Design of trajectory optimization approach for space maneuver vehicle skip entry problems runqi chai

Page 1

Entry Problems Runqi Chai

Visit to download the full and correct content document: https://textbookfull.com/product/design-of-trajectory-optimization-approach-for-spacemaneuver-vehicle-skip-entry-problems-runqi-chai/

Design of Trajectory Optimization Approach for Space Maneuver Vehicle Skip

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Vehicle-to-Vehicle and Vehicle-to-Infrastructure

Communications : A Technical Approach 1st Edition Fei Hu

https://textbookfull.com/product/vehicle-to-vehicle-and-vehicleto-infrastructure-communications-a-technical-approach-1stedition-fei-hu/

On Combinatorial Optimization and Mechanism Design Problems Arising

at Container Ports Sebastian Meiswinkel

https://textbookfull.com/product/on-combinatorial-optimizationand-mechanism-design-problems-arising-at-container-portssebastian-meiswinkel/

Low Energy Flight Orbital Dynamics and Mission

Trajectory Design Jianping Yuan

https://textbookfull.com/product/low-energy-flight-orbitaldynamics-and-mission-trajectory-design-jianping-yuan/

Vehicle Scheduling in Port Automation Advanced

Algorithms for Minimum Cost Flow Problems 2nd edition Hassan Rashidi

https://textbookfull.com/product/vehicle-scheduling-in-portautomation-advanced-algorithms-for-minimum-cost-flowproblems-2nd-edition-hassan-rashidi/

Off-road Vehicle Dynamics: Analysis, Modelling and Optimization 1st Edition Hamid Taghavifar

https://textbookfull.com/product/off-road-vehicle-dynamicsanalysis-modelling-and-optimization-1st-edition-hamid-taghavifar/

Topology Design Methods for Structural Optimization

Osvaldo M. Querin

https://textbookfull.com/product/topology-design-methods-forstructural-optimization-osvaldo-m-querin/

Topology Design Methods for Structural Optimization

Osvaldo M. Querin Professor

https://textbookfull.com/product/topology-design-methods-forstructural-optimization-osvaldo-m-querin-professor/

Electric and Plug-in Hybrid Vehicle Networks: Optimization and Control 1st Edition Emanuele Crisostomi

https://textbookfull.com/product/electric-and-plug-in-hybridvehicle-networks-optimization-and-control-1st-edition-emanuelecrisostomi/

Optimization in the Real World Toward Solving Real World Optimization Problems 1st Edition Katsuki Fujisawa

https://textbookfull.com/product/optimization-in-the-real-worldtoward-solving-real-world-optimization-problems-1st-editionkatsuki-fujisawa/

Runqi Chai

Al Savvaris

Antonios Tsourdos

Senchun Chai

Design of Trajectory Optimization Approach for Space Maneuver

Vehicle

Skip Entry Problems

Springer Aerospace Technology

SpringerAerospaceTechnology

The SpringerAerospaceTechnology seriesisdevotedtothetechnologyofaircraft andspacecraftincludingdesign,construction,controlandthescience.Thebooks presentthefundamentalsandapplicationsinall fieldsrelatedtoaerospace engineering.Thetopicsincludeaircraft,missiles,spacevehicles,aircraftengines, propulsionunitsandrelatedsubjects.

Moreinformationaboutthisseriesat http://www.springer.com/series/8613

RunqiChai • AlSavvaris • AntoniosTsourdos • SenchunChai

DesignofTrajectory

SkipEntryProblems

OptimizationApproach forSpaceManeuverVehicle
123

RunqiChai

CranfieldUniversity

Cranfield,Bedford,UK

AntoniosTsourdos

CranfieldUniversity

Cranfield,Bedford,UK

AlSavvaris

CranfieldUniversity

Cranfield,Bedford,UK

SenchunChai SchoolofAutomation

BeijingInstituteofTechnology Beijing,China

ISSN1869-1730ISSN1869-1749(electronic)

SpringerAerospaceTechnology

ISBN978-981-13-9844-5ISBN978-981-13-9845-2(eBook)

https://doi.org/10.1007/978-981-13-9845-2

© SpringerNatureSingaporePteLtd.2020

Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart ofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations, recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped.

Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthis publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse.

Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthis bookarebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernorthe authorsortheeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontained hereinorforanyerrorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregard tojurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations.

ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSingaporePteLtd. Theregisteredcompanyaddressis:152BeachRoad,#21-01/04GatewayEast,Singapore189721, Singapore

Preface

Spacevehicletrajectoryplanninghasbecomeincreasinglyimportantduetoits extensiveapplicationsinindustryandmilitary fields.Awell-designedtrajectoryis usuallyakeyforstable flightandforimprovedguidanceandcontrolofthevehicle. Hence,theaimofthisresearchisusuallytoworkontrajectoryoptimization,and thenimproveononeoftheexistingtrajectoryoptimizationmethodsinorderto circumventthelimitationsbroughtbytheclassictechniques.

Thisbookpresentsthedesignofoptimaltrajectoryforspacemaneuvervehicles usingoptimalcontrol-basedtechniques.Itstartsfromabroadintroductionand overviewtothreemainapproachestotrajectoryoptimization.Itthenfocusesonthe designofanovelhybridoptimizationstrategy,whichincorporatesaninitialguess generatorwithanimprovedgradient-basedinneroptimizer.Further,ithighlightsthe developmentofmulti-objectivespacecrafttrajectoryoptimizationproblems,witha particularfocusonmulti-objectivetranscriptionmethods,andmulti-objectiveevolutionaryalgorithms.Finally,thespacecraft flightscenariowithnoise-perturbed dynamicsandprobabilisticconstraintsisstudied.Newchance-constrainedoptimal controlframeworksaredesignedandvalidated.Thecomprehensiveandsystematic treatmentofpracticalissuesinspacecrafttrajectoryoptimizationisoneofthemajor featuresofthebook,whichisparticularlysuitedforreaderswhoareinterestedto learnpracticalsolutionsinspacecrafttrajectoryoptimization.Thebookcanalso benefitresearchers,engineers,andgraduatestudentsin fieldsofGNCsystems, engineeringoptimization,appliedoptimalcontroltheory,etc.

Theauthorshavecarefullyreviewedthecontentofthisbookbeforetheprinting stage.However,itdoesnotmeanthatthisbookiscompletelyfreefromany possibleerrors.Consequently,theauthorswouldbegratefultoreaderswhowillcall outattentiononmistakesastheymightdiscover.

May2019

Beijing,ChinaSenchunChai
Cranfi eld,UKRunqiChai Cranfi eld,UKAlSavvaris Cranfi eld,UKAntoniosTsourdos
v

Acknowledgements

TheauthorswouldliketoexpresstheirsincereappreciationstoProf.YuanqingXia, Prof.GuopingLiu,andProf.PengShifortheirconstructivecommentsandhelpful suggestionswithregardstothetheoreticalpartofthisbook.

The fi rstauthorwouldliketothankothercolleaguesfromcenterof cyber-physicssystems,CranfieldUniversity,forprovidingvaluablecomments. Withouttheirsupport,thewritingofthebookwouldnothavebeenasuccess.

Also,wewouldliketothankallthestaffintheautonomoussystemsresearch group,CranfieldUniversity,foreverythingtheyhavedonetomakethingseasierfor usthroughoutthepreparationofthiswork.

Finally,theauthorswouldliketothankCranfieldUniversity,Schoolof Aerospace,Transport,andManufacturing,andBeijingInstituteofTechnology, SchoolofAutomation,forgivingusthesupporttomaketheworkareality.

vii
Contents 1Introduction 1 1.1Background 1 1.2MissionScenarios 2 1.2.1SkipReentryMission 2 1.2.2RegionalReconnaissance 2 1.3BookAimsandObjectives 3 1.4ChapterLayout ...................................... 5 References ............................................. 6 2OverviewofTrajectoryOptimizationTechniques ............... 7 2.1SpacecraftTrajectoryOptimizationProblemsandOptimal ControlMethods ..................................... 7 2.2OptimizationTechniquesandApplications .................. 9 2.2.1Gradient-BasedMethods ......................... 11 2.2.2Evolutionary-BasedMethods ...................... 12 2.2.3Convexification-BasedMethods 13 2.2.4DynamicProgramming-BasedMethods 14 2.3Multi-objectiveTrajectoryOptimizationOverview 14 2.3.1Multi-objectiveEvolutionaryAlgorithms 15 2.3.2Multi-objectiveTranscriptionMethods 17 2.4Summary 18 References 19 3ModelingoftheTrajectoryOptimizationProblems 27 3.1MathematicalFormulationoftheProblem .................. 27 3.1.1ContinuousDynamicalSystems .................... 28 3.1.2Variable/PathConstraints ......................... 28 3.1.3MissionObjectives ............................. 29 3.1.4OverallFormulation ............................. 30 3.1.5NumericalSolutionApproach ...................... 30 ix

3.2SMVTrajectoryOptimizationFormulation

3.2.1DynamicModel

3.2.2SMVInitialandTerminalConstraints

3.2.4TrajectoryEventSequence

3.2.5Interior-PointConstraints

3.2.6SkipEntryPathConstraints

3.2.7ObjectiveFunctionsfortheSkipEntryProblem

3.2.8OverallFormulation

3.3DiscretizationoftheSMVSkipEntryProblem

3.4.1ParametersSpeci

3.4.2OptimalSkipHoppingResults

3.4.3AnalysisofDifferentSkipHoppingScenarios

3.4.4SensitivitywithRespecttoPathConstraint

3.4.5FindingSolutionfor

4.3.3DifferentialEvolution

4.3.4ParticleSwarmOptimization

4.4.1ProblemModi

4.5.1CharacteristicArcsoftheTrajectory

31
32
34
34
3.2.3BoxConstraints
34
......................... 35
....................... 36
........ 36
............................. 36
.............. 37
...................... 37 3.3.2MeshRe finementStrategy ........................ 40 3.4InitialSimulationResultsandCaseStudies ................. 40
3.3.1PseudospectralDiscretization
fication 40
41
44
45
n [ 4Scenarios 48
Mission 50 3.5Summary 50 References 51 4PerformanceAnalysisofDifferentOptimizationStrategies ........ 55 4.1GeneralNLPProblems ................................ 55 4.2ApplyingGradient-BasedOptimizationMethