiththepresenceofDPSC-derived exosomes,particularlyundertheconditionoflipopolysaccharide (LPS)stimulation.156 LPSalsopromotesangiogenesisviaDPSC-
derivedexosomes,157–159 whichsimultaneouslycouldbe enhancedbyhypoxiawithhigherleveloflysyloxidase-like2 (LOXL2).160,161 Comparedwithanormalstatus,DPSCsunder odontogenicdifferentiationconditionsecretemoreeffective exosomes,forinstance,thelevelsofmiR-27a-5pareelevated, whichinducesDPSCdifferentiation.154,162 Furthermore,the evidencesuggestedthatyoungerdonorsofDPSCsgavebetter performancetoexosomalabilityinpulpregeneration,163 as exosomalmiR-26asecretedbyaggregatingstemcellsfrom deciduousteeth(SHED)stronglypromotestheangiogenesisof HUVECsinpulptissuethroughTGF-β/Smad2/3signaling.164 Moreover,theexosomesderivedfromdentalpulptissue(DPT) exhibitsuperiorefficacyinmodulatingSCAPsforpulpregenerationcomparedtothatoftheDPSCs,whichisattributedthe “cellhomingtechnique“ 165 SCAPscanalsoreleaseexosomes,facilitatingananti-inflammatoryeffectonpulpitisduringTregconversion andthedentinogenicdifferentiationofMSCs,166,167 which demonstrategreatpotentialaspulpregenerativetherapies. BesidestheDSCs,thereareseveralotherstemcellsthatsecrete functionalexosomesinpulpregeneration.Embryonicstemcell (ESC)-derivedexosomespromoteDPCsmaturationthroughCD73 (atypeofnucleotidase)-mediatedAKT/ERKpathwayactivation.168 Furthermore,theexosomesfromumbilicalcordmesenchymal stemcells(UCMSCs)showedagreateffectoninflammatory alleviationafterapulpinjury.169 Andplatelet-sourcedexosomes alsohavethepotentialforpulpregenerationwiththrombin activation.170
InadditiontoenhancingthedifferentiationofPDLSCs,thereare alsoothermethodsusedtopromoteorofacialboneregeneration, suchasthedirectactivationofosteoblastsandtheinductionof BMSCosteogenesis.PDLSC-derivedexosomesarecapableof inducingosteoblastactivation,192 whileosteogenic-inducedand differentiatedPDLSCscanaccelerateBMSCdifferentiationtoward osteoblastsviasignificantexosomalmiRNAsalteration,targeting variousosteogenic-relatedsignalingpathways,suchastheMAPK andAMPKpathways.193 Inaddition,DPSC-derivedexosomes inducedjawboneregenerationinvivo,194 andSHED-derived exosomesarecapableofpromotingnaïveBMSCs’ differentiation intoosteoblasts.195–197 WhileSHED-derivedexosomescanpromoteDPSCs’ osteogenesisbyregulatingthemitochondrial transcriptionfactorA(TFAM).198 Tostrengthenthebonerepair effect,BMSCscanbeinnovativelyengineeredwithoverexpressed bonemorphogeneticprotein2(BMP2)ormiR-26acargo.These functionalmodificationssignificantlyimproveboneregeneration throughtheexosomes,targetingtheBMP2-associatedsignaling cascade/mTORpathway.199,200 Moreover,immunemodifications performedbyengineeredexosomesalsopromoteboneregeneration.Dendriticcell-derivedexosomesloadedwithIL-10and TGF-β caninhibitimmune-relatedboneresorptionandsuppress boneloss.201 TheexosomessecretedbyM2macrophagescanbe engineeredwithmelatonin,exhibitinganti-inflammatorybehavior andrescuingPDLSCpotencyindifferentiation.202 Besidesperiodontitis,therearealsootheroraldiseases characterizedbybonedestructionthatnecessitateexosomal regenerativetherapies.Osteoarthritis(OA)isacommonbone degenerativediseasethatmainlyoccursinjointswithcartilage degradation.203 Thetemporomandibularjoint(TMJ),asthekey jointenablingmandiblemovement,significantlyinfluences chewingandpronouncingfunctions.Therefore,temporomandibularjointosteoarthritis(TMJOA)causesseverepainandinconvenienceamongpatients.204 Similartothemechanismoforofacial boneregeneration,theaimsofexosomaltherapiesforTMJOAare reducingtheinflammatoryresponseandinducingchondrocyte differentiation.205 TheSHED-derivedexosomalmiR-100-5pdownregulatestheinflammatoryfactors(IL-6,IL-8,andMMP1)inTMJOA bytargetingmTORsignaling.206 Moreover,MSC-derivedexosomes enhancedtheoverallcartilageregeneration,andthismechanism isassociatedwiththeadenosineactivationoftheAKT,ERK,and AMPKsignalingpathways.205
Salivaryglandrevitalization .Exosomalregenerativetherapies havealsobeendevelopedtotreatotheroraldiseases.The dysfunctionofthesalivaryglandmayoccurinSjogren’s syndrome,menopause,diabetes,orafterradiotherapyforOSCC patients.Invivostudiesofexosomaltherapiesforsalivarygland recoveryhavebeenconductedusingmurinemodels.TheDPSCderivedexosomesrescuedsalivaryglandepithelialcellsthrough theG-proteincoupledestrogenreceptor(GPER)-mediatedcAMP/ PKA/CREBpathwayinSjogren’ssyndrome.207 Andtonsilmesenchymalstemcell(T-MSC)exosomescontributetotheregainingof salivaryglandfunctionafteranovariectomy,resemblingthe menopauseperiod.208 TheapplicationofBMSC-derivedexosomes couldreducethesalivaryglandcomplicationsindiabetesviathe TGF-β/Smad3pathway,209 whiletheexosomesfromthesalivary glandperformedasimilareffectviaanunclearmechanism.210 Urine-derivedstemcells(USCs)underhypoxiastimulisecrete exosomestorepairthesalivaryglandafterradiotherapyviathe Wnt3a/GSK3β pathway.211
Skinregenerationbasedonanti-agingeffect.Skinsenescenceisa progressiveprocess,withthedecliningproliferationofcells,
Orofacialboneregeneration.Theconventionaltherapeutic sequenceforperiodontitisencompassesplaquecontrol,reevaluation,andsurgicalintervention.Regenerativesurgeryhas emergedasapioneeringapproachinclinicalpractice,aimingto restoreperiodontaltissueandregainfunctions.171 Alongside variousbiofilmandbonegraftmaterials,recentstudieshave highlightedthepotentialofexosomalagentsfororofacialbone reconstruction.172 Controllingtheanomalyinflammatorychanges inperiodontalcellsandthemicroenvironmentisthepremiseof periodontitisregenerativetreatment.11 Exhibitingperiodontal anti-inflammatoryeffect,gingivalmesenchymalstemcell (GMSC)-secretedexosomestargetNF-κBsignalingandWnt5ain aperiodontalmicroenvironment173,174 andmodulatemacrophage polarizationinhigh-lipid-level175 orTNF-α pre-conditioncircumstances.176 Asimilarmacrophagetransformationalsooccurswith chitosanhydrogel-engineeredDPSC-derivedexosomesviamiR1246.177 Inaddition,MSC-derivedexosomalmiR-1246178 and PDLSC-derivedexosomalmiR-155-5p179/miR-205-5p180 inhibit inflammationbybalancingtheTh17/Tregratio. Alveolarbonelossisatypicalmanifestationofperiodontitis. Howtopromotebonerepairandregenerationisakeyissuein periodontitismanagement.PDLSCsareagroupofstemcells residingintheperiodontium.Theavailableevidencestrongly supportsthatPDLSCspossessarobustself-renewalcapacityand multipotentialdifferentiationabilities.Inperiodontalregeneration, PDLSCscandifferentiateinto fibroblasts,osteoblasts,cementoblasts,etc.181 Duringtheseprocesses,variousstemcellsbecome thesourcesforexosomes,facilitatingPDLSCproliferationand differentiation.Bonemarrowmesenchymalstromalcell(BMSC)derivedexosomeshavebeenappliedwithhydrogelinvivo,182 andSHED-derivedexosomesweretestedinvitro,183 bothofwhich showedapromisingeffectonPDLSCsproliferation,migration,and differentiation.DFC-derivedexosomesexhibitedahigherefficiencywithLPSstimulationthroughanROS-mediatedantioxidant mechanisminPDLSCs.184,185 UCMSC-andPDLSC-derivedexosomesareabletoactivatePDLSCs’ functionseveninhigh-glucoselevelcircumstances.186–188 TheapplicationofMSCsenhances periodontalligament(PDL)cellactivationafterimpairmentvia exosomesthroughtheAKT/ERKpathway.189 Inaddition,adiposederivedstem/stromalcells(ADSCs)andDFCsexosomes performedaperiodontalhealingfunctioninmurineperiodontitis modelswithnewlyformedPDLandalveolarbone.190,191 Nevertheless,thereisapaucityofdatarelatedtotheunderlying mechanismsandapplicationsinhumanmodels.
reducingECM,anddecreasingrepairabilityresultinginskin dysfunction.Bothintrinsicandextrinsicfactors(smoking/ultravioletlight)couldinfluencetheskinsenescenceprocedure.212 This issuehasgarneredsignificantpublicattention,particularlyinthe orofacialarea,duetoitsprofoundimpactonpatients’ esthetic appearanceandfunctionalneeds.Novelresearchhasprovedthe potentialapplicationsofstemcell-derivedexosomesinskin regenerationbasedontheiranti-agingeffects.
