Exosomes From Adipose-Derived STEM CELLS

Page 1


Editedby: SvevaBollini, UniversityofGenoa,Italy

Reviewedby: BenedettaBussolati, UniversityofTurin,Italy

BruceAlanBunnell, UniversityofNorthTexasHealth ScienceCenter,UnitedStates JeffreyGimble, ObatalaSciences,UnitedStates

*Correspondence: YipingWu tongjiplastic@163.com MinWu wumin@hust.edu.cn

† Theseauthorshavecontributed equallytothisworkandsharefirst authorship

Specialtysection: Thisarticlewassubmittedto StemCellResearch, asectionofthejournal FrontiersinCellandDevelopmental Biology

Received: 19June2020

Accepted: 20August2020

Published: 10September2020

Citation: XiongM,ZhangQ,HuW,ZhaoC, LvW,YiY,WuYandWuM(2020) ExosomesFromAdipose-Derived StemCells:TheEmergingRoles andApplicationsinTissue RegenerationofPlasticandCosmetic Surgery. Front.CellDev.Biol.8:574223. doi: 10.3389/fcell.2020.574223

REVIEW

published:10September2020

doi:10.3389/fcell.2020.574223

ExosomesFromAdipose-Derived

StemCells:TheEmergingRolesand

ApplicationsinTissueRegeneration ofPlasticandCosmeticSurgery

MingchenXiong † ,QiZhang † ,WeijieHu,ChongruZhao,WenchangLv,YiYi,YipingWu* andMinWu*

1 DepartmentofPlasticSurgery,TongjiHospital,TongjiMedicalCollege,HuazhongUniversityofScienceandTechnology, Wuhan,China

Adipose-derivedstemcells(ASCs)areanimportantstemcelltypeseparatedfrom adiposetissue,withthepropertiesofmultilineagedifferentiation,easyavailability,high proliferationpotential,andself-renewal.Exosomesarenovelfrontiersofintercellular communicationregulatingthebiologicalbehaviorsofcells,suchasangiogenesis, immunemodulation,proliferation,andmigration.ASC-derivedexosomes(ASC-exos) areimportantcomponentsreleasedbyASCsparacrine,possessingmultiplebiological activities.Tissueregenerationrequirescoordinated“vitalnetworks”ofmultiplegrowth factors,proteases,progenitors,andimmunecellsproducinginflammatorycytokines. Recently,ascell-to-cellmessengers,ASC-exoshavereceivedmuchattentionfor thefactthattheyareimportantparacrinemediatorscontributingtotheirsuitability fortissueregeneration.ASC-exos,withdistinctpropertiesbyencapsulatingvarious typesofbioactivecargoes,areendowedwithgreatapplicationpotentialintissue regeneration,mechanicallyviathemigrationandproliferationofrepaircells,facilitation oftheneovascularization,andotherspecificfunctionsindifferenttissues.Here,this articleelucidatedtheresearchprogressofASC-exosabouttissueregenerationin plasticandcosmeticsurgery,includingskinanti-agingtherapy,dermatitisimprovement, woundhealing,scarremoval,flaptransplantation,bonetissuerepairandregeneration, obesityprevention,fatgrafting,breastcancer,andbreastreconstruction.Deciphering thebiologicalpropertiesofASC-exoswillprovidefurtherinsightsforexploringnovel therapeuticstrategiesoftissueregenerationinplasticandcosmeticsurgery.

Keywords:adipose-derivedstemcells,exosomes,tissueregeneration,biologicalactivity,function

INTRODUCTION

Adiposetissueprovidesamajorenergystoragedepotforthebody.Overthepastyears,adipose tissuehasbeenconsideredasamultifunctionalorganthatcontrolsmetabolichomeostasis, immunity,andsatiety(Yangetal., 2018).Adiposetissuecanbebroadlyseparatedintofat-storing adipocytesandtheadiposetissuestromalvascularfraction(SVF).SVFisaheterogeneouscellgroup thatistraditionallyisolatedusingenzymessuchascollagenase.SVFisaneasilyaccessiblesystem comprisedofvariousimmunecells,erythrocytes,endothelialcells,andadipose-derivedstemcells (ASCs),withtheexceptionofadipocytes(KimandLee, 2020).ASCsaredefinedasasubsetof mesenchymalstemcells(MSCs)isolatedfromtheSVFwithinadiposetissuebyenzymaticdigestion

(Gentileetal., 2019b).ASCsarespecificallyvaluablebecause theycanbeeasilyharvestedwiththepropertiesofabundance andconvenientseparation.Intermsofcellidentification,ASCs exhibitamesenchymal-likemorphologyandtheexpression profileofCD34+ ,CD44+ ,CD31 ,andCD45 cellsurface markers(Shuklaetal., 2020).ASCsarenotonlyprecursorsto adipocytesbutalsomultipotentprogenitorstoavarietyofcells includingosteoblasts,chondrocytes,myocytes,epithelialcells, andneuronalcells.Furthermore,ASCspossessseveralunique characteristics,includingeasyavailability,highproliferation potential,self-renewal,andsecretionoftrophicfactorsand extracellularvesicles(EVs),thusoeringafeasibleandvalid alternativetoothersourcesofMSCs,suchasbonemarrow-MSCs (BMSCs)(Mazinietal., 2019).Thesecretedfactorsderivedfrom ASCs,suchasgrowthfactorsandcytokines,areknowntoexert paracrinesignalsresponsibleforchemoattractant,angiogenic, andprosurvivaleectsrequiredfortissueregeneration(Bajek etal., 2016).ASCsareparticularlyusefulastheycanbe easilyharvestedwithminimaldonorsitemorbidityandhave adierentiationpotentialsimilartootherMSCs.Thus,ASCs havebeensuccessfullyproposedasaprominentcandidateinthe developmentoftissueengineeringproducts.Aswell,plasticand cosmeticsurgeryisagrowingfielduniquelypositionedforthe applicationofASCs(Zuketal., 2001).

Theterm“exosome”specificallydefinesasmallsubsetof extracellularvesiclesthatrangefrom50nmto200nm, whichhavebeenfoundinnumerousbodyfluids,including blood,urine,cerebrospinalfluid,breastmilk,saliva,lymph, andbile,underbothhealthyandpathologicalconditions (Wangetal., 2018).Exosomesareformedwhentheendosome membraneinvaginatestoproduceamultivesicularbody whichuponfusingwiththecellmembranetoreleasethe vesicleswithinasexosomesintotheextracellularspace(Toh etal., 2018).Consequently,thekeyexpressionbiomarkersof exosomes,whicharegenerallyrecognizedasexosome-associated characteristics,areproteinsassociatedwithendocytosisand endosomaltrackingssuchastetraspanins(CD81,CD63,CD9), ALIX,TSG101,caveolins,clathrin,andtransferrinreceptors, duetothedierentmechanismsofsecretion(HongP.etal.,

Abbreviations: gH2AX,PhosphorylatedHistoneH2AX;AKT,ProteinKinase B;AP-1,ActivatorProtein1;Arg-1,Arginase1;ASC-CM,ASC-Conditioned Medium;ASC-exos,ASC-derivedexosomes;ASCs,Adipose-derivedStemCells; BAT,BrownAdiposeTissue;Bax,Bcl-2-associatedXProtein;Bcl-2,B-cell lymphoma/leukemia2;CAL,Cell-AssistedLipotransfer;Caspase-3/9,Aspartate ProteolyticEnzyme3/9;ECM,ExtracellularMatrix;EVs,ExtracellularVesicles; H2 O2 ,HydrogenPeroxide;HaCaTs,HumanKeratinocytes;HDFs,Human DermalFibroblasts;I/R,Ischemia-Reperfusion;IFN-g,InterferonGamma;IL4/5/6/13,Interleukin4/5/6/13;iNOS,InducibleNitricOxideSynthase;MAPKs, Mitogen-ActivatedProteinKinases;MMP-1/9,MatrixMetalloproteinase1/9; MSCs,MesenchymalStemCells;NF-kB,NuclearFactorKappaB;NOX-1/4, NADPHOxidase1/4;Nrf2,NF-E2-relatedfactor2;PDGF-AA,Platelet-Derived GrowthFactor-AA;PGE2,ProstaglandinE2;PI3K,Phosphatidylinositol-4,5Bisphosphate3-Kinase;RANKL,ReceptorActivatorofNuclearFactorKappa BLigand;ROS,ReactiveOxygenSpecies;SA-b-gal,Senescence-Associated b-galactosidase;SMP30,SenescenceMarkerProtein30;SVF,StromalVascular Fraction;TGF-b,TransformingGrowthFactorBeta;TIMP-1,TissueInhibitorof Metalloproteinases1;TNF-a,TumorNecrosisFactorAlpha;TSG-6,TNF-AlphaStimulatedGene/Protein6;UCP-1,UncouplingProtein1;UVB,UltravioletB; VECs,VascularEndothelialCells;VEGF,VascularEndothelialGrowthFactor; WAT,WhiteAdiposeTissue.

2019).Exosomesarepackedwithcell-type-specificcombinations ofproteins(cytoskeletalproteins,transmembraneproteins,and heatshockproteins),nucleicacids(DNA,mRNA,miRNA,long andshortnon-codingRNA),lipids,andenzymes(GAPDH, ATPase,pgk1),shuttlingtheseactivecargoesbetweendierent cellsinvolvinginacomplexintercellularcommunicationsystem. Thesecargoesarewrappedinthemembranetoprotectfrom degradationandtransporttothesurroundingcells(Kalluriand LeBleu, 2020).Thus,exosomeshavesomespecialbiological characteristicsandprocessesandarecapableofpotentially modulatingthespecificactivityoftherecipienttargetcells.

Theimportantaimofplasticandcosmeticfieldisclosely associatedwithtissueregeneration,andtorepairthemorphology andfunctionofcongenitaloracquireddefectsthroughmany treatmentmethods,includingmedicalimaging,microsurgery, compositetissueallotransplantation,nanotechnology,cell biology,andbiomaterials(Naderietal., 2017).Adiposetissue possessesimportantfunctionsinimmunemodulation,wound healing,andtissueregeneration.Nowadays,autologousadipose tissueapplicationisexploredtobeappliedinimprovingskin quality,contourirregularities,woundrepairandsofttissue regenerationinplasticandcosmeticsurgery(Strongetal., 2019). Itsecacyandsafetyarewidelyaccepted,butthereisalack ofuniversallyrecognizedmechanisms.However,giventhatthe characteristicsofadiposetissuevarydramaticallydependingon thedonorstatus,theeectisofindividualdierence(Wang etal., 2013).Besides,significantlyalteringthecomponents orbiomechanicalpropertiesoftheadiposetissue,suchasby removingstromalcellsfromtheadiposetissue,willsubjectto morecomplexapplications.Therefore,autologousadiposetissue cannotbeeasilyusedasadrug.Thus,ASCsandASC-exosare veryimportantderivativesfromfattissue,capturingintensive attention.ExosomescarryspecificcontentsoftheparentalASCs, includingDNAs,RNAs,lipids,cytokines,enzymes.Exosomes arecapableofprotectingtheircargoesfromdegradationand arehighlystableinserumandblood,thusecientlydelivering cargoestotargetcells.ASC-exosandASCsperformtheir functionsviadierentmechanisms.TheASC-exosareusedas toolsforrepairingandregeneratedactivationofdamagedcells, andarenowconsideredtoorchestratetheeventsrequiredfor tissueregeneration,immunefunction,tissuehomeostasisand developmentofcellfate.Hence,althoughwithoutdierentiation ability,ASC-exoscanmimicthecapacityofASCsforinnovative cell-freetherapy,suchastissueregenerationandrepair,reduction ofinjuries,andanti-inflammation.Intermsofstorageand delivery,unlikeASCs,exosomesaresmallnon-livingsubstances thatcanbesterilefilteredandfrozenwithoutcryo-preservatives. Frommanufacturingandstoragetodelivery,thereisnoneed tomaintaincellviabilityandfunction.ASC-exoshavecertain advantagesoverASCsinproduction,storage,shelflife,delivery, andpotentiallyready-to-usebiologicalproducts(Vizosoetal., 2017).Moreover,ASC-exosarepotentiallysafertherapeutic agentsthanASCs.ComparedwithASCs,ASC-exosmight avoidcelltherapy-associatedproblems,includinglimitedcell survival,immunerejectionecacy,senescence-inducedgenetic instability,inactivatefunction,andthepossibilityofunfavorable dierentiation(Figueroaetal., 2014).Owingtotheirmultiple

features,ASC-exoshaveshowntherapeuticpotentialinmany clinicaldiseases,especiallyintissueregeneration,suchasskin repairing,fatgrafting,andvariousreconstructionoperation.In addition,exosomeshavebeeninnovativelyutilizedfortargeted drugdeliveryandasgenecarriersforregenerativemedicine (Mehryabetal., 2020).Butactually,ASC-exoslackenough clinicaltrialstoconfirmthesafetyandeectiveness(Table1).

Inthisreview,wemainlysummarizethelatestresearchabout thefunctionsandinvestigationsofASC-exosconcernedwith tissueregenerationinplasticandcosmeticsurgery,including skinanti-agingtherapy,dermatitisimprovement,woundhealing, scarremoval,flaptransplantation,bonetissuerepairand regeneration,obesityprevention,fatgrafting,breastcancer,and breastreconstruction.Wehopethiswillprovidefurtherinsights intothepivotalrolesandapplicationsofASC-exosintissue engineeringandregenerativetherapies.Forthesegoals,we searchedtheadipose-derivedstemcells/ASCs,exosomesandthe

ASC-exosASCs

SourceacquisitionfromASCswith exosomeseparationmethods, existinadiposetissueand stableinserumandblood

easyacquisitionandhighyield fromadipocytetissues, especiallyfromwhiteadipose tissue

Morphologysmalllipidbilayervesiclesmesenchymal-likecells

Managementcouldbesterilefilteredand frozenwithout cryo-preservatives,easily long-termstorageanddelivery, easilykeepbiologicalactivity

shouldpreservecellviability andfunctionfrommanufacture tostorageanddelivery,high storagerequirements,complex cultivation

Biological properties protectcargoesfrom degradation,targetspecificity, goodtissuepermeability, intercellularcommunication, immunefunction,tissue homeostasisanddevelopment ofcellfate multi-lineagedifferentiation, secret greatkindsofgrowthfactors byparacrinefunction, prosurvivaleffects,regulation ofimmunefunction, angiogenesis

SecretomeDNAs,RNAs,lipids,cytokines, enzymesfromtheparentcell exosomes,cytokines,DNAs, RNAs,lipids,enzymes

Biosafetylimitedimmunogenicity,high biosafety immunogenicity,biosafety

Applicationsconsideredasmultiple bioactivesubstancesfortissue regeneration,couldbegene modification,uploaddrugsas carriers,uploadinothercarriers suchasnanomaterials

Clinicaltrialslackenoughclinicaltrialsto confirmthesafetyand effectiveness

consideredasidealstemcell sourceforcellandtissue regeneration;couldbegene modification,uploadincarriers suchasnanomaterials

securityandeffectivenessare verifiedinmanydiseases

Application disadvantages relativelowpurityandyield, complicatedcomponents, substantialdegreeof heterogeneityindosing regimensinthereportedcases, lacking invivo clinicaltrials limitedcellsurvival,immune rejectionefficacy, senescence-inducedgenetic instability,inactivatefunction, andthepossibilityof unfavorabledifferentiation, individualdifferences

Abbreviations:ASCs,Adipose-derivedstemcells;ASC-exos, ASC-derivedexosomes.

above8relatedfieldsinplasticandcosmeticsurgeryaskeywords onPubmedintherecent5years.Thesesearchedstudiesinvolved incell,animalexperiments,orclinicaltrials,especiallythe originalarticleswereincludedaccordingtorelevancetothetopic.

