StemCells:TheEmergingRolesand
ApplicationsinTissueRegeneration ofPlasticandCosmeticSurgery
MingchenXiong † ,QiZhang † ,WeijieHu,ChongruZhao,WenchangLv,YiYi,YipingWu* andMinWu*
1 DepartmentofPlasticSurgery,TongjiHospital,TongjiMedicalCollege,HuazhongUniversityofScienceandTechnology, Wuhan,China
Adipose-derivedstemcells(ASCs)areanimportantstemcelltypeseparatedfrom adiposetissue,withthepropertiesofmultilineagedifferentiation,easyavailability,high proliferationpotential,andself-renewal.Exosomesarenovelfrontiersofintercellular communicationregulatingthebiologicalbehaviorsofcells,suchasangiogenesis, immunemodulation,proliferation,andmigration.ASC-derivedexosomes(ASC-exos) areimportantcomponentsreleasedbyASCsparacrine,possessingmultiplebiological activities.Tissueregenerationrequirescoordinated“vitalnetworks”ofmultiplegrowth factors,proteases,progenitors,andimmunecellsproducinginflammatorycytokines. Recently,ascell-to-cellmessengers,ASC-exoshavereceivedmuchattentionfor thefactthattheyareimportantparacrinemediatorscontributingtotheirsuitability fortissueregeneration.ASC-exos,withdistinctpropertiesbyencapsulatingvarious typesofbioactivecargoes,areendowedwithgreatapplicationpotentialintissue regeneration,mechanicallyviathemigrationandproliferationofrepaircells,facilitation oftheneovascularization,andotherspecificfunctionsindifferenttissues.Here,this articleelucidatedtheresearchprogressofASC-exosabouttissueregenerationin plasticandcosmeticsurgery,includingskinanti-agingtherapy,dermatitisimprovement, woundhealing,scarremoval,flaptransplantation,bonetissuerepairandregeneration, obesityprevention,fatgrafting,breastcancer,andbreastreconstruction.Deciphering thebiologicalpropertiesofASC-exoswillprovidefurtherinsightsforexploringnovel therapeuticstrategiesoftissueregenerationinplasticandcosmeticsurgery.
Keywords:adipose-derivedstemcells,exosomes,tissueregeneration,biologicalactivity,function
INTRODUCTION
Adiposetissueprovidesamajorenergystoragedepotforthebody.Overthepastyears,adipose tissuehasbeenconsideredasamultifunctionalorganthatcontrolsmetabolichomeostasis, immunity,andsatiety(Yangetal., 2018).Adiposetissuecanbebroadlyseparatedintofat-storing adipocytesandtheadiposetissuestromalvascularfraction(SVF).SVFisaheterogeneouscellgroup thatistraditionallyisolatedusingenzymessuchascollagenase.SVFisaneasilyaccessiblesystem comprisedofvariousimmunecells,erythrocytes,endothelialcells,andadipose-derivedstemcells (ASCs),withtheexceptionofadipocytes(KimandLee, 2020).ASCsaredefinedasasubsetof mesenchymalstemcells(MSCs)isolatedfromtheSVFwithinadiposetissuebyenzymaticdigestion
(Gentileetal., 2019b).ASCsarespecificallyvaluablebecause theycanbeeasilyharvestedwiththepropertiesofabundance andconvenientseparation.Intermsofcellidentification,ASCs exhibitamesenchymal-likemorphologyandtheexpression profileofCD34+ ,CD44+ ,CD31 ,andCD45 cellsurface markers(Shuklaetal., 2020).ASCsarenotonlyprecursorsto adipocytesbutalsomultipotentprogenitorstoavarietyofcells includingosteoblasts,chondrocytes,myocytes,epithelialcells, andneuronalcells.Furthermore,ASCspossessseveralunique characteristics,includingeasyavailability,highproliferation potential,self-renewal,andsecretionoftrophicfactorsand extracellularvesicles(EVs),thuso eringafeasibleandvalid alternativetoothersourcesofMSCs,suchasbonemarrow-MSCs (BMSCs)(Mazinietal., 2019).Thesecretedfactorsderivedfrom ASCs,suchasgrowthfactorsandcytokines,areknowntoexert paracrinesignalsresponsibleforchemoattractant,angiogenic, andprosurvivale ectsrequiredfortissueregeneration(Bajek etal., 2016).ASCsareparticularlyusefulastheycanbe easilyharvestedwithminimaldonorsitemorbidityandhave adi erentiationpotentialsimilartootherMSCs.Thus,ASCs havebeensuccessfullyproposedasaprominentcandidateinthe developmentoftissueengineeringproducts.Aswell,plasticand cosmeticsurgeryisagrowingfielduniquelypositionedforthe applicationofASCs(Zuketal., 2001).
Theterm“exosome”specificallydefinesasmallsubsetof extracellularvesiclesthatrangefrom50nmto200nm, whichhavebeenfoundinnumerousbodyfluids,including blood,urine,cerebrospinalfluid,breastmilk,saliva,lymph, andbile,underbothhealthyandpathologicalconditions (Wangetal., 2018).Exosomesareformedwhentheendosome membraneinvaginatestoproduceamultivesicularbody whichuponfusingwiththecellmembranetoreleasethe vesicleswithinasexosomesintotheextracellularspace(Toh etal., 2018).Consequently,thekeyexpressionbiomarkersof exosomes,whicharegenerallyrecognizedasexosome-associated characteristics,areproteinsassociatedwithendocytosisand endosomaltra ckingssuchastetraspanins(CD81,CD63,CD9), ALIX,TSG101,caveolins,clathrin,andtransferrinreceptors, duetothedi erentmechanismsofsecretion(HongP.etal.,
Abbreviations: gH2AX,PhosphorylatedHistoneH2AX;AKT,ProteinKinase B;AP-1,ActivatorProtein1;Arg-1,Arginase1;ASC-CM,ASC-Conditioned Medium;ASC-exos,ASC-derivedexosomes;ASCs,Adipose-derivedStemCells; BAT,BrownAdiposeTissue;Bax,Bcl-2-associatedXProtein;Bcl-2,B-cell lymphoma/leukemia2;CAL,Cell-AssistedLipotransfer;Caspase-3/9,Aspartate ProteolyticEnzyme3/9;ECM,ExtracellularMatrix;EVs,ExtracellularVesicles; H2 O2 ,HydrogenPeroxide;HaCaTs,HumanKeratinocytes;HDFs,Human DermalFibroblasts;I/R,Ischemia-Reperfusion;IFN-g,InterferonGamma;IL4/5/6/13,Interleukin4/5/6/13;iNOS,InducibleNitricOxideSynthase;MAPKs, Mitogen-ActivatedProteinKinases;MMP-1/9,MatrixMetalloproteinase1/9; MSCs,MesenchymalStemCells;NF-kB,NuclearFactorKappaB;NOX-1/4, NADPHOxidase1/4;Nrf2,NF-E2-relatedfactor2;PDGF-AA,Platelet-Derived GrowthFactor-AA;PGE2,ProstaglandinE2;PI3K,Phosphatidylinositol-4,5Bisphosphate3-Kinase;RANKL,ReceptorActivatorofNuclearFactorKappa BLigand;ROS,ReactiveOxygenSpecies;SA-b-gal,Senescence-Associated b-galactosidase;SMP30,SenescenceMarkerProtein30;SVF,StromalVascular Fraction;TGF-b,TransformingGrowthFactorBeta;TIMP-1,TissueInhibitorof Metalloproteinases1;TNF-a,TumorNecrosisFactorAlpha;TSG-6,TNF-AlphaStimulatedGene/Protein6;UCP-1,UncouplingProtein1;UVB,UltravioletB; VECs,VascularEndothelialCells;VEGF,VascularEndothelialGrowthFactor; WAT,WhiteAdiposeTissue.
2019).Exosomesarepackedwithcell-type-specificcombinations ofproteins(cytoskeletalproteins,transmembraneproteins,and heatshockproteins),nucleicacids(DNA,mRNA,miRNA,long andshortnon-codingRNA),lipids,andenzymes(GAPDH, ATPase,pgk1),shuttlingtheseactivecargoesbetweendi erent cellsinvolvinginacomplexintercellularcommunicationsystem. Thesecargoesarewrappedinthemembranetoprotectfrom degradationandtransporttothesurroundingcells(Kalluriand LeBleu, 2020).Thus,exosomeshavesomespecialbiological characteristicsandprocessesandarecapableofpotentially modulatingthespecificactivityoftherecipienttargetcells.
Theimportantaimofplasticandcosmeticfieldisclosely associatedwithtissueregeneration,andtorepairthemorphology andfunctionofcongenitaloracquireddefectsthroughmany treatmentmethods,includingmedicalimaging,microsurgery, compositetissueallotransplantation,nanotechnology,cell biology,andbiomaterials(Naderietal., 2017).Adiposetissue possessesimportantfunctionsinimmunemodulation,wound healing,andtissueregeneration.Nowadays,autologousadipose tissueapplicationisexploredtobeappliedinimprovingskin quality,contourirregularities,woundrepairandsofttissue regenerationinplasticandcosmeticsurgery(Strongetal., 2019). Itse cacyandsafetyarewidelyaccepted,butthereisalack ofuniversallyrecognizedmechanisms.However,giventhatthe characteristicsofadiposetissuevarydramaticallydependingon thedonorstatus,thee ectisofindividualdi erence(Wang etal., 2013).Besides,significantlyalteringthecomponents orbiomechanicalpropertiesoftheadiposetissue,suchasby removingstromalcellsfromtheadiposetissue,willsubjectto morecomplexapplications.Therefore,autologousadiposetissue cannotbeeasilyusedasadrug.Thus,ASCsandASC-exosare veryimportantderivativesfromfattissue,capturingintensive attention.ExosomescarryspecificcontentsoftheparentalASCs, includingDNAs,RNAs,lipids,cytokines,enzymes.Exosomes arecapableofprotectingtheircargoesfromdegradationand arehighlystableinserumandblood,thuse cientlydelivering cargoestotargetcells.ASC-exosandASCsperformtheir functionsviadi erentmechanisms.TheASC-exosareusedas toolsforrepairingandregeneratedactivationofdamagedcells, andarenowconsideredtoorchestratetheeventsrequiredfor tissueregeneration,immunefunction,tissuehomeostasisand developmentofcellfate.Hence,althoughwithoutdi erentiation ability,ASC-exoscanmimicthecapacityofASCsforinnovative cell-freetherapy,suchastissueregenerationandrepair,reduction ofinjuries,andanti-inflammation.Intermsofstorageand delivery,unlikeASCs,exosomesaresmallnon-livingsubstances thatcanbesterilefilteredandfrozenwithoutcryo-preservatives. Frommanufacturingandstoragetodelivery,thereisnoneed tomaintaincellviabilityandfunction.ASC-exoshavecertain advantagesoverASCsinproduction,storage,shelflife,delivery, andpotentiallyready-to-usebiologicalproducts(Vizosoetal., 2017).Moreover,ASC-exosarepotentiallysafertherapeutic agentsthanASCs.ComparedwithASCs,ASC-exosmight avoidcelltherapy-associatedproblems,includinglimitedcell survival,immunerejectione cacy,senescence-inducedgenetic instability,inactivatefunction,andthepossibilityofunfavorable di erentiation(Figueroaetal., 2014).Owingtotheirmultiple
features,ASC-exoshaveshowntherapeuticpotentialinmany clinicaldiseases,especiallyintissueregeneration,suchasskin repairing,fatgrafting,andvariousreconstructionoperation.In addition,exosomeshavebeeninnovativelyutilizedfortargeted drugdeliveryandasgenecarriersforregenerativemedicine (Mehryabetal., 2020).Butactually,ASC-exoslackenough clinicaltrialstoconfirmthesafetyande ectiveness(Table1).
Inthisreview,wemainlysummarizethelatestresearchabout thefunctionsandinvestigationsofASC-exosconcernedwith tissueregenerationinplasticandcosmeticsurgery,including skinanti-agingtherapy,dermatitisimprovement,woundhealing, scarremoval,flaptransplantation,bonetissuerepairand regeneration,obesityprevention,fatgrafting,breastcancer,and breastreconstruction.Wehopethiswillprovidefurtherinsights intothepivotalrolesandapplicationsofASC-exosintissue engineeringandregenerativetherapies.Forthesegoals,we searchedtheadipose-derivedstemcells/ASCs,exosomesandthe
ASC-exosASCs
SourceacquisitionfromASCswith exosomeseparationmethods, existinadiposetissueand stableinserumandblood
easyacquisitionandhighyield fromadipocytetissues, especiallyfromwhiteadipose tissue
Morphologysmalllipidbilayervesiclesmesenchymal-likecells
Managementcouldbesterilefilteredand frozenwithout cryo-preservatives,easily long-termstorageanddelivery, easilykeepbiologicalactivity
shouldpreservecellviability andfunctionfrommanufacture tostorageanddelivery,high storagerequirements,complex cultivation
Biological properties protectcargoesfrom degradation,targetspecificity, goodtissuepermeability, intercellularcommunication, immunefunction,tissue homeostasisanddevelopment ofcellfate multi-lineagedifferentiation, secret greatkindsofgrowthfactors byparacrinefunction, prosurvivaleffects,regulation ofimmunefunction, angiogenesis
SecretomeDNAs,RNAs,lipids,cytokines, enzymesfromtheparentcell exosomes,cytokines,DNAs, RNAs,lipids,enzymes
Biosafetylimitedimmunogenicity,high biosafety immunogenicity,biosafety
Applicationsconsideredasmultiple bioactivesubstancesfortissue regeneration,couldbegene modification,uploaddrugsas carriers,uploadinothercarriers suchasnanomaterials
Clinicaltrialslackenoughclinicaltrialsto confirmthesafetyand effectiveness
consideredasidealstemcell sourceforcellandtissue regeneration;couldbegene modification,uploadincarriers suchasnanomaterials
securityandeffectivenessare verifiedinmanydiseases
Application disadvantages relativelowpurityandyield, complicatedcomponents, substantialdegreeof heterogeneityindosing regimensinthereportedcases, lacking invivo clinicaltrials limitedcellsurvival,immune rejectionefficacy, senescence-inducedgenetic instability,inactivatefunction, andthepossibilityof unfavorabledifferentiation, individualdifferences
Abbreviations:ASCs,Adipose-derivedstemcells;ASC-exos, ASC-derivedexosomes.
above8relatedfieldsinplasticandcosmeticsurgeryaskeywords onPubmedintherecent5years.Thesesearchedstudiesinvolved incell,animalexperiments,orclinicaltrials,especiallythe originalarticleswereincludedaccordingtorelevancetothetopic.