Thedermis,thelayerofskinundertheepidermis,mainly consistsoftheECM,whichisregulatedbydermal fibroblasts.Asa long-livedcelltype,dermal fibroblastscanbeusedtoindicatethe skinsenescentstatusthroughaccumulateddamageandrepair.213 Inducedpluripotentstemcell(iPSC)-derivedexosomesexhibit significantanti-agingeffectsondermal fibroblasts,which manifestsasthedownregulatedlevelofsenescence-associatedβ-galactosidase(SA-β-Gal)andMMP1/3andtherestorationof collagentypeI.214 Inagedmurinemodelswithwounds,the exosomesisolatedfromyoungdonorwoundedge fibroblastscan facilitate fibroblastsdifferentiationthroughmiR-125b,inhibiting sirtuin7(Sirt7).215 Similarly,trophoblast-derivedexosomescan activatedermal fibroblastsaswell.216
Woundhealingisanintricateprocessincludinganinflammatoryresponse,stemcelldifferentiationandproliferation,ECM modulation,etc.217 SenescentskincellscanperformSASP, inducingvicinalinflammationandpostponingthehealing process.218 Apressureulcer,definedasthelocalizeddamageof skintissueduetoacombinationofshearandfriction,219 commonlyappearsintheorofacialarea.Arecentsurveyhas suggestedthehighincidenceoffacialpressureulcersinpatients withrespiratorydestruction(suchasCOVID-19)duetostaying prone.220 ESC-derivedexosomescanrejuvenateepithelialcells andpromotetheangiogenesisprocessinagedmurinemodelsof pressureulcers.ThismechanismisassociatedwithenrichedmiR200acargoandactivatednuclearfactor-like2(Nrf2)signaling.221
Besidestheagingfactor,theSASPalsoplaysaroleinseveral endocrinediseases,includingdiabetes.222 Diabeticwounds commonlyappearonoralsoftandhardtissues,whichstruggle toheal,leadingtogreatsuffering.223 Therefore,diabeticwound healingrequiresanti-agingtherapiesaswell,andstemcellderivedexosomescanreducetheSASP.ADSC-derivedexosomes accelerateddiabeticwoundhealing,andNrf2overexpression enhancedthiseffect.224 Anovelbiomaterial,oxygen-releasing, antioxidantwounddressing,OxOBand,loadedwithADSC-derived exosomeshasbeenappliedinmurinediabeticmodelsandshown greatperformances.225 Fetalmesenchymalstemcells(fMSC)can alsopromotediabeticwoundhealingthroughexosomes.226 Of note,dentalstemcells,suchasSHED-derivedexosomes,have beenusedfortendonregeneration,withasignificantanti-aging effectthroughNF-κBinhibition,227 whichhasencouragedusto expandtheapplicationoforaloriginalexosomesintoother fields.
Scaffoldsforexosomesinoralregenerativetherapy.Inadditionto exploringthenovelsourcesofexosomesfororaltissueregeneration,itiscrucialtoconsiderappropriatescaffoldsthatinteract synergisticallywiththeexosomesinordertooptimizethe therapeuticefficacy.Accordingtopreviousstudiesonpulp regenerativetreatmentwithstemcells,aninjectablehydrogelis convenientasabiomaterialappliedtotherootcanals.Different typesofscaffolds(suchasnaturalcollagen-basedscaffoldsand synthetic/hybridmaterials)withinjectablehydrogelhavebeen investigated.228 Intermsofthescaffoldsloadedwithexosomes, weshouldwidenourscopetomeetthenewdemandsfor exosomalapplications.Generally,DPSC-derivedexosomescan bindtocollagentypeIand fibronectin,therebyconnectingwith thebiomaterialsandpromotingDPSCdifferentiation.154 However, these findingswerenotcompletedwithacertainimplementable biomaterialsystem.Furthermore,thehydrogelsengineeredwith hydroxypropylchitin(HPCH)/chitinwhisker(CW)andthe
hydrogelswith fibrincanbothfacilitateattractionbetweenthe exosomesandMSCs,showinginjectableandbiocompatible behaviors,ultimatelyacceleratingtheexosomes’ effectonpulp regeneration.229,230 Thecontrolledreleasementofexosomesis alsoapromisingprospectforbio-scaffolding.Poly(lactic-coglycolicacid)(PLGA)-basedbiodegradablemicrosphereshave beenrecentlydevelopedtohavecontinuousexosomaleffectson pulpregeneration.231
Inorofacialboneregeneration,thetraditionalscaffoldsmostly focusonmimickingtheextracellularmatrix(ECM)ofnaturalbones, aimingatenhancingMSCadhesionandosteogenicdifferentiation.232 Withafurtherunderstandingoftheroleofexosomesin boneregeneration,newdemandsforbio-scaffoldsareemergingin cell-freetherapies.LyophilizedBMSC-derivedexosomesonhierarchicalmesoporousbioactiveglass(MBG)cansatisfyboth bioactivemaintenanceandthecontinuousreleasementofexosomes.233 Invitroexperimentsalsoprovedthattitaniumnanotubes loadedwithBMP2-stimulatedmacrophage-derivedexosomes upregulateosteogenicmarker(suchasalkalinephosphatase) expression.234 Asabiodegradablepolymerthathasbeenwidely acceptedincontrolleddelivery,235 PLGAhasagreatperformancein exosomalboneregeneration.236 Poly-dopamine(pDA)-modified PLGAcanensurethecontrolledreleaseofexosomesfromadiposederivedstemcells(ADSCs),significantlyenhancingskullbonerepair inmurinemodels.237 Combinedwithmetal-organicframework (MOF),thePLGA/Exo-Mg2+-gallicacid(GA)systemprovidesthe advantagesofADSC-derivedexosomes,Mg2+ andGAintheantiinflammation,angiogenesis,andosteogenicdifferentiationofbone regeneration.238 Moreover,addingVEGFandDPSC-derivedexosomestoaninjectablechitosannanofibrousmicrosphere-based PLGA-poly(ethyleneglycol)(PEG)-PLGAhydrogelstronglypromotes angiogenesisandosteogenesis.239 Inrecentdecades,theproductionofthree-dimensional(3D)scaffoldshasbeenwidelyusedin exosomalregenerativemedicine.240 Three-dimensional-printedsilk fibroin/collagenI/nano-hydroxyapatite(SF/COL-I/nHA)scaffolds loadedwithUCMSC-derivedexosomescouldstimulatealveolar bonedefectrepairinmurinemodels.241 Inaddition,novelscaffolds canalsoenhancecartilageregeneration.Lithium-substituted bioglassceramic(Li-BGC)significantlypromotedtheBMSCderivedexosomaleffectonchondrogenesis.242
BasedontheconvincingevidencethatDSC-derivedexosomes contributetovariousoralregenerativetherapies,moreresearchis underway.TheexpansionofMSC-derivedexosomesfromother tissueoriginsmaybenefitoraltherapies.Andthecrosstalk betweenoralandotherdiseases,suchasgeneralOA243 and TMJOA,shouldbehighlighted.Overall,theapplicationof exosomesisoneofthekeypointsinoralregenerativetreatment. Basic-to-clinictranslationisoneofthefuturefocuses.
CONCLUSIONSANDPROSPECTS
Exosomeshaveemergedasanovelresearchfrontier,witha significantapplicationpotentialacrossdiverse fields.Intherealmof oralmedicine,exosomesholdpromiseasnon-invasivebiomarkers forearlydiseasediagnosisbydistinguishingbetweenpathological andhealthystates,withperiodontitisandOSCCsasthemost convincingexamples.Furthermore,exploringthedistinctcharacteristicsandalterationsinexosomesduringtheprogressionoforal diseasescandeepenourunderstandingoftheirunderlying pathologicalmechanismsandpavethewayfortargetedtherapeutic interventionsandtreatmentefficacy.Stemcell-relatedstudiesand applicationsarecurrentlyattheforefrontofmedicalresearch, particularlyinrelationtoregenerativetreatmentsfororaldiseases. Thisintersectionwithexosomebiologyprovidesavaluable foundationfortherationalutilizationofstemcells(Fig. 3).
Despitetheexistingresearchandapplicationsofexosomesin oralmedicine,therearestillseverallimitations.First,the identification,analysis,andsynthesisoforalexosomesarenot
Differential centrifugation
Modified Raman spectroscopy
Emergingrolesofexosomesinoraldiseasesprogression Wangetal.