ASC-EXOSINSKINAGING

Theskinissubjecttoanunpreventableintrinsicaging process,alongwiththeexogenousfactors-inducedagingstate. Particularly,ultravioletradiationresultsinprematureskinaging, alsoknownasextrinsicskinagingorphotoaging.Themost typicalfeaturesofskinagingarethelossofelasticityandthe generationofwrinkles,whichareattributedtothestructural andfunctionalchangesinskincellsandtissues(Lietal., 2019).Amongskincells,humandermalfibroblasts(HDFs)and keratinocytes(HaCaTs)areregardedasbarrierstopreventskin fromtimeagingandultravioletB(UVB)photoaging.Various improvementstrategies,suchasantioxidants,retinoids,peptides, growthfactors,andautologouspatientfatorcollagengraft,have beenusedtofightagainstskinaging(Kimetal., 2019).Because ofthepoorpenetrationthroughthestratumandshort-term maintenanceforseveralmonths,theseabovestrategiesarenow notideal.ItishopefultoreduceskinagingpinnedonASCs andASC-derivatives,whichcouldregulateHDFsproliferation, migration,andcollagenexpression.

ASC-conditionedmedium(ASC-CM)andASC-exos,both containingkeycytokinesandgrowthfactorssecretedbythe ASCs,couldfacilitatetheregenerationandrepairofvarious tissuesandorganstoexertinfluencesonanti-oxidation,antiwrinkle,andwhiteningskin.ASC-CMhasbeenprovedto protectHDFsfromoxidativestress invitro (Kimetal., 2008). Lietal. (2019) foundthatinUVBirradiation invitro model,ASC-CMcouldeectivelydown-regulatetheactivation andtranscriptionofUVB-inducedsignalingpathwayssuchas mitogen-activatedproteinkinases(MAPKs),activatorprotein 1(AP-1),andnuclearfactorkappaB(NF-kB),andupregulatetheexpressionofantioxidantresponseelementssuch asphaseIIgeneHO-1andtransforminggrowthfactor-beta (TGF-b),whilereducinginterleukin6(IL-6)secretion.Thereby ASC-CMshowedapositiveeectonprotectingHDFsand HaCaTsfromUVB-inducedphotoagingdamage.TheplateletderivedgrowthfactorAA(PDGF-AA)containedinASC-CM alsocouldactivatethephosphatidylinositol-4,5-bisphosphate3kinase(PI3K)/proteinkinaseB(AKT)signalpathway,and mediatephotoaging-inducedHDFsproliferation,extracellular matrix(ECM)depositionandremodelinginthe invitro experiment,whichwasreportedby Guoetal. (2020) group. Itdemonstratedthatthewell-preparedASC-CMplayeda positiveroleinpreventingHDFsfromintrinsicandextrinsic agingdamagestoacertaindegree.Meanwhile,theresult alsoclarifiedthatthePDGF-AAmightcontributetobetter outcomeswithsomeothercomponentsofASC-CM.However, theingredientsinASC-CMarerathercomplextosynergistically achievetheanti-aginggoal.Theexosomesareimportant componentsinASC-CM,mightpossessapositivelyindependent orsynergisticroles. Huetal. (2019) showedthatexosomesfrom

TABLE1| CharacteristiccomparisonofASC-exosandASCs.

three-dimensionalculturedHDFspheroids(3D-HDF-exos)and BMSC-exoscouldbothdown-regulatetumornecrosisfactor alpha(TNF-a)andup-regulatedTGF-b expression,resultingin decreasedmatrixmetalloproteinase1(MMP-1)andincreased typeIprocollagen invitro andanudemousephotoagingmodel. Theseresultsindicatedthattheexosome-containing3D-HDFexosandBMSC-exosbothhadanti-skin-agingpropertiesandthe potentialtopreventandtreatcutaneousaging(Figure1A).

Atpresent,theexistingresearchofASC-exosonskinagingis limited.Astheepidermislayeris50–120 µmandtheepidermisdermisthicknessis2–5mminhumans,thelocaltreatmentwith exosomescanarriveattheepidermisandbeabsorbedonhuman skin(Xuetal., 2018).Exosomesderivedfromhumanstemcells, suchasASCs,areofmultiplebioactivefunctionsforskinaging treatment,deservingfurtherresearch.

ASC-EXOSINATOPICDERMATITIS

Atopicdermatitis(AD)isachronicinflammatoryskindisease accompaniedwithpruritus,erythema,edema,excoriation, andthickeningoftheskin,leadingtodecreasedunaesthetic

appearanceofskin(Leeetal., 2018).Bothdefectiveskinbarrier andabnormalimmuneresponsesarecrucialfactorsinAD development.ThereforeADwithimmunologicabnormalities couldbetreatedbydierentormulti-prongedapproaches focusedonreducingtheseverityandfrequencyofsymptoms, suchasdietarymanagement,drugtherapy,andultraviolet assistedtherapy(Parketal., 2019).Severalstudieshave demonstratedthatallergicprogressinADcouldbesuppressed byBMSCsandASCswhilemodulatingmultipletargets(Shin etal., 2017).Forinstance, Sahetal. (2018) foundthatsuperoxide dismutase3-transducedMSCsamelioratedADpathologyand enhancedtheecacyofMSCtherapybycontrollingactivated immunecells,reducingexpressionlevelsofpro-inflammatory mediatorsintheskinofADmice.

Nevertheless,giventhatADchronicandrecurrent characteristics,thetherapeuticutilizationofMSCshasseveral drawbacks,suchaspoorengraftmenteciency,undesired immuneresponses,shorthalf-life,anddicultiesinquality control(Louetal., 2017).Exosomesareinvolvedinthe developmentandprognosisofADskindiseases,including repairingleakyskinbarriersaswellassuppressingskin inflammation(Alvesetal., 2016). Choetal. (2018) established

FIGURE1| ASC-exos function invariousskinassociatedapplications. (A) ASC-CMandBMSC-exoscouldproduceROSatalowlevel,downregulateTNF-a, upregulateTGF-b toincreaseMMP-1andprocollagentypeIexpressionforcollagensynthesis,thusenhancingtheskinelasticityandeasethewrinklesfor anti-aging. (B) ASC-exoswascapabletoenhancestratumcorneumhydration,reducethesecretionofinflammatorycytokinessuchasIL-4,IL-5,IL-13,IFN-g,and TNF-a,andalleviatetheinfiltrationofmastcells,dendriticepidermalcells(DECs)inskinlesionsandeosinophilsintheblood,andproduceceramidestorestorethe epidermalbarrier,thusrelievingthedermatitisofskin. (C) ASC-exosreducedtheproductionofROS,decreasetheexpressionofIL-6,IL-1b,TNF-a,andthe oxidativestress-relatedproteinssuchasNADPHoxidase1/4(NOX1/4),increaseMMP-9andVEGFtoameliorateECMreconstruction,thusfosteringHDFs proliferationandmigrationtoreinforcethere-epithelialization. (D) ASC-exoswasconducivetopromotetubeformationofVECs,increasetissuethickness,and reducetheinfiltrationofinflammatorycellstorelievetheinflammationandapoptosisforthehighsurvivalrateoftheskinflap.ASCs,Adipose-derivedstemcells; ASC-exos,ASC-derivedexosomes;HDFs,HumanDermalFibroblasts;HaCaTs,HumanKeratinocytes;ECM,ExtracellularMatrix;ROS,ReactiveOxygenSpecies; MMP-1/9,MatrixMetalloproteinase1/9;IFN-g,InterferonGamma;TNF-a,TumorNecrosisFactorAlpha;TGF-b,TransformingGrowthFactorBeta;IL-4/5/6/13, Interleukin4/5/6/13;NOX-1/4,NADPHOxidase1/4;VEGF,VascularEndothelialGrowthFactor;VECs,VascularEndothelialCells,VECs.

anADmodelofNC/NGAmicetreatedwithhousedust miteantigens.Inthismousemodel,ASC-exoswerefoundto amelioratepathologicalsymptomssuchasthelevelsofserum IgE,thenumberofeosinophilsintheblood,andtheinfiltration ofmastcells,dendriticepidermalcellsinskinlesions.Thestudy suggestedtheimmuneregulationroleofASC-exosinAD.Inthe latterstudy,thesamegroupalsofoundthatthesubcutaneous injectionofASC-exosinanoxazolone-induceddermatitismodel remarkablyreducedtrans-epidermalwaterloss,andenhanced stratumcorneumhydrationandmarkedlydecreasedthelevels ofinflammatorycytokinessuchasIL-4,IL-5,IL-13,TNF-a, interferongamma(IFN-g),IL-17andTSLP,allinadosedependentmanner(Shinetal., 2020).Interestingly,ASC-exos alsoinducedtheproductionofceramidesanddihydroceramides topromoteskinbarrierrestoration(Shinetal., 2020).These studiessuggestedthatthesystemicadministrationofASC-exos amelioratedAD-likesymptomsthroughtheregulationof inflammatoryresponsesandthepotentialofeectivelyrestoring epidermalbarrierfunctionsinAD(Figure1B).ASC-exos couldbeapromisingcell-freecandidatetocurrentlylimited treatmentoptionsforAD.

ASC-EXOSINWOUNDANDSCAR

Manyexposed,unsightly,orchronicwounds,suchasdiabetic ulcers,arediculttoheal,notonlycausingfunctional disabilitiesbutalsoaectingmentalhealth.Poorwoundhealing eventuallyleadstohypertrophicscarsorkeloidformation, pigmentation,prolongedhealing,andulcerativeskindefects (Emingetal., 2014).Therearemanytraditionaltreatment methodsforskinandsofttissuetrauma,suchaslow-intensity lasers,advancedtreatmentdressings,negativepressurewound treatment,hyperbaricoxygen,andskintransplantation(Bellei etal., 2018).However,aswoundhealingisacomplicatedprocess referringtomultiplecelltypes,growthfactors,andextracellular matrix,sometraditionaltreatmentsjustplayanauxiliaryrole accompaniedbyundesirablehealing.

ASCsandSVFcanproduceabundantsecretomegroups, leadingtocellproliferationanddierentiation,migration,and healingmicroenvironment.ThemigrationandfunctionsofASCs couldbeenhancedviaPI3K/AKTpathwayactivatedbyintegrin b1,resultedintheimprovedchronicrefractorywound(WangJ. etal., 2020).Interestingly,inthewoundmousemodel, Bi etal. (2019) foundthatbothSVFandhumanASCsimproved thefunctionofendotheliocytesandfibroblasts,regulatedgene expression,andjointlypromotedskinhealing.Thisstudyshowed thatSVFcouldreplaceASCsforwoundhealing,duetothe convenienceofSVFapplications.Intheburnwoundmodel, onlyautologousASCs,butnotallogeneicASCs,significantly improvedhealinginacuteburnwoundsoftherat(Changetal., 2018). Fujiwaraetal. (2020) alsoconstructedanovineburn modelandprovedthatASCsimprovedgraftedburnwound healingbypromotingbloodflowandvascularendothelialgrowth factor(VEGF)expression.Besides,thelocalizedinjectionof ASCscouldaccelerateandenhancetheclosureofpressureulcers (Xiaoetal., 2019).Likewise, Bukowskaetal. (2020) systematically

ensuredthesafetyofhumanSVFwheninjectedintoamurine pressureulcerinjurymodel.Thishealingfunctionusually dependsonthetrophicfactorsofASCsandSVF,including cytokines,growthfactors,andchemokines.Notably,exosomes containingsecretomefromASCshaveopenedthewaytoanewly emergingcell-freetherapy.

StudieshaveshownthatASC-exosplayedapositiverolein cutaneouswoundhealingbymeansofactingonHDFsand HaCaTsandothermaintargetcellsthroughvarioussignal channels(Figure1C; Qiuetal., 2020). Maetal. (2019) exposedHaCaTstohydrogenperoxide(H2 O2 )forestablishing askinlesionmodel,discoveringthatASC-exoscouldfoster HaCaTsproliferation,migration,andinhibitapoptosisthrough Wnt/b-cateninsignalingpathway.Likewise, Heetal. (2020) also confirmedthatMALAT1-containingASC-exosimprovedwound healingbytargetingmiR-124andactivatingWnt/b-catenin pathway.Inaddition,ASC-exosmightalsopromoteand optimizecollagensynthesisviaupregulatingPI3K/Aktpathway duringcutaneouswoundhealing(Zhangetal., 2018). LiX. etal. (2018) foundthatexosomesfromNF-E2-relatedfactor 2(Nrf2)-overexpressingASCssignificantlyreducedtheulcer areainthefeetofdiabeticrats,bypromotingtheproliferation andangiogenesisofendothelialcells,improvinglevelsof senescencemarkerprotein30(SMP30)andVEGFandvascular endothelialgrowthfactorreceptor2(VEGFR2)phosphorylation toacceleratethewoundhealing,aswellasinhibitingreactive oxygenspecies(ROS)productionandinflammatorycytokine expressions,suchasIL-1b,IL-6,andTNF-a.Notwithstanding thissuperiority,exosome-basedtherapyofwoundhealingstill facesthechallengesofrapidclearancerateandrelativelyshort half-life invivo (Liuetal., 2017).Thesustainedreleaseand retentionofexosomesinthetargetareaisanimportantfactor forhealing.Liuetal.showedhyaluronicacid(HA)mightserveas exosomesimmobilizerandwounddressingfordurableexosomes retentionatwoundsitestoeectivelyreparativeeect.ASCexoscombinedwithHAwasabletoactivatetheHDFsactivity ofthewoundsurfaceandreinforcedthere-epithelializationand vascularizationofthewoundsurface(Liuetal., 2019).Moreover, severalstudieshaveconfirmedtheroleofASC-exosmiRNAsin skinhealing.Forinstance, Yangetal. (2020) foundthathighly expressedmiRNA-21derivedfromASC-exoscouldenhancethe migrationandproliferationoftheHaCaTs,byincreasingthe matrixmetalloproteinase9(MMP-9)expressionthroughthe PI3K/AKTpathway.TheoverexpressingmiRNA-21couldalso enhancecollagensynthesisandoptimizecollagendeposition, significantlyimprovethehealingeectoffull-thicknessskin woundsinmice(Yangetal., 2020). Shietal. (2020) verifiedthat mmu_circ_0000250-modifiedASCsderivedexosomespromoted woundhealingindiabeticmicebyinducingmiR-128-3p/SIRT1mediatedautophagy.