ASC-EXOSINSKINAGING
Theskinissubjecttoanunpreventableintrinsicaging process,alongwiththeexogenousfactors-inducedagingstate. Particularly,ultravioletradiationresultsinprematureskinaging, alsoknownasextrinsicskinagingorphotoaging.Themost typicalfeaturesofskinagingarethelossofelasticityandthe generationofwrinkles,whichareattributedtothestructural andfunctionalchangesinskincellsandtissues(Lietal., 2019).Amongskincells,humandermalfibroblasts(HDFs)and keratinocytes(HaCaTs)areregardedasbarrierstopreventskin fromtimeagingandultravioletB(UVB)photoaging.Various improvementstrategies,suchasantioxidants,retinoids,peptides, growthfactors,andautologouspatientfatorcollagengraft,have beenusedtofightagainstskinaging(Kimetal., 2019).Because ofthepoorpenetrationthroughthestratumandshort-term maintenanceforseveralmonths,theseabovestrategiesarenow notideal.ItishopefultoreduceskinagingpinnedonASCs andASC-derivatives,whichcouldregulateHDFsproliferation, migration,andcollagenexpression.
ASC-conditionedmedium(ASC-CM)andASC-exos,both containingkeycytokinesandgrowthfactorssecretedbythe ASCs,couldfacilitatetheregenerationandrepairofvarious tissuesandorganstoexertinfluencesonanti-oxidation,antiwrinkle,andwhiteningskin.ASC-CMhasbeenprovedto protectHDFsfromoxidativestress invitro (Kimetal., 2008). Lietal. (2019) foundthatinUVBirradiation invitro model,ASC-CMcoulde ectivelydown-regulatetheactivation andtranscriptionofUVB-inducedsignalingpathwayssuchas mitogen-activatedproteinkinases(MAPKs),activatorprotein 1(AP-1),andnuclearfactorkappaB(NF-kB),andupregulatetheexpressionofantioxidantresponseelementssuch asphaseIIgeneHO-1andtransforminggrowthfactor-beta (TGF-b),whilereducinginterleukin6(IL-6)secretion.Thereby ASC-CMshowedapositivee ectonprotectingHDFsand HaCaTsfromUVB-inducedphotoagingdamage.TheplateletderivedgrowthfactorAA(PDGF-AA)containedinASC-CM alsocouldactivatethephosphatidylinositol-4,5-bisphosphate3kinase(PI3K)/proteinkinaseB(AKT)signalpathway,and mediatephotoaging-inducedHDFsproliferation,extracellular matrix(ECM)depositionandremodelinginthe invitro experiment,whichwasreportedby Guoetal. (2020) group. Itdemonstratedthatthewell-preparedASC-CMplayeda positiveroleinpreventingHDFsfromintrinsicandextrinsic agingdamagestoacertaindegree.Meanwhile,theresult alsoclarifiedthatthePDGF-AAmightcontributetobetter outcomeswithsomeothercomponentsofASC-CM.However, theingredientsinASC-CMarerathercomplextosynergistically achievetheanti-aginggoal.Theexosomesareimportant componentsinASC-CM,mightpossessapositivelyindependent orsynergisticroles. Huetal. (2019) showedthatexosomesfrom
TABLE1| CharacteristiccomparisonofASC-exosandASCs.
three-dimensionalculturedHDFspheroids(3D-HDF-exos)and BMSC-exoscouldbothdown-regulatetumornecrosisfactor alpha(TNF-a)andup-regulatedTGF-b expression,resultingin decreasedmatrixmetalloproteinase1(MMP-1)andincreased typeIprocollagen invitro andanudemousephotoagingmodel. Theseresultsindicatedthattheexosome-containing3D-HDFexosandBMSC-exosbothhadanti-skin-agingpropertiesandthe potentialtopreventandtreatcutaneousaging(Figure1A).
Atpresent,theexistingresearchofASC-exosonskinagingis limited.Astheepidermislayeris50–120 µmandtheepidermisdermisthicknessis2–5mminhumans,thelocaltreatmentwith exosomescanarriveattheepidermisandbeabsorbedonhuman skin(Xuetal., 2018).Exosomesderivedfromhumanstemcells, suchasASCs,areofmultiplebioactivefunctionsforskinaging treatment,deservingfurtherresearch.
ASC-EXOSINATOPICDERMATITIS
Atopicdermatitis(AD)isachronicinflammatoryskindisease accompaniedwithpruritus,erythema,edema,excoriation, andthickeningoftheskin,leadingtodecreasedunaesthetic
appearanceofskin(Leeetal., 2018).Bothdefectiveskinbarrier andabnormalimmuneresponsesarecrucialfactorsinAD development.ThereforeADwithimmunologicabnormalities couldbetreatedbydi erentormulti-prongedapproaches focusedonreducingtheseverityandfrequencyofsymptoms, suchasdietarymanagement,drugtherapy,andultraviolet assistedtherapy(Parketal., 2019).Severalstudieshave demonstratedthatallergicprogressinADcouldbesuppressed byBMSCsandASCswhilemodulatingmultipletargets(Shin etal., 2017).Forinstance, Sahetal. (2018) foundthatsuperoxide dismutase3-transducedMSCsamelioratedADpathologyand enhancedthee cacyofMSCtherapybycontrollingactivated immunecells,reducingexpressionlevelsofpro-inflammatory mediatorsintheskinofADmice.
Nevertheless,giventhatADchronicandrecurrent characteristics,thetherapeuticutilizationofMSCshasseveral drawbacks,suchaspoorengraftmente ciency,undesired immuneresponses,shorthalf-life,anddi cultiesinquality control(Louetal., 2017).Exosomesareinvolvedinthe developmentandprognosisofADskindiseases,including repairingleakyskinbarriersaswellassuppressingskin inflammation(Alvesetal., 2016). Choetal. (2018) established

FIGURE1| ASC-exos function invariousskinassociatedapplications. (A) ASC-CMandBMSC-exoscouldproduceROSatalowlevel,downregulateTNF-a, upregulateTGF-b toincreaseMMP-1andprocollagentypeIexpressionforcollagensynthesis,thusenhancingtheskinelasticityandeasethewrinklesfor anti-aging. (B) ASC-exoswascapabletoenhancestratumcorneumhydration,reducethesecretionofinflammatorycytokinessuchasIL-4,IL-5,IL-13,IFN-g,and TNF-a,andalleviatetheinfiltrationofmastcells,dendriticepidermalcells(DECs)inskinlesionsandeosinophilsintheblood,andproduceceramidestorestorethe epidermalbarrier,thusrelievingthedermatitisofskin. (C) ASC-exosreducedtheproductionofROS,decreasetheexpressionofIL-6,IL-1b,TNF-a,andthe oxidativestress-relatedproteinssuchasNADPHoxidase1/4(NOX1/4),increaseMMP-9andVEGFtoameliorateECMreconstruction,thusfosteringHDFs proliferationandmigrationtoreinforcethere-epithelialization. (D) ASC-exoswasconducivetopromotetubeformationofVECs,increasetissuethickness,and reducetheinfiltrationofinflammatorycellstorelievetheinflammationandapoptosisforthehighsurvivalrateoftheskinflap.ASCs,Adipose-derivedstemcells; ASC-exos,ASC-derivedexosomes;HDFs,HumanDermalFibroblasts;HaCaTs,HumanKeratinocytes;ECM,ExtracellularMatrix;ROS,ReactiveOxygenSpecies; MMP-1/9,MatrixMetalloproteinase1/9;IFN-g,InterferonGamma;TNF-a,TumorNecrosisFactorAlpha;TGF-b,TransformingGrowthFactorBeta;IL-4/5/6/13, Interleukin4/5/6/13;NOX-1/4,NADPHOxidase1/4;VEGF,VascularEndothelialGrowthFactor;VECs,VascularEndothelialCells,VECs.
anADmodelofNC/NGAmicetreatedwithhousedust miteantigens.Inthismousemodel,ASC-exoswerefoundto amelioratepathologicalsymptomssuchasthelevelsofserum IgE,thenumberofeosinophilsintheblood,andtheinfiltration ofmastcells,dendriticepidermalcellsinskinlesions.Thestudy suggestedtheimmuneregulationroleofASC-exosinAD.Inthe latterstudy,thesamegroupalsofoundthatthesubcutaneous injectionofASC-exosinanoxazolone-induceddermatitismodel remarkablyreducedtrans-epidermalwaterloss,andenhanced stratumcorneumhydrationandmarkedlydecreasedthelevels ofinflammatorycytokinessuchasIL-4,IL-5,IL-13,TNF-a, interferongamma(IFN-g),IL-17andTSLP,allinadosedependentmanner(Shinetal., 2020).Interestingly,ASC-exos alsoinducedtheproductionofceramidesanddihydroceramides topromoteskinbarrierrestoration(Shinetal., 2020).These studiessuggestedthatthesystemicadministrationofASC-exos amelioratedAD-likesymptomsthroughtheregulationof inflammatoryresponsesandthepotentialofe ectivelyrestoring epidermalbarrierfunctionsinAD(Figure1B).ASC-exos couldbeapromisingcell-freecandidatetocurrentlylimited treatmentoptionsforAD.
ASC-EXOSINWOUNDANDSCAR
Manyexposed,unsightly,orchronicwounds,suchasdiabetic ulcers,aredi culttoheal,notonlycausingfunctional disabilitiesbutalsoa ectingmentalhealth.Poorwoundhealing eventuallyleadstohypertrophicscarsorkeloidformation, pigmentation,prolongedhealing,andulcerativeskindefects (Emingetal., 2014).Therearemanytraditionaltreatment methodsforskinandsofttissuetrauma,suchaslow-intensity lasers,advancedtreatmentdressings,negativepressurewound treatment,hyperbaricoxygen,andskintransplantation(Bellei etal., 2018).However,aswoundhealingisacomplicatedprocess referringtomultiplecelltypes,growthfactors,andextracellular matrix,sometraditionaltreatmentsjustplayanauxiliaryrole accompaniedbyundesirablehealing.
ASCsandSVFcanproduceabundantsecretomegroups, leadingtocellproliferationanddi erentiation,migration,and healingmicroenvironment.ThemigrationandfunctionsofASCs couldbeenhancedviaPI3K/AKTpathwayactivatedbyintegrin b1,resultedintheimprovedchronicrefractorywound(WangJ. etal., 2020).Interestingly,inthewoundmousemodel, Bi etal. (2019) foundthatbothSVFandhumanASCsimproved thefunctionofendotheliocytesandfibroblasts,regulatedgene expression,andjointlypromotedskinhealing.Thisstudyshowed thatSVFcouldreplaceASCsforwoundhealing,duetothe convenienceofSVFapplications.Intheburnwoundmodel, onlyautologousASCs,butnotallogeneicASCs,significantly improvedhealinginacuteburnwoundsoftherat(Changetal., 2018). Fujiwaraetal. (2020) alsoconstructedanovineburn modelandprovedthatASCsimprovedgraftedburnwound healingbypromotingbloodflowandvascularendothelialgrowth factor(VEGF)expression.Besides,thelocalizedinjectionof ASCscouldaccelerateandenhancetheclosureofpressureulcers (Xiaoetal., 2019).Likewise, Bukowskaetal. (2020) systematically
ensuredthesafetyofhumanSVFwheninjectedintoamurine pressureulcerinjurymodel.Thishealingfunctionusually dependsonthetrophicfactorsofASCsandSVF,including cytokines,growthfactors,andchemokines.Notably,exosomes containingsecretomefromASCshaveopenedthewaytoanewly emergingcell-freetherapy.
StudieshaveshownthatASC-exosplayedapositiverolein cutaneouswoundhealingbymeansofactingonHDFsand HaCaTsandothermaintargetcellsthroughvarioussignal channels(Figure1C; Qiuetal., 2020). Maetal. (2019) exposedHaCaTstohydrogenperoxide(H2 O2 )forestablishing askinlesionmodel,discoveringthatASC-exoscouldfoster HaCaTsproliferation,migration,andinhibitapoptosisthrough Wnt/b-cateninsignalingpathway.Likewise, Heetal. (2020) also confirmedthatMALAT1-containingASC-exosimprovedwound healingbytargetingmiR-124andactivatingWnt/b-catenin pathway.Inaddition,ASC-exosmightalsopromoteand optimizecollagensynthesisviaupregulatingPI3K/Aktpathway duringcutaneouswoundhealing(Zhangetal., 2018). LiX. etal. (2018) foundthatexosomesfromNF-E2-relatedfactor 2(Nrf2)-overexpressingASCssignificantlyreducedtheulcer areainthefeetofdiabeticrats,bypromotingtheproliferation andangiogenesisofendothelialcells,improvinglevelsof senescencemarkerprotein30(SMP30)andVEGFandvascular endothelialgrowthfactorreceptor2(VEGFR2)phosphorylation toacceleratethewoundhealing,aswellasinhibitingreactive oxygenspecies(ROS)productionandinflammatorycytokine expressions,suchasIL-1b,IL-6,andTNF-a.Notwithstanding thissuperiority,exosome-basedtherapyofwoundhealingstill facesthechallengesofrapidclearancerateandrelativelyshort half-life invivo (Liuetal., 2017).Thesustainedreleaseand retentionofexosomesinthetargetareaisanimportantfactor forhealing.Liuetal.showedhyaluronicacid(HA)mightserveas exosomesimmobilizerandwounddressingfordurableexosomes retentionatwoundsitestoe ectivelyreparativee ect.ASCexoscombinedwithHAwasabletoactivatetheHDFsactivity ofthewoundsurfaceandreinforcedthere-epithelializationand vascularizationofthewoundsurface(Liuetal., 2019).Moreover, severalstudieshaveconfirmedtheroleofASC-exosmiRNAsin skinhealing.Forinstance, Yangetal. (2020) foundthathighly expressedmiRNA-21derivedfromASC-exoscouldenhancethe migrationandproliferationoftheHaCaTs,byincreasingthe matrixmetalloproteinase9(MMP-9)expressionthroughthe PI3K/AKTpathway.TheoverexpressingmiRNA-21couldalso enhancecollagensynthesisandoptimizecollagendeposition, significantlyimprovethehealinge ectoffull-thicknessskin woundsinmice(Yangetal., 2020). Shietal. (2020) verifiedthat mmu_circ_0000250-modifiedASCsderivedexosomespromoted woundhealingindiabeticmicebyinducingmiR-128-3p/SIRT1mediatedautophagy.