Cancer
Isolated exosomal cargos
Modified mass spectrometry with CD63 capturing
Stem cells

Cancer Periodontitis or
Clinical application
Clinical trial
Systematic classifiation In vitro and in vivo experiment
Exosome isolation and analysis
Exosomal research pyramid
Fig.3 Research flowforexosomesinoraldiseases.Exosomescanbeobtainedfromhuman fluids,suchassalivacollectedfromtheoralcavity, providingnon-invasivemethodsfordiseasedetection(a).Subsequently,exosomesareisolatedfromdiversesources,separatedandanalyzed bynoveltechniques(e.g.,modifiedcentrifugation)(b, c).Thedistincteffectsofexosomesarethenexaminedthroughinvitroand/orinvivo experiments(d).Thesecomprehensiveresearch findingscontributetothedevelopmentofasystematicunderstandingofexosomes,serving asafoundationforclinicalapplications(e).Finally,withawell-establishedexperimentalbasis,exosomesmeetpracticalclinicalapplicationsin oralmedicine(f)
preciseorconvenientenough.Inaccordancewiththeupdated guidelinesforexosomalresearch244 andthespecificcharacterizationoftheoralcavity(suchastheavailabilityofsaliva),itis imperativetodevelopmoreadvancedtechniquesthatwill undoubtedlyexpandtheapplicationsofexosomesinoral diseases.Reducingthetechniquebarriersisalsoimportantfor thepromotionofexosomesinreal-worldmedicine,especiallyin large-scaleproductionandstablestorage-to-transportationstrategies.Exosomalbiomimeticmaterialsmightalsobepromising, combiningtheinherentadvantagesofnaturalexosomeswith industrialsynthesistechniques.Meetingthesediversedemands necessitatescollaborativeeffortsacrossthebiomedical field,while weshouldraisespecificviewsbasedonoraldiseasesproperties. Second,thereisstilllackofclearcatalogoftheexosomesinoral diseases.Thoughthecurrentstudiesinvolveexosomesinvarious aspectsoforalmedicine,theyarenotyetsystematic.While exosomes’ classificationprimarilyreliesontheirorigin,itisworth consideringalternativeapproaches,suchastheirtargetingspecific signalingpathwaysorexploringtheirdistincteffectsoncellular functions.Withmoreinsightsintotheabundantexosomalroles throughoutoraldiseaseprogressionandtreatment,weoughtto findgeneralpathsforthefutureexplorationofnovelexosomes. Theseavenuesnecessitateadeeperunderstandingofboththe exosomesthemselvesandtheunderlyingmechanismsinvolvedin oraldiseases.Third,clinicaltrialsonexosomesinoraldiseasesare stillscarce.Accordingtoarelevantanalysis,theclinicaltrialson exosomeshavemainlyfallenundertherespiratoryresearch category,suchasbiomarkersforlungcancerandtherapiesfor SARSCoV-2pneumonia.245 Theprimarychallengesinconducting clinicaltrialsonexosomesfororaldiseasespertaintoestablishing standardizedproductioncriteriaanddeterminingtheprecise dosagesforspecificindications.Therefore,futurestudiesshould prioritizequalitycontrolmeasuresandexpandtheexperimental modelstomoreadvancedanimals.Inaddition,investigatingthe
crosstalkbetweenoraldiseasesandothersystemicdiseases focusingtheexosome’scommunicationscouldprovidevaluable insightsforfutureresearch.
Insummary,whilethecurrentresearchonexosomesinoral medicinehasyieldedsignificantachievements,thereisasubstantial amountofworktobeconducted.Futurestudiesshouldnotonly focusonthephysiologicalandpathologicalmolecularmechanisms associatedwithexosomes,butalsoemphasizethefeasibilityof relevantclinicaltranslation,enhancingtheexplorationandapplication ofefficientandeffectiveexosomaltherapies.
ACKNOWLEDGEMENTS
ThisworkwassupportedbytheNationalNaturalScienceFoundationofChinaGrants (82370945,82171001,82222015and82370915).ResearchFundingfromWestChina School/HospitalofStomatologySichuanUniversity(RCDWJS2023-1).Figureswere createdwithBioRender.com.
AUTHORCONTRIBUTIONS
J.W.andY.F.organizedthemanuscript.J.W.wrotethedraft.J.J.,C.Z.andY.F. reviewedandeditedthemanuscript.Allauthorshavereadandapprovedthearticle
ADDITIONALINFORMATION
Competinginterests: Theauthorsdeclarenocompetinginterests.
REFERENCES
1.Le,H.etal.OralhealthdisparitiesandinequitiesinAsianAmericansandPacific Islanders. Am.J.PublicHealth 107,S34–S35(2017).
2.Peres,M.A.etal.Oraldiseases:aglobalpublichealthchallenge. Lancet 394, 249–260(2019).
3.Cheng,L.&Hill,A.F.Therapeuticallyharnessingextracellularvesicles. Nat.Rev. DrugDiscov. 21,379–399(2022).
4.Cocucci,E.&Meldolesi,J.Ectosomesandexosomes:sheddingtheconfusion betweenextracellularvesicles. TrendsCellBiol. 25,364–372(2015).
5.Kalluri,R.&LeBleu,V.S.Thebiology,function,andbiomedicalapplicationsof exosomes. Science 367,eaau6977(2020).
6.Meldolesi,J.Exosomesandectosomesinintercellularcommunication. Curr.Biol. 28,R435–R444(2018).
7.Mathieu,M.,Martin-Jaular,L.,Lavieu,G.&Théry,C.Specificitiesofsecretionand uptakeofexosomesandotherextracellularvesiclesforcell-to-cellcommunication. Nat.CellBiol. 21,9–17(2019).
8.Hessvik,N.P.&Llorente,A.Currentknowledgeonexosomebiogenesisand release. Cell.Mol.LifeSci. 75,193–208(2018).
9.vanNiel,G.,D’Angelo,G.&Raposo,G.Sheddinglightonthecellbiologyof extracellularvesicles. Nat.Rev.Mol.CellBiol. 19,213–228(2018).
10.Meyle,J.&Chapple,I.Molecularaspectsofthepathogenesisofperiodontitis. Periodontol2000 69,7–17(2015).
11.Kinane,D.F.,Stathopoulou,P.G.&Papapanou,P.N.Periodontaldiseases. Nat. Rev.Dis.Prim. 3,17038(2017).
12.Cai,R.etal.Theroleofextracellularvesiclesinperiodontitis:pathogenesis, diagnosis,andtherapy. Front.Immunol. 14,1151322(2023).
13.Zhang,Z.etal.PDLSCsregulateangiogenesisofperiodontalligamentsviaVEGF transferredbyexosomesinperiodontitis. Int.J.Med.Sci. 17,558–567(2020).
14.Xia,Y.etal.ThemiR-223-3pregulatespyroptosisthroughNLRP3-Caspase1GSDMDsignalaxisinperiodontitis. Inflammation 44,2531–2542(2021).
15.Chen,Z.etal.OxidativestressstateinhibitsexosomesecretionofhPDLCs throughaspecificmechanismmediatedbyPRMT1. J.Periodontal.Res. 57, 1101–1115(2022).
16.Choi,J.-W.,Kim,S.-C.,Hong,S.-H.&Lee,H.-J.SecretablesmallRNAsviaouter membranevesiclesinperiodontalpathogens. J.Dent.Res. 96,458–466(2017).
17.Elsayed,R.etal.Microbially-inducedexosomesfromdendriticcellspromote paracrineimmunesenescence:novelmechanismofbonedegenerativedisease inmice. AgingDis. 14,136–151(2023).
18.Liu,X.etal.Mechanismsofmechanicalforceaggravatingperiodontitis:a review. OralDis. https://doi.org/10.1111/odi.14566 (2023).
19.Wu,Y.etal.Exosomesfromcyclicstretchedperiodontalligamentcellsinduced periodontalinflammationthroughmiR-9-5p/SIRT1/NF-κBsignalingpathway. J. Immunol. https://doi.org/10.4049/jimmunol.2300074 (2023).
20.Zhao,M.,Ma,Q.,Zhao,Z.,Guan,X.&Bai,Y.Periodontalligament fibroblastderivedexosomesinducedbycompressiveforcepromotemacrophageM1 polarizationviaYes-associatedprotein. Arch.Oral.Biol. 132,105263(2021).
21.Piccolo,S.,Dupont,S.&Cordenonsi,M.ThebiologyofYAP/TAZ:hipposignaling andbeyond. Physiol.Rev. 94,1287–1312(2014).
22.Matthaios,D.,Tolia,M.,Mauri,D.,Kamposioras,K.&Karamouzis,M.YAP/Hippo pathwayandcancerimmunity:ittakestwototango. Biomedicines 9,1949(2021).
23.Atsawasuwan,P.etal.SecretorymicroRNA-29expressioningingivalcrevicular fluidduringorthodontictoothmovement. PLoSOne 13,e0194238(2018).
24.Zheng,X.etal.BiologicalcharacteristicsofmicroRNAssecretedbyexosomesof periodontalligamentstemcellsduetomechanicalforce. Eur.J.Orthod. https:// doi.org/10.1093/ejo/cjad002 (2023).
25.Chang,M.,Chen,Q.,Wang,B.,Zhang,Z.&Han,G.Exosomesfromtensionforceappliedperiodontalligamentcellspromotemesenchymalstemcellrecruitment byalteringmicroRNAprofiles. Int.J.StemCells 16,202–214(2023).
26.Huang,H.-M.etal.Mechanicalforce-promotedosteoclasticdifferentiationvia periodontalligamentstemcellexosomalproteinANXA3. StemCellRep. 17, 1842–1858(2022).
27.Liu,X.,Muhammed,F.K.&Liu,Y.Simvastatinencapsulatedinexosomescan enhanceitsinhibitionofrelapseafterorthodontictoothmovement. Am.J. Orthod.Dentofac.Orthop. 162,881–889(2022).
28.Sarode,G.etal.Epidemiologicaspectsoforalcancer. Dis.Mon. 66,100988(2020).
29.Hernández-Morales,A.etal.Lipandoralcavitycancerincidenceandmortality ratesassociatedwithsmokingandchewingtobaccouseandthehuman developmentindexin172countriesworldwide:anecologicalstudy2019–2020. Healthcare 11,1063(2023).
30.Tan,Y.etal.Oralsquamouscellcarcinomas:stateofthe fieldandemerging directions. Int.J.Oral.Sci. 15,44(2023).
31.Qadir,F.etal.Transcriptomereprogrammingbycancerexosomes:identification ofnovelmoleculartargetsinmatrixandimmunemodulation. Mol.Cancer 17, 97(2018).
32.Razzo,B.M.etal.Tumor-derivedexosomespromotecarcinogenesisofmurine oralsquamouscellcarcinoma. Carcinogenesis 41,625–633(2020).
33.Li,X.,Yang,T.&Shu,C.TheoraltumorcellexosomemiR-10bstimulatescell invasionandrelocationviaAKTsignaling. ContrastMediaMol.Imaging 2022, 3188992(2022).
34.Li,C.etal.ExosomallongnoncodingRNAsMAGI2-AS3andCCDC144NL-AS1in oralsquamouscellcarcinomadevelopmentviathePI3K-AKT-mTORsignaling pathway. Pathol.Res.Pract. 240,154219(2022).
35.Hanahan,D.Hallmarksofcancer:newdimensions. CancerDiscov. 12,31–46(2022).
36.Squarize,C.H.etal.PTENdeficiencycontributestothedevelopmentand progressionofheadandneckcancer. Neoplasia 15,461–471(2013).
37.Yan,W.etal.ExosomalmiR-130b-3ppromotesprogressionandtubularformationthroughtargetingPTENinoralsquamouscellcarcinoma. Front.CellDev. Biol. 9,616306(2021).
38.Hou,C.-X.etal.ExosomalmicroRNA-23b-3ppromotestumorangiogenesisand metastasisbytargetingPTENinsalivaryadenoidcysticcarcinoma. Carcinogenesis 43,682–692(2022).
39.He,S.etal.Oralsquamouscellcarcinoma(OSCC)-derivedexosomalMiR-221 targetsandregulatesphosphoinositide-3-kinaseregulatorysubunit1(PIK3R1) topromotehumanumbilicalveinendothelialcellsmigrationandtubeformation. Bioengineered 12,2164–2174(2021).
40.Wang,H.etal.OSCCexosomesregulatemiR-210-3ptargetingEFNA3topromoteoralcancerangiogenesisthroughthePI3K/AKTpathway. BioMed.Res.Int. 2020,e2125656(2020).
41.Li,S.etal.Mesenchymalstemcell-exosome-mediatedmatrixmetalloproteinase 1participatesinoralleukoplakiaandcarcinogenesisbyinducingangiogenesis. J.Oral.Pathol.Med. 51,638–648(2022).
42.Hinshaw,D.C.&Shevde,L.A.Thetumormicroenvironmentinnatelymodulates cancerprogression. CancerRes. 79,4557–4566(2019).
43.Mito,I.etal.Tumor-derivedexosomeselicitcancer-associated fibroblasts shapinginflammatorytumormicroenvironmentinheadandnecksquamous cellcarcinoma. Oral.Oncol. 136,106270(2023).
44.Li,C.,Teixeira,A.F.,Zhu,H.-J.&TenDijke,P.Cancerassociated-fibroblastderivedexosomesincancerprogression. Mol.Cancer 20,154(2021).
45.Sun,L.-P.etal.Cancer associated fibroblast derivedexosomalmiR 382 5p promotesthemigrationandinvasionoforalsquamouscellcarcinoma. Oncol. Rep. 42,1319–1328(2019).
46.He,L.etal.ExosomalmiR-146b-5pderivedfromcancer-associated fibroblasts promotesprogressionoforalsquamouscellcarcinomabydownregulating HIPK3. CellSignal 106,110635(2023).
47.Li,Y.-Y.etal.Cancer-associated fibroblastscontributetooralcancercellsproliferationandmetastasisviaexosome-mediatedparacrinemiR-34a-5p. EBioMedicine 36,209–220(2018).
48.Kallinger,I.etal.Tumorgenesignaturesthatcorrelatewithreleaseof extracellularvesiclesshapetheimmunelandscapeinheadandnecksquamouscellcarcinoma. Clin.Exp.Immunol. https://doi.org/10.1093/cei/uxad019 (2023).
49.Yunna,C.,Mengru,H.,Lei,W.&Weidong,C.MacrophageM1/M2polarization. Eur.J.Pharm. 877,173090(2020).
50.Pan,Y.,Yu,Y.,Wang,X.&Zhang,T.Tumor-associatedmacrophagesintumor immunity. Front.Immunol. 11,583084(2020).
51.Oshi,M.etal.M1MacrophageandM1/M2ratiodefinedbytranscriptomic signaturesresembleonlypartoftheirconventionalclinicalcharacteristicsin breastcancer. Sci.Rep. 10,16554(2020).
52.Ludwig,N.etal.TGFβ+ smallextracellularvesiclesfromheadandnecksquamouscellcarcinomacellsreprogrammacrophagestowardsapro-angiogenic phenotype. J.Extracell.Vesicles 11,e12294(2022).
53.Xiao,M.,Zhang,J.,Chen,W.&Chen,W.M1-liketumor-associatedmacrophages activatedbyexosome-transferredTHBS1promotemalignantmigrationinoral squamouscellcarcinoma. J.Exp.Clin.CancerRes. 37,143(2018).
54.You,Y.etal.M1-liketumor-associatedmacrophagescascadeamesenchymal/ stem-likephenotypeoforalsquamouscellcarcinomaviatheIL6/Stat3/THBS1 feedbackloop. J.Exp.Clin.CancerRes. 41,10(2022).
55.Wu,L.,Ye,S.,Yao,Y.,Zhang,C.&Liu,W.Oralcancerstemcell-derivedsmall extracellularvesiclespromoteM2macrophagepolarizationandsuppressCD4+ T-cellactivitybytransferringUCA1andtargetingLAMC2. StemCellsInt. 2022, 5817684(2022).
56.Manikandan,M.etal.Oralsquamouscellcarcinoma:microRNAexpression profilingandintegrativeanalysesforelucidationoftumourigenesismechanism. Mol.Cancer 15,28(2016).
57.Cai,J.,Qiao,B.,Gao,N.,Lin,N.&He,W.Oralsquamouscellcarcinoma-derived exosomespromoteM2subtypemacrophagepolarizationmediatedby exosome-enclosedmiR-29a-3p. Am.J.Physiol.CellPhysiol. 316,C731–C740 (2019).
58.Pang,X.etal.OSCCcell-secretedexosomalCMTM6inducedM2-likemacrophagespolarizationviaERK1/2signalingpathway. CancerImmunol.Immunother. 70,1015–1029(2021).
59.Ono,K.etal.TripleknockdownofCDC37,HSP90-alphaandHSP90-beta diminishesextracellularvesicles-drivenmalignancyeventsandmacrophageM2 polarizationinoralcancer. J.Extracell.Vesicles 9,1769373(2020).
60.Yuan,Y.etal.Endoplasmicreticulumstresspromotesthereleaseofexosomal PD-L1fromheadandneckcancercellsandfacilitatesM2macrophagepolarization. CellCommun.Signal 20,12(2022).
61.Kumar,P.,Bhattacharya,P.&Prabhakar,B.S.Acomprehensivereviewonthe roleofco-signalingreceptorsandTreghomeostasisinautoimmunityandtumor immunity. J.Autoimmun. 95,77–99(2018).
62.Chen,Y.etal.CircRNAhas_circ_0069313inducedOSCCimmunityescapeby miR-325-3p-Foxp3axesinbothOSCCcellsandTregcells. Aging(AlbanyNY) 14, 4376–4389(2022).
63.Johnson,D.E.etal.Headandnecksquamouscellcarcinoma. Nat.Rev.Dis.Prim. 6,92(2020).
64.Ramos,A.,Sadeghi,S.&Tabatabaeian,H.Battlingchemoresistanceincancer: rootcausesandstrategiestouprootthem. Int.J.Mol.Sci. 22,9451(2021).
65.Law,Z.-J.etal.Extracellularvesicle-mediatedchemoresistanceinoralsquamous cellcarcinoma. Front.Mol.Biosci. 8,629888(2021).
66.Cheng,H.-Y.etal.Snail-regulatedexosomalmicroRNA-21suppressesNLRP3 inflammasomeactivitytoenhancecisplatinresistance. J.Immunother.Cancer 10,e004832(2022).
67.Qin,X.etal.ExosomalmiR-196aderivedfromcancer-associated fibroblasts conferscisplatinresistanceinheadandneckcancerthroughtargetingCDKN1B andING5. GenomeBiol. 20,12(2019).
68.Tomita,R.,Sasabe,E.,Tomomura,A.&Yamamoto,T.Macrophage derived exosomesattenuatethesusceptibilityoforalsquamouscellcarcinomacellsto chemotherapeuticdrugsthroughtheAKT/GSK 3β pathway. Oncol.Rep. 44, 1905–1916(2020).
69.Sayyed,A.A.etal.MiR-155inhibitor-ladenexosomesreverseresistancetocisplatinina3Dtumorspheroidandxenograftmodeloforalcancer. Mol.Pharm. 18,3010–3025(2021).
70.Kulkarni,B.etal.Exosome-mediateddeliveryofmiR-30asensitizecisplatinresistantvariantoforalsquamouscarcinomacellsviamodulatingBeclin1and Bcl2. Oncotarget 11,1832–1845(2020).
71.Li,Y.etal.Irradiatedcell-derivedexosomestransmitessentialmoleculesinducingradiationtherapyresistance. Int.J.Radiat.Oncol.Biol.Phys. 113,192–202 (2022).
72.Mutschelknaus,L.etal.Exosomesderivedfromsquamousheadandneck cancerpromotecellsurvivalafterionizingradiation. PLoSOne 11,e0152213 (2016).
73.Theodoraki,M.-N.etal.Circulatingexosomesmeasureresponsestotherapyin headandneckcancerpatientstreatedwithcetuximab,ipilimumab,andIMRT. Oncoimmunology 8,1593805(2019).
74.Theodoraki,M.-N.etal.Changesincirculatingexosomemolecularprofilesfollowingsurgery/(chemo)radiotherapy:earlydetectionofresponseinheadand neckcancerpatients. Br.J.Cancer 125,1677–1686(2021).
75.Vasey,C.,McBride,J.&Penta,K.Circadianrhythmdysregulationandrestoration: theroleofmelatonin. Nutrients 13,3480(2021).