Comparedtothesinglefactortherapy,MSCsapplicationis alsosuperiorinscarremovalduetotheMSCs-secretedvarious inflammatorymodulators.Intherabbitscarmodel, Liuetal. (2014) locallyinjectedBMSCstoregulateinflammationand preventedhypertrophicscarformation,attributingtoBMSCs secretionofananti-inflammatoryprotein,TNF-a-stimulated gene/protein6(TSG-6). Wuetal. (2015) showedthat invitro

assay,theMSC-CMdecreasedviability, a-SMAexpression, andcollagensecretionofhumankeloidfibroblasts.Besides, inamousedermalfibrosismodel,MSC-CMinfusioninduced asignificantdecreaseinskinfibrosisduetotheTGF-b3 inCM-mediatedtherapeuticeectsonpreventingcollagen accumulation(Wuetal., 2015).TheapplicationofASCs andASC-derivativesmightalsoprovidenovelscarlessrepair methods.Intheearlystageofwoundhealing,exogenousASCexospromotedtheexpressionoftypeIandtypeIIIcollagento shortenthehealingtime,andmightinhibitcollagensynthesis tominimizescarformationinthelaterperiod(Huetal., 2016). Thistendencyfollowedthehistologicalchangesobservedduring thenaturalhealingofsofttissuewounds.Thatis,collagen depositionwasmoreimportantintheearlyphaseofhealing, whileinthelatephaseofhealing,matrixreconstructionwas morecritical.ASC-exosamelioratedECMreconstructionand reducedthescarformationbyregulatingtheratiosoftypeIII collagen/typeIcollagen,TGF-b3/TGF-b1,andMMP-3/tissue inhibitorofmetalloproteinases1(TIMP-1),aswellasfacilitating HDFsdierentiation(Wangetal., 2017).TheteamofWang etal.firstlydevelopedtheFHEhydrogelandFEPhydrogel scaoldbothwithstimuli-responsiveASC-exos.TheASC-exos releasedbythesetwocarriermaterialssignificantlyincreasedthe regenerationofskinappendagesandreducedtheformationof scartissue(WangC.etal., 2019)(WangM.etal., 2019).The sustainedreleaseofbioactiveexosomeshelpstoachievebetter woundhealingandscarremoval.

ASC-EXOSINSKINFLAPSINJURY

Flaptransplantationisanessentialmethodtorepairrefractory traumaandorganreconstruction,includingthealarrim,external ear,andfingertipdefects.Theinsucientneovascularizationand ischemia-reperfusion(I/R)injuryareresponsibleforpoorflap healingoutcomes(Sorkinetal., 2020).ASC-basedtherapyhas becomeanapplicablemethodtopreventI/Rinjuryforassisting flaptransplantation.Forinstance,ASCsareabletoenhance angiogenesistoincreasetheviabilityofchondrocutaneous compositegrafts,fortheapplicationofdefectsinthenose,ear scales,andskin(Yuceletal., 2016).

RecentstudieshaveshownthatASC-exoswerehopefulto improvethesurvivalstatusofskinflaps.Bybioinformatics analysis,Xiongetal.pointedoutthatthemiRNA-760 upregulationandmiRNA-423-3pdownregulationinASC-exos couldregulatetheexpressionofITGA5andHDAC5genes, respectively,consequentlypromotedthevascularizationofthe skinflap.Inalegwoundmodelofrat,themicrovascular angiographyof28dayspost-flaptransplantationrevealedthatthe ASC-exostreatedgroupsexhibitedbettervascularizationdegrees oftheartificialdermisprefabricatedflapsovercontrolgroups (Xiongetal., 2020).Undeniably,manydierentiallyexpressed miRNAsinASC-exosareassociatedwiththevascularization offlaps.Thestudyby Puetal. (2017) showedthatIL-6richhumanASC-exospromotedflapangiogenesisandflap repairafterI/Rinjuryinmice.Inthiscase,theemployment ofASC-exostodeliverIL-6isbeneficialforpatientsafety

becauseitdoesnotrequiretheuseofviralvectors. Bai etal. (2018) alsoshowedthatlow-doseH2 O2 -stimulatedASCexoscouldincreasetheneovascularizationoftheflapand relievetheinflammationandapoptosisafterI/Rinjury,thus increasingthesurvivalrateoftheflap invivo.Insummary, ASC-exosplayanimportantroleinthevascularizationof skinflaps,andtherebyresolvetheproblemofinsucient neovascularizationoftheflaps,thusexpandingtheapplicationof flaptransplantation(Figure1D).

ASC-EXOSINBONETISSUEDAMAGE

Fractures,tumorbonesurgery,deformity,revisionofthe prosthesis,andosteomyelitiscanbefullyidentifiedassegmental lossofbonestructure.Particularly,boneregenerationisthemain emphasisinvolvingbothsurgeryandaestheticsincraniofacial surgery.Exosomes,asnanoscaleextracellularvesicleswith anintercellularcommunicationfunction,provideanexcellent mediumforthepackagingandtransportationofRNAsand proteins,benefitingforbroadapplicationinbonetissue engineering(Paduanoetal., 2017).Besides,ASC-exos,with significantosteogenicinductionability,caneectivelyregulate themicroenvironmentofbonetissuebytransportingavarietyof bioactivemolecules.

Theboneremodelingcycleiscomposedofconsequential phases:resorption,reversal,andformation.Studieshavefound thatosteocytesinbonetissuesequipwithmanyfunctions ofcoordinatingtheboneremodelingofosteoclastsand osteoblasts,whichmaintainthebonehomeostasis(Borciani etal., 2020).An invitro studyconfirmedthatASC-exos couldantagonizeosteocyteapoptosistriggeredbyischemiaand hypoxia,anddecreaseosteocyte-mediatedosteoclastogenesis, whichwasattributedtothedecreaseinreceptoractivatorof nuclearfactorkappabligand(RANKL)expression(Renetal., 2019).RANKLinteractswithitsreceptorRANK,whichishighly expressedbyosteoclastsortheirprecursorsandisessential forosteoclastactivation(Figure2A).ASC-exoscanbeused intissueengineeringcombinedwithecientlybiocompatible ecientcarrierstoimproveosteogenesiseciency.According toarecentstudy,ASC-exoscouldbeimmobilizedonthe polydopamine-coatingPLGAscaolds.Thiscell-freenano-sized carrierenhancedboneregenerationsignificantly,atleastpartially throughitsosteoinductiveeectsandcapacitiesofpromoting MSCsmigrationandhominginthenewlyformedbonetissue (LiW.etal., 2018).Itwasdefinitelyestablishedthatan idealscaoldforexosomesloadingwouldbebiocompatible, biodegradable,andcapableofcontrolledreleasingexosomes. ChenS.etal. (2019) showedthattheexosomesderivedfrommiR375-overexpressingASCsincorporatedwithhydrogelpossessed theabilitytoenhanceboneregenerationinaratmodelof calvarialdefect.Moreeectiveandconvenientloadingstrategies shouldbedeveloped.Furthermore,appropriatechangesin thecultureconditionsofASCswillfacilitatetheproduction ofcustomizedASC-exos.Byusinghypoxia/serumdeprivation (H/SD)inducedosteocyteapoptosismodelwithmurinelong boneosteocyteY4(MLO-Y4), Zhuetal. (2017) demonstrated

FIGURE2| ASC-exosfunctionintheboneremodelingcycle. (A) Inboneresorptionandreversal,ASC-exoscoulddecreasetheexpressionofRANKL,whichwas highlyexpressedbyosteoclastsortheirprecursorsforosteoclastactivation,toantagonizeosteocyte-mediatedosteoclastogenesis. (B) Inboneformation, ASC-exospossessedtheabilityofloweringtheproductionofIL-6andPGE2,downregulatingSA-b-galactivityandreducingtheaccumulationof gH2AXin osteoblasts.Additionally,ASC-exoscouldupregulatetheradioofBcl-2/Bax,diminishtheproductionofROSandcytochromec,andsubsequentactivationof caspase-3/9inosteocytes.ASCs,Adipose-derivedstemcells;ASC-exos,ASC-derivedexosomes;RANKL,ReceptorActivatorofNuclearFactorKappaBLigand; IL-6,Interleukin6;PGE2,ProstaglandinE2;SA-b-gal,Senescence-Associated b-galactosidase; gH2AX,PhosphorylatedHistoneH2AX;Bcl-2,B-cell lymphoma/leukemia2;Bax,Bcl-2-associatedXprotein;Caspase-3/9,AspartateProteolyticEnzyme3/9.

ASC-exoscouldecientlyantagonizeosteocyteapoptosisand osteocyte-mediatedosteoclastogenesis,viaupregulatedradio ofB-celllymphoma2(Bcl-2)/Bcl-2-associatedXprotein (Bax),diminishedproductionofROSandcytochromec,and subsequentactivationofaspartateproteolyticenzyme9(caspase9)andcaspase-3.Thisresultalsoprovidedthe invitro evidence ofASC-exosapplicationinage-relatedbonedisease. Luetal. (2017) demonstratedthatASC-exos,especiallyprimedbyTNFa pre-conditionedASCs,couldpromotetheproliferationand dierentiationofhumanosteoblaststhroughWntsignaling pathway.Therefore,themethodsforproducingspecificASCexos,oerapromisingapproachtoreplacedirectstemcell transplantation,furtherwideningtheapplicationofexosomesin boneregeneration(Figure2B).

Osteoarthritis(OA)isacommondegenerativejointdisease characterizedbycartilagedegeneration,synovitis,subchondral bonesclerosis,andosteophyteformation(Henrotinetal., 2012). Currenttreatmentsarebasicallysymptomatictohandlepainand swelling,andmainlyrelyonantalgicsandanti-inflammatory drugs.Articularcartilagehasalimitedpotentialtorepair, withprogressivelymorecliniciansemphasizingcellulartherapy. Multipleadiposetissue-associatedcomponentsandextractions arepromisingtobeappliedinOAtherapy,includingSVF, ASCs,ASCs-exos,ASC-CM,andmicrofragmentedadiposetissue

(MFAT).Inaclinicaltrial,SpasovskipointedoutthattheOA patientstreatedwithsingleinjectionofASCsshowedsignificant cartilagerestoration(Spasovskietal., 2018).Similarly,inanother trialofOApatientsreceivedwithASCs,theASCsmightcause animmediatelocalresponseduetoreleasedparacrinefactors andcytokinesforOAamelioration(Persetal., 2018). Tranetal. (2019) employedSVFtoregeneratedamagedkneecartilageof OApatients,revealingatrendtowardabetterecacyofSVF withthemicrofracturemethodforOAtreatmentoveraperiodof twoyears. HongZ.etal. (2019) alsosuggestedthatintra-articular SVFinjectionwasasafetreatmentofOA,andcouldeectively relievepain,improvefunction,andrepaircartilagedefectsin patientswithbilateralsymptomatickneeosteoarthritis.MFAT couldreducethephaseofcellmanipulationwithoutexpansion orenzymatictreatmentinashortperiod(Paolellaetal., 2019).In aninflammatorycellmodelofOAsynoviocytes,MFATreduced typicalmacrophagesmarkersanditspotentialitytoinducean anti inflammatoryeecttoaddressOA(Mautneretal., 2019). Asthecytoprotectiveandanti-inflammatorypropertiesof ASCsinhumanchondrocytesandexperimentalOAmaybe mediatedbyparacrineeects,theparacrinemediatorsASC-exos areattractiveforalternativetherapiesofOA.ASC-exosmightbe safer,cheaper,andmoreeectiveOAtherapy(Persetal., 2015). ASC-exosareabletodownregulateinflammationandoxidative

stress,whichmightsuccessfullymediateantisenescenceinOA (WangQ.etal., 2020).Theintra-articularinjectionofASCexoscouldinhibitcartilageandsubchondralbonedegradation, decreaseosteophyteformation,andanti-synovialinflammation, thusslowingtheprogressionofOA(ZhangR.etal., 2019). Tofiño-Vianetal. (2017) showedthatbothASC-CMandASCexosloweredtheproductionofIL-1b-stimulatedinflammatory mediatorsIL-6andprostaglandinE2(PGE2),down-regulated senescence-associated b-galactosidase(SA-b-gal)activity,and reducedtheaccumulationofphosphorylatedhistoneH2AX (gH2AX),inOAosteoblasts.Furthermore,inthenextstudy, theyconfirmedthatmicrovesiclesandexosomessecretedfrom ASCscouldaectthemetabolismofOAchondrocytesby modulatinginflammatoryanddegradativepathwaysassociated withjointdestruction(Tofiño-Vianetal., 2018). Zhaoetal. (2020) separatedthepatientASC-exos,whichexertedastrong stimulatoryeectonchondrocytemigrationandproliferation withtheupregulationofmiR-145andmiR-221inthe modeloftheinflammation-inflictedoxidativestress.Woo etal.alsoconfirmedthathumanASC-EVscouldpotentially protectcartilagefromdegenerationandcoulddelaycartilage degenerationinOAratandmousemodels.Themechanism wasprobablythathumanASC-EVssuppressedIL-1b upregulatedcatabolicmoleculesandenhancedtypeIIcollagen expressioninhumanOAchondrocyte(Wooetal., 2020). Ragniestablishedan invitro modelofhumanfibroblast-like synoviocytes(FLSs)fromOApatients,showingthatASC-EVs possessedtheimmunoregulatorypropertiesforOAregulation andthathyaluronanwasinvolvedinASC-EVsinternalizationin FLSs(Ragnietal., 2019).