Comparedtothesinglefactortherapy,MSCsapplicationis alsosuperiorinscarremovalduetotheMSCs-secretedvarious inflammatorymodulators.Intherabbitscarmodel, Liuetal. (2014) locallyinjectedBMSCstoregulateinflammationand preventedhypertrophicscarformation,attributingtoBMSCs secretionofananti-inflammatoryprotein,TNF-a-stimulated gene/protein6(TSG-6). Wuetal. (2015) showedthat invitro
assay,theMSC-CMdecreasedviability, a-SMAexpression, andcollagensecretionofhumankeloidfibroblasts.Besides, inamousedermalfibrosismodel,MSC-CMinfusioninduced asignificantdecreaseinskinfibrosisduetotheTGF-b3 inCM-mediatedtherapeutice ectsonpreventingcollagen accumulation(Wuetal., 2015).TheapplicationofASCs andASC-derivativesmightalsoprovidenovelscarlessrepair methods.Intheearlystageofwoundhealing,exogenousASCexospromotedtheexpressionoftypeIandtypeIIIcollagento shortenthehealingtime,andmightinhibitcollagensynthesis tominimizescarformationinthelaterperiod(Huetal., 2016). Thistendencyfollowedthehistologicalchangesobservedduring thenaturalhealingofsofttissuewounds.Thatis,collagen depositionwasmoreimportantintheearlyphaseofhealing, whileinthelatephaseofhealing,matrixreconstructionwas morecritical.ASC-exosamelioratedECMreconstructionand reducedthescarformationbyregulatingtheratiosoftypeIII collagen/typeIcollagen,TGF-b3/TGF-b1,andMMP-3/tissue inhibitorofmetalloproteinases1(TIMP-1),aswellasfacilitating HDFsdi erentiation(Wangetal., 2017).TheteamofWang etal.firstlydevelopedtheFHEhydrogelandFEPhydrogel sca oldbothwithstimuli-responsiveASC-exos.TheASC-exos releasedbythesetwocarriermaterialssignificantlyincreasedthe regenerationofskinappendagesandreducedtheformationof scartissue(WangC.etal., 2019)(WangM.etal., 2019).The sustainedreleaseofbioactiveexosomeshelpstoachievebetter woundhealingandscarremoval.
ASC-EXOSINSKINFLAPSINJURY
Flaptransplantationisanessentialmethodtorepairrefractory traumaandorganreconstruction,includingthealarrim,external ear,andfingertipdefects.Theinsu cientneovascularizationand ischemia-reperfusion(I/R)injuryareresponsibleforpoorflap healingoutcomes(Sorkinetal., 2020).ASC-basedtherapyhas becomeanapplicablemethodtopreventI/Rinjuryforassisting flaptransplantation.Forinstance,ASCsareabletoenhance angiogenesistoincreasetheviabilityofchondrocutaneous compositegrafts,fortheapplicationofdefectsinthenose,ear scales,andskin(Yuceletal., 2016).
RecentstudieshaveshownthatASC-exoswerehopefulto improvethesurvivalstatusofskinflaps.Bybioinformatics analysis,Xiongetal.pointedoutthatthemiRNA-760 upregulationandmiRNA-423-3pdownregulationinASC-exos couldregulatetheexpressionofITGA5andHDAC5genes, respectively,consequentlypromotedthevascularizationofthe skinflap.Inalegwoundmodelofrat,themicrovascular angiographyof28dayspost-flaptransplantationrevealedthatthe ASC-exostreatedgroupsexhibitedbettervascularizationdegrees oftheartificialdermisprefabricatedflapsovercontrolgroups (Xiongetal., 2020).Undeniably,manydi erentiallyexpressed miRNAsinASC-exosareassociatedwiththevascularization offlaps.Thestudyby Puetal. (2017) showedthatIL-6richhumanASC-exospromotedflapangiogenesisandflap repairafterI/Rinjuryinmice.Inthiscase,theemployment ofASC-exostodeliverIL-6isbeneficialforpatientsafety
becauseitdoesnotrequiretheuseofviralvectors. Bai etal. (2018) alsoshowedthatlow-doseH2 O2 -stimulatedASCexoscouldincreasetheneovascularizationoftheflapand relievetheinflammationandapoptosisafterI/Rinjury,thus increasingthesurvivalrateoftheflap invivo.Insummary, ASC-exosplayanimportantroleinthevascularizationof skinflaps,andtherebyresolvetheproblemofinsu cient neovascularizationoftheflaps,thusexpandingtheapplicationof flaptransplantation(Figure1D).
ASC-EXOSINBONETISSUEDAMAGE
Fractures,tumorbonesurgery,deformity,revisionofthe prosthesis,andosteomyelitiscanbefullyidentifiedassegmental lossofbonestructure.Particularly,boneregenerationisthemain emphasisinvolvingbothsurgeryandaestheticsincraniofacial surgery.Exosomes,asnanoscaleextracellularvesicleswith anintercellularcommunicationfunction,provideanexcellent mediumforthepackagingandtransportationofRNAsand proteins,benefitingforbroadapplicationinbonetissue engineering(Paduanoetal., 2017).Besides,ASC-exos,with significantosteogenicinductionability,cane ectivelyregulate themicroenvironmentofbonetissuebytransportingavarietyof bioactivemolecules.
Theboneremodelingcycleiscomposedofconsequential phases:resorption,reversal,andformation.Studieshavefound thatosteocytesinbonetissuesequipwithmanyfunctions ofcoordinatingtheboneremodelingofosteoclastsand osteoblasts,whichmaintainthebonehomeostasis(Borciani etal., 2020).An invitro studyconfirmedthatASC-exos couldantagonizeosteocyteapoptosistriggeredbyischemiaand hypoxia,anddecreaseosteocyte-mediatedosteoclastogenesis, whichwasattributedtothedecreaseinreceptoractivatorof nuclearfactorkappabligand(RANKL)expression(Renetal., 2019).RANKLinteractswithitsreceptorRANK,whichishighly expressedbyosteoclastsortheirprecursorsandisessential forosteoclastactivation(Figure2A).ASC-exoscanbeused intissueengineeringcombinedwithe cientlybiocompatible e cientcarrierstoimproveosteogenesise ciency.According toarecentstudy,ASC-exoscouldbeimmobilizedonthe polydopamine-coatingPLGAsca olds.Thiscell-freenano-sized carrierenhancedboneregenerationsignificantly,atleastpartially throughitsosteoinductivee ectsandcapacitiesofpromoting MSCsmigrationandhominginthenewlyformedbonetissue (LiW.etal., 2018).Itwasdefinitelyestablishedthatan idealsca oldforexosomesloadingwouldbebiocompatible, biodegradable,andcapableofcontrolledreleasingexosomes. ChenS.etal. (2019) showedthattheexosomesderivedfrommiR375-overexpressingASCsincorporatedwithhydrogelpossessed theabilitytoenhanceboneregenerationinaratmodelof calvarialdefect.Moree ectiveandconvenientloadingstrategies shouldbedeveloped.Furthermore,appropriatechangesin thecultureconditionsofASCswillfacilitatetheproduction ofcustomizedASC-exos.Byusinghypoxia/serumdeprivation (H/SD)inducedosteocyteapoptosismodelwithmurinelong boneosteocyteY4(MLO-Y4), Zhuetal. (2017) demonstrated

FIGURE2| ASC-exosfunctionintheboneremodelingcycle. (A) Inboneresorptionandreversal,ASC-exoscoulddecreasetheexpressionofRANKL,whichwas highlyexpressedbyosteoclastsortheirprecursorsforosteoclastactivation,toantagonizeosteocyte-mediatedosteoclastogenesis. (B) Inboneformation, ASC-exospossessedtheabilityofloweringtheproductionofIL-6andPGE2,downregulatingSA-b-galactivityandreducingtheaccumulationof gH2AXin osteoblasts.Additionally,ASC-exoscouldupregulatetheradioofBcl-2/Bax,diminishtheproductionofROSandcytochromec,andsubsequentactivationof caspase-3/9inosteocytes.ASCs,Adipose-derivedstemcells;ASC-exos,ASC-derivedexosomes;RANKL,ReceptorActivatorofNuclearFactorKappaBLigand; IL-6,Interleukin6;PGE2,ProstaglandinE2;SA-b-gal,Senescence-Associated b-galactosidase; gH2AX,PhosphorylatedHistoneH2AX;Bcl-2,B-cell lymphoma/leukemia2;Bax,Bcl-2-associatedXprotein;Caspase-3/9,AspartateProteolyticEnzyme3/9.
ASC-exoscoulde cientlyantagonizeosteocyteapoptosisand osteocyte-mediatedosteoclastogenesis,viaupregulatedradio ofB-celllymphoma2(Bcl-2)/Bcl-2-associatedXprotein (Bax),diminishedproductionofROSandcytochromec,and subsequentactivationofaspartateproteolyticenzyme9(caspase9)andcaspase-3.Thisresultalsoprovidedthe invitro evidence ofASC-exosapplicationinage-relatedbonedisease. Luetal. (2017) demonstratedthatASC-exos,especiallyprimedbyTNFa pre-conditionedASCs,couldpromotetheproliferationand di erentiationofhumanosteoblaststhroughWntsignaling pathway.Therefore,themethodsforproducingspecificASCexos,o erapromisingapproachtoreplacedirectstemcell transplantation,furtherwideningtheapplicationofexosomesin boneregeneration(Figure2B).
Osteoarthritis(OA)isacommondegenerativejointdisease characterizedbycartilagedegeneration,synovitis,subchondral bonesclerosis,andosteophyteformation(Henrotinetal., 2012). Currenttreatmentsarebasicallysymptomatictohandlepainand swelling,andmainlyrelyonantalgicsandanti-inflammatory drugs.Articularcartilagehasalimitedpotentialtorepair, withprogressivelymorecliniciansemphasizingcellulartherapy. Multipleadiposetissue-associatedcomponentsandextractions arepromisingtobeappliedinOAtherapy,includingSVF, ASCs,ASCs-exos,ASC-CM,andmicrofragmentedadiposetissue
(MFAT).Inaclinicaltrial,SpasovskipointedoutthattheOA patientstreatedwithsingleinjectionofASCsshowedsignificant cartilagerestoration(Spasovskietal., 2018).Similarly,inanother trialofOApatientsreceivedwithASCs,theASCsmightcause animmediatelocalresponseduetoreleasedparacrinefactors andcytokinesforOAamelioration(Persetal., 2018). Tranetal. (2019) employedSVFtoregeneratedamagedkneecartilageof OApatients,revealingatrendtowardabettere cacyofSVF withthemicrofracturemethodforOAtreatmentoveraperiodof twoyears. HongZ.etal. (2019) alsosuggestedthatintra-articular SVFinjectionwasasafetreatmentofOA,andcoulde ectively relievepain,improvefunction,andrepaircartilagedefectsin patientswithbilateralsymptomatickneeosteoarthritis.MFAT couldreducethephaseofcellmanipulationwithoutexpansion orenzymatictreatmentinashortperiod(Paolellaetal., 2019).In aninflammatorycellmodelofOAsynoviocytes,MFATreduced typicalmacrophagesmarkersanditspotentialitytoinducean anti inflammatorye ecttoaddressOA(Mautneretal., 2019). Asthecytoprotectiveandanti-inflammatorypropertiesof ASCsinhumanchondrocytesandexperimentalOAmaybe mediatedbyparacrinee ects,theparacrinemediatorsASC-exos areattractiveforalternativetherapiesofOA.ASC-exosmightbe safer,cheaper,andmoree ectiveOAtherapy(Persetal., 2015). ASC-exosareabletodownregulateinflammationandoxidative
stress,whichmightsuccessfullymediateantisenescenceinOA (WangQ.etal., 2020).Theintra-articularinjectionofASCexoscouldinhibitcartilageandsubchondralbonedegradation, decreaseosteophyteformation,andanti-synovialinflammation, thusslowingtheprogressionofOA(ZhangR.etal., 2019). Tofiño-Vianetal. (2017) showedthatbothASC-CMandASCexosloweredtheproductionofIL-1b-stimulatedinflammatory mediatorsIL-6andprostaglandinE2(PGE2),down-regulated senescence-associated b-galactosidase(SA-b-gal)activity,and reducedtheaccumulationofphosphorylatedhistoneH2AX (gH2AX),inOAosteoblasts.Furthermore,inthenextstudy, theyconfirmedthatmicrovesiclesandexosomessecretedfrom ASCscoulda ectthemetabolismofOAchondrocytesby modulatinginflammatoryanddegradativepathwaysassociated withjointdestruction(Tofiño-Vianetal., 2018). Zhaoetal. (2020) separatedthepatientASC-exos,whichexertedastrong stimulatorye ectonchondrocytemigrationandproliferation withtheupregulationofmiR-145andmiR-221inthe modeloftheinflammation-inflictedoxidativestress.Woo etal.alsoconfirmedthathumanASC-EVscouldpotentially protectcartilagefromdegenerationandcoulddelaycartilage degenerationinOAratandmousemodels.Themechanism wasprobablythathumanASC-EVssuppressedIL-1b upregulatedcatabolicmoleculesandenhancedtypeIIcollagen expressioninhumanOAchondrocyte(Wooetal., 2020). Ragniestablishedan invitro modelofhumanfibroblast-like synoviocytes(FLSs)fromOApatients,showingthatASC-EVs possessedtheimmunoregulatorypropertiesforOAregulation andthathyaluronanwasinvolvedinASC-EVsinternalizationin FLSs(Ragnietal., 2019).
Thesepioneeringresultsreinforcedthegreatprospectsfor ASC-exosandASC-EVsasanoveltherapeuticoptionfor OA.However,thenumberofstudiesissmall.Inthecontext ofOA,althoughtheASCsandSVFhavebeenconfirmed theirclinicallytherapeutice cacyandsafety,theASC-exos therapieshavenotyetbeenusedinclinicaltrials.Therestill needstoexecuteadetailedexplorationinlargecohortsto investigatethatthefunctionsandmechanismsofASC-exos arenecessary.Inpre-clinicalstudies,theoptimizedconditions andobtainmentsforASC-exos invitro andthemechanismsof ASC-exos invivo requirefurtherstudies.Inclinicaltrials,the ASC-exosbasedtherapyshouldsetoptimalcriteria,including exosomeconcentrationanddose,injectiontimesandintervals. Inaddition,thecomprehensiveimmuneimpactfollowingthe ASC-exosadministrationshouldbeperformedtodetermine theimmuneresponseoftherecipient.Totally,ASC-exosmay representthee ectiveclinicalstrategyofOAoncetrials havebeenfullycontrolledandtheirbenefitsandsafetyhave beenfullyassessed.