76.Wang,L.,Wang,C.&Choi,W.S.Useofmelatoninincancertreatment:whereare we? Int.J.Mol.Sci. 23,3779(2022).
77.Capote-Moreno,A.etal.Potentialofmelatoninasadjuvanttherapyoforal cancerintheeraofepigenomics. Cancers(Basel) 11,1712(2019).
78.Hunsaker,M.,Barba,G.,Kingsley,K.&Howard,K.M.DifferentialmicroRNA expressionofmiR-21andmiR-155withinoralcancerextracellularvesiclesin responsetomelatonin. Dent.J.(Basel) 7,48(2019).
79.Nikanjam,M.,Kato,S.&Kurzrock,R.Liquidbiopsy:currenttechnologyand clinicalapplications. J.Hematol.Oncol. 15,131(2022).
80.Zeng,H.etal.Currentstrategiesforexosomecargoloadingandtargeting delivery. Cells 12,1416(2023).
81.Peng,Q.,Yang,J.-Y.&Zhou,G.Emergingfunctionsandclinicalapplicationsof exosomesinhumanoraldiseases. CellBiosci. 10,68(2020).
82.Slots,J.Periodontitis:facts,fallaciesandthefuture. Periodontol2000 75,7–23(2017).
83.ChaparroPadilla,A.etal.Molecularsignaturesofextracellularvesiclesinoral fluids ofperiodontitispatients. OralDis. https://doi.org/10.1111/odi.13338 (2020).
84.Panni,S.,Lovering,R.C.,Porras,P.&Orchard,S.Non-codingRNAregulatory networks. Biochim.Biophys.ActaGene.Regul.Mech. 1863,194417(2020).
85.Budakoti,M.etal.Micro-RNA:thedarkhorseofcancer. CellSignal 83,109995 (2021).
86.NikMohamedKamal,N.N.S.,Awang,R.A.R.,Mohamad,S.&Shahidan,W.N.S. Plasma-andsalivaexosomeprofilerevealsadistinctmicroRNAsignaturein chronicperiodontitis. Front.Physiol. 11,587381(2020).
87.Kwon,E.J.etal.Profilingofplasma-derivedexosomalRNAexpressionin patientswithperiodontitis:apilotstudy. Oral.Dis. 29,1726–1737(2023).
88.Han,P.etal.TNF-α andOSXmRNAofsalivarysmallextracellularvesiclesin periodontitis:apilotstudy. TissueEng.PartC.Methods 29,298–306(2023).
89.Micó-Martínez,P.etal.miR-1226detectioninGCFaspotentialbiomarkerof chronicperiodontitis:apilotstudy. Med.Oral.Patol.Oral.Cir.Bucal. 23, e308–e314(2018).
90.Han,P.,Bartold,P.M.,Salomon,C.&Ivanovski,S.Salivarysmallextracellular vesiclesassociatedmiRNAsinperiodontalstatus apilotstudy. Int.J.Mol.Sci. 21,2809(2020).
91.Fujimori,K.etal.DetectionofsalivarymiRNAsreflectingchronicperiodontitis:a pilotstudy. Molecules 24,1034(2019).
92.Yu,J.etal.DetectionofexosomalPD-L1RNAinsalivaofpatientswithperiodontitis. Front.Genet 10,202(2019).
93.Tobón-Arroyave,S.I.,Celis-Mejía,N.,Córdoba-Hidalgo,M.P.&Isaza-Guzmán,D. M.DecreasedsalivaryconcentrationofCD9andCD81exosome-relatedtetraspaninsmaybeassociatedwiththeperiodontalclinicalstatus. J.Clin.Periodontol. 46,470–480(2019).
94.Huang,X.,Hu,X.,Zhao,M.&Zhang,Q.Analysisofsalivaryexosomalproteinsin youngadultswithsevereperiodontitis. Oral.Dis. 26,173–181(2020).
95.Macey,R.etal.Diagnostictestsfororalcancerandpotentiallymalignantdisordersinpatientspresentingwithclinicallyevidentlesions. CochraneDatabase Syst.Rev. https://doi.org/10.1002/14651858.CD010276.pub2 (2015).
96.Warnakulasuriya,S.&Kerr,A.R.Oralcancerscreening:past,present,andfuture. J.Dent.Res. 100,1313–1320(2021).
97.Zlotogorski-Hurvitz,A.,Dayan,D.,Chaushu,G.,Salo,T.&Vered,M.Morphologicalandmolecularfeaturesoforal fluid-derivedexosomes:oralcancerpatients versushealthyindividuals. J.CancerRes.Clin.Oncol. 142,101–110(2016).
98.Rabinowits,G.etal.ComparativeanalysisofmicroRNAexpressionamong benignandmalignanttonguetissueandplasmaofpatientswithtonguecancer. Front.Oncol. 7,191(2017).
99.He,T.etal.Plasma-derivedexosomalmicroRNA-130aservesasanoninvasive biomarkerfordiagnosisandprognosisoforalsquamouscellcarcinoma. J. Oncol. 2021,5547911(2021).
100.Chen,C.-M.etal.Exosome-derivedmicroRNAsinoralsquamouscellcarcinomas impactdiseaseprognosis. Oral.Oncol. 120,105402(2021).
101.Galiveti,C.R.etal.SmallextravesicularmicroRNAinheadandnecksquamous cellcarcinomaanditspotentialasaliquidbiopsyforearlydetection. HeadNeck 45,212–224(2023).
102.He,L.etal.SalivaryexosomalmiR-24-3pservesasapotentialdetectivebiomarkerfororalsquamouscellcarcinomascreening. Biomed.Pharmacother. 121, 109553(2020).
103.Patel,A.etal.SalivaryexosomalmiRNA-1307-5ppredictsdiseaseaggressiveness andpoorprognosisinoralsquamouscellcarcinomapatients. Int.J.Mol.Sci. 23, 10639(2022).
104.Farag,A.,Sabry,D.,Hassabou,N.&AlaaEl-din,Y.MicroRNA-134/microRNA-200a derivedsalivaryexosomesarenoveldiagnosticbiomarkersoforalsquamous cellcarcinoma. Egypt.Dent.J. 67,367–377(2021).
105.Faur,C.I.etal.SalivaryexosomalmicroRNA-486-5pandmicroRNA-10b-5pin oralandoropharyngealsquamouscellcarcinoma. Medicina(Kaunas) 58,1478 (2022).
106.Langevin,S.etal.ComprehensivemicroRNA-sequencingofexosomesderived fromheadandneckcarcinomacellsinvitrorevealscommonsecretionprofiles andpotentialutilityassalivarybiomarkers. Oncotarget 8,82459–82474(2017).
107.Coon,J.,Kingsley,K.&Howard,K.M.miR-365(microRNA):potentialbiomarker inoralsquamouscellcarcinomaexosomesandextracellularvesicles. Int.J.Mol. Sci. 21,5317(2020).
108.Deng,Q.etal.Exosomalhsa_circRNA_047733integratedwithclinicalfeatures forpreoperativepredictionoflymphnodemetastasisriskinoralsquamouscell carcinoma. J.Oral.Pathol.Med. 52,37–46(2023).
109.Xia,S.etal.Comprehensivecharacterizationoftissue-specificcircularRNAsin thehumanandmousegenomes. Brief.Bioinform 18,984–992(2017).
110.Luo,Y.,Liu,F.,Guo,J.&Gui,R.Upregulationofcirc_0000199incirculating exosomesisassociatedwithsurvivaloutcomeinOSCC. Sci.Rep. 10,13739 (2020).
111.Ludwig,N.etal.TGFβ carryingexosomesinplasma:potentialbiomarkersof cancerprogressioninpatientswithheadandnecksquamouscellcarcinoma. Br. J.Cancer 128,1733–1741(2023).
112.Nakamichi,E.etal.Detectionofserum/salivaryexosomalAlixinpatientswith oralsquamouscellcarcinoma. Oral.Dis. 27,439–447(2021).
113.Guo,H.,Jiang,W.,Huang,S.,Huang,X.&Li,C.Serumexosome-derivedbiomarkersfortheearlydetectionoforalsquamouscellcarcinoma. Mol.CellBiochem. 476,4435–4447(2021).
114.Li,C.etal.Potentialmarkersfromserum-puri fiedexosomesfordetectingoral squamouscellcarcinomametastasis. CancerEpidemiol.Biomark.Prev. 28, 1668–1681(2019).
115.Zhu,P.etal.Currentstatusofhand-foot-and-mouthdisease. J.Biomed.Sci. 30, 15(2023).
116.Jia,H.-L.etal.MicroRNAexpressionprofileinexosomediscriminatesextremely severeinfectionsfrommildinfectionsforhand,footandmouthdisease. BMC Infect.Dis. 14,506(2014).
117.Hamour,A.F.,Klieb,H.&Eskander,A.Orallichenplanus. CMAJ 192,E892(2020). 118.Peng,Q.,Zhang,J.&Zhou,G.DifferentiallycirculatingexosomalmicroRNAs expressionprofilinginorallichenplanus. Am.J.Transl.Res. 10,2848–2858 (2018).
119.Byun,J.-S.,Hong,S.-H.,Choi,J.-K.,Jung,J.-K.&Lee,H.-J.Diagnosticprofilingof salivaryexosomalmicroRNAsinorallichenplanuspatients. Oral.Dis. 21, 987–993(2015).
120.Ding,M.etal.DistinctexpressionprofileofHCMVencodedmiRNAsinplasma fromorallichenplanuspatients. J.Transl.Med. 15,133(2017).
121.Michael,A.etal.ExosomesfromhumansalivaasasourceofmicroRNAbiomarkers. Oral.Dis. 16,34–38(2010).
122.Li,F.etal.CircularRNAsequencingindicatescirc-IQGAP2andcirc-ZC3H6as noninvasivebiomarkersofprimarySjögren’ssyndrome. Rheumatology(Oxford) 59,2603–2615(2020).
123.Kakan,S.S.etal.SmallRNAdeepsequencingidentifiesauniquemiRNAsignaturereleasedinserumexosomesinamousemodelofSjögren’ssyndrome. Front.Immunol. 11,1475(2020).
124.Théry,C.etal.Minimalinformationforstudiesofextracellularvesicles2018 (MISEV2018):apositionstatementoftheInternationalSocietyforExtracellular VesiclesandupdateoftheMISEV2014guidelines. J.Extracell.Vesicles 7,1535750 (2018).
125.Hiraga,C.etal.Pentapartitefractionationofparticlesinoral fluidsbydifferential centrifugation. Sci.Rep. 11,3326(2021).
126.Faur,C.I.etal.Anewdetectionmethodoforalandoropharyngealsquamous cellcarcinomabasedonmultivariateanalysisofsurfaceenhancedraman spectraofsalivaryexosomes. J.Pers.Med. 13,762(2023).
127.Cheng,Y.etal.Sensitivedetectionofexosomesbygoldnanoparticleslabeling inductivelycoupledplasmamassspectrometrybasedoncholesterolrecognitionandrollingcircleamplification. Anal.Chim.Acta 1212,339938(2022).
128.He,L.,Shao,M.,Xu,J.&Chen,H.Engineeredredbloodcellmembranefor sensitiveandpreciseelectrochemicaldetectionofsalivaryexosomes. Anal. Methods 13,5859–5865(2021).
129.Ruan,Z.etal.Enterovirus71non-structuralprotein3Ahijacksvacuolarprotein sorting25toboostexosomebiogenesistofacilitateviralreplication. Front. Microbiol. 13,1024899(2022).
130.Wu,J.etal.ExosomalmicroRNA-155inhibitsenterovirusA71infectionbytargetingPICALM. Int.J.Biol.Sci. 15,2925–2935(2019).
131.Leiva-Sabadini,C.,Alvarez,S.,Barrera,N.P.,Schuh,C.M.A.P.&Aguayo,S. Antibacterialeffectofhoney-derivedexosomescontainingantimicrobialpeptidesagainstoralStreptococci. Int.J.Nanomed. 16,4891–4900(2021).
132.Liang,Y.,Duan,L.,Lu,J.&Xia,J.Engineeringexosomesfortargeteddrug delivery. Theranostics 11,3183–3195(2021).
133.Ai,Y.etal.ExosomalLncRNALBX1-AS1derivedfromRBPJoverexpressedmacrophagesinhibitsoralsquamouscellcarcinomaprogressviamiR-182-5p/ FOXO3. FrontOncol. 11,605884(2021).
134.Wang,Z.,Yan,J.,Zou,T.&Gao,H.MicroRNA-1294inhibitedoralsquamouscell carcinomagrowthbytargetingc-Myc. Oncol.Lett. 16,2243–2250(2018).
135.Xie,C.,Du,L.-Y.,Guo,F.,Li,X.&Cheng,B.ExosomesderivedfrommicroRNA-101-3poverexpressinghumanbonemarrowmesenchymalstemcellssuppressoralcancer cellproliferation,invasion,andmigration. Mol.CellBiochem. 458,11–26(2019).
136.Higaki,M.,Shintani,T.,Hamada,A.,Rosli,S.N.Z.&Okamoto,T.Eldecalcitol(ED-71)inducedexosomalmiR-6887-5psuppressessquamouscellcarcinomacellgrowth bytargetingheparin-bindingprotein17/fibroblastgrowthfactor–bindingprotein1(HBp17/FGFBP-1). Vitr.Cell.Dev.Biol.Anim. 56,222–233(2020).
137.Deng,W.etal.InvitroexperimentalstudyontheformationofmicroRNA-34a loadedexosomesandtheirinhibitoryeffectinoralsquamouscellcarcinoma. CellCycle 21,1775–1783(2022).
138.Zhang,Y.,Tang,K.,Chen,L.,Du,M.&Qu,Z.ExosomalCircGDI2suppressesoral squamouscellcarcinomaprogressionthroughtheregulationofMiR-424-5p/ SCAIAxis. CancerManagRes 12,7501–7514(2020).
139.Li,K.,Qiu,Y.,Liu,X.&Huang,F.Biomimeticnanosystemsforthesynergistic deliveryofmiR-144/451afororalsquamouscellcarcinoma. Balk.Med.J. 39, 178–186(2022).
140.Rosenberger,L.etal.Stemcellexosomesinhibitangiogenesisandtumor growthoforalsquamouscellcarcinoma. Sci.Rep. 9,663(2019).
141.Zhong,J.etal.High-qualitymilkexosomesasoraldrugdeliverysystem. Biomaterials 277,121126(2021).
142.Zhang,Q.etal.Milk-exosomebasedpH/lightsensitivedrugsystemtoenhance anticanceractivityagainstoralsquamouscellcarcinoma. RSCAdv. 10, 28314–28323(2020).
143.Antimisiaris,S.G.,Mourtas,S.&Marazioti,A.Exosomesandexosome-inspired vesiclesfortargeteddrugdelivery. Pharmaceutics 10,218(2018).
144.Kase,Y.etal.Engineeredexosomesdeliveringspecifictumor-suppressiveRNAi attenuateoralcancerprogression. Sci.Rep. 11,5897(2021).
145.Tian,T.etal.Surfacefunctionalizedexosomesastargeteddrugdeliveryvehicles forcerebralischemiatherapy. Biomaterials 150,137–149(2018).
146.Tian,T.etal.Targeteddeliveryofneuralprogenitorcell-derivedextracellular vesiclesforanti-inflammationaftercerebralischemia. Theranostics 11, 6507–6521(2021).
147.Bai,Y.-T.,Zhang,X.-Q.,Chen,X.-J.&Zhou,G.Nanomedicinesinoralcancer: inspirationcomesfromextracellularvesiclesandbiomimeticnanoparticles. Nanomedicine(Lond.) 17,1761–1778(2022).
148.Zha,Y.etal.Exosome-mimeticsasanengineeredgene-activatedmatrixinduces in-situvascularizedosteogenesis. Biomaterials 247,119985(2020).
149.Zhai,Q.,Dong,Z.,Wang,W.,Li,B.&Jin,Y.Dentalstemcellanddentaltissue regeneration. Front.Med. 13,152–159(2019).
150.Luo,H.etal.Advancesinoralmesenchymalstemcell-derivedextracellular vesiclesinhealthanddisease. GenesDis. 11,346–357(2024).
151.Morsczeck,C.Dentalstemcellsfortoothregeneration:howfarhavewecome andwherenext? ExpertOpin.Biol.Ther. 23,527–537(2023).
152.Ordinola-Zapata,R.,Noblett,W.C.,Perez-Ron,A.,Ye,Z.&Vera,J.Presentstatus andfuturedirectionsofintracanalmedicaments. Int.Endod.J. 55,613–636 (2022).
153.Xie,Z.etal.Functionaldentalpulpregeneration:basicresearchandclinical translation. Int.J.Mol.Sci. 22,8991(2021).
154.Huang,C.-C.,Narayanan,R.,Alapati,S.&Ravindran,S.Exosomesasbiomimetic toolsforstemcelldifferentiation:applicationsindentalpulptissueregeneration. Biomaterials 111,103–115(2016).
155.Li,L.&Ge,J.Exosome derivedlncRNA Ankrd26promotesdentalpulprestorationbyregulatingmiR 150 TLR4signaling. Mol.Med.Rep. 25,152(2022).
156.Li,J.,Ju,Y.,Liu,S.,Fu,Y.&Zhao,S.ExosomesderivedfromlipopolysaccharidepreconditionedhumandentalpulpstemcellsregulateSchwanncellmigration anddifferentiation. ConnectTissueRes. 62,277–286(2021).
157.Xian,X.,Gong,Q.,Li,C.,Guo,B.&Jiang,H.Exosomeswithhighlyangiogenic potentialforpossibleuseinpulpregeneration. J.Endod. 44,751–758(2018).
158.Huang,X.etal.ExosomesfromLPS-stimulatedhDPSCsactivatedtheangiogenic potentialofHUVECsinvitro. StemCellsInt. 2021,6685307(2021).
159.Chen,W.-J.etal.Theroleofsmallextracellularvesiclesderivedfrom lipopolysaccharide-preconditionedhumandentalpulpstemcellsindentalpulp regeneration. J.Endod. 47,961–969(2021).
160.Li,B.etal.Hypoxiaalterstheproteomeprofileandenhancestheangiogenic potentialofdentalpulpstemcell-derivedexosomes. Biomolecules 12,575 (2022).
161.Li,B.etal.HypoxiapreconditionedDPSC-derivedexosomesregulateangiogenesisviatransferringLOXL2. Exp.CellRes. 425,113543(2023).
162.Hu,X.etal.Lineage-specificexosomespromotetheodontogenicdifferentiation ofhumandentalpulpstemcells(DPSCs)throughTGFβ1/smadssignaling pathwayviatransferofmicroRNAs. StemCellRes.Ther. 10,170(2019).
163.Brunello,G.etal.Exosomesderivedfromdentalpulpstemcellsshowdifferent angiogenicandosteogenicpropertiesinrelationtotheageofthedonor. Pharmaceutics 14,908(2022).
164.Wu,M.etal.SHEDaggregateexosomesshuttledmiR-26apromoteangiogenesis inpulpregenerationviaTGF-β/SMAD2/3signalling. CellProlif. 54,e13074 (2021).
165.Chen,Y.etal.Theapplicationofpulptissuederived-exosomesinpulpregeneration:anovelcell-homingapproach. Int.J.Nanomed. 17,465–476(2022).
166.Zhuang,X.etal.Exosomesderivedfromstemcellsfromtheapicalpapilla promotedentine-pulpcomplexregenerationbyinducingspecificdentinogenesis. StemCellsInt. 2020,5816723(2020).
167.Yu,S.etal.Exosomesderivedfromstemcellsfromtheapicalpapillaalleviate inflammationinratpulpitisbyupregulatingregulatoryTcells. Int.Endod.J. 55, 517–530(2022).
168.Shi,J.etal.Mesenchymalstromalcellexosomesenhancedentalpulpcell functionsandpromotepulp-dentinregeneration. Biomater.Biosyst. 11,100078 (2023).
169.Zeng,J.etal.Exosomesfromhumanumbilicalcordmesenchymalstemcellsand humandentalpulpstemcellsamelioratelipopolysaccharide-inducedinflammationinhumandentalpulpstemcells. Arch.Oral.Biol. 138,105411(2022).
170.Bagio,D.A.,Julianto,I.,Margono,A.&Suprastiwi,E.Analysisofthrombinactivatedplatelet-derivedexosome(T-aPDE)potentialfordentalpulpregeneration:in-vitrostudy. Eur.J.Dent. 17,173–182(2023).
171.Kwon,T.,Lamster,I.B.&Levin,L.Currentconceptsinthemanagementof periodontitis. Int.Dent.J. 71,462–476(2021).
172.Elangovan,S.,Gajendrareddy,P.,Ravindran,S.&Salem,A.K.Emerginglocaldelivery strategiestoenhanceboneregeneration. Biomed.Mater. 15,062001(2020).
173.Sun,J.etal.Exosomesderivedfromhumangingivalmesenchymalstemcells attenuatetheinflammatoryresponseinperiodontalligamentstemcells. Front. Chem. 10,863364(2022).
174.Hu,Y.etal.Humangingivalmesenchymalstemcell-derivedexosomescrossregulatetheWnt/β-cateninandNF-κBsignallingpathwaysintheperiodontal inflammationmicroenvironment. J.Clin.Periodontol. 50,796–806(2023).
175.Zhang,Y.etal.Effectofgingivalmesenchymalstemcell-derivedexosomeson inflammatorymacrophagesinahigh-lipidmicroenvironment. Int.Immunopharmacol. 94,107455(2021).
176.Nakao,Y.etal.ExosomesfromTNF-α-treatedhumangingiva-derivedMSCs enhanceM2macrophagepolarizationandinhibitperiodontalboneloss. Acta Biomater. 122,306–324(2021).
177.Shen,Z.etal.Chitosanhydrogelincorporatedwithdentalpulpstemcellderivedexosomesalleviatesperiodontitisinmiceviaamacrophage-dependent mechanism. Bioact.Mater. 5,1113–1126(2020).
178.Zhang,Y.etal.Exosomesderivedfrom3D-culturedMSCsimprovetherapeutic effectsinperiodontitisandexperimentalcolitisandrestoretheTh17cell/Treg balanceininflamedperiodontium. Int.J.Oral.Sci. 13,43(2021).
179.Zheng,Y.etal.ExosomalmicroRNA-155-5pfromPDLSCsregulatedTh17/Treg balancebytargetingsirtuin-1inchronicperiodontitis. J.Cell.Physiol. 234, 20662–20674(2019).
180.Kang,L.,Miao,Y.,Jin,Y.,Shen,S.&Lin,X.ExosomalmiR-205-5pderivedfrom periodontalligamentstemcellsattenuatestheinflammationofchronicperiodontitisviatargetingXBP1. Immun.Inflamm.Dis. 11,e743(2023).
181.Tomokiyo,A.,Wada,N.&Maeda,H.Periodontalligamentstemcells:regenerativepotencyinperiodontium. StemCellsDev. 28,974–985(2019).
182.Liu,L.etal.Bonemarrowmesenchymalstemcell-derivedsmallextracellularvesicles promoteperiodontalregeneration. TissueEng.PartA 27,962–976(2021).
183.Wang,M.,Li,J.,Ye,Y.,Chen,D.&Song,J.SHED-derivedexosomesimprovethe repaircapacityandosteogenesispotentialofhPDLCs. Oral.Dis. 29,1692–1705 (2023).
184.Shi,W.etal.Smallextracellularvesiclesfromlipopolysaccharide-preconditioned dentalfolliclecellspromoteperiodontalregenerationinaninflammatory microenvironment. ACSBiomater.Sci.Eng. 6,5797–5810(2020).
185.Huang,Y.etal.Lipopolysaccharide-preconditioneddentalfolliclestemcells derivedsmallextracellularvesiclestreatingperiodontitisviareactiveoxygen species/mitogen-activatedproteinkinasesignaling-mediatedantioxidanteffect. Int.J.Nanomedicine 17,799–819(2022).
186.Yang,S.etal.Exosomesderivedfromhumanumbilicalcordmesenchymalstem cellsenhancetheosteoblasticdifferentiationofperiodontalligamentstemcells underhighglucoseconditionsthroughthePI3K/AKTsignalingpathway. Biomed.Environ.Sci. 35,811–820(2022).
187.Lei,F.etal.Treatmentofinflammatorybonelossinperiodontitisbystemcellderivedexosomes. ActaBiomater. 141,333–343(2022).
188.Liu,M.etal.ExosomalmiR-141-3pfromPDLSCsalleviateshighglucose-induced senescenceofPDLSCsbyactivatingtheKEAP1-NRF2signalingpathway. Stem CellsInt. 2023,7136819(2023).
189.Chew,J.R.J.etal.Mesenchymalstemcellexosomesenhanceperiodontal ligamentcellfunctionsandpromoteperiodontalregeneration. ActaBiomater. 89,252–264(2019).
190.Mohammed,E.,Khalil,E.&Sabry,D.Effectofadipose-derivedstemcellsand theirexoasadjunctivetherapytononsurgicalperiodontaltreatment:ahistologicandhistomorphometricstudyinrats. Biomolecules 8,167(2018).
191.Ma,L.etal.Smallextracellularvesiclesfromdentalfolliclestemcellsprovidebiochemicalcuesforperiodontaltissueregeneration. StemCellRes.Ther. 13,92(2022).
192.Lan,Q.,Xiao,X.,Bi,X.,Gu,Y.&Ai,Y.Effectsofperiodontalligamentstemcellderivedexosomesonosteoblasticproliferation,migration,differentiation,apoptosis,andsignalingpathways. OralDis. https://doi.org/10.1111/odi.14375 (2022).
193.Liu,T.etal.Humanperiodontalligamentstemcell-derivedexosomespromote boneregenerationbyalteringmicroRNAprofiles. StemCellsInt. 2020,8852307 (2020).
194.Lee,A.E.etal.DPSC-derivedextracellularvesiclespromoteratjawbone regeneration. J.Dent.Res. 102,313–321(2023).
195.Wei,J.etal.Exosomesderivedfromhumanexfoliateddeciduousteethameliorateadultbonelossinmicethroughpromotingosteogenesis. J.Mol.Histol. 51,455–466(2020).
196.Luo,L.,Avery,S.J.&Waddington,R.J.ExploringachemotacticroleforEVsfrom progenitorcellpopulationsofhumanexfoliateddeciduousteethforpromoting migrationofnaïveBMSCsinbonerepairprocess. StemCellsInt. 2021,6681771 (2021).
197.Wu,J.etal.Exosomessecretedbystemcellsfromhumanexfoliateddeciduous teethpromotealveolarbonedefectrepairthroughtheregulationofangiogenesisandosteogenesis. ACSBiomater.Sci.Eng. 5,3561–3571(2019).
198.Guo,J.etal.Exosome-shuttledmitochondrialtranscriptionfactorAmRNA promotestheosteogenesisofdentalpulpstemcellsthroughmitochondrial oxidativephosphorylationactivation. CellProlif. 55,e13324(2022).
199.Huang,C.-C.etal.Functionallyengineeredextracellularvesiclesimprovebone regeneration. ActaBiomater. 109,182–194(2020).
200.Lai,S.etal.Bonemarrowmesenchymalstemcell-derivedexosomesloaded withmiR-26athroughthenovelimmunomodulatorypeptideDP7-Ccanpromoteosteogenesis. Biotechnol.Lett. 45,905–919(2023).
201.Elashiry,M.etal.Dendriticcellderivedexosomesloadedwithimmunoregulatorycargoreprogramlocalimmuneresponsesandinhibitdegenerative bonediseaseinvivo. J.Extracell.Vesicles 9,1795362(2020).
202.Cui,Y.etal.MelatoninengineeringM2macrophage-derivedexosomesmediate endoplasmicreticulumstressandimmunereprogrammingforperiodontitis therapy. Adv.Sci.(Weinh) https://doi.org/10.1002/advs.202302029 (2023).
203.Charlier,E.etal.Chondrocytededifferentiationandosteoarthritis(OA). Biochem. Pharm. 165,49–65(2019).
204.Wang,X.D.,Zhang,J.N.,Gan,Y.H.&Zhou,Y.H.Currentunderstandingof pathogenesisandtreatmentofTMJosteoarthritis. J.Dent.Res. 94,666–673(2015).
205.Zhang,S.etal.MSCexosomesalleviatetemporomandibularjointosteoarthritis byattenuatinginflammationandrestoringmatrixhomeostasis. Biomaterials 200,35–47(2019).