Thesepioneeringresultsreinforcedthegreatprospectsfor ASC-exosandASC-EVsasanoveltherapeuticoptionfor OA.However,thenumberofstudiesissmall.Inthecontext ofOA,althoughtheASCsandSVFhavebeenconfirmed theirclinicallytherapeuticecacyandsafety,theASC-exos therapieshavenotyetbeenusedinclinicaltrials.Therestill needstoexecuteadetailedexplorationinlargecohortsto investigatethatthefunctionsandmechanismsofASC-exos arenecessary.Inpre-clinicalstudies,theoptimizedconditions andobtainmentsforASC-exos invitro andthemechanismsof ASC-exos invivo requirefurtherstudies.Inclinicaltrials,the ASC-exosbasedtherapyshouldsetoptimalcriteria,including exosomeconcentrationanddose,injectiontimesandintervals. Inaddition,thecomprehensiveimmuneimpactfollowingthe ASC-exosadministrationshouldbeperformedtodetermine theimmuneresponseoftherecipient.Totally,ASC-exosmay representtheeectiveclinicalstrategyofOAoncetrials havebeenfullycontrolledandtheirbenefitsandsafetyhave beenfullyassessed.

ASC-EXOSINOBESITY

Obesityisagrowinghealthpandemicwhoseglobalprevalence hasincreaseddramaticallyoverthelastfewdecades.Inaddition tobringingthephysicalchanges,obesityalsocausesconsiderable obesity-relatedinflammationandmetabolicdisorders,including

dysfunctionofadiposetissueandinsulinresistanceinkey metabolicorgansandinsucientsecretionofinsulinbythe pancreas(ZhangB.etal., 2019).Apartfromtheenergystorage function,theadiposetissueisalsoanimportantendocrine tissueandagreatsourceofASC-exos.ASCsplaycriticalroles incontrollingobesity-associatedinflammationandmetabolic disorders.Thus,thesecretionquantityandfunctionofASCexosarehypotheticallyshapedbyobesity. Zhaoetal. (2018) foundthatASC-exoscouldtransferintomacrophagestoinduce anti-inflammatoryM2phenotypesthroughthetransactivation ofarginase1(Arg-1)andIL-10byexosome-carriedactive STAT3,andincreasetheexpressionofuncouplingprotein 1(UCP-1)topromotewhiteadiposetissue(WAT)beiging, therebyimprovingobesity-relatedinflammationandmetabolism (Figure3).Mechanistically,thisstudydelineatedanovel exosome-mediatedASC-macrophagecross-talkthatfacilitated immuneandmetabolichomeostasisinWAT,thusprovidinga potentialtherapyforobesityanddiabetes.

Extracellularvesiclesbelongtoaheterogeneitysystem, includingexosomes,apoptoticbodies,microvesicles(PerezHernandezetal., 2017).ItisworthnoticingonASC-EVs peculiarityindierentphysiologicalorpathologicalcontexts. TheconcreteuseofASC-EVsincell-basedtherapyintheobese settingshouldbetakenintoaccount.Somestudiessuggested thatobesityordiabetescouldimpairthecapacityofASCsfor anti-inflammationandwoundhealing,aswellasinfluencethe productionandbioactivitiesofASCs-exos,thusincreasingthe riskforimmuneormetabolicdisorders(Strongetal., 2016). Togliattoetal. (2016) investigatedthetherapeuticimpactofASCEVsrecoveredfromobesesubjectsvisceralandsubcutaneous tissues.ComparedwithASC-EVsfromnon-obesesubjects,ASCEVsfromobesesubjectsshowedimpairedangiogenicpotential invitro becauseofthedecreaseofEVscargoesincludingVEGF, MMP-2,andmiRNA-126(Togliattoetal., 2016).Obesityimpacts onASC-EVsandASC-exospro-angiogenicpotentialandmay raisemoreconcernsaboutthesecrucialtissuerepairmediators.

ASC-EXOSINFATGRAFTING

Fatgraftinghasbeengaininglargeattentionintissue augmentationoverthepastdecadesforhemifacialatrophy, lipodystrophy,andbreastreconstruction(TanandLoh, 2017). BothASCsandfatgraftcanexertawrinkle-reducingeectand synergisticallyaectcollagensynthesisandneovascularization (Kimetal., 2019).However,thesurvivalrateoffatgrafts remainsunsatisfiedduetothedevascularizationandischemic injuryofadiposetissuesmadebyliposuction,injection,and long-termfatabsorption.Severaltechnicalmodificationshave beendescribedtoenhancefatgraftsurvivalwithmorecomplete adiposetissuestructure.Cell-assistedlipotransfer(CAL)isan ecienttechniquethatmixesASCs-richSVFwithlipoaspirate, forreinforcingadipogenesisandangiogenesistoaugmentfat graftreliability(Yoshimuraetal., 2008).Importantly, Kølle etal. (2020) conductedarandomizedcontrolledclinicaltrial comparingfatgraftsenrichedwith exvivo-expandedautologous ASCstonon-enrichedfatgraftsinbreastaugmentation,

FIGURE3| ASC-exoscouldimproveobesity-relatedinflammationandmetabolism.Intheobesitymicroenvironmentofmice,ASC-exoswasabletoreducethe secretionofiNOS,TNF-a,andIL-12,andincreasethesecretionofArg-1andIL-10toactivateM2macrophagepolarization,thusamelioratingWATinflammation. ASC-exosalsoincreasedtheexpressionofUCP-1topromoteWATbeiging,therebyimprovingobesity-relatedinflammationandmetabolism.ASCs, Adipose-derivedstemcells;ASC-exos,ASC-derivedexosomes;WAT,WhiteAdiposeTissue;BAT,BrownAdiposeTissue;iNOS,InducibleNitricOxideSynthase; TNF-a,TumorNecrosisFactorAlpha;IL-12,Interleukin12;Arg-1,Arginase1;IL-10,Interleukin10;UCP-1,UncouplingProtein1.

demonstratingthatASCssignificantlyimprovedthevolume retentionoffatgraftscomparedwithconventionalfatgrafting andnoadverseeectswereobserved.Thisresultfurther confirmedthesignificanceofCALinbothreconstructiveand cosmeticvolumerestoration.However,limitationsofcell-based therapieshaveconstrainedtheiruse,includinguncommitted dierentiation,unwantedsideeects,immunerejection, andregulatoryhurdles(O’Halloranetal., 2018).ASC-exos havebeenidentifiedtomotivatefunctionalrecoveryinfat graftingandfilling.

Recently, Hanetal. (2018) discoveredthatco-transplantation ofASC-exosandhypoxia-treatedASC-exosinnudemouse modelsofsubcutaneousfatgraftingbothcouldparticipatein neovascularizationandattenuateinflammationinthegrafts.In thesubsequentstudy,theyfurtherinvestigatedthemolecular mechanismofhypoxia-enhancingpromotingtheeectofASCexosinfatgrafting,raisingthatthehypoxia-treatedASC-exos significantlyenhancetheangiogenesisoftheischemicadipose tissuebyregulatingVEGF/VEGF-Rsignalingpathway(Han etal., 2019).AsthefunctionalnanovesiclessecretedbyASCs, ASC-exospossessmoreadvantagesinimprovingthevolume retentionrateoffatgraftsthanASCs. ChenB.etal. (2019) have shownthatASCs-exoswereequivalenttoASCsinimproving thesurvivaloffatgraftsbyup-regulatingearlyinflammation andenhancingangiogenesisinmice.Whereasduringthemid tolatestagesoffatgrafting,ASC-exosexertedapro-adipogenic eectandalsoincreasedcollagensynthesislevel,similarly,to theirsourceofASCs(ChenB.etal., 2019). Zhuetal. (2020) foundthatinan invivo mousemodelofautologousfatgrafting,

graftstreatedbyASC-EVssignificantlyexhibitedsurvivalwith moreneovascularization,increasedfatretention,anddecreased fibrosisandnecrosis.TheASC-EVsuptakebymacrophages promotedM2typepolarizationandcatecholaminesecretion, thustheM2macrophages-CMcouldenhancebrowningadipose dierentiationwithenhancedenergyexpenditure(Zhuetal., 2020).Theseresultssuggestthat,asacell-freestrategy,ASCexoscouldbeaneectiveandappealingpathtoheightengraft survivalinlipotransfer(Figure4).However,amajordrawbackof fatgraftingistheunpredictabilityoftheclinicaloutcomesince highvolumeabsorptionratesarecommon.Itisnotyetclear howlongthiseectlastsorwhetherASC-exosfrombothhealthy individualsanddiseasedpatientsareequallyeective.Further experimentalandclinicalstudiesarerequiredtodetermine theoptimalconcentrationandsourceofASC-exosenrichment requiredtoimprovefatgraftwithoutsideeects.

ASC-EXOSINBREASTCANCERAND BREASTRECONSTRUCTION

Adipocytesaretheabundantcellularcomponentsinthebreast cancermicroenvironment.Theinvasionofbreastcancercells leadstotheproximityofcancercellsandadipocytes,whichhave beenreferredtoascancer-associatedadipocytes(CAAs)(Choi etal., 2018; DeLopeetal., 2018).CAAsexhibitafibroblasticlikemorphologyandoverexpressedECMproteins.CAAscan interactwithcancercellsviaseveralwaystotriggerbreastcancer initiation,metastasis,angiogenesis,andcachexia.Studieshave

FIGURE4| Thesequenceflowdiagramoffatgrafting.Intheclinicalapplicationoffatgraftingforfacialfillerandbreastaugmentation,sterileadiposetissueis collectedthroughliposuction.Afterenzymedigestionandcentrifugationofthecollectedadiposetissue,theobtainedheterogeneousmixtureofendothelialcells, smoothmusclecells,fibroblast,pericytes,mastcells,andpreadipocytesisnamedSVF.InCAL,halfthevolumeoftheaspiratedfatisprocessedforisolationofthe SVFcontainingASCs,andtheotherhalfoftheaspiratedfatispreparedforgrafting.Finally,theSVF-supplementedfatisinjectedintothetargetsitesofgrafting.In animalstudiesofthesubcutaneousfatgrafting,co-transplantationofASC-exoswithadipocytescaneffectivelypromotetheneovascularizationtoenhancesurvival inthefatgrafts.ASCs,Adipose-derivedstemcells;ASC-exos,ASC-derivedexosomes;SVF,StromalVascularFraction;CAL,Cell-AssistedLipotransfer,CAL.

demonstratedthesurvivalrate,growth,andinvasivenessof tumorsafterinteractingwithASCs,whichareCAAscomponents. Byexcretingavarietyofbioactivefactorsincludingvisfatin, adipsin,CCL5,IGF,HGF,VEGF,IL-8,andTGF-b,ASCscanexert biologicalinfluencesonproliferation,epithelial-mesenchymal transition,andmetastasis(Huangetal., 2019; Gotoetal., 2019). ASCscoulddierentiateintocancer-associatedfibroblastsin breastcancerenvironment,especiallywithamorepronounced eectonobesepatients(Choetal., 2012; Eckeretal., 2019).

Theexosomes,releasedfromtheadipocytes andASCs,are emergingasanewtypeinthecrosstalkbetweenbreasttumors andadipocytes(Sauteretal., 2019; Teufelsbaueretal., 2019). Previously, Linetal. (2013) investigatedtheeectofASC-exos onbreastcancerMCF7cells,showingthatASC-exosactivated theWntandHhsignalingpathwaystostrengthentumor cellmigration.Ontheotherhand,thebreastcancer-derived exosomescouldreciprocallyshapethefunctionofadipocytes. ArecentstudyconfirmedthatmiRNA-144andmiRNA126-secretingexosomesfrombreastcancercellsco-cultured withadipocytescouldpromotecancermetastasisbyinducing beige/browndierentiationandreprogrammingthemetabolism insurroundingadipocytes(Wuetal., 2019).Interestingly, Lee etal. (2019) emphasized theeectofcancerstemcells(CSCs) treatedwithexosomesderivedfromosteogenicdierentiating humanASCs.Theresultsshowedthattheexpressionofdrugresistancegenes(ATPbindingcassettetransporter),thebreast cancergenefamily(BCRA1andBCRA2),andtheErbBgene familywereallsignificantlydecreasedinCSCs(Leeetal., 2019).

TheosteoinductiveASCs-exoscouldbeabiochemicalcuefor CSCsreprogrammingintonon-tumorigeniccellsandcontribute toovercomingtherapeuticresistance. Heetal. (2018) noted thatMSC-CMcouldalsosuppressthegrowthofbreastcancer cellsbyinhibitingtheSTAT3signalingpathwayandMSCCMcombinedwithradiotherapysignificantlydelayedxenograft tumorgrowthinmice.

Forpatientswithbreastcancer,breastreconstructionrequires theunificationoftumorsafetyandaesthetics.Fatgrafting usingmammaplastymightcomplicatebreastimagingand breastcancersurveillanceduetothevaryinglevelsofnodule formationandcalcificationsinbreasttissue(Bayrametal., 2019). TheASCsassistedfattransplantationisacommontechnique forCALwhichmakesgreatimprovementsinthesurvival rateoftransplantedfatwithlessfatresorptionandnecrosis forthefavorableaestheticoutcomeofbreastaugmentation. Nevertheless,tumorsafetyinbreastreconstructionisthe primaryconsideration(O’Halloranetal., 2017). Silvaetal. (2019) suggestedthatfattransplantationdidnotpromote tumorproliferationandmetastasisinmousemodelsof residualbreastcancer.Krastevetal.carriedoutalongtermfollow-uptrailof587breastcancerpatientswho underwentautologousfattransplantationandtraditionalbreast reconstruction,respectively.Theresultsshowedthatafter 5yearsthelocalrecurrencerateofbreastcancerhadno significantdierenceinthesetwomethods(Krastevetal., 2019).Similarly, Gentileetal. (2019a) alsoconducteda3-year follow-upof121patientswithbreastcancerwhounderwent

adiposestromalcell-enhancedengineeringfattransplantation, whichalsoshowedsatisfactorysafetyandeectiveness.Thus, theseclinicalstudiesusingASCsreportsafetydatain breastreconstruction.

Tosomeextent,exosomesoriginatefromthetumoradipocytesinteractioninacomplexmetabolicnetworkfavoring malignantprogression.However,atthisstage,therearelimited studiesonASC-exosusedforbreastreconstruction.Inclinical trialsandbasicexperiments,itisworthnotingthattheroleof ASC-exosinbreastreconstructionafterbreastcancersurgery isnotentirelyclear.Toavoidthetumorigenicpotentialrisk, themechanismsofASCsandASCs-exosinbreastcancer andbreastconstructionremaintobecarefullyelucidated. Additionally,itisimportanttoconductrandomizedtrials forilluminatingthesafetyandecacyoftransplantedASCs orASC-exos,incomparisontocommonlyapplyingwith conventionaltechniques.