ASC-EXOSINOBESITY
Obesityisagrowinghealthpandemicwhoseglobalprevalence hasincreaseddramaticallyoverthelastfewdecades.Inaddition tobringingthephysicalchanges,obesityalsocausesconsiderable obesity-relatedinflammationandmetabolicdisorders,including
dysfunctionofadiposetissueandinsulinresistanceinkey metabolicorgansandinsu cientsecretionofinsulinbythe pancreas(ZhangB.etal., 2019).Apartfromtheenergystorage function,theadiposetissueisalsoanimportantendocrine tissueandagreatsourceofASC-exos.ASCsplaycriticalroles incontrollingobesity-associatedinflammationandmetabolic disorders.Thus,thesecretionquantityandfunctionofASCexosarehypotheticallyshapedbyobesity. Zhaoetal. (2018) foundthatASC-exoscouldtransferintomacrophagestoinduce anti-inflammatoryM2phenotypesthroughthetransactivation ofarginase1(Arg-1)andIL-10byexosome-carriedactive STAT3,andincreasetheexpressionofuncouplingprotein 1(UCP-1)topromotewhiteadiposetissue(WAT)beiging, therebyimprovingobesity-relatedinflammationandmetabolism (Figure3).Mechanistically,thisstudydelineatedanovel exosome-mediatedASC-macrophagecross-talkthatfacilitated immuneandmetabolichomeostasisinWAT,thusprovidinga potentialtherapyforobesityanddiabetes.
Extracellularvesiclesbelongtoaheterogeneitysystem, includingexosomes,apoptoticbodies,microvesicles(PerezHernandezetal., 2017).ItisworthnoticingonASC-EVs peculiarityindi erentphysiologicalorpathologicalcontexts. TheconcreteuseofASC-EVsincell-basedtherapyintheobese settingshouldbetakenintoaccount.Somestudiessuggested thatobesityordiabetescouldimpairthecapacityofASCsfor anti-inflammationandwoundhealing,aswellasinfluencethe productionandbioactivitiesofASCs-exos,thusincreasingthe riskforimmuneormetabolicdisorders(Strongetal., 2016). Togliattoetal. (2016) investigatedthetherapeuticimpactofASCEVsrecoveredfromobesesubjectsvisceralandsubcutaneous tissues.ComparedwithASC-EVsfromnon-obesesubjects,ASCEVsfromobesesubjectsshowedimpairedangiogenicpotential invitro becauseofthedecreaseofEVscargoesincludingVEGF, MMP-2,andmiRNA-126(Togliattoetal., 2016).Obesityimpacts onASC-EVsandASC-exospro-angiogenicpotentialandmay raisemoreconcernsaboutthesecrucialtissuerepairmediators.
ASC-EXOSINFATGRAFTING
Fatgraftinghasbeengaininglargeattentionintissue augmentationoverthepastdecadesforhemifacialatrophy, lipodystrophy,andbreastreconstruction(TanandLoh, 2017). BothASCsandfatgraftcanexertawrinkle-reducinge ectand synergisticallya ectcollagensynthesisandneovascularization (Kimetal., 2019).However,thesurvivalrateoffatgrafts remainsunsatisfiedduetothedevascularizationandischemic injuryofadiposetissuesmadebyliposuction,injection,and long-termfatabsorption.Severaltechnicalmodificationshave beendescribedtoenhancefatgraftsurvivalwithmorecomplete adiposetissuestructure.Cell-assistedlipotransfer(CAL)isan e cienttechniquethatmixesASCs-richSVFwithlipoaspirate, forreinforcingadipogenesisandangiogenesistoaugmentfat graftreliability(Yoshimuraetal., 2008).Importantly, Kølle etal. (2020) conductedarandomizedcontrolledclinicaltrial comparingfatgraftsenrichedwith exvivo-expandedautologous ASCstonon-enrichedfatgraftsinbreastaugmentation,

FIGURE3| ASC-exoscouldimproveobesity-relatedinflammationandmetabolism.Intheobesitymicroenvironmentofmice,ASC-exoswasabletoreducethe secretionofiNOS,TNF-a,andIL-12,andincreasethesecretionofArg-1andIL-10toactivateM2macrophagepolarization,thusamelioratingWATinflammation. ASC-exosalsoincreasedtheexpressionofUCP-1topromoteWATbeiging,therebyimprovingobesity-relatedinflammationandmetabolism.ASCs, Adipose-derivedstemcells;ASC-exos,ASC-derivedexosomes;WAT,WhiteAdiposeTissue;BAT,BrownAdiposeTissue;iNOS,InducibleNitricOxideSynthase; TNF-a,TumorNecrosisFactorAlpha;IL-12,Interleukin12;Arg-1,Arginase1;IL-10,Interleukin10;UCP-1,UncouplingProtein1.
demonstratingthatASCssignificantlyimprovedthevolume retentionoffatgraftscomparedwithconventionalfatgrafting andnoadversee ectswereobserved.Thisresultfurther confirmedthesignificanceofCALinbothreconstructiveand cosmeticvolumerestoration.However,limitationsofcell-based therapieshaveconstrainedtheiruse,includinguncommitted di erentiation,unwantedsidee ects,immunerejection, andregulatoryhurdles(O’Halloranetal., 2018).ASC-exos havebeenidentifiedtomotivatefunctionalrecoveryinfat graftingandfilling.
Recently, Hanetal. (2018) discoveredthatco-transplantation ofASC-exosandhypoxia-treatedASC-exosinnudemouse modelsofsubcutaneousfatgraftingbothcouldparticipatein neovascularizationandattenuateinflammationinthegrafts.In thesubsequentstudy,theyfurtherinvestigatedthemolecular mechanismofhypoxia-enhancingpromotingthee ectofASCexosinfatgrafting,raisingthatthehypoxia-treatedASC-exos significantlyenhancetheangiogenesisoftheischemicadipose tissuebyregulatingVEGF/VEGF-Rsignalingpathway(Han etal., 2019).AsthefunctionalnanovesiclessecretedbyASCs, ASC-exospossessmoreadvantagesinimprovingthevolume retentionrateoffatgraftsthanASCs. ChenB.etal. (2019) have shownthatASCs-exoswereequivalenttoASCsinimproving thesurvivaloffatgraftsbyup-regulatingearlyinflammation andenhancingangiogenesisinmice.Whereasduringthemid tolatestagesoffatgrafting,ASC-exosexertedapro-adipogenic e ectandalsoincreasedcollagensynthesislevel,similarly,to theirsourceofASCs(ChenB.etal., 2019). Zhuetal. (2020) foundthatinan invivo mousemodelofautologousfatgrafting,
graftstreatedbyASC-EVssignificantlyexhibitedsurvivalwith moreneovascularization,increasedfatretention,anddecreased fibrosisandnecrosis.TheASC-EVsuptakebymacrophages promotedM2typepolarizationandcatecholaminesecretion, thustheM2macrophages-CMcouldenhancebrowningadipose di erentiationwithenhancedenergyexpenditure(Zhuetal., 2020).Theseresultssuggestthat,asacell-freestrategy,ASCexoscouldbeane ectiveandappealingpathtoheightengraft survivalinlipotransfer(Figure4).However,amajordrawbackof fatgraftingistheunpredictabilityoftheclinicaloutcomesince highvolumeabsorptionratesarecommon.Itisnotyetclear howlongthise ectlastsorwhetherASC-exosfrombothhealthy individualsanddiseasedpatientsareequallye ective.Further experimentalandclinicalstudiesarerequiredtodetermine theoptimalconcentrationandsourceofASC-exosenrichment requiredtoimprovefatgraftwithoutsidee ects.
ASC-EXOSINBREASTCANCERAND BREASTRECONSTRUCTION
Adipocytesaretheabundantcellularcomponentsinthebreast cancermicroenvironment.Theinvasionofbreastcancercells leadstotheproximityofcancercellsandadipocytes,whichhave beenreferredtoascancer-associatedadipocytes(CAAs)(Choi etal., 2018; DeLopeetal., 2018).CAAsexhibitafibroblasticlikemorphologyandoverexpressedECMproteins.CAAscan interactwithcancercellsviaseveralwaystotriggerbreastcancer initiation,metastasis,angiogenesis,andcachexia.Studieshave

FIGURE4| Thesequenceflowdiagramoffatgrafting.Intheclinicalapplicationoffatgraftingforfacialfillerandbreastaugmentation,sterileadiposetissueis collectedthroughliposuction.Afterenzymedigestionandcentrifugationofthecollectedadiposetissue,theobtainedheterogeneousmixtureofendothelialcells, smoothmusclecells,fibroblast,pericytes,mastcells,andpreadipocytesisnamedSVF.InCAL,halfthevolumeoftheaspiratedfatisprocessedforisolationofthe SVFcontainingASCs,andtheotherhalfoftheaspiratedfatispreparedforgrafting.Finally,theSVF-supplementedfatisinjectedintothetargetsitesofgrafting.In animalstudiesofthesubcutaneousfatgrafting,co-transplantationofASC-exoswithadipocytescaneffectivelypromotetheneovascularizationtoenhancesurvival inthefatgrafts.ASCs,Adipose-derivedstemcells;ASC-exos,ASC-derivedexosomes;SVF,StromalVascularFraction;CAL,Cell-AssistedLipotransfer,CAL.
demonstratedthesurvivalrate,growth,andinvasivenessof tumorsafterinteractingwithASCs,whichareCAAscomponents. Byexcretingavarietyofbioactivefactorsincludingvisfatin, adipsin,CCL5,IGF,HGF,VEGF,IL-8,andTGF-b,ASCscanexert biologicalinfluencesonproliferation,epithelial-mesenchymal transition,andmetastasis(Huangetal., 2019; Gotoetal., 2019). ASCscoulddi erentiateintocancer-associatedfibroblastsin breastcancerenvironment,especiallywithamorepronounced e ectonobesepatients(Choetal., 2012; Eckeretal., 2019).
Theexosomes,releasedfromtheadipocytes andASCs,are emergingasanewtypeinthecrosstalkbetweenbreasttumors andadipocytes(Sauteretal., 2019; Teufelsbaueretal., 2019). Previously, Linetal. (2013) investigatedthee ectofASC-exos onbreastcancerMCF7cells,showingthatASC-exosactivated theWntandHhsignalingpathwaystostrengthentumor cellmigration.Ontheotherhand,thebreastcancer-derived exosomescouldreciprocallyshapethefunctionofadipocytes. ArecentstudyconfirmedthatmiRNA-144andmiRNA126-secretingexosomesfrombreastcancercellsco-cultured withadipocytescouldpromotecancermetastasisbyinducing beige/browndi erentiationandreprogrammingthemetabolism insurroundingadipocytes(Wuetal., 2019).Interestingly, Lee etal. (2019) emphasized thee ectofcancerstemcells(CSCs) treatedwithexosomesderivedfromosteogenicdi erentiating humanASCs.Theresultsshowedthattheexpressionofdrugresistancegenes(ATPbindingcassettetransporter),thebreast cancergenefamily(BCRA1andBCRA2),andtheErbBgene familywereallsignificantlydecreasedinCSCs(Leeetal., 2019).
TheosteoinductiveASCs-exoscouldbeabiochemicalcuefor CSCsreprogrammingintonon-tumorigeniccellsandcontribute toovercomingtherapeuticresistance. Heetal. (2018) noted thatMSC-CMcouldalsosuppressthegrowthofbreastcancer cellsbyinhibitingtheSTAT3signalingpathwayandMSCCMcombinedwithradiotherapysignificantlydelayedxenograft tumorgrowthinmice.
Forpatientswithbreastcancer,breastreconstructionrequires theunificationoftumorsafetyandaesthetics.Fatgrafting usingmammaplastymightcomplicatebreastimagingand breastcancersurveillanceduetothevaryinglevelsofnodule formationandcalcificationsinbreasttissue(Bayrametal., 2019). TheASCsassistedfattransplantationisacommontechnique forCALwhichmakesgreatimprovementsinthesurvival rateoftransplantedfatwithlessfatresorptionandnecrosis forthefavorableaestheticoutcomeofbreastaugmentation. Nevertheless,tumorsafetyinbreastreconstructionisthe primaryconsideration(O’Halloranetal., 2017). Silvaetal. (2019) suggestedthatfattransplantationdidnotpromote tumorproliferationandmetastasisinmousemodelsof residualbreastcancer.Krastevetal.carriedoutalongtermfollow-uptrailof587breastcancerpatientswho underwentautologousfattransplantationandtraditionalbreast reconstruction,respectively.Theresultsshowedthatafter 5yearsthelocalrecurrencerateofbreastcancerhadno significantdi erenceinthesetwomethods(Krastevetal., 2019).Similarly, Gentileetal. (2019a) alsoconducteda3-year follow-upof121patientswithbreastcancerwhounderwent
adiposestromalcell-enhancedengineeringfattransplantation, whichalsoshowedsatisfactorysafetyande ectiveness.Thus, theseclinicalstudiesusingASCsreportsafetydatain breastreconstruction.
Tosomeextent,exosomesoriginatefromthetumoradipocytesinteractioninacomplexmetabolicnetworkfavoring malignantprogression.However,atthisstage,therearelimited studiesonASC-exosusedforbreastreconstruction.Inclinical trialsandbasicexperiments,itisworthnotingthattheroleof ASC-exosinbreastreconstructionafterbreastcancersurgery isnotentirelyclear.Toavoidthetumorigenicpotentialrisk, themechanismsofASCsandASCs-exosinbreastcancer andbreastconstructionremaintobecarefullyelucidated. Additionally,itisimportanttoconductrandomizedtrials forilluminatingthesafetyande cacyoftransplantedASCs orASC-exos,incomparisontocommonlyapplyingwith conventionaltechniques.
CONCLUSIONANDPERSPECTIVE
Adipose-derivedstemcellsarestemcellpopulationswithinthe adiposestromalcompartmentthathavemultipledi erentiation potentials,easyacquisition,andthehighyield,makingASCs attractivefortissueengineeringandcelltherapyasanideal stemcellsource.ASC-exos,containingimportantparacrine mediators,havereceivedmuchattentionrecentlyforfunctioning inintercellularcommunication.Ascell-to-cellmessengers, ASC-exosarevaluablesupplementwiththeregenerativeand reconstructivestrategies,andisparticularlysuccessfuland safelyappliedtochronicwounds,scars,boneinjuries,and cosmeticsurgery.BothASCsandASC-exospossesshuge applicationpotentialonthetissueregenerativefieldinplasticand cosmeticsurgery.
Intermsofsourceandproduction,ASCsboastthebenefits thatthestemcellyieldfromfatismuchgreaterthanthatobtained fromothersources.ASC-exospossessadvantagesofhugesources andhighavailability,indicatingthatASC-exoscanbean alternativewhenexosomesfromothersourceshavedi culties toextractorarenotsuitablefortherapy(Haetal., 2020). ASC-exosandotherMSC-exoshavesimilarcharacteristics, suchasmorphologyandcellsurfacemarkers,butsome importantbiologicaldi erenceshavebeenfoundinproliferation, geneexpression,di erentiationability,andimmunosuppressive pathways.Forexosomesfromdi erentsourcesofMSCs,they partlycontainsimilarproteins.Interestingly, Villatoroetal. (2019) showedthatcanineASCshadadvantagesofproliferative capacity,whereascanineBMSCsshowedasignificantlyhigher secretoryproductionofsomesolublefactors.Therefore,when selectingthesourceofMSCs,thosebiologicaldi erencesshould beconsideredforcellimplantationorthesecretomeisdirectly usedforspecificclinicalapplications.Inaddition,itisobvious thatthoseofMSC-exosvaryaccordingtotheoriginofMSCs. However,comparativestudiesofMSC-exosbytheirtissueorigin arestilllimited,andonlyafewreportshavecompareddi erent exosomeswithinthesamestudy.Forexample,comparedwith humanBMSC-exos,ASC-exosexhibitedahigheractivityof
neprilysin,whichwasanamyloid b peptidedegradingenzyme, suggestingthetherapeuticrelevanceofASC-exosinAlzheimer disease(Katsudaetal., 2013).ASCsmightbesaferandmore e ectivethanthatfromBMSCs,includinglackofmajor histocompatibilitycomplex(MHC)classIIonASCs,induction ofhigherlevelsofanti-inflammatorymacrophagesandprolymphangiogenicactivity(Maguire, 2019).
Furthermore,comparedwithASCs,ASC-exoso erdistinct advantagesthatuniquelypositionthemashighlye ective bioactiveconstituents.Theproposedseveralmainreasonsare asfollowsbasedonpreviousreports:(1)Biosafety:exosomes, includingASCs-exos,arenaturallyoccurringsecretedmembrane vesiclesfromthereleasingcellswithlowerimmunogenicity, posingthefavorablebiosafetyofASC-exos.(2)Biological activity:althoughwithoutsimilarself-di erentiationfunction asASCs,ASCs-exoscontainabroadrepertoireofcargoes, includingnucleicacid,proteins,andenzymesformodulating multiplecellularactivities,actinginbothimmediateandremote areasinaparacrinemanner.(3)Stability:theASC-exosare comprisedofnaturallybimolecularphospholipidstructure, providingsu cientstabilitytoavoidbiodegradation.Thus,ASCexosareverywelltoleratedinbiologicalfluidsalongwiththe ubiquitouspresence.(4)Carrierfeatures:ASCs-exosfunctionas acarrierforitself,alsocanbeusedasacomponentuploadedin well-designedbiomedicalmaterials.Duetotheintrinsichoming capacityorartificiallymodifiedtargetingability,ASC-exoscan serveasstableande ectivecarrierstoloadspecificproteins, lipids,andgeneticmaterial,andpreferentiallytransportitto targetedtissuesororgans.Exosome-baseddeliverysystemsmay beofprecedenceinthetreatmentofdiseasesattributingto theirendogenousorigin,whichminimizestheimmunogenicity andtoxicityandexertstheoptimale ect.Thedevelopment ofmultifunctionalbioactivebiomaterialswithlong-termASCexosomesreleaseisalsoveryimportanttosynergisticallyenhance tissueregenerationandtherapy.Withtheabovedesirable properties,ASC-exosholdclinicallypromisingpotentialinthe novelcell-freetherapeuticstrategies.Therefore,asmentioned inthisreview,ASC-exosareexpectantlyrecognizedasnew candidatesfortheskinanti-agingtherapy,skininflammation treatment,woundandscarrepair,flapgrafting,bonetissuerepair, obesityprevention,fattransplantation,breastcancer,andbreast reconstruction(Table2).Collectively,thesefindingsreinforce thesignificanceofASC-exos-participatedcellcommunication andapplicationsinplasticandcosmeticsurgery.Thoughlacking adequateapplicationinclinicalpractice,ASC-exosareplayingan increasinglygreaterroleespeciallyinmaximizingthetherapeutic e ectofdermopathicfeaturesandtissuereconstruction.
Nevertheless,therearestillsomechallengesinthe developmentofASC-exosapplication.Firstly,obtaining ASCscontinuestobeaninconvenience.ThesourcesofASCs, aswellastheseparationandcultivationmethods,medium compositionanddosage,cellpassage,cellfusionandviability, mycoplasma,andothermicrobialcontamination,allshould betightlycontrolledtomaintainreliablebiologicale cacy andASC-exoswithhighquality.Secondly,theextractedASCexosmighthavelowpurityandyieldinthelab.Nowadays ASC-exosseparationmethodsincludeultracentrifugation,
TABLE2| ThemechanismsandfunctionsofASC-exosintissueregeneration.
DiseaseSourceModelFunctionMechanismReferences
SkinagingHuman
ASC-CM
Human ASC-CM
Human BMSC-exos
Atopic dermatitis
PhotoaginginducedHDFsand HaCaTs
Photoaginginduced HDFs
PhotoaginginducedHDFsand mice
HumanASC-exosADmodelof NC/NGAmice
HumanASC-exosADmodelof SKH-1mice
SkinwoundHumanASC-exosSkinlesionmodel ofHaCaTs
HumanASC-exosSkinlesionmodel ofHaCaTsand HDFs
HumanASC-exosfull-thicknessskin woundofmice
HumanASC-exosDiabeticfootulcer ofrat
HumanASC-exosFulllayerskin woundofmice
ASC-exosSkinwoundof diabeticmice
ScarformationHumanASC-exosSkinwoundof mice
HumanASC-exosSkinwoundof mice
SkinflapinjuryHumanASC-exosArtificialdermis prefabricatedflap andlegwoundof rat
SkinflapI/R injury
HumanASC-exosSkinflapI/Rinjury ofmice
HumanASC-exosSkinflapI/Rinjury ofmice
BonedefectHumanASC-exosHypoxic-ischemic osteocyte
HumanASC-exosCalvarialdefectsof rats
HumanASC-exosHumanprimary osteoblasticcells
OsteoarthritisHumanASC-exosOAmodelof osteoblasts
HumanASC-exosChondrocytes stimulatedwith H2 O2
Photoaging prevention
Photoaging prevention
Photoaging prevention
Dermatitis improvement
EpidermalBarrier Repair
HaCaTsviability enhancement
HaCaTsandHDFs viability enhancement
DownregulatetheactivationandtranscriptionofUVB-induced signalingpathwaysandupregulatetheexpressionof antioxidantresponseelements
PDGF-AAinASC-CMpromotedHDFsproliferationand activatedPI3K/AktsignalpathwaytofacilitateECMdeposition andremodeling
ProduceROSatalowlevel,downregulateTNF-a,upregulate TGF-b toincreaseMMP-1andprocollagentypeIexpressionfor collagensynthesis
Decreasethelevelsofinflammatorycytokinesandreducethe numberofeosinophilsintheblood,andtheinfiltrationofmast cells,dendriticepidermalcells
Reducetrans-epidermalwaterlossandenhanceepidermal lamellarbodiesandformlamellarlayerattheinterfaceoftheSC andstratumgranulosum.
FosterHaCaTsproliferation,migration,andinhibitapoptosis throughWnt/b-cateninsignalingpathway
ASC-exoscontainingMALAT1couldmediateH2O2-induced woundhealingviatargetingmiR-124throughactivatingthe Wnt/b-cateninpathway
WoundhealingPromotefibroblastsproliferationandmigrationandoptimize collagendepositionviathePI3K/Aktsignalingpathwayto acceleratewoundhealing.
WoundhealingASC-exosoverexpressing-Nrf2promotedtheproliferationand angiogenesisofendothelialcells,andincreasedtheexpression ofwoundgrowthfactor,decreasedthelevelsofinflammation andoxidativestress-relatedproteins.
WoundhealingASC-exosoverexpressingmiRNA-21enhancedthemigration andproliferationoftheHaCaTsbyincreasingtheMMP-9 expressionthroughthePI3K/AKTpathway
Woundhealingmmu_circ_0000250enhancedthetherapeuticeffectof ASCs-exosomestopromotewoundhealingindiabetesby absorptionofmiR-128-3pandupregulationofSIRT1
ScarremovalInhibitcollagenexpressiontoreducescarformationinthelate stageofwoundhealing
ScarremovalRegulatetheratiosoftypeIIIcollagen/typeIcollagen, TGF-b3/TGF-b1,andMMP-3/TIMP-1,aswellasfacilitating HDFsdifferentiation
FlapvascularizationUpregulationofmiRNA-760anddownregulationof miRNA-423-3pinASC-exoscouldregulatetheexpressionof ITGA5andHDAC5genes,respectively,topromotethe vascularizationoftheskinflap
FlaprepairIL-6highlycontainedinASC-exoscouldenhanceskinflap recoveryandangiogenesisafterI/Rinjury
FlaprepairH2 O2 -treatedASC-exosincreasedtheneovascularizationand relievetheinflammationandapoptosisoftheflapafterI/Rinjury
OsteogenesisAmeliorateosteocyteapoptosisandosteocyte-mediated osteoclastogenesisbyloweringtheexpressionofRANKL
BoneformationASC-exosoverexpressingmiRNA-375wereabsorbedby hBMSCs,andinhibittheexpressionofIGFBP3toexert osteogeniceffects
BoneformationTNF-a-preconditionedASC-exospromotedtheproliferation anddifferentiationofhumanosteoblaststhroughtheWnt signalingpathway
Inflammation improvement
Lietal., 2019
2020
Huetal., 2019
Choetal., 2018
Shinetal., 2020
Maetal., 2019
2020
2018
LiX.etal., 2018
Shietal., 2020
2016
2020
Puetal., 2017
Baietal., 2018
Renetal., 2019
ChenS.etal., 2019
Luetal., 2017
DownregulateSA-b-galactivityandtheaccumulationof gH2AX Tofiño-Vianetal., 2017
ChondrogenesisDownregulatedthepro-inflammatorymarkersIL-6,NF-kBand TNF-a,whiletheyupregulatedtheanti-inflammatorycytokine IL-10whenco-culturedwithactivatedsynovialfibroblasts, promotedchondrogenesisinperiostealcellsandincreased collagentypeIIand b-catenin
Zhaoetal., 2020
(Continued)
Guoetal.,
Heetal.,
Zhangetal.,
Yangetal., 2020
Huetal.,
Wangetal., 2017
Xiongetal.,
TABLE2| Continued
DiseaseSourceModelFunctionMechanismReferences
ObesityMouseASC-exosObesemiceObesitypreventionActivateM2-typemacrophagepolarization,improve inflammation,andpromotethebrowningofwhiteadipose tissue
FatgraftingHumanASC-exosMiceFatgrafts survivalpromotion
Mouse ASC-exos MiceFatgrafts survivalpromotion
BreastcancerHumanASC-exosBreastcancer MCF-7cells
Hypoxia-treatedASC-exosenhancedtheangiogenesisby regulatingtheVEGF/VEGF-Rsignalingpathway
Promoteangiogenesisandup-regulateearlyinflammation,exert proadipogeniceffectandincreasecollagensynthesisduringthe midtolatestages
TumorprogressionActivatetheWntandHhsignalingpathwaystostrengthenthe growthofMCF-7cells
Zhaoetal., 2018
Hanetal., 2019
ChenS.etal., 2019
Linetal., 2013
ASCs,Adipose-derivedstemcells;ASC-exos,ASC-derivedexosomes;HDFs,HumanDermalFibroblasts;HaCaTs,HumanKeratinocytes;UVB,UltravioletB;ASC-CM, ASC-ConditionedMedium;ECM,ExtracellularMatrix;H2 O2 ,HydrogenPeroxide;PDGF-AA,Platelet-DerivedGrowthFactor-AA;ROS,ReactiveOxygenSpecies;MMP1/9,MatrixMetalloproteinase1/9;TNF-a,TumorNecrosisFactorAlpha;TGF-b,TransformingGrowthFactorBeta;IL-4/5/6/13,Interleukin4/5/6/13;VEGF,Vascular EndothelialGrowthFactor;Nrf2,NF-E2-relatedfactor2;TIMP-1,TissueInhibitorofMetalloproteinases-1;I/R,Ischemia-Reperfusion;RANKL,ReceptorActivatorof NuclearFactorKappaBLigand;SA-b-gal,Senescence-Associated b-galactosidase; gH2AX,PhosphorylatedHistoneH2AX;Bcl-2,B-celllymphoma/leukemia2;Bax, Bcl-2-associatedXprotein.
exclusion,ultrafiltration,two-aqueoussystem,immunoa nity, andpolymerprecipitation.Althoughtheultracentrifugation isthemostcommonmethodforlargelyseparatingexosome, butaccompaniedbytheshortcomingsoftime-consuming, labor-intensive,costlyinstrumentation,andmultipleovernight centrifugationsteps.Asitisoverlyidealistictocompletelyisolate ASC-exosfromothercomponents,thee cient,appropriate,and a ordabletechniquesshouldbethoughtfultoacquireexosomes. Thesetechnologiesstillneedtoachieveequilibriuminimproving theyieldandpurityofASC-exos.
Thirdly,giventhatplasticsurgeryfrequentlyperforms liposuctionandautologousfattransplantation,plasticsurgeons andresearchershaveuniqueadvantagesinobtainingASCsand ASCs-exos.However,intheapplicationofASC-exosintissue regenerationofplasticandcosmeticsurgery,therearemany aspectsworthnoting.EmergingstudieshavereportedthatASCexoscanbeutilizedinplasticandcosmeticsurgery,butalmost allthesestudiesarelimitedincellularandanimalassays,without thelargescaleexplorationofclinicaltrialslikeASCs.Inaddition, exosomescouldbeabsorbedonhumanskin,butevenifinthe existingstudies,thereisstilllackofenoughreportsinskinaging, atopicdermatitisandskinflapsinjury,whichareimportantand intractableskindisease.Therefore,theactualclinicalprospects ofASC-exosarealmostablank,alsomeaningthatthereexist vastspacefordevelopment.Anotherimportantpointisthat auxiliarytherapyofASC-exos.Clinically,forplasticandcosmetic surgery-relateddiseases,lasertherapy,drugtherapy,tissuefilling andsurgicaloperationarecommontreatmentsandachievegood clinicale ects.Nevertheless,toacertainextent,ASC-exoscan onlybeusedasasupplementarytreatment,ratherthanasole therapyinthebeginning.Mostoftheexistingstudiesfocus onASC-exosasthemainorsoletreatment.Hence,whether ASC-exospossesssynergistice ectsorinhibitorye ectsonthe above-mentionedcommontreatmentsneedsfurtherresearch.
AccordingtotheaboveconsiderableinsightsintotheASCexosapplicationsandlimitations,itneedstocarryoutmore comprehensiveresearchesinthefollowingaspects.(1)Quality control.Thereexistsasubstantialdegreeofheterogeneityin
dosingregimensinthereportedcases.Forbetteroutcomes ofplasticandcosmeticsurgery,ASC-exosutilizationdetails, includingthestorageconditions,e ectivedoses,concentration, andperiodoftreatment,arealltheimportantpoints.It isnecessarytofurtherexploresuitablemicroenvironmental conditionsorgeneticengineeringtechniquestoascertainthe e ciencyofASC-exostreatment.(2)Componentsandfunctions. TheASC-exosarecomprisedofmultiplebioactivecomponents. Thecomplexmulti-componentsubstancesinASC-exosmay producediversebiologicalcharacteristicswhenfinallyusedin practice.Thepropensityforsomecontroversiale ectsofASCexosiscontingentuponthetypeandstateofthehostcells, thetypeandstateoftherecipientcells,andtheinteracting microenvironments.ForpossiblyutilizingASC-exosinclinical application,adeepunderstandingofASC-exosandtheir componentsisthepriority.Identifyingthekeycomponentsand reformingASC-exostooverexpressthesecomponentsmight maximizethetherapeutice ectwhilereducingthesideor o -targete ects.Inthesubsequentstudies,ongoingadvances intheanalysisofthefunctionofASC-exoswillprobably unraveltheASC-exoscharacteristics,allowingdeepeningthe understandingoftheirroleinpathogenesisandregeneration properties.(3)Carrierpeculiarityexploration.ASC-exosisof carrierpeculiarityduetotheintricatestructureofexosomes.It meansthatexosomesaretheidealtherapeuticdeliverysystem. ASC-exosaree ectivetoolsforcargotransportationofe ective therapeuticagentswithlowerimmunogenicityandtoxicity. Ontheotherhand,ASC-exoscouldalsobeuploadedinthe specificnanomaterialsorhydrogelmaterialstopromoteskin repair.EngineeringASC-exostobee ectiveandsaferequires acomprehensiveunderstandingoftheirnecessarycomponents, includingbutnotlimitedtomembranestability,architecture, andpackagingoftheinteriorcomponents.(4)Largeclinical trials.Atpresent,excavationsonASC-exosstudiesbelongto basicresearchoranimallevel.Theseexperimentscannotclearly andactuallyreflecttheASC-exosusagesandtheirphysiological levels invivo.Infattransplantation,itisofgreatvalueto clinicallyexplorewhethertheexogenousASC-exoscouldbeused
forcelltransplantationwithsafetyande ectiveness.Especially, clinicalimplementationofanyoperationmustbebasedon safety.However,therolesofASC-exosinsomediseases remaincontroversial.TheoncologicalsafetyofASC-exosin breastcancerandbreastreconstructionisworthyofextreme attention.Moreover,theASC-exosimpactsonthecommon treatmentofplasticandcosmeticsurgeryareurgentclinical problems.Intheend,largerprospective,blinded,randomized clinicaltrialsareinurgentneedtofurtherestablishthelongterme ectiveness,safetyanddoseofASC-exosinhumans. Collectively,ASC-exosarepromisingcandidatesforcell-free therapystrategyanddeserveintenseinvestigationtoaccelerate ASC-exosapplicationsintissueregenerationofplasticand cosmeticsurgery.
REFERENCES
Alves,N.O.,daSilva,G.T.,Weber,D.M.,Luchese,C.,Wilhelm,E.A.,andFajardo, A.R.(2016).Chitosan/poly(vinylalcohol)/bovinebonepowderbiocomposites: apotentialbiomaterialforthetreatmentofatopicdermatitis-likeskinlesions. Carbohydr.Polym. 148,115–124. doi:10.1016/j.carbpol.2016.04.049 Bai,Y.,Han,Y.,Yan,X.,Ren,J.,Zeng,Q.,Li,X.,etal.(2018).Adiposemesenchymal stemcell-derivedexosomesstimulatedbyhydrogenperoxideenhancedskin flaprecoveryinischemia-reperfusioninjury. Biochem.Biophys.Res.Commun. 500,310–317. doi:10.1016/j.bbrc.2018.04.065
Bajek,A.,Gurtowska,N.,Olkowska,J.,Kazmierski,L.,Maj,M.,andDrewa, T.(2016).Adipose-derivedstemcellsasatoolincell-basedtherapies. Arch. Immunol.Ther.Exp. 64,443–454. doi:10.1007/s00005-016-0394-x Bayram,Y.,Sezgic,M.,Karakol,P.,Bozkurt,M.,andFilinte,G.T.(2019).Theuse ofautologousfatgraftsinbreastsurgery:aliteraturereview. Arch.Plast.Surg. 46,498–510. doi:10.5999/aps.2019.00416
Bellei,B.,Migliano,E.,Tedesco,M.,Caputo,S.,Papaccio,F.,Lopez,G.,etal. (2018).Adiposetissue-derivedextracellularfractioncharacterization:biological andclinicalconsiderationsinregenerativemedicine. StemCellRes.Ther. 9:207. doi:10.1186/s13287-018-0956-4
Bi,H.,Li,H.,Zhang,C.,Mao,Y.,Nie,F.,Xing,Y.,etal.(2019).Stromalvascular fractionpromotesmigrationoffibroblastsandangiogenesisthroughregulation ofextracellularmatrixintheskinwoundhealingprocess. StemCellRes.Ther. 10,1–21. doi:10.1186/s13287-019-1415-6
Borciani,G.,Montalbano,G.,Baldini,N.,Cerqueni,G.,Vitale-Brovarone,C., andCiapetti,G.(2020).Co-culturesystemsofosteoblastsandosteoclasts: simulatinginvitroboneremodelinginregenerativeapproaches. ActaBiomater. 108,22–45. doi:10.1016/j.actbio.2020.03.043
Bukowska,J.,AlarconUquillas,A.,Wu,X.,Frazier,T.,Walendzik,K.,Vanek,M., etal.(2020).Safetyofhumanadiposestromalvascularfractioncellsisolated withaclosedsystemdeviceinanimmunocompetentmurinepressureulcer model. StemCellsDev. 29,452–461. doi:10.1089/scd.2019.0245
Chang,Y.W.,Wu,Y.C.,Huang,S.H.,Wang,H.M.D.,Kuo,Y.R.,andLee, S.S.(2018).Autologousandnotallogeneicadipose-derivedstemcellsimprove acuteburnwoundhealing. PLoSOne 13:e0197744. doi:10.1371/journal.pone. 0197744
Chen,B.,Cai,J.,Wei,Y.,Jiang,Z.,Desjardins,H.E.,Adams,A.E.,etal.(2019). Exosomesarecomparabletosourceadiposestemcellsinfatgraftretentionwith up-regulatingearlyinflammationandangiogenesis. Plast.Reconstr.Surg. 144, 816e–827e. doi:10.1097/PRS.0000000000006175
Chen,S.,Tang,Y.,Liu,Y.,Zhang,P.,Lv,L.,Zhang,X.,etal.(2019).Exosomes derivedfrommiR-375-overexpressinghumanadiposemesenchymalstemcells promoteboneregeneration. CellProlif. 52:e12669. doi:10.1111/cpr.12669
Cho,B.S.,Kim,J.O.,Ha,D.H.,andYi,Y.W.(2018).Exosomesderived fromhumanadiposetissue-derivedmesenchymalstemcellsalleviateatopic dermatitis. StemCellRes.Ther. 9:187. doi:10.1186/s13287-018-0939-5
Cho,J.A.,Park,H.,Lim,E.H.,andLee,K.W.(2012).Exosomesfrombreast cancercellscanconvertadiposetissue-derivedmesenchymalstemcellsinto myofibroblast-likecells. Int.J.Oncol. 40,130–138. doi:10.3892/ijo.2011.1193
AUTHORCONTRIBUTIONS
MX andQZperformedtheliteraturesearchandwrotethe manuscript.MWandYWconceivedtheprojectandrevisedthe manuscript.WH,CZ,WL,andYYeditedthemanuscript.All authorsreviewedthemanuscriptandapprovedthefinalversion.
ACKNOWLEDGMENTS
Thissectionacknowledgescontributionsfromthe ChinaGuangHuaScienceandTechnologyFoundation (No.2019JZXM001).
Choi,J.,Cha,Y.J.,andKoo,J.S.(2018).Adipocytebiologyinbreastcancer:from silentbystandertoactivefacilitator. Prog.LipidRes. 69,11–20. doi:10.1016/j. plipres.2017.11.002
DeLope,L.R.,Alcíbar,O.L.,López,A.A.,Hergueta-Redondo,M.,andPeinado, H.(2018).Tumour–adiposetissuecrosstalk:fuellingtumourmetastasisby extracellularvesicles. Philos.Trans.R.Soc.BBiol.Sci. 373:20160485. doi:10. 1098/rstb.2016.0485
Ecker,B.L.,Lee,J.Y.,Sterner,C.J.,Solomon,A.C.,Pant,D.K.,Shen,F.,etal. (2019).Impactofobesityonbreastcancerrecurrenceandminimalresidual disease. BreastCancerRes. 21:41. doi:10.1186/s13058-018-1087-7
Eming,S.A.,Martin,P.,andTomic-Canic,M.(2014).Woundrepairand regeneration:mechanisms,signaling,andtranslation. Sci.Transl.Med. 6:265sr6. doi:10.1126/scitranslmed.3009337
Figueroa,F.E.,CuencaMoreno,J.,andLaCava,A.(2014).Novelapproachesto lupusdrugdiscoveryusingstemcelltherapy.Roleofmesenchymal-stem-cellsecretedfactors. ExpertOpin.DrugDiscov. 9,555–566. doi:10.1517/17460441. 2014.897692
Fujiwara,O.,Prasai,A.,Perez-Bello,D.,ElAyadi,A.,Petrov,I.Y.,Esenaliev, R.O.,etal.(2020).Adipose-derivedstemcellsimprovegraftedburnwound healingbypromotingwoundbedbloodflow. Burn.Trauma 8,635–642. doi: 10.1093/burnst/tkaa009
Gentile,P.,Casella,D.,Palma,E.,andCalabrese,C.(2019a).Engineered fatgraftenhancedwithadipose-derivedstromalvascularfractioncellsfor regenerativemedicine:clinical,histologicalandinstrumentalevaluationin breastreconstruction. J.Clin.Med. 8:504. doi:10.3390/jcm8040504
Gentile,P.,Piccinno,M.,andCalabrese,C.(2019b).Characteristicsand potentialityofhumanadipose-derivedstemcells(hASCs)obtained fromenzymaticdigestionoffatgraft. Cells 8:282. doi:10.3390/cells80 30282
Goto,H.,Shimono,Y.,Funakoshi,Y.,Imamura,Y.,Toyoda,M.,Kiyota,N.,etal. (2019).Adipose-derivedstemcellsenhancehumanbreastcancergrowthand cancerstemcell-likepropertiesthroughadipsin. Oncogene 38,767–779. doi: 10.1038/s41388-018-0477-8
Guo,S.,Wang,T.,Zhang,S.,Chen,P.,Cao,Z.,Lian,W.,etal.(2020). Adipose-derivedstemcell-conditionedmediumprotectsfibroblastsatdi erent senescentdegreesfromUVBirradiationdamages. Mol.Cell.Biochem. 463, 67–78. doi:10.1007/s11010-019-03630-8
Ha,D.H.,Kim,H.-K.,Lee,J.,Kwon,H.H.,Park,G.-H.,Yang,S.H.,etal.(2020). Mesenchymalstem/stromalcell-derivedexosomesforimmunomodulatory therapeuticsandskinregeneration. Cells 9:1157. doi:10.3390/cells9051157
Han,Y.,Ren,J.,Bai,Y.,Pei,X.,andHan,Y.(2019).Internationaljournalof biochemistryandcellbiologyexosomesfromhypoxia-treatedhumanadiposederivedmesenchymalstemcellsenhanceangiogenesisthroughVEGF/VEGFR. Int.J.Biochem.CellBiol. 109,59–68. doi:10.1016/j.biocel.2019.01.017
Han,Y.D.,Bai,Y.,Yan,X.L.,Ren,J.,Zeng,Q.,Li,X.D.,etal.(2018).Cotransplantationofexosomesderivedfromhypoxia-preconditionedadipose mesenchymalstemcellspromotesneovascularizationandgraftsurvivalinfat grafting. Biochem.Biophys.Res.Commun. 497,305–312. doi:10.1016/j.bbrc. 2018.02.076
He,L.,Zhu,C.,Jia,J.,Hao,X.Y.,Yu,X.Y.,Liu,X.Y.,etal.(2020).ADSC-Exos containingMALAT1promoteswoundhealingbytargetingmiR-124through activatingWnt/b-cateninpathway. Biosci.Rep. 40:BSR20192549. doi:10.1042/ BSR20192549
He,N.,Kong,Y.,Lei,X.,Liu,Y.,Wang,J.,Xu,C.,etal.(2018).MSCsinhibit tumorprogressionandenhanceradiosensitivityofbreastcancercellsbydownregulatingStat3signalingpathway. CellDeathDis. 9:1026. doi:10.1038/s41419018-0949-3
Henrotin,Y.,Pesesse,L.,andSanchez,C.(2012).Subchondralboneand osteoarthritis:biologicalandcellularaspects. Osteoporos.Int. 23,847–851. doi: 10.1007/s00198-012-2162-z
Hong,P.,Yang,H.,Wu,Y.,Li,K.,andTang,Z.(2019).Thefunctionsandclinical applicationpotentialofexosomesderivedfromadiposemesenchymalstem cells:acomprehensivereview. StemCellRes.Ther. 10:242. doi:10.1186/s13287019-1358-y
Hong,Z.,Chen,J.,Zhang,S.,Zhao,C.,Bi,M.,Chen,X.,etal.(2019).Intraarticularinjectionofautologousadipose-derivedstromalvascularfractionsfor kneeosteoarthritis:adouble-blindrandomizedself-controlledtrial. Int.Orthop. 43,1123–1134. doi:10.1007/s00264-018-4099-0
Hu,L.,Wang,J.,Zhou,X.,Xiong,Z.,Zhao,J.,Yu,R.,etal.(2016).Exosomes derivedfromhumanadiposemensenchymalstemcellsacceleratescutaneous woundhealingviaoptimizingthecharacteristicsoffibroblasts. Sci.Rep. 6:32993. doi:10.1038/srep32993
Hu,S.,Li,Z.,Cores,J.,Huang,K.,Su,T.,Dinh,P.-U.,etal.(2019).Needlefreeinjectionofexosomesderivedfromhumandermalfibroblastspheroids amelioratesskinphotoaging. ACSNano 13,11273–11282. doi:10.1021/acsnano. 9b04384
Huang,J.-Y.,Wang,Y.-Y.,Lo,S.,Tseng,L.-M.,Chen,D.-R.,Wu,Y.-C., etal.(2019).Visfatinmediatesmalignantbehaviorsthroughadipose-derived stemcellsintermediaryinbreastcancer. Cancers 12:29. doi:10.3390/ cancers12010029
Kalluri,R.,andLeBleu,V.S.(2020).Thebiology,function,andbiomedical applicationsofexosomes. Science 367:eaau6977. doi:10.1126/science.aau6977
Katsuda,T.,Tsuchiya,R.,Kosaka,N.,Yoshioka,Y.,Takagaki,K.,Oki, K.,etal.(2013).Humanadiposetissue-derivedmesenchymalstemcells secretefunctionalneprilysin-boundexosomes. Sci.Rep. 3:1197. doi:10.1038/ srep01197
Kim,H.,andLee,B.K.(2020).Anti-inflammatorye ectofadipose-derivedstromal vascularfractiononosteoarthritictemporomandibularjointsynoviocytes. TissueEng.Regen.Med. 17,351–362. doi:10.1007/s13770-020-00268-2
Kim,K.,Fan,Y.,Lin,G.,Park,Y.K.,Pak,C.S.,Jeong,J.H.,etal.(2019).synergistic e ectofadipose-derivedstemcellsandfatgraftonwrinklesinagedmice. Plast. Reconstr.Surg. 143,1637–1646. doi:10.1097/PRS.0000000000005625
Kim,W.-S.,Park,B.-S.,Kim,H.-K.,Park,J.-S.,Kim,K.-J.,Choi,J.-S.,etal. (2008).Evidencesupportingantioxidantactionofadipose-derivedstemcells: protectionofhumandermalfibroblastsfromoxidativestress. J.Dermatol.Sci. 49,133–142. doi:10.1016/j.jdermsci.2007.08.004
Kølle,S.T.,Duscher,D.,Taudorf,M.,Fischer-Nielsen,A.,Svalgaard,J.D.,MuntheFog,L.,etal.(2020).Exvivo-expandedautologousadiposetissue-derived stromalcellsensureenhancedfatgraftretentioninbreastaugmentation:a randomizedcontrolledclinicaltrial. StemCellsTransl.Med. [Epubaheadof print] doi:10.1002/sctm.20-0081
Krastev,T.,VanTurnhout,A.,Vriens,E.,Smits,L.,andVanDerHulst,R. (2019).Long-termfollow-upofautologousfattransfervsconventionalbreast reconstructionandassociationwithcancerrelapseinpatientswithbreast cancer. JamaSurg. 154,56–63. doi:10.1001/jamasurg.2018.3744
Lee,H.R.,Kim,T.H.,Oh,S.H.,andLee,J.H.(2018).Prednisolone-loadedcoatable polyvinylalcohol/alginatehydrogelforthetreatmentofatopicdermatitis. J.Biomater.Sci.Polym.Ed. 29,1612–1624. doi:10.1080/09205063.2018. 1477317
Lee,K.S.,Choi,J.S.,andCho,Y.W.(2019).Reprogrammingofcancerstem cellsintonon-tumorigeniccellsusingstemcellexosomesforcancertherapy. Biochem.Biophys.Res.Commun. 512,511–516. doi:10.1016/j.bbrc.2019.03.072
Li,L.,Ngo,H.T.T.,Hwang,E.,Wei,X.,Liu,Y.,Liu,J.,etal.(2019).Conditioned mediumfromhumanadipose-derivedmesenchymalstemcellcultureprevents UVB-inducedskinaginginhumankeratinocytesanddermalfibroblasts. Int.J. Mol.Sci. 21:49. doi:10.3390/ijms21010049
Li,W.,Liu,Y.,Zhang,P.,Tang,Y.,Zhou,M.,Jiang,W.,etal.(2018).Tissueengineeredboneimmobilizedwithhumanadiposestemcells-derivedexosomes promotesboneregeneration. ACSAppl.Mater.Interfaces 10,5240–5254. doi: 10.1021/acsami.7b17620
Li,X.,Xie,X.,Lian,W.,Shi,R.,Han,S.,Zhang,H.,etal.(2018).Exosomesfrom adipose-derivedstemcellsoverexpressingNrf2acceleratecutaneouswound healingbypromotingvascularizationinadiabeticfootulcerratmodel. Exp. Mol.Med. 50:29. doi:10.1038/s12276-018-0058-5
Lin,R.,Wang,S.,andZhao,R.C.(2013).Exosomesfromhumanadipose-derived mesenchymalstemcellspromotemigrationthroughWntsignalingpathwayin abreastcancercellmodel. Mol.Cell.Biochem. 383,13–20. doi:10.1007/s11010013-1746-z
Liu,K.,Chen,C.,Zhang,H.,Chen,Y.,andZhou,S.(2019).Adiposestem cell-derivedexosomesincombinationwithhyaluronicacidacceleratewound healingthroughenhancingre-epithelializationandvascularization. Br.J. Dermatol. 181,854–856. doi:10.1111/bjd.17984
Liu,S.,Jiang,L.,Li,H.,Shi,H.,Luo,H.,Zhang,Y.,etal.(2014).Mesenchymal stemcellspreventhypertrophicscarformationviainflammatoryregulation whenundergoingapoptosis. J.Invest.Dermatol. 134,2648–2657. doi:10.1038/ jid.2014.169
Liu,X.,Yang,Y.,Li,Y.,Niu,X.,Zhao,B.,Wang,Y.,etal.(2017).Integrationof stemcell-derivedexosomeswithinsituhydrogelglueasapromisingtissue patchforarticularcartilageregeneration. Nanoscale 9,4430–4438. doi:10.1039/ C7NR00352H
Lou,G.,Chen,Z.,Zheng,M.,andLiu,Y.(2017).Mesenchymalstemcell-derived exosomesasanewtherapeuticstrategyforliverdiseases. Exp.Mol.Med. 49:e346. doi:10.1038/emm.2017.63
Lu,Z.,Chen,Y.,Dunstan,C.,Roohani-Esfahani,S.,andZreiqat,H.(2017). Primingadiposestemcellswithtumornecrosisfactor-alphapreconditioning potentiatestheirexosomee cacyforboneregeneration. TissueEng.PartA 23, 1212–1220. doi:10.1089/ten.tea.2016.0548
Ma,T.,Fu,B.,Yang,X.,Xiao,Y.,andPan,M.(2019).Adiposemesenchymal stemcell-derivedexosomespromotecellproliferation,migration,andinhibit cellapoptosisviaWnt/b-cateninsignalingincutaneouswoundhealing. J.Cell. Biochem. 120,10847–10854. doi:10.1002/jcb.28376
Maguire,G.(2019).Thesafeande cacioususeofsecretomefromfibroblastsand adiposederived(butnotBoneMarrowderived)mesenchymalstemcellsforskin therapeutics. J.Clin.Aesthet.Dermatol. 12,E57–E69.
Mautner,K.,Bowers,R.,Easley,K.,Fausel,Z.,andRobinson,R.(2019).Functional outcomesfollowingmicrofragmentedadiposetissueversusbonemarrow aspirateconcentrateinjectionsforsymptomatickneeosteoarthritis. StemCells Transl.Med. 8,1149–1156. doi:10.1002/sctm.18-0285
Mazini,L.,Rochette,L.,Amine,M.,andMalka,G.(2019).Regenerativecapacityof adiposederivedstemcells(ADSCs),comparisonwithmesenchymalstemcells (MSCs). Int.J.Mol.Sci. 20:2523. doi:10.3390/ijms20102523
Mehryab,F.,Rabbani,S.,Shahhosseini,S.,Shekari,F.,Fatahi,Y.,Baharvand,H., etal.(2020).Exosomesasanext-generationdrugdeliverysystem:anupdateon drugloadingapproaches,characterization,andclinicalapplicationchallenges. ActaBiomater. 113,42–62. doi:10.1016/j.actbio.2020.06.036
Naderi,N.,Combellack,E.J.,Gri n,M.,Sedaghati,T.,Javed,M.,Findlay,M.W., etal.(2017).Theregenerativeroleofadipose-derivedstemcells(ADSC)in plasticandreconstructivesurgery. Int.WoundJ. 14,112–124. doi:10.1111/iwj. 12569
O’Halloran,N.,Courtney,D.,Kerin,M.J.,andLowery,A.J.(2017).Adiposederivedstemcellsinnovelapproachestobreastreconstruction:theirsuitability fortissueengineeringandoncologicalsafety. BreastCancerBasicClin.Res. 11:117822341772677. doi:10.1177/1178223417726777
O’Halloran,N.,Potter,S.,Kerin,M.,andLowery,A.(2018).Recentadvancesand futuredirectionsinpostmastectomybreastreconstruction. Clin.BreastCancer 18,e571–e585. doi:10.1016/j.clbc.2018.02.004
Paduano,F.,Marrelli,M.,Amantea,M.,Rengo,C.,Rengo,S.,Goldberg,M., etal.(2017).Adiposetissueasastrategicsourceofmesenchymalstemcellsin boneregeneration:atopicalreviewonthemostpromisingcraniomaxillofacial applications. Int.J.Mol.Sci. 18:2140. doi:10.3390/ijms18102140
Paolella,F.,Manferdini,C.,Gabusi,E.,Gambari,L.,Filardo,G.,Kon,E.,etal. (2019).E ectofmicrofragmentedadiposetissueonosteoarthriticsynovial macrophagefactors. J.Cell.Physiol. 234,5044–5055. doi:10.1002/jcp.27307
Park,A.,Park,H.,Yoon,J.,Kang,D.,Kang,M.-H.,Park,Y.-Y.,etal.(2019). PrimingwithToll-likereceptor3agonistorinterferon-gammaenhancesthe therapeutice ectsofhumanmesenchymalstemcellsinamurinemodelof atopicdermatitis. StemCellRes.Ther. 10:66. doi:10.1186/s13287-019-1164-6
Perez-Hernandez,J.,Redon,J.,andCortes,R.(2017).Extracellularvesiclesas therapeuticagentsinsystemiclupuserythematosus. Int.J.Mol.Sci. 18:717. doi:10.3390/ijms18040717
Pers,Y.M.,Quentin,J.,Feirreira,R.,Espinoza,F.,Abdellaoui,N.,Erkilic,N.,etal. (2018).Injectionofadipose-derivedstromalcellsinthekneeofpatientswith severeosteoarthritishasasystemice ectandpromotesananti-inflammatory phenotypeofcirculatingimmunecells. Theranostics 8,5519–5528. doi:10.7150/ thno.27674
Pers,Y.M.,Ruiz,M.,Noël,D.,andJorgensen,C.(2015).Mesenchymalstem cellsforthemanagementofinflammationinosteoarthritis:stateoftheartand perspectives. Osteoarthr.Cartil. 23,2027–2035. doi:10.1016/j.joca.2015.07.004 Pu,C.,Liu,C.,Liang,C.,Yen,Y.,Chen,S.-H.,Jiang-Shieh,Y.-F.,etal.(2017). Adipose-derivedstemcellsprotectskinflapsagainstischemia/reperfusion injuryviaIL-6expression. J.Invest.Dermatol. 137,1353–1362. doi:10.1016/j. jid.2016.12.030
Qiu,H.,Liu,S.,Wu,K.,Zhao,R.,Cao,L.,andWang,H.(2020).Prospective applicationofexosomesderivedfromadipose-derivedstemcellsinskinwound healing:areview. J.Cosmet.Dermatol. 19,574–581. doi:10.1111/jocd.13215
Ragni,E.,PeruccaOrfei,C.,DeLuca,P.,Lugano,G.,Viganò,M.,Colombini, A.,etal.(2019).InteractionwithhyaluronanmatrixandmiRNAcargo ascontributorsforinvitropotentialofmesenchymalstemcell-derived extracellularvesiclesinamodelofhumanosteoarthriticsynoviocytes. StemCell Res.Ther. 10,1–17. doi:10.1186/s13287-019-1215-z
Ren,L.,Song,Z.,Cai,Q.,Chen,R.,Zou,Y.,Fu,Q.,etal.(2019).Adipose mesenchymalstemcell-derivedexosomesamelioratehypoxia/serum deprivation-inducedosteocyteapoptosisandosteocyte-mediated osteoclastogenesisinvitro. Biochem.Biophys.Res.Commun. 508,138–144. doi:10.1016/j.bbrc.2018.11.109
Sah,S.K.,Agrahari,G.,Nguyen,C.T.,Kim,Y.-S.,Kang,K.-S.,andKim,T.Y.(2018).Enhancedtherapeutice ectsofhumanmesenchymalstemcells transducedwithsuperoxidedismutase3inamurineatopicdermatitis-likeskin inflammationmodel. Allergy 73,2364–2376. doi:10.1111/all.13594
Sauter,M.A.,Brett,E.,Müller,C.M.,Machens,H.G.,andDuscher,D.(2019). Novelassayanalyzingtropismbetweenadipose-derivedstemcellsandbreast cancercellsrevealsalowoncogenicresponse. BreastCare 14,278–287. doi: 10.1159/000503411
Shi,R.,Jin,Y.,Hu,W.,Lian,W.,Cao,C.,Han,S.,etal.(2020).Exosomesderived frommmu_circ_0000250-modifiedadipose-derivedmesenchymalstemcells promotewoundhealingindiabeticmicebyinducingmiR-128-3p/SIRT1mediatedautophagy. Am.J.Physiol.Physiol. 318,C848–C856. doi:10.1152/ ajpcell.00041.2020
Shin,K.-O.,Ha,D.H.,Kim,J.O.,Crumrine,D.A.,Meyer,J.M.,Wakefield, J.S.,etal.(2020).Exosomesfromhumanadiposetissue-derivedmesenchymal stemcellspromoteepidermalbarrierrepairbyinducingdenovosynthesisof ceramidesinatopicdermatitis. Cells 9:680. doi:10.3390/cells9030680
Shin,T.-H.,Kim,H.-S.,Choi,S.,andKang,K.-S.(2017).Mesenchymalstemcell therapyforinflammatoryskindiseases:clinicalpotentialandmodeofaction. Int.J.Mol.Sci. 18:244. doi:10.3390/ijms18020244
Shukla,L.,Yuan,Y.,Shayan,R.,Greening,D.W.,andKarnezis,T.(2020).Fat therapeutics:theclinicalcapacityofadipose-derivedstemcellsandexosomes forhumandiseaseandtissueregeneration. Front.Pharmacol. 11:158. doi:10. 3389/fphar.2020.00158
Silva,M.M.A.,Kokai,L.E.,Donnenberg,V.S.,Fine,J.L.,Marra,K.G., Donnenberg,A.D.,etal.(2019).Oncologicsafetyoffatgraftingforautologous breastreconstructioninananimalmodelofresidualbreastcancer. Plast. Reconstr.Surg. 143,103–112. doi:10.1097/PRS.0000000000005085
Sorkin,A.,Heller,L.,Landau,G.,Sherf,M.,Hartstein,M.E.,andHadad,E.(2020). Inferiorlybasedpreauricularflapforanteriorearreconstruction. Ann.Plast. Surg. 84,394–396. doi:10.1097/SAP.0000000000002124
Spasovski,D.,Spasovski,V.,Ba èareviæ,Z.,Stojiljkoviæ,M.,Vreæa,M., Angelkoviæ,M.,etal.(2018).Intra-articularinjectionofautologousadiposederivedmesenchymalstemcellsinthetreatmentofkneeosteoarthritis. J.Gene Med. 20:e3002. doi:10.1002/jgm.3002
Strong,A.L.,Bowles,A.C.,Wise,R.M.,Morand,J.P.,Dutreil,M.F.,Gimble, J.M.,etal.(2016).Humanadiposestromal/stemcellsfromobesedonorsshow reducede cacyinhaltingdiseaseprogressionintheexperimentalautoimmune encephalomyelitismodelofmultiplesclerosis. StemCells 34,614–626. doi: 10.1002/stem.2272
Strong,A.L.,Rubin,J.P.,Kozlow,J.H.,andCederna,P.S.(2019).Fatgrafting forthetreatmentofscleroderma. Plast.Reconstr.Surg. 144,1498–1507. doi: 10.1097/PRS.0000000000006291
Tan,S.S.,andLoh,W.(2017).Theutilityofadipose-derivedstemcellsandstromal vascularfractionforoncologicsofttissuereconstruction:isitsafe?Amatterfor debate. Surgeon 15,186–189. doi:10.1016/j.surge.2016.09.010
Teufelsbauer,M.,Rath,B.,Moser,D.,Haslik,W.,Huk,I.,andHamilton,G.(2019). Interactionofadipose-derivedstromalcellswithbreastcancercelllines. Plast. Reconstr.Surg. 144,207E–217E. doi:10.1097/PRS.0000000000005839
Tofiño-Vian,M.,Guillén,M.I.,PérezDelCaz,M.D.,Castejón,M.A.,andAlcaraz, M.J.(2017).Extracellularvesiclesfromadipose-derivedmesenchymalstem cellsdownregulatesenescencefeaturesinosteoarthriticosteoblasts. Oxid.Med. Cell.Longev. 2017:7197598. doi:10.1155/2017/7197598
Tofiño-Vian,M.,Guillén,M.I.,PérezDelCaz,M.D.,Silvestre,A.,andAlcaraz, M.J.(2018).Microvesiclesfromhumanadiposetissue-derivedmesenchymal stemcellsasanewprotectivestrategyinosteoarthriticchondrocytes. Cell. Physiol.Biochem. 47,11–25. doi:10.1159/000489739
Togliatto,G.,Dentelli,P.,Gili,M.,Gallo,S.,Deregibus,C.,Biglieri,E.,etal.(2016). Obesityreducesthepro-angiogenicpotentialofadiposetissuestemcell-derived extracellularvesicles(EVs)byimpairingmiR-126content:impactonclinical applications. Int.J.Obes. 40,102–111. doi:10.1038/ijo.2015.123
Toh,W.S.,Zhang,B.I.N.,Lai,R.C.,andLim,S.K.(2018).Immuneregulatory targetsofmesenchymalstromalcellexosomes/smallextracellularvesiclesin tissueregeneration. Cytotherapy 20,1419–1426. doi:10.1016/j.jcyt.2018.09.008
Tran,T.D.X.,Wu,C.,Dubey,N.K.,Deng,Y.,Su,C.-W.,Pham,T.T.,etal.(2019). Time-andKellgren–Lawrencegrade-dependentchangesinintra-articularly transplantedstromalvascularfractioninosteoarthriticpatients. Cells 8:308. doi:10.3390/cells8040308
Villatoro,A.J.,Alcoholado,C.,Martín-Astorga,M.C.,Fernández,V.,Cifuentes, M.,andBecerra,J.(2019).Comparativeanalysisandcharacterizationof solublefactorsandexosomesfromculturedadiposetissueandbonemarrow mesenchymalstemcellsincaninespecies. Vet.Immunol.Immunopathol. 208, 6–15. doi:10.1016/j.vetimm.2018.12.003
Vizoso,F.J.,Eiro,N.,Cid,S.,Schneider,J.,andPerez-Fernandez,R.(2017). Mesenchymalstemcellsecretome:towardcell-freetherapeuticstrategies inregenerativemedicine. Int.J.Mol.Sci. 18:1852. doi:10.3390/ijms1809 1852
Wang,C.,Wang,M.,Xu,T.,Zhang,X.,Lin,C.,Gao,W.,etal.(2019).Engineering bioactiveself-healingantibacterialexosomeshydrogelforpromotingchronic diabeticwoundhealingandcompleteskinregeneration. Theranostics 9,65–76. doi:10.7150/thno.29766
Wang,M.,Wang,C.,Chen,M.,Xi,Y.,Cheng,W.,Mao,C.,etal.(2019). E cientangiogenesis-baseddiabeticwoundhealing/skinreconstruction throughbioactiveantibacterialadhesiveultravioletshieldingnanodressingwith exosomerelease. ACSNano 13,10279–10293. doi:10.1021/acsnano.9b03656
Wang,J.,Guo,X.,Kang,Z.,Qi,L.,Yang,Y.,Wang,J.,etal.(2020).Roles ofexosomesfrommesenchymalstemcellsintreatingosteoarthritis. Cell. Reprogram. 22,107–117. doi:10.1089/cell.2019.0098
Wang,Q.,Zhang,N.,Hu,L.,Xi,Y.,Mi,W.,andMa,Y.(2020).Integrin b1in adipose-derivedstemcellsaccelerateswoundhealingviaactivatingPI3K/AKT pathway. TissueEng.Regen.Med. 17,183–192. doi:10.1007/s13770-01900229-4
Wang,L.,Hu,L.,Zhou,X.,Xiong,Z.,Zhang,C.,Shehada,H.M.A.,etal. (2017).Exosomessecretedbyhumanadiposemesenchymalstemcellspromote scarlesscutaneousrepairbyregulatingextracellularmatrixremodelling. Sci. Rep. 7:13321. doi:10.1038/s41598-017-12919-x
Wang,T.,Jiang,A.,Guo,Y.,Tan,Y.,Tang,G.,Mai,M.,etal.(2013). Deepsequencingofthetranscriptomerevealsinflammatoryfeaturesof porcinevisceraladiposetissue. Int.J.Biol.Sci. 9,550–556. doi:10.7150/ijbs. 6257
Wang,W.,Wu,C.,andJin,H.(2018).Exosomesinchronicinflammatoryskin diseasesandskintumors. Exp.Dermatol. 28,213–218. doi:10.1111/exd.13857
Woo,C.H.,Kim,H.K.,Jung,G.Y.,Jung,Y.J.,Lee,K.S.,Yun,Y.E.,etal.(2020). Smallextracellularvesiclesfromhumanadipose-derivedstemcellsattenuate cartilagedegeneration. J.Extracell.Vesicles 9:1735249. doi:10.1080/20013078. 2020.1735249
Wu,Q.,Li,J.,Li,Z.,Sun,S.,Zhu,S.,Wang,L.,etal.(2019).Exosomes fromthetumour-adipocyteinterplaystimulatebeige/browndi erentiation andreprogrammetabolisminstromaladipocytestopromotetumour progression. J.Exp.Clin.CancerRes. 38:223. doi:10.1186/s13046-0191210-3
Wu,Y.,Peng,Y.,Gao,D.,Feng,C.,Yuan,X.,Li,H.,etal.(2015).Mesenchymal stemcellssuppressfibroblastproliferationandreduceskinfibrosisthrough aTGF-b3-dependentactivation. Int.J.Low.Extrem.Wounds 14,50–62. doi: 10.1177/1534734614568373
Xiao,S.,Liu,Z.,Yao,Y.,Wei,Z.R.,Wang,D.,andDeng,C.(2019).Diabetic humanadipose-derivedstemcellsacceleratepressureulcerhealingbyinducing angiogenesisandneurogenesis. StemCellsDev. 28,319–328. doi:10.1089/scd. 2018.0245
Xiong,J.,Liu,Z.,Wu,M.,Sun,M.,Xia,Y.,andWang,Y.(2020).Comparison ofproangiogenice ectsofadipose-derivedstemcellsandforeskinfibroblast exosomesonartificialdermisprefabricatedflaps. StemCellsInt. 2020:5293850. doi:10.1155/2020/5293850
Xu,P.,Yu,Q.,Huang,H.,Zhang,W.J.,andLi,W.(2018).nanofatincreasesdermis thicknessandneovascularizationinphotoagednudemouseskin. Aesthetic Plast.Surg. 42,343–351. doi:10.1007/s00266-018-1091-4
Yang,C.,Luo,L.,Bai,X.,Shen,K.,Liu,K.,Wang,J.,etal.(2020).Highly-expressed micoRNA-21inadiposederivedstemcellexosomescanenhancethemigration andproliferationoftheHaCaTcellsbyincreasingtheMMP-9expression throughthePI3K/AKTpathway. Arch.Biochem.Biophys. 681:108259. doi:10. 1016/j.abb.2020.108259
Yang,Z.,Wei,Z.,Wu,X.,andYang,H.(2018).ScreeningofexosomalmiRNAs derivedfromsubcutaneousandvisceraladiposetissues:determinationof targetsforthetreatmentofobesityandassociatedmetabolicdisorders. Mol. Med.Rep. 18,3314–3324. doi:10.3892/mmr.2018.9312
Yoshimura,K.,Sato,K.,Aoi,N.,Kurita,M.,Hirohi,T.,andHarii,K.(2008). Cell-assistedlipotransferforcosmeticbreastaugmentation:supportiveuseof adipose-derivedstem/stromalcells. Aesthet.Plast.Surg. 32,48–55. doi:10.1007/ s00266-007-9019-4
Yucel,E.,Alagoz,M.S.,Eren,G.G.,Yasar,E.K.,Izmirli,H.H.,Duruksu, G.,etal.(2016).Useofadipose-derivedmesenchymalstemcellstoincrease viabilityofcompositegrafts. J.Craniofac.Surg. 27,1354–1360. doi:10.1097/ SCS.0000000000002707
Zhang,B.,Yang,Y.,Xiang,L.,Zhao,Z.,andYe,R.(2019).Adipose-derived exosomes:anoveladipokineinobesity-associateddiabetes. J.Cell.Physiol. 234, 16692–16702. doi:10.1002/jcp.28354
Zhang,R.,Ma,J.,Han,J.,Zhang,W.,andMa,J.(2019).Mesenchymalstemcell relatedtherapiesforcartilagelesionsandosteoarthritis. Am.J.Transl.Res. 11, 6275–6289.
Zhang,W.,Bai,X.,Zhao,B.,Li,Y.,Zhang,Y.,Li,Z.,etal.(2018).Cell-free therapybasedonadiposetissuestemcell-derivedexosomespromoteswound healingviathePI3K/Aktsignalingpathway. Exp.CellRes. 370,333–342. doi: 10.1016/j.yexcr.2018.06.035
Zhao,C.,Chen,J.Y.,Peng,W.M.,Yuan,B.,Bi,Q.,andXu,Y.J.(2020). Exosomesfromadipose-derivedstemcellspromotechondrogenesisand suppressinflammationbyupregulatingmiR-145andmiR-221. Mol.Med.Rep. 21,1881–1889. doi:10.3892/mmr.2020.10982
Zhao,H.,Shang,Q.,Pan,Z.,Bai,Y.,Li,Z.,Zhang,H.,etal.(2018).Exosomesfrom adipose-derivedstemcellsattenuateadiposeinflammationandobesitythrough polarizingM2macrophagesandbeiginginwhiteadiposetissue. Diabetes 67, 235–247. doi:10.2337/db17-0356
Zhu,C.T.,Li,T.,Hu,Y.H.,Zou,M.,Guo,Q.,andQu,X.W.(2017).Exosomes secretedbymiceadipose-derivedstemcellsafterlow-levellaserirradiation treatmentreduceapoptosisofosteocyteinducedbyhypoxia. Eur.Rev.Med. Pharmacol.Sci. 21,5562–5570. doi:10.26355/eurrev_201712_13993
Zhu,Y.,Zhang,J.,Hu,X.,Wang,Z.,Wu,S.,andYi,Y.(2020).Supplementation withextracellularvesiclesderivedfromadipose-derivedstemcellsincreasesfat graftsurvivalandbrowninginmice:acell-freeapproachtoconstructbeigefat fromwhitefatgrafting. Plast.Reconstr.Surg. 145,1183–1195. doi:10.1097/PRS. 0000000000006740
Zuk,P.A.,Zhu,M.,Mizuno,H.,Huang,J.,Futrell,J.W.,Katz,A.J.,etal.(2001). Multilineagecellsfromhumanadiposetissue:implicationsforcell-based therapies. TissueEng. 7,211–228. doi:10.1089/107632701300062859
ConflictofInterest: Theauthorsdeclarethattheresearchwasconductedinthe absenceofanycommercialorfinancialrelationshipsthatcouldbeconstruedasa potentialconflictofinterest.
Copyright©2020Xiong,Zhang,Hu,Zhao,Lv,Yi,WuandWu.Thisisanopen-access articledistributedunderthetermsofthe Creative Commons Attribution License (CCBY).Theuse,distributionorreproductioninotherforumsispermitted,provided theoriginalauthor(s)andthecopyrightowner(s)arecreditedandthattheoriginal publicationinthisjournaliscited,inaccordancewithacceptedacademicpractice.No use,distributionorreproductionispermittedwhichdoesnotcomplywiththeseterms.