206.Luo,P.,Jiang,C.,Ji,P.,Wang,M.&Xu,J.Exosomesofstemcellsfromhuman exfoliateddeciduousteethasananti-inflammatoryagentintemporomandibularjointchondrocytesviamiR-100-5p/mTOR. StemCellRes.Ther. 10, 216(2019).
207.Hu,S.etal.Dentalpulpstemcell-derivedexosomesrevitalizesalivarygland epithelialcellfunctioninNODmiceviatheGPER-mediatedcAMP/PKA/CREB signalingpathway. J.Transl.Med. 21,361(2023).
208.Kim,J.M.etal.Tonsilmesenchymalstemcells-derivedextracellularvesicles preventsubmandibularglanddysfunctioninovariectomizedrats. Aging(Albany NY) 14,2194–2209(2022).
209.AbuBakr,N.,Haggag,T.,Sabry,D.&Salem,Z.A.Functionalandhistological evaluationofbonemarrowstemcell-derivedexosomestherapyonthesubmandibularsalivaryglandofdiabeticAlbinoratsthroughTGFβ/ Smad3signalingpathway. Heliyon 6,e03789(2020).
210.Salem,Z.A.,Kamel,A.H.M.&AbuBakr,N.Salivaryexosomesasanewtherapy toamelioratediabetesmellitusandcombatxerostomiaandsubmandibular salivaryglandsdysfunctionindiabeticrats. J.Mol.Histol. 52,467–477(2021).
211.Xiao,X.-Y.,Zhang,N.-N.,Long,Y.-Z.&Huang,G.-L.Repairmechanismof radiation-inducedsalivaryglandinjurybyhypoxia-pretreatedhumanurinederivedstemcellexosomes. OralDis. https://doi.org/10.1111/odi.14476 (2022).
212.Franco,A.C.,Aveleira,C.&Cavadas,C.Skinsenescence:mechanismsand impactonwhole-bodyaging. TrendsMol.Med. 28,97–109(2022).
213.Tigges,J.etal.Thehallmarksof fibroblastageing. Mech.AgeingDev. 138,26–44 (2014).
214.KimS,LeeSK,KimH,KimTM.Exosomessecretedfrominducedpluripotent stemcell-derivedmesenchymalstemcellsaccelerateskincellproliferation. Int. J.Mol.Sci. 19,3119(2018).
215.Xia,W.etal.Young fibroblast-derivedexosomalmicroRNA-125btransfers beneficialeffectsonagedcutaneouswoundhealing. J.Nanobiotechnology 20, 144(2022).
216.Go,Y.Y.,Lee,C.M.,Ju,W.M.,Chae,S.-W.&Song,J.-J.Extracellularvesicles (secretomes)fromhumantrophoblastspromotetheregenerationofskin fibroblasts. Int.J.Mol.Sci. 22,6959(2021).
217.Takeo,M.,Lee,W.&Ito,M.Woundhealingandskinregeneration. ColdSpring Harb.Perspect.Med. 5,a023267(2015).
218.Pulido,T.,Velarde,M.C.&Alimirah,F.Thesenescence-associatedsecretory phenotype:fuelingawoundthatneverheals. Mech.AgeingDev. 199,111561 (2021).
219.Mervis,J.S.&Phillips,T.J.Pressureulcers:pathophysiology,epidemiology,risk factors,andpresentation. J.Am.Acad.Dermatol. 81,881–890(2019).
220.Shearer,S.C.etal.FacialpressureinjuriesfrompronepositioningintheCOVID19era. Laryngoscope 131,E2139–E2142(2021).
221.Chen,B.etal.Humanembryonicstemcell-derivedexosomespromotepressure ulcerhealinginagedmicebyrejuvenatingsenescentendothelialcells. StemCell ResTher. 10,142(2019).
222.Khosla,S.,Farr,J.N.,Tchkonia,T.&Kirkland,J.L.Theroleofcellularsenescence inageingandendocrinedisease. Nat.Rev.Endocrinol. 16,263–275(2020).
223.Ko,K.I.,Sculean,A.&Graves,D.T.Diabeticwoundhealinginsoftandhardoral tissues. Transl.Res. 236,72–86(2021).
224.Li,X.etal.Exosomesfromadipose-derivedstemcellsoverexpressingNrf2 acceleratecutaneouswoundhealingbypromotingvascularizationinadiabetic footulcerratmodel. Exp.Mol.Med. 50,1–14(2018).
225.Shiekh,P.A.,Singh,A.&Kumar,A.Exosomeladenoxygenreleasingantioxidant andantibacterialcryogelwounddressingOxOBandalleviatediabeticand infectiouswoundhealing. Biomaterials 249,120020(2020).
226.Wang,B.etal.Humanfetalmesenchymalstemcellssecretomepromotes scarlessdiabeticwoundhealingthroughheat-shockproteinfamily. Bioeng. Transl.Med. 8,e10354(2023).
227.Jin,S.etal.Youngexosomebio-nanoparticlesrestoreaging-impairedtendon stem/progenitorcellfunctionandreparativecapacity. Adv.Mater. 35,e2211602 (2023).
228.Fukushima,K.A.etal.Screeningofhydrogel-basedscaffoldsfordentalpulp regeneration asystematicreview. Arch.Oral.Biol. 98,182–194(2019).
229.Wang,S.etal.Fabricationofanexosome-loadedthermosensitivechitin-based hydrogelfordentalpulpregeneration. J.Mater.Chem.B 11,1580–1590(2023).
230.Ivica,A.,Ghayor,C.,Zehnder,M.,Valdec,S.&Weber,F.E.Pulp-derivedexosomes ina fibrin-basedregenerativeroot fillingmaterial. J.Clin.Med. 9,491(2020).
231.Swanson,W.B.etal.Controlledreleaseofodontogenicexosomesfromabiodegradablevehiclemediatesdentinogenesisasanovelbiomimeticpulpcappingtherapy. J.ControlRelease 324,679–694(2020).
232.Shang,F.etal.Advancingapplicationofmesenchymalstemcell-basedbone tissueregeneration. Bioact.Mater. 6,666–683(2021).
233.Liu,A.etal.OptimizedBMSC-derivedosteoinductiveexosomesimmobilizedin hierarchicalscaffoldvialyophilizationforbonerepairthroughBmpr2/Acvr2b competitivereceptor-activatedSmadpathway. Biomaterials 272,120718(2021).
234.Wei,F.,Li,M.,Crawford,R.,Zhou,Y.&Xiao,Y.Exosome-integratedtitaniumoxide nanotubesfortargetedboneregeneration. ActaBiomater. 86,480–492(2019).
235.Danhier,F.etal.PLGA-basednanoparticles:anoverviewofbiomedicalapplications. J.ControlRelease 161,505–522(2012).
236.Swanson,W.B.etal.Scaffoldswithcontrolledreleaseofpro-mineralization exosomestopromotecraniofacialbonehealingwithoutcelltransplantation. ActaBiomater. 118,215–232(2020).
237.Li,W.etal.Tissue-engineeredboneimmobilizedwithhumanadiposestem cells-derivedexosomespromotesboneregeneration. ACSAppl.Mater.Interfaces 10,5240–5254(2018).
238.Kang,Y.etal.Exosome-functionalizedmagnesium-organicframework-based scaffoldswithosteogenic,angiogenicandanti-inflammatorypropertiesfor acceleratedboneregeneration. Bioact.Mater. 18,26–41(2022).
239.Han,S.etal.Programmedreleaseofvascularendothelialgrowthfactorand exosomefrominjectablechitosannanofibrousmicrosphere-basedPLGA-PEGPLGAhydrogelforenhancedboneregeneration. Int.J.Biol.Macromol. 253, 126721(2023).
240.Gu,C.etal.Technologicaladvancesof3Dscaffold-basedstemcell/exosome therapyintissuesandorgans. Front.CellDev.Biol. 9,709204(2021).
241.Sun,X.etal.Mesenchymalstemcell-derivedexosomesenhance3D-printed scaffoldfunctionsandpromotealveolarbonedefectrepairbyenhancing angiogenesis. J.Pers.Med. 13,180(2023).
242.Liu,L.etal.Lithium-containingbiomaterialsstimulatecartilagerepairthrough bonemarrowstromalcells-derivedexosomalmiR-455-3pandhistoneH3 acetylation. Adv.Health.Mater. 12,e2202390(2023).
243.Zhang,Z.etal.Enhancementofthetherapeuticefficacyofmesenchymalstem cell-derivedexosomesinosteoarthritis. CellMol.Biol.Lett. 28,75(2023).
244.Witwer,K.W.etal.UpdatingMISEV:evolvingtheminimalrequirementsfor studiesofextracellularvesicles. J.Extracell.Vesicles 10,e12182(2021).
245.Rezaie,J.,Feghhi,M.&Etemadi,T.Areviewonexosomesapplicationinclinical trials:perspective,questions,andchallenges. CellCommun.Signal 20,145 (2022).
OpenAccess ThisarticleislicensedunderaCreativeCommons Attribution4.0InternationalLicense,whichpermitsuse,sharing, adaptation,distributionandreproductioninanymediumorformat,aslongasyougive appropriatecredittotheoriginalauthor(s)andthesource,providealinktotheCreative Commonslicense,andindicateifchangesweremade.Theimagesorotherthirdparty materialinthisarticleareincludedinthearticle’sCreativeCommonslicense,unless indicatedotherwiseinacreditlinetothematerial.Ifmaterialisnotincludedinthe article’sCreativeCommonslicenseandyourintendeduseisnotpermittedbystatutory regulationorexceedsthepermitteduse,youwillneedtoobtainpermissiondirectly fromthecopyrightholder.Toviewacopyofthislicense,visit http:// creativecommons.org/licenses/by/4.0/
©TheAuthor(s)2024