CONCLUSIONANDPERSPECTIVE

Adipose-derivedstemcellsarestemcellpopulationswithinthe adiposestromalcompartmentthathavemultipledierentiation potentials,easyacquisition,andthehighyield,makingASCs attractivefortissueengineeringandcelltherapyasanideal stemcellsource.ASC-exos,containingimportantparacrine mediators,havereceivedmuchattentionrecentlyforfunctioning inintercellularcommunication.Ascell-to-cellmessengers, ASC-exosarevaluablesupplementwiththeregenerativeand reconstructivestrategies,andisparticularlysuccessfuland safelyappliedtochronicwounds,scars,boneinjuries,and cosmeticsurgery.BothASCsandASC-exospossesshuge applicationpotentialonthetissueregenerativefieldinplasticand cosmeticsurgery.

Intermsofsourceandproduction,ASCsboastthebenefits thatthestemcellyieldfromfatismuchgreaterthanthatobtained fromothersources.ASC-exospossessadvantagesofhugesources andhighavailability,indicatingthatASC-exoscanbean alternativewhenexosomesfromothersourceshavediculties toextractorarenotsuitablefortherapy(Haetal., 2020). ASC-exosandotherMSC-exoshavesimilarcharacteristics, suchasmorphologyandcellsurfacemarkers,butsome importantbiologicaldierenceshavebeenfoundinproliferation, geneexpression,dierentiationability,andimmunosuppressive pathways.ForexosomesfromdierentsourcesofMSCs,they partlycontainsimilarproteins.Interestingly, Villatoroetal. (2019) showedthatcanineASCshadadvantagesofproliferative capacity,whereascanineBMSCsshowedasignificantlyhigher secretoryproductionofsomesolublefactors.Therefore,when selectingthesourceofMSCs,thosebiologicaldierencesshould beconsideredforcellimplantationorthesecretomeisdirectly usedforspecificclinicalapplications.Inaddition,itisobvious thatthoseofMSC-exosvaryaccordingtotheoriginofMSCs. However,comparativestudiesofMSC-exosbytheirtissueorigin arestilllimited,andonlyafewreportshavecompareddierent exosomeswithinthesamestudy.Forexample,comparedwith humanBMSC-exos,ASC-exosexhibitedahigheractivityof

neprilysin,whichwasanamyloid b peptidedegradingenzyme, suggestingthetherapeuticrelevanceofASC-exosinAlzheimer disease(Katsudaetal., 2013).ASCsmightbesaferandmore eectivethanthatfromBMSCs,includinglackofmajor histocompatibilitycomplex(MHC)classIIonASCs,induction ofhigherlevelsofanti-inflammatorymacrophagesandprolymphangiogenicactivity(Maguire, 2019).

Furthermore,comparedwithASCs,ASC-exosoerdistinct advantagesthatuniquelypositionthemashighlyeective bioactiveconstituents.Theproposedseveralmainreasonsare asfollowsbasedonpreviousreports:(1)Biosafety:exosomes, includingASCs-exos,arenaturallyoccurringsecretedmembrane vesiclesfromthereleasingcellswithlowerimmunogenicity, posingthefavorablebiosafetyofASC-exos.(2)Biological activity:althoughwithoutsimilarself-dierentiationfunction asASCs,ASCs-exoscontainabroadrepertoireofcargoes, includingnucleicacid,proteins,andenzymesformodulating multiplecellularactivities,actinginbothimmediateandremote areasinaparacrinemanner.(3)Stability:theASC-exosare comprisedofnaturallybimolecularphospholipidstructure, providingsucientstabilitytoavoidbiodegradation.Thus,ASCexosareverywelltoleratedinbiologicalfluidsalongwiththe ubiquitouspresence.(4)Carrierfeatures:ASCs-exosfunctionas acarrierforitself,alsocanbeusedasacomponentuploadedin well-designedbiomedicalmaterials.Duetotheintrinsichoming capacityorartificiallymodifiedtargetingability,ASC-exoscan serveasstableandeectivecarrierstoloadspecificproteins, lipids,andgeneticmaterial,andpreferentiallytransportitto targetedtissuesororgans.Exosome-baseddeliverysystemsmay beofprecedenceinthetreatmentofdiseasesattributingto theirendogenousorigin,whichminimizestheimmunogenicity andtoxicityandexertstheoptimaleect.Thedevelopment ofmultifunctionalbioactivebiomaterialswithlong-termASCexosomesreleaseisalsoveryimportanttosynergisticallyenhance tissueregenerationandtherapy.Withtheabovedesirable properties,ASC-exosholdclinicallypromisingpotentialinthe novelcell-freetherapeuticstrategies.Therefore,asmentioned inthisreview,ASC-exosareexpectantlyrecognizedasnew candidatesfortheskinanti-agingtherapy,skininflammation treatment,woundandscarrepair,flapgrafting,bonetissuerepair, obesityprevention,fattransplantation,breastcancer,andbreast reconstruction(Table2).Collectively,thesefindingsreinforce thesignificanceofASC-exos-participatedcellcommunication andapplicationsinplasticandcosmeticsurgery.Thoughlacking adequateapplicationinclinicalpractice,ASC-exosareplayingan increasinglygreaterroleespeciallyinmaximizingthetherapeutic eectofdermopathicfeaturesandtissuereconstruction.

Nevertheless,therearestillsomechallengesinthe developmentofASC-exosapplication.Firstly,obtaining ASCscontinuestobeaninconvenience.ThesourcesofASCs, aswellastheseparationandcultivationmethods,medium compositionanddosage,cellpassage,cellfusionandviability, mycoplasma,andothermicrobialcontamination,allshould betightlycontrolledtomaintainreliablebiologicalecacy andASC-exoswithhighquality.Secondly,theextractedASCexosmighthavelowpurityandyieldinthelab.Nowadays ASC-exosseparationmethodsincludeultracentrifugation,

TABLE2| ThemechanismsandfunctionsofASC-exosintissueregeneration.

DiseaseSourceModelFunctionMechanismReferences

SkinagingHuman

ASC-CM

Human ASC-CM

Human BMSC-exos

Atopic dermatitis

PhotoaginginducedHDFsand HaCaTs

Photoaginginduced HDFs

PhotoaginginducedHDFsand mice

HumanASC-exosADmodelof NC/NGAmice

HumanASC-exosADmodelof SKH-1mice

SkinwoundHumanASC-exosSkinlesionmodel ofHaCaTs

HumanASC-exosSkinlesionmodel ofHaCaTsand HDFs

HumanASC-exosfull-thicknessskin woundofmice

HumanASC-exosDiabeticfootulcer ofrat

HumanASC-exosFulllayerskin woundofmice

ASC-exosSkinwoundof diabeticmice

ScarformationHumanASC-exosSkinwoundof mice

HumanASC-exosSkinwoundof mice

SkinflapinjuryHumanASC-exosArtificialdermis prefabricatedflap andlegwoundof rat

SkinflapI/R injury

HumanASC-exosSkinflapI/Rinjury ofmice

HumanASC-exosSkinflapI/Rinjury ofmice

BonedefectHumanASC-exosHypoxic-ischemic osteocyte

HumanASC-exosCalvarialdefectsof rats

HumanASC-exosHumanprimary osteoblasticcells

OsteoarthritisHumanASC-exosOAmodelof osteoblasts

HumanASC-exosChondrocytes stimulatedwith H2 O2

Photoaging prevention

Photoaging prevention

Photoaging prevention

Dermatitis improvement

EpidermalBarrier Repair

HaCaTsviability enhancement

HaCaTsandHDFs viability enhancement

DownregulatetheactivationandtranscriptionofUVB-induced signalingpathwaysandupregulatetheexpressionof antioxidantresponseelements

PDGF-AAinASC-CMpromotedHDFsproliferationand activatedPI3K/AktsignalpathwaytofacilitateECMdeposition andremodeling

ProduceROSatalowlevel,downregulateTNF-a,upregulate TGF-b toincreaseMMP-1andprocollagentypeIexpressionfor collagensynthesis

Decreasethelevelsofinflammatorycytokinesandreducethe numberofeosinophilsintheblood,andtheinfiltrationofmast cells,dendriticepidermalcells

Reducetrans-epidermalwaterlossandenhanceepidermal lamellarbodiesandformlamellarlayerattheinterfaceoftheSC andstratumgranulosum.

FosterHaCaTsproliferation,migration,andinhibitapoptosis throughWnt/b-cateninsignalingpathway

ASC-exoscontainingMALAT1couldmediateH2O2-induced woundhealingviatargetingmiR-124throughactivatingthe Wnt/b-cateninpathway

WoundhealingPromotefibroblastsproliferationandmigrationandoptimize collagendepositionviathePI3K/Aktsignalingpathwayto acceleratewoundhealing.

WoundhealingASC-exosoverexpressing-Nrf2promotedtheproliferationand angiogenesisofendothelialcells,andincreasedtheexpression ofwoundgrowthfactor,decreasedthelevelsofinflammation andoxidativestress-relatedproteins.

WoundhealingASC-exosoverexpressingmiRNA-21enhancedthemigration andproliferationoftheHaCaTsbyincreasingtheMMP-9 expressionthroughthePI3K/AKTpathway

Woundhealingmmu_circ_0000250enhancedthetherapeuticeffectof ASCs-exosomestopromotewoundhealingindiabetesby absorptionofmiR-128-3pandupregulationofSIRT1

ScarremovalInhibitcollagenexpressiontoreducescarformationinthelate stageofwoundhealing

ScarremovalRegulatetheratiosoftypeIIIcollagen/typeIcollagen, TGF-b3/TGF-b1,andMMP-3/TIMP-1,aswellasfacilitating HDFsdifferentiation

FlapvascularizationUpregulationofmiRNA-760anddownregulationof miRNA-423-3pinASC-exoscouldregulatetheexpressionof ITGA5andHDAC5genes,respectively,topromotethe vascularizationoftheskinflap

FlaprepairIL-6highlycontainedinASC-exoscouldenhanceskinflap recoveryandangiogenesisafterI/Rinjury

FlaprepairH2 O2 -treatedASC-exosincreasedtheneovascularizationand relievetheinflammationandapoptosisoftheflapafterI/Rinjury

OsteogenesisAmeliorateosteocyteapoptosisandosteocyte-mediated osteoclastogenesisbyloweringtheexpressionofRANKL

BoneformationASC-exosoverexpressingmiRNA-375wereabsorbedby hBMSCs,andinhibittheexpressionofIGFBP3toexert osteogeniceffects

BoneformationTNF-a-preconditionedASC-exospromotedtheproliferation anddifferentiationofhumanosteoblaststhroughtheWnt signalingpathway

Inflammation improvement

Lietal., 2019

2020

Huetal., 2019

Choetal., 2018

Shinetal., 2020

Maetal., 2019

2020

2018

LiX.etal., 2018

Shietal., 2020

2016

2020

Puetal., 2017

Baietal., 2018

Renetal., 2019

ChenS.etal., 2019

Luetal., 2017

DownregulateSA-b-galactivityandtheaccumulationof gH2AX Tofiño-Vianetal., 2017

ChondrogenesisDownregulatedthepro-inflammatorymarkersIL-6,NF-kBand TNF-a,whiletheyupregulatedtheanti-inflammatorycytokine IL-10whenco-culturedwithactivatedsynovialfibroblasts, promotedchondrogenesisinperiostealcellsandincreased collagentypeIIand b-catenin

Zhaoetal., 2020

(Continued)

Guoetal.,
Heetal.,
Zhangetal.,
Yangetal., 2020
Huetal.,
Wangetal., 2017
Xiongetal.,

TABLE2| Continued

DiseaseSourceModelFunctionMechanismReferences

ObesityMouseASC-exosObesemiceObesitypreventionActivateM2-typemacrophagepolarization,improve inflammation,andpromotethebrowningofwhiteadipose tissue

FatgraftingHumanASC-exosMiceFatgrafts survivalpromotion

Mouse ASC-exos MiceFatgrafts survivalpromotion

BreastcancerHumanASC-exosBreastcancer MCF-7cells

Hypoxia-treatedASC-exosenhancedtheangiogenesisby regulatingtheVEGF/VEGF-Rsignalingpathway

Promoteangiogenesisandup-regulateearlyinflammation,exert proadipogeniceffectandincreasecollagensynthesisduringthe midtolatestages

TumorprogressionActivatetheWntandHhsignalingpathwaystostrengthenthe growthofMCF-7cells

Zhaoetal., 2018

Hanetal., 2019

ChenS.etal., 2019

Linetal., 2013

ASCs,Adipose-derivedstemcells;ASC-exos,ASC-derivedexosomes;HDFs,HumanDermalFibroblasts;HaCaTs,HumanKeratinocytes;UVB,UltravioletB;ASC-CM, ASC-ConditionedMedium;ECM,ExtracellularMatrix;H2 O2 ,HydrogenPeroxide;PDGF-AA,Platelet-DerivedGrowthFactor-AA;ROS,ReactiveOxygenSpecies;MMP1/9,MatrixMetalloproteinase1/9;TNF-a,TumorNecrosisFactorAlpha;TGF-b,TransformingGrowthFactorBeta;IL-4/5/6/13,Interleukin4/5/6/13;VEGF,Vascular EndothelialGrowthFactor;Nrf2,NF-E2-relatedfactor2;TIMP-1,TissueInhibitorofMetalloproteinases-1;I/R,Ischemia-Reperfusion;RANKL,ReceptorActivatorof NuclearFactorKappaBLigand;SA-b-gal,Senescence-Associated b-galactosidase; gH2AX,PhosphorylatedHistoneH2AX;Bcl-2,B-celllymphoma/leukemia2;Bax, Bcl-2-associatedXprotein.

exclusion,ultrafiltration,two-aqueoussystem,immunoanity, andpolymerprecipitation.Althoughtheultracentrifugation isthemostcommonmethodforlargelyseparatingexosome, butaccompaniedbytheshortcomingsoftime-consuming, labor-intensive,costlyinstrumentation,andmultipleovernight centrifugationsteps.Asitisoverlyidealistictocompletelyisolate ASC-exosfromothercomponents,theecient,appropriate,and aordabletechniquesshouldbethoughtfultoacquireexosomes. Thesetechnologiesstillneedtoachieveequilibriuminimproving theyieldandpurityofASC-exos.

Thirdly,giventhatplasticsurgeryfrequentlyperforms liposuctionandautologousfattransplantation,plasticsurgeons andresearchershaveuniqueadvantagesinobtainingASCsand ASCs-exos.However,intheapplicationofASC-exosintissue regenerationofplasticandcosmeticsurgery,therearemany aspectsworthnoting.EmergingstudieshavereportedthatASCexoscanbeutilizedinplasticandcosmeticsurgery,butalmost allthesestudiesarelimitedincellularandanimalassays,without thelargescaleexplorationofclinicaltrialslikeASCs.Inaddition, exosomescouldbeabsorbedonhumanskin,butevenifinthe existingstudies,thereisstilllackofenoughreportsinskinaging, atopicdermatitisandskinflapsinjury,whichareimportantand intractableskindisease.Therefore,theactualclinicalprospects ofASC-exosarealmostablank,alsomeaningthatthereexist vastspacefordevelopment.Anotherimportantpointisthat auxiliarytherapyofASC-exos.Clinically,forplasticandcosmetic surgery-relateddiseases,lasertherapy,drugtherapy,tissuefilling andsurgicaloperationarecommontreatmentsandachievegood clinicaleects.Nevertheless,toacertainextent,ASC-exoscan onlybeusedasasupplementarytreatment,ratherthanasole therapyinthebeginning.Mostoftheexistingstudiesfocus onASC-exosasthemainorsoletreatment.Hence,whether ASC-exospossesssynergisticeectsorinhibitoryeectsonthe above-mentionedcommontreatmentsneedsfurtherresearch.

AccordingtotheaboveconsiderableinsightsintotheASCexosapplicationsandlimitations,itneedstocarryoutmore comprehensiveresearchesinthefollowingaspects.(1)Quality control.Thereexistsasubstantialdegreeofheterogeneityin

dosingregimensinthereportedcases.Forbetteroutcomes ofplasticandcosmeticsurgery,ASC-exosutilizationdetails, includingthestorageconditions,eectivedoses,concentration, andperiodoftreatment,arealltheimportantpoints.It isnecessarytofurtherexploresuitablemicroenvironmental conditionsorgeneticengineeringtechniquestoascertainthe eciencyofASC-exostreatment.(2)Componentsandfunctions. TheASC-exosarecomprisedofmultiplebioactivecomponents. Thecomplexmulti-componentsubstancesinASC-exosmay producediversebiologicalcharacteristicswhenfinallyusedin practice.ThepropensityforsomecontroversialeectsofASCexosiscontingentuponthetypeandstateofthehostcells, thetypeandstateoftherecipientcells,andtheinteracting microenvironments.ForpossiblyutilizingASC-exosinclinical application,adeepunderstandingofASC-exosandtheir componentsisthepriority.Identifyingthekeycomponentsand reformingASC-exostooverexpressthesecomponentsmight maximizethetherapeuticeectwhilereducingthesideor o-targeteects.Inthesubsequentstudies,ongoingadvances intheanalysisofthefunctionofASC-exoswillprobably unraveltheASC-exoscharacteristics,allowingdeepeningthe understandingoftheirroleinpathogenesisandregeneration properties.(3)Carrierpeculiarityexploration.ASC-exosisof carrierpeculiarityduetotheintricatestructureofexosomes.It meansthatexosomesaretheidealtherapeuticdeliverysystem. ASC-exosareeectivetoolsforcargotransportationofeective therapeuticagentswithlowerimmunogenicityandtoxicity. Ontheotherhand,ASC-exoscouldalsobeuploadedinthe specificnanomaterialsorhydrogelmaterialstopromoteskin repair.EngineeringASC-exostobeeectiveandsaferequires acomprehensiveunderstandingoftheirnecessarycomponents, includingbutnotlimitedtomembranestability,architecture, andpackagingoftheinteriorcomponents.(4)Largeclinical trials.Atpresent,excavationsonASC-exosstudiesbelongto basicresearchoranimallevel.Theseexperimentscannotclearly andactuallyreflecttheASC-exosusagesandtheirphysiological levels invivo.Infattransplantation,itisofgreatvalueto clinicallyexplorewhethertheexogenousASC-exoscouldbeused

forcelltransplantationwithsafetyandeectiveness.Especially, clinicalimplementationofanyoperationmustbebasedon safety.However,therolesofASC-exosinsomediseases remaincontroversial.TheoncologicalsafetyofASC-exosin breastcancerandbreastreconstructionisworthyofextreme attention.Moreover,theASC-exosimpactsonthecommon treatmentofplasticandcosmeticsurgeryareurgentclinical problems.Intheend,largerprospective,blinded,randomized clinicaltrialsareinurgentneedtofurtherestablishthelongtermeectiveness,safetyanddoseofASC-exosinhumans. Collectively,ASC-exosarepromisingcandidatesforcell-free therapystrategyanddeserveintenseinvestigationtoaccelerate ASC-exosapplicationsintissueregenerationofplasticand cosmeticsurgery.

REFERENCES

Alves,N.O.,daSilva,G.T.,Weber,D.M.,Luchese,C.,Wilhelm,E.A.,andFajardo, A.R.(2016).Chitosan/poly(vinylalcohol)/bovinebonepowderbiocomposites: apotentialbiomaterialforthetreatmentofatopicdermatitis-likeskinlesions. Carbohydr.Polym. 148,115–124. doi:10.1016/j.carbpol.2016.04.049 Bai,Y.,Han,Y.,Yan,X.,Ren,J.,Zeng,Q.,Li,X.,etal.(2018).Adiposemesenchymal stemcell-derivedexosomesstimulatedbyhydrogenperoxideenhancedskin flaprecoveryinischemia-reperfusioninjury. Biochem.Biophys.Res.Commun. 500,310–317. doi:10.1016/j.bbrc.2018.04.065

Bajek,A.,Gurtowska,N.,Olkowska,J.,Kazmierski,L.,Maj,M.,andDrewa, T.(2016).Adipose-derivedstemcellsasatoolincell-basedtherapies. Arch. Immunol.Ther.Exp. 64,443–454. doi:10.1007/s00005-016-0394-x Bayram,Y.,Sezgic,M.,Karakol,P.,Bozkurt,M.,andFilinte,G.T.(2019).Theuse ofautologousfatgraftsinbreastsurgery:aliteraturereview. Arch.Plast.Surg. 46,498–510. doi:10.5999/aps.2019.00416

Bellei,B.,Migliano,E.,Tedesco,M.,Caputo,S.,Papaccio,F.,Lopez,G.,etal. (2018).Adiposetissue-derivedextracellularfractioncharacterization:biological andclinicalconsiderationsinregenerativemedicine. StemCellRes.Ther. 9:207. doi:10.1186/s13287-018-0956-4

Bi,H.,Li,H.,Zhang,C.,Mao,Y.,Nie,F.,Xing,Y.,etal.(2019).Stromalvascular fractionpromotesmigrationoffibroblastsandangiogenesisthroughregulation ofextracellularmatrixintheskinwoundhealingprocess. StemCellRes.Ther. 10,1–21. doi:10.1186/s13287-019-1415-6

Borciani,G.,Montalbano,G.,Baldini,N.,Cerqueni,G.,Vitale-Brovarone,C., andCiapetti,G.(2020).Co-culturesystemsofosteoblastsandosteoclasts: simulatinginvitroboneremodelinginregenerativeapproaches. ActaBiomater. 108,22–45. doi:10.1016/j.actbio.2020.03.043

Bukowska,J.,AlarconUquillas,A.,Wu,X.,Frazier,T.,Walendzik,K.,Vanek,M., etal.(2020).Safetyofhumanadiposestromalvascularfractioncellsisolated withaclosedsystemdeviceinanimmunocompetentmurinepressureulcer model. StemCellsDev. 29,452–461. doi:10.1089/scd.2019.0245

Chang,Y.W.,Wu,Y.C.,Huang,S.H.,Wang,H.M.D.,Kuo,Y.R.,andLee, S.S.(2018).Autologousandnotallogeneicadipose-derivedstemcellsimprove acuteburnwoundhealing. PLoSOne 13:e0197744. doi:10.1371/journal.pone. 0197744

Chen,B.,Cai,J.,Wei,Y.,Jiang,Z.,Desjardins,H.E.,Adams,A.E.,etal.(2019). Exosomesarecomparabletosourceadiposestemcellsinfatgraftretentionwith up-regulatingearlyinflammationandangiogenesis. Plast.Reconstr.Surg. 144, 816e–827e. doi:10.1097/PRS.0000000000006175

Chen,S.,Tang,Y.,Liu,Y.,Zhang,P.,Lv,L.,Zhang,X.,etal.(2019).Exosomes derivedfrommiR-375-overexpressinghumanadiposemesenchymalstemcells promoteboneregeneration. CellProlif. 52:e12669. doi:10.1111/cpr.12669

Cho,B.S.,Kim,J.O.,Ha,D.H.,andYi,Y.W.(2018).Exosomesderived fromhumanadiposetissue-derivedmesenchymalstemcellsalleviateatopic dermatitis. StemCellRes.Ther. 9:187. doi:10.1186/s13287-018-0939-5

Cho,J.A.,Park,H.,Lim,E.H.,andLee,K.W.(2012).Exosomesfrombreast cancercellscanconvertadiposetissue-derivedmesenchymalstemcellsinto myofibroblast-likecells. Int.J.Oncol. 40,130–138. doi:10.3892/ijo.2011.1193

AUTHORCONTRIBUTIONS

MX andQZperformedtheliteraturesearchandwrotethe manuscript.MWandYWconceivedtheprojectandrevisedthe manuscript.WH,CZ,WL,andYYeditedthemanuscript.All authorsreviewedthemanuscriptandapprovedthefinalversion.

ACKNOWLEDGMENTS

Thissectionacknowledgescontributionsfromthe ChinaGuangHuaScienceandTechnologyFoundation (No.2019JZXM001).

Choi,J.,Cha,Y.J.,andKoo,J.S.(2018).Adipocytebiologyinbreastcancer:from silentbystandertoactivefacilitator. Prog.LipidRes. 69,11–20. doi:10.1016/j. plipres.2017.11.002

DeLope,L.R.,Alcíbar,O.L.,López,A.A.,Hergueta-Redondo,M.,andPeinado, H.(2018).Tumour–adiposetissuecrosstalk:fuellingtumourmetastasisby extracellularvesicles. Philos.Trans.R.Soc.BBiol.Sci. 373:20160485. doi:10. 1098/rstb.2016.0485

Ecker,B.L.,Lee,J.Y.,Sterner,C.J.,Solomon,A.C.,Pant,D.K.,Shen,F.,etal. (2019).Impactofobesityonbreastcancerrecurrenceandminimalresidual disease. BreastCancerRes. 21:41. doi:10.1186/s13058-018-1087-7

Eming,S.A.,Martin,P.,andTomic-Canic,M.(2014).Woundrepairand regeneration:mechanisms,signaling,andtranslation. Sci.Transl.Med. 6:265sr6. doi:10.1126/scitranslmed.3009337

Figueroa,F.E.,CuencaMoreno,J.,andLaCava,A.(2014).Novelapproachesto lupusdrugdiscoveryusingstemcelltherapy.Roleofmesenchymal-stem-cellsecretedfactors. ExpertOpin.DrugDiscov. 9,555–566. doi:10.1517/17460441. 2014.897692

Fujiwara,O.,Prasai,A.,Perez-Bello,D.,ElAyadi,A.,Petrov,I.Y.,Esenaliev, R.O.,etal.(2020).Adipose-derivedstemcellsimprovegraftedburnwound healingbypromotingwoundbedbloodflow. Burn.Trauma 8,635–642. doi: 10.1093/burnst/tkaa009

Gentile,P.,Casella,D.,Palma,E.,andCalabrese,C.(2019a).Engineered fatgraftenhancedwithadipose-derivedstromalvascularfractioncellsfor regenerativemedicine:clinical,histologicalandinstrumentalevaluationin breastreconstruction. J.Clin.Med. 8:504. doi:10.3390/jcm8040504

Gentile,P.,Piccinno,M.,andCalabrese,C.(2019b).Characteristicsand potentialityofhumanadipose-derivedstemcells(hASCs)obtained fromenzymaticdigestionoffatgraft. Cells 8:282. doi:10.3390/cells80 30282

Goto,H.,Shimono,Y.,Funakoshi,Y.,Imamura,Y.,Toyoda,M.,Kiyota,N.,etal. (2019).Adipose-derivedstemcellsenhancehumanbreastcancergrowthand cancerstemcell-likepropertiesthroughadipsin. Oncogene 38,767–779. doi: 10.1038/s41388-018-0477-8

Guo,S.,Wang,T.,Zhang,S.,Chen,P.,Cao,Z.,Lian,W.,etal.(2020). Adipose-derivedstemcell-conditionedmediumprotectsfibroblastsatdierent senescentdegreesfromUVBirradiationdamages. Mol.Cell.Biochem. 463, 67–78. doi:10.1007/s11010-019-03630-8

Ha,D.H.,Kim,H.-K.,Lee,J.,Kwon,H.H.,Park,G.-H.,Yang,S.H.,etal.(2020). Mesenchymalstem/stromalcell-derivedexosomesforimmunomodulatory therapeuticsandskinregeneration. Cells 9:1157. doi:10.3390/cells9051157

Han,Y.,Ren,J.,Bai,Y.,Pei,X.,andHan,Y.(2019).Internationaljournalof biochemistryandcellbiologyexosomesfromhypoxia-treatedhumanadiposederivedmesenchymalstemcellsenhanceangiogenesisthroughVEGF/VEGFR. Int.J.Biochem.CellBiol. 109,59–68. doi:10.1016/j.biocel.2019.01.017

Han,Y.D.,Bai,Y.,Yan,X.L.,Ren,J.,Zeng,Q.,Li,X.D.,etal.(2018).Cotransplantationofexosomesderivedfromhypoxia-preconditionedadipose mesenchymalstemcellspromotesneovascularizationandgraftsurvivalinfat grafting. Biochem.Biophys.Res.Commun. 497,305–312. doi:10.1016/j.bbrc. 2018.02.076

He,L.,Zhu,C.,Jia,J.,Hao,X.Y.,Yu,X.Y.,Liu,X.Y.,etal.(2020).ADSC-Exos containingMALAT1promoteswoundhealingbytargetingmiR-124through activatingWnt/b-cateninpathway. Biosci.Rep. 40:BSR20192549. doi:10.1042/ BSR20192549

He,N.,Kong,Y.,Lei,X.,Liu,Y.,Wang,J.,Xu,C.,etal.(2018).MSCsinhibit tumorprogressionandenhanceradiosensitivityofbreastcancercellsbydownregulatingStat3signalingpathway. CellDeathDis. 9:1026. doi:10.1038/s41419018-0949-3

Henrotin,Y.,Pesesse,L.,andSanchez,C.(2012).Subchondralboneand osteoarthritis:biologicalandcellularaspects. Osteoporos.Int. 23,847–851. doi: 10.1007/s00198-012-2162-z

Hong,P.,Yang,H.,Wu,Y.,Li,K.,andTang,Z.(2019).Thefunctionsandclinical applicationpotentialofexosomesderivedfromadiposemesenchymalstem cells:acomprehensivereview. StemCellRes.Ther. 10:242. doi:10.1186/s13287019-1358-y

Hong,Z.,Chen,J.,Zhang,S.,Zhao,C.,Bi,M.,Chen,X.,etal.(2019).Intraarticularinjectionofautologousadipose-derivedstromalvascularfractionsfor kneeosteoarthritis:adouble-blindrandomizedself-controlledtrial. Int.Orthop. 43,1123–1134. doi:10.1007/s00264-018-4099-0

Hu,L.,Wang,J.,Zhou,X.,Xiong,Z.,Zhao,J.,Yu,R.,etal.(2016).Exosomes derivedfromhumanadiposemensenchymalstemcellsacceleratescutaneous woundhealingviaoptimizingthecharacteristicsoffibroblasts. Sci.Rep. 6:32993. doi:10.1038/srep32993

Hu,S.,Li,Z.,Cores,J.,Huang,K.,Su,T.,Dinh,P.-U.,etal.(2019).Needlefreeinjectionofexosomesderivedfromhumandermalfibroblastspheroids amelioratesskinphotoaging. ACSNano 13,11273–11282. doi:10.1021/acsnano. 9b04384

Huang,J.-Y.,Wang,Y.-Y.,Lo,S.,Tseng,L.-M.,Chen,D.-R.,Wu,Y.-C., etal.(2019).Visfatinmediatesmalignantbehaviorsthroughadipose-derived stemcellsintermediaryinbreastcancer. Cancers 12:29. doi:10.3390/ cancers12010029

Kalluri,R.,andLeBleu,V.S.(2020).Thebiology,function,andbiomedical applicationsofexosomes. Science 367:eaau6977. doi:10.1126/science.aau6977

Katsuda,T.,Tsuchiya,R.,Kosaka,N.,Yoshioka,Y.,Takagaki,K.,Oki, K.,etal.(2013).Humanadiposetissue-derivedmesenchymalstemcells secretefunctionalneprilysin-boundexosomes. Sci.Rep. 3:1197. doi:10.1038/ srep01197

Kim,H.,andLee,B.K.(2020).Anti-inflammatoryeectofadipose-derivedstromal vascularfractiononosteoarthritictemporomandibularjointsynoviocytes. TissueEng.Regen.Med. 17,351–362. doi:10.1007/s13770-020-00268-2

Kim,K.,Fan,Y.,Lin,G.,Park,Y.K.,Pak,C.S.,Jeong,J.H.,etal.(2019).synergistic eectofadipose-derivedstemcellsandfatgraftonwrinklesinagedmice. Plast. Reconstr.Surg. 143,1637–1646. doi:10.1097/PRS.0000000000005625

Kim,W.-S.,Park,B.-S.,Kim,H.-K.,Park,J.-S.,Kim,K.-J.,Choi,J.-S.,etal. (2008).Evidencesupportingantioxidantactionofadipose-derivedstemcells: protectionofhumandermalfibroblastsfromoxidativestress. J.Dermatol.Sci. 49,133–142. doi:10.1016/j.jdermsci.2007.08.004

Kølle,S.T.,Duscher,D.,Taudorf,M.,Fischer-Nielsen,A.,Svalgaard,J.D.,MuntheFog,L.,etal.(2020).Exvivo-expandedautologousadiposetissue-derived stromalcellsensureenhancedfatgraftretentioninbreastaugmentation:a randomizedcontrolledclinicaltrial. StemCellsTransl.Med. [Epubaheadof print] doi:10.1002/sctm.20-0081

Krastev,T.,VanTurnhout,A.,Vriens,E.,Smits,L.,andVanDerHulst,R. (2019).Long-termfollow-upofautologousfattransfervsconventionalbreast reconstructionandassociationwithcancerrelapseinpatientswithbreast cancer. JamaSurg. 154,56–63. doi:10.1001/jamasurg.2018.3744

Lee,H.R.,Kim,T.H.,Oh,S.H.,andLee,J.H.(2018).Prednisolone-loadedcoatable polyvinylalcohol/alginatehydrogelforthetreatmentofatopicdermatitis. J.Biomater.Sci.Polym.Ed. 29,1612–1624. doi:10.1080/09205063.2018. 1477317

Lee,K.S.,Choi,J.S.,andCho,Y.W.(2019).Reprogrammingofcancerstem cellsintonon-tumorigeniccellsusingstemcellexosomesforcancertherapy. Biochem.Biophys.Res.Commun. 512,511–516. doi:10.1016/j.bbrc.2019.03.072

Li,L.,Ngo,H.T.T.,Hwang,E.,Wei,X.,Liu,Y.,Liu,J.,etal.(2019).Conditioned mediumfromhumanadipose-derivedmesenchymalstemcellcultureprevents UVB-inducedskinaginginhumankeratinocytesanddermalfibroblasts. Int.J. Mol.Sci. 21:49. doi:10.3390/ijms21010049

Li,W.,Liu,Y.,Zhang,P.,Tang,Y.,Zhou,M.,Jiang,W.,etal.(2018).Tissueengineeredboneimmobilizedwithhumanadiposestemcells-derivedexosomes promotesboneregeneration. ACSAppl.Mater.Interfaces 10,5240–5254. doi: 10.1021/acsami.7b17620

Li,X.,Xie,X.,Lian,W.,Shi,R.,Han,S.,Zhang,H.,etal.(2018).Exosomesfrom adipose-derivedstemcellsoverexpressingNrf2acceleratecutaneouswound healingbypromotingvascularizationinadiabeticfootulcerratmodel. Exp. Mol.Med. 50:29. doi:10.1038/s12276-018-0058-5

Lin,R.,Wang,S.,andZhao,R.C.(2013).Exosomesfromhumanadipose-derived mesenchymalstemcellspromotemigrationthroughWntsignalingpathwayin abreastcancercellmodel. Mol.Cell.Biochem. 383,13–20. doi:10.1007/s11010013-1746-z

Liu,K.,Chen,C.,Zhang,H.,Chen,Y.,andZhou,S.(2019).Adiposestem cell-derivedexosomesincombinationwithhyaluronicacidacceleratewound healingthroughenhancingre-epithelializationandvascularization. Br.J. Dermatol. 181,854–856. doi:10.1111/bjd.17984

Liu,S.,Jiang,L.,Li,H.,Shi,H.,Luo,H.,Zhang,Y.,etal.(2014).Mesenchymal stemcellspreventhypertrophicscarformationviainflammatoryregulation whenundergoingapoptosis. J.Invest.Dermatol. 134,2648–2657. doi:10.1038/ jid.2014.169

Liu,X.,Yang,Y.,Li,Y.,Niu,X.,Zhao,B.,Wang,Y.,etal.(2017).Integrationof stemcell-derivedexosomeswithinsituhydrogelglueasapromisingtissue patchforarticularcartilageregeneration. Nanoscale 9,4430–4438. doi:10.1039/ C7NR00352H

Lou,G.,Chen,Z.,Zheng,M.,andLiu,Y.(2017).Mesenchymalstemcell-derived exosomesasanewtherapeuticstrategyforliverdiseases. Exp.Mol.Med. 49:e346. doi:10.1038/emm.2017.63

Lu,Z.,Chen,Y.,Dunstan,C.,Roohani-Esfahani,S.,andZreiqat,H.(2017). Primingadiposestemcellswithtumornecrosisfactor-alphapreconditioning potentiatestheirexosomeecacyforboneregeneration. TissueEng.PartA 23, 1212–1220. doi:10.1089/ten.tea.2016.0548

Ma,T.,Fu,B.,Yang,X.,Xiao,Y.,andPan,M.(2019).Adiposemesenchymal stemcell-derivedexosomespromotecellproliferation,migration,andinhibit cellapoptosisviaWnt/b-cateninsignalingincutaneouswoundhealing. J.Cell. Biochem. 120,10847–10854. doi:10.1002/jcb.28376

Maguire,G.(2019).Thesafeandecacioususeofsecretomefromfibroblastsand adiposederived(butnotBoneMarrowderived)mesenchymalstemcellsforskin therapeutics. J.Clin.Aesthet.Dermatol. 12,E57–E69.

Mautner,K.,Bowers,R.,Easley,K.,Fausel,Z.,andRobinson,R.(2019).Functional outcomesfollowingmicrofragmentedadiposetissueversusbonemarrow aspirateconcentrateinjectionsforsymptomatickneeosteoarthritis. StemCells Transl.Med. 8,1149–1156. doi:10.1002/sctm.18-0285

Mazini,L.,Rochette,L.,Amine,M.,andMalka,G.(2019).Regenerativecapacityof adiposederivedstemcells(ADSCs),comparisonwithmesenchymalstemcells (MSCs). Int.J.Mol.Sci. 20:2523. doi:10.3390/ijms20102523

Mehryab,F.,Rabbani,S.,Shahhosseini,S.,Shekari,F.,Fatahi,Y.,Baharvand,H., etal.(2020).Exosomesasanext-generationdrugdeliverysystem:anupdateon drugloadingapproaches,characterization,andclinicalapplicationchallenges. ActaBiomater. 113,42–62. doi:10.1016/j.actbio.2020.06.036

Naderi,N.,Combellack,E.J.,Grin,M.,Sedaghati,T.,Javed,M.,Findlay,M.W., etal.(2017).Theregenerativeroleofadipose-derivedstemcells(ADSC)in plasticandreconstructivesurgery. Int.WoundJ. 14,112–124. doi:10.1111/iwj. 12569

O’Halloran,N.,Courtney,D.,Kerin,M.J.,andLowery,A.J.(2017).Adiposederivedstemcellsinnovelapproachestobreastreconstruction:theirsuitability fortissueengineeringandoncologicalsafety. BreastCancerBasicClin.Res. 11:117822341772677. doi:10.1177/1178223417726777

O’Halloran,N.,Potter,S.,Kerin,M.,andLowery,A.(2018).Recentadvancesand futuredirectionsinpostmastectomybreastreconstruction. Clin.BreastCancer 18,e571–e585. doi:10.1016/j.clbc.2018.02.004

Paduano,F.,Marrelli,M.,Amantea,M.,Rengo,C.,Rengo,S.,Goldberg,M., etal.(2017).Adiposetissueasastrategicsourceofmesenchymalstemcellsin boneregeneration:atopicalreviewonthemostpromisingcraniomaxillofacial applications. Int.J.Mol.Sci. 18:2140. doi:10.3390/ijms18102140

Paolella,F.,Manferdini,C.,Gabusi,E.,Gambari,L.,Filardo,G.,Kon,E.,etal. (2019).Eectofmicrofragmentedadiposetissueonosteoarthriticsynovial macrophagefactors. J.Cell.Physiol. 234,5044–5055. doi:10.1002/jcp.27307

Park,A.,Park,H.,Yoon,J.,Kang,D.,Kang,M.-H.,Park,Y.-Y.,etal.(2019). PrimingwithToll-likereceptor3agonistorinterferon-gammaenhancesthe therapeuticeectsofhumanmesenchymalstemcellsinamurinemodelof atopicdermatitis. StemCellRes.Ther. 10:66. doi:10.1186/s13287-019-1164-6

Perez-Hernandez,J.,Redon,J.,andCortes,R.(2017).Extracellularvesiclesas therapeuticagentsinsystemiclupuserythematosus. Int.J.Mol.Sci. 18:717. doi:10.3390/ijms18040717

Pers,Y.M.,Quentin,J.,Feirreira,R.,Espinoza,F.,Abdellaoui,N.,Erkilic,N.,etal. (2018).Injectionofadipose-derivedstromalcellsinthekneeofpatientswith severeosteoarthritishasasystemiceectandpromotesananti-inflammatory phenotypeofcirculatingimmunecells. Theranostics 8,5519–5528. doi:10.7150/ thno.27674

Pers,Y.M.,Ruiz,M.,Noël,D.,andJorgensen,C.(2015).Mesenchymalstem cellsforthemanagementofinflammationinosteoarthritis:stateoftheartand perspectives. Osteoarthr.Cartil. 23,2027–2035. doi:10.1016/j.joca.2015.07.004 Pu,C.,Liu,C.,Liang,C.,Yen,Y.,Chen,S.-H.,Jiang-Shieh,Y.-F.,etal.(2017). Adipose-derivedstemcellsprotectskinflapsagainstischemia/reperfusion injuryviaIL-6expression. J.Invest.Dermatol. 137,1353–1362. doi:10.1016/j. jid.2016.12.030

Qiu,H.,Liu,S.,Wu,K.,Zhao,R.,Cao,L.,andWang,H.(2020).Prospective applicationofexosomesderivedfromadipose-derivedstemcellsinskinwound healing:areview. J.Cosmet.Dermatol. 19,574–581. doi:10.1111/jocd.13215

Ragni,E.,PeruccaOrfei,C.,DeLuca,P.,Lugano,G.,Viganò,M.,Colombini, A.,etal.(2019).InteractionwithhyaluronanmatrixandmiRNAcargo ascontributorsforinvitropotentialofmesenchymalstemcell-derived extracellularvesiclesinamodelofhumanosteoarthriticsynoviocytes. StemCell Res.Ther. 10,1–17. doi:10.1186/s13287-019-1215-z

Ren,L.,Song,Z.,Cai,Q.,Chen,R.,Zou,Y.,Fu,Q.,etal.(2019).Adipose mesenchymalstemcell-derivedexosomesamelioratehypoxia/serum deprivation-inducedosteocyteapoptosisandosteocyte-mediated osteoclastogenesisinvitro. Biochem.Biophys.Res.Commun. 508,138–144. doi:10.1016/j.bbrc.2018.11.109

Sah,S.K.,Agrahari,G.,Nguyen,C.T.,Kim,Y.-S.,Kang,K.-S.,andKim,T.Y.(2018).Enhancedtherapeuticeectsofhumanmesenchymalstemcells transducedwithsuperoxidedismutase3inamurineatopicdermatitis-likeskin inflammationmodel. Allergy 73,2364–2376. doi:10.1111/all.13594

Sauter,M.A.,Brett,E.,Müller,C.M.,Machens,H.G.,andDuscher,D.(2019). Novelassayanalyzingtropismbetweenadipose-derivedstemcellsandbreast cancercellsrevealsalowoncogenicresponse. BreastCare 14,278–287. doi: 10.1159/000503411

Shi,R.,Jin,Y.,Hu,W.,Lian,W.,Cao,C.,Han,S.,etal.(2020).Exosomesderived frommmu_circ_0000250-modifiedadipose-derivedmesenchymalstemcells promotewoundhealingindiabeticmicebyinducingmiR-128-3p/SIRT1mediatedautophagy. Am.J.Physiol.Physiol. 318,C848–C856. doi:10.1152/ ajpcell.00041.2020

Shin,K.-O.,Ha,D.H.,Kim,J.O.,Crumrine,D.A.,Meyer,J.M.,Wakefield, J.S.,etal.(2020).Exosomesfromhumanadiposetissue-derivedmesenchymal stemcellspromoteepidermalbarrierrepairbyinducingdenovosynthesisof ceramidesinatopicdermatitis. Cells 9:680. doi:10.3390/cells9030680

Shin,T.-H.,Kim,H.-S.,Choi,S.,andKang,K.-S.(2017).Mesenchymalstemcell therapyforinflammatoryskindiseases:clinicalpotentialandmodeofaction. Int.J.Mol.Sci. 18:244. doi:10.3390/ijms18020244

Shukla,L.,Yuan,Y.,Shayan,R.,Greening,D.W.,andKarnezis,T.(2020).Fat therapeutics:theclinicalcapacityofadipose-derivedstemcellsandexosomes forhumandiseaseandtissueregeneration. Front.Pharmacol. 11:158. doi:10. 3389/fphar.2020.00158

Silva,M.M.A.,Kokai,L.E.,Donnenberg,V.S.,Fine,J.L.,Marra,K.G., Donnenberg,A.D.,etal.(2019).Oncologicsafetyoffatgraftingforautologous breastreconstructioninananimalmodelofresidualbreastcancer. Plast. Reconstr.Surg. 143,103–112. doi:10.1097/PRS.0000000000005085

Sorkin,A.,Heller,L.,Landau,G.,Sherf,M.,Hartstein,M.E.,andHadad,E.(2020). Inferiorlybasedpreauricularflapforanteriorearreconstruction. Ann.Plast. Surg. 84,394–396. doi:10.1097/SAP.0000000000002124

Spasovski,D.,Spasovski,V.,Baèareviæ,Z.,Stojiljkoviæ,M.,Vreæa,M., Angelkoviæ,M.,etal.(2018).Intra-articularinjectionofautologousadiposederivedmesenchymalstemcellsinthetreatmentofkneeosteoarthritis. J.Gene Med. 20:e3002. doi:10.1002/jgm.3002

Strong,A.L.,Bowles,A.C.,Wise,R.M.,Morand,J.P.,Dutreil,M.F.,Gimble, J.M.,etal.(2016).Humanadiposestromal/stemcellsfromobesedonorsshow reducedecacyinhaltingdiseaseprogressionintheexperimentalautoimmune encephalomyelitismodelofmultiplesclerosis. StemCells 34,614–626. doi: 10.1002/stem.2272

Strong,A.L.,Rubin,J.P.,Kozlow,J.H.,andCederna,P.S.(2019).Fatgrafting forthetreatmentofscleroderma. Plast.Reconstr.Surg. 144,1498–1507. doi: 10.1097/PRS.0000000000006291

Tan,S.S.,andLoh,W.(2017).Theutilityofadipose-derivedstemcellsandstromal vascularfractionforoncologicsofttissuereconstruction:isitsafe?Amatterfor debate. Surgeon 15,186–189. doi:10.1016/j.surge.2016.09.010

Teufelsbauer,M.,Rath,B.,Moser,D.,Haslik,W.,Huk,I.,andHamilton,G.(2019). Interactionofadipose-derivedstromalcellswithbreastcancercelllines. Plast. Reconstr.Surg. 144,207E–217E. doi:10.1097/PRS.0000000000005839

Tofiño-Vian,M.,Guillén,M.I.,PérezDelCaz,M.D.,Castejón,M.A.,andAlcaraz, M.J.(2017).Extracellularvesiclesfromadipose-derivedmesenchymalstem cellsdownregulatesenescencefeaturesinosteoarthriticosteoblasts. Oxid.Med. Cell.Longev. 2017:7197598. doi:10.1155/2017/7197598

Tofiño-Vian,M.,Guillén,M.I.,PérezDelCaz,M.D.,Silvestre,A.,andAlcaraz, M.J.(2018).Microvesiclesfromhumanadiposetissue-derivedmesenchymal stemcellsasanewprotectivestrategyinosteoarthriticchondrocytes. Cell. Physiol.Biochem. 47,11–25. doi:10.1159/000489739

Togliatto,G.,Dentelli,P.,Gili,M.,Gallo,S.,Deregibus,C.,Biglieri,E.,etal.(2016). Obesityreducesthepro-angiogenicpotentialofadiposetissuestemcell-derived extracellularvesicles(EVs)byimpairingmiR-126content:impactonclinical applications. Int.J.Obes. 40,102–111. doi:10.1038/ijo.2015.123

Toh,W.S.,Zhang,B.I.N.,Lai,R.C.,andLim,S.K.(2018).Immuneregulatory targetsofmesenchymalstromalcellexosomes/smallextracellularvesiclesin tissueregeneration. Cytotherapy 20,1419–1426. doi:10.1016/j.jcyt.2018.09.008

Tran,T.D.X.,Wu,C.,Dubey,N.K.,Deng,Y.,Su,C.-W.,Pham,T.T.,etal.(2019). Time-andKellgren–Lawrencegrade-dependentchangesinintra-articularly transplantedstromalvascularfractioninosteoarthriticpatients. Cells 8:308. doi:10.3390/cells8040308

Villatoro,A.J.,Alcoholado,C.,Martín-Astorga,M.C.,Fernández,V.,Cifuentes, M.,andBecerra,J.(2019).Comparativeanalysisandcharacterizationof solublefactorsandexosomesfromculturedadiposetissueandbonemarrow mesenchymalstemcellsincaninespecies. Vet.Immunol.Immunopathol. 208, 6–15. doi:10.1016/j.vetimm.2018.12.003

Vizoso,F.J.,Eiro,N.,Cid,S.,Schneider,J.,andPerez-Fernandez,R.(2017). Mesenchymalstemcellsecretome:towardcell-freetherapeuticstrategies inregenerativemedicine. Int.J.Mol.Sci. 18:1852. doi:10.3390/ijms1809 1852

Wang,C.,Wang,M.,Xu,T.,Zhang,X.,Lin,C.,Gao,W.,etal.(2019).Engineering bioactiveself-healingantibacterialexosomeshydrogelforpromotingchronic diabeticwoundhealingandcompleteskinregeneration. Theranostics 9,65–76. doi:10.7150/thno.29766

Wang,M.,Wang,C.,Chen,M.,Xi,Y.,Cheng,W.,Mao,C.,etal.(2019). Ecientangiogenesis-baseddiabeticwoundhealing/skinreconstruction throughbioactiveantibacterialadhesiveultravioletshieldingnanodressingwith exosomerelease. ACSNano 13,10279–10293. doi:10.1021/acsnano.9b03656

Wang,J.,Guo,X.,Kang,Z.,Qi,L.,Yang,Y.,Wang,J.,etal.(2020).Roles ofexosomesfrommesenchymalstemcellsintreatingosteoarthritis. Cell. Reprogram. 22,107–117. doi:10.1089/cell.2019.0098

Wang,Q.,Zhang,N.,Hu,L.,Xi,Y.,Mi,W.,andMa,Y.(2020).Integrin b1in adipose-derivedstemcellsaccelerateswoundhealingviaactivatingPI3K/AKT pathway. TissueEng.Regen.Med. 17,183–192. doi:10.1007/s13770-01900229-4

Wang,L.,Hu,L.,Zhou,X.,Xiong,Z.,Zhang,C.,Shehada,H.M.A.,etal. (2017).Exosomessecretedbyhumanadiposemesenchymalstemcellspromote scarlesscutaneousrepairbyregulatingextracellularmatrixremodelling. Sci. Rep. 7:13321. doi:10.1038/s41598-017-12919-x

Wang,T.,Jiang,A.,Guo,Y.,Tan,Y.,Tang,G.,Mai,M.,etal.(2013). Deepsequencingofthetranscriptomerevealsinflammatoryfeaturesof porcinevisceraladiposetissue. Int.J.Biol.Sci. 9,550–556. doi:10.7150/ijbs. 6257

Wang,W.,Wu,C.,andJin,H.(2018).Exosomesinchronicinflammatoryskin diseasesandskintumors. Exp.Dermatol. 28,213–218. doi:10.1111/exd.13857

Woo,C.H.,Kim,H.K.,Jung,G.Y.,Jung,Y.J.,Lee,K.S.,Yun,Y.E.,etal.(2020). Smallextracellularvesiclesfromhumanadipose-derivedstemcellsattenuate cartilagedegeneration. J.Extracell.Vesicles 9:1735249. doi:10.1080/20013078. 2020.1735249

Wu,Q.,Li,J.,Li,Z.,Sun,S.,Zhu,S.,Wang,L.,etal.(2019).Exosomes fromthetumour-adipocyteinterplaystimulatebeige/browndierentiation andreprogrammetabolisminstromaladipocytestopromotetumour progression. J.Exp.Clin.CancerRes. 38:223. doi:10.1186/s13046-0191210-3

Wu,Y.,Peng,Y.,Gao,D.,Feng,C.,Yuan,X.,Li,H.,etal.(2015).Mesenchymal stemcellssuppressfibroblastproliferationandreduceskinfibrosisthrough aTGF-b3-dependentactivation. Int.J.Low.Extrem.Wounds 14,50–62. doi: 10.1177/1534734614568373

Xiao,S.,Liu,Z.,Yao,Y.,Wei,Z.R.,Wang,D.,andDeng,C.(2019).Diabetic humanadipose-derivedstemcellsacceleratepressureulcerhealingbyinducing angiogenesisandneurogenesis. StemCellsDev. 28,319–328. doi:10.1089/scd. 2018.0245

Xiong,J.,Liu,Z.,Wu,M.,Sun,M.,Xia,Y.,andWang,Y.(2020).Comparison ofproangiogeniceectsofadipose-derivedstemcellsandforeskinfibroblast exosomesonartificialdermisprefabricatedflaps. StemCellsInt. 2020:5293850. doi:10.1155/2020/5293850

Xu,P.,Yu,Q.,Huang,H.,Zhang,W.J.,andLi,W.(2018).nanofatincreasesdermis thicknessandneovascularizationinphotoagednudemouseskin. Aesthetic Plast.Surg. 42,343–351. doi:10.1007/s00266-018-1091-4

Yang,C.,Luo,L.,Bai,X.,Shen,K.,Liu,K.,Wang,J.,etal.(2020).Highly-expressed micoRNA-21inadiposederivedstemcellexosomescanenhancethemigration andproliferationoftheHaCaTcellsbyincreasingtheMMP-9expression throughthePI3K/AKTpathway. Arch.Biochem.Biophys. 681:108259. doi:10. 1016/j.abb.2020.108259

Yang,Z.,Wei,Z.,Wu,X.,andYang,H.(2018).ScreeningofexosomalmiRNAs derivedfromsubcutaneousandvisceraladiposetissues:determinationof targetsforthetreatmentofobesityandassociatedmetabolicdisorders. Mol. Med.Rep. 18,3314–3324. doi:10.3892/mmr.2018.9312

Yoshimura,K.,Sato,K.,Aoi,N.,Kurita,M.,Hirohi,T.,andHarii,K.(2008). Cell-assistedlipotransferforcosmeticbreastaugmentation:supportiveuseof adipose-derivedstem/stromalcells. Aesthet.Plast.Surg. 32,48–55. doi:10.1007/ s00266-007-9019-4

Yucel,E.,Alagoz,M.S.,Eren,G.G.,Yasar,E.K.,Izmirli,H.H.,Duruksu, G.,etal.(2016).Useofadipose-derivedmesenchymalstemcellstoincrease viabilityofcompositegrafts. J.Craniofac.Surg. 27,1354–1360. doi:10.1097/ SCS.0000000000002707

Zhang,B.,Yang,Y.,Xiang,L.,Zhao,Z.,andYe,R.(2019).Adipose-derived exosomes:anoveladipokineinobesity-associateddiabetes. J.Cell.Physiol. 234, 16692–16702. doi:10.1002/jcp.28354

Zhang,R.,Ma,J.,Han,J.,Zhang,W.,andMa,J.(2019).Mesenchymalstemcell relatedtherapiesforcartilagelesionsandosteoarthritis. Am.J.Transl.Res. 11, 6275–6289.

Zhang,W.,Bai,X.,Zhao,B.,Li,Y.,Zhang,Y.,Li,Z.,etal.(2018).Cell-free therapybasedonadiposetissuestemcell-derivedexosomespromoteswound healingviathePI3K/Aktsignalingpathway. Exp.CellRes. 370,333–342. doi: 10.1016/j.yexcr.2018.06.035

Zhao,C.,Chen,J.Y.,Peng,W.M.,Yuan,B.,Bi,Q.,andXu,Y.J.(2020). Exosomesfromadipose-derivedstemcellspromotechondrogenesisand suppressinflammationbyupregulatingmiR-145andmiR-221. Mol.Med.Rep. 21,1881–1889. doi:10.3892/mmr.2020.10982

Zhao,H.,Shang,Q.,Pan,Z.,Bai,Y.,Li,Z.,Zhang,H.,etal.(2018).Exosomesfrom adipose-derivedstemcellsattenuateadiposeinflammationandobesitythrough polarizingM2macrophagesandbeiginginwhiteadiposetissue. Diabetes 67, 235–247. doi:10.2337/db17-0356

Zhu,C.T.,Li,T.,Hu,Y.H.,Zou,M.,Guo,Q.,andQu,X.W.(2017).Exosomes secretedbymiceadipose-derivedstemcellsafterlow-levellaserirradiation treatmentreduceapoptosisofosteocyteinducedbyhypoxia. Eur.Rev.Med. Pharmacol.Sci. 21,5562–5570. doi:10.26355/eurrev_201712_13993

Zhu,Y.,Zhang,J.,Hu,X.,Wang,Z.,Wu,S.,andYi,Y.(2020).Supplementation withextracellularvesiclesderivedfromadipose-derivedstemcellsincreasesfat graftsurvivalandbrowninginmice:acell-freeapproachtoconstructbeigefat fromwhitefatgrafting. Plast.Reconstr.Surg. 145,1183–1195. doi:10.1097/PRS. 0000000000006740

Zuk,P.A.,Zhu,M.,Mizuno,H.,Huang,J.,Futrell,J.W.,Katz,A.J.,etal.(2001). Multilineagecellsfromhumanadiposetissue:implicationsforcell-based therapies. TissueEng. 7,211–228. doi:10.1089/107632701300062859

ConflictofInterest: Theauthorsdeclarethattheresearchwasconductedinthe absenceofanycommercialorfinancialrelationshipsthatcouldbeconstruedasa potentialconflictofinterest.

Copyright©2020Xiong,Zhang,Hu,Zhao,Lv,Yi,WuandWu.Thisisanopen-access articledistributedunderthetermsofthe Creative Commons Attribution License (CCBY).Theuse,distributionorreproductioninotherforumsispermitted,provided theoriginalauthor(s)andthecopyrightowner(s)arecreditedandthattheoriginal publicationinthisjournaliscited,inaccordancewithacceptedacademicpractice.No use,distributionorreproductionispermittedwhichdoesnotcomplywiththeseterms.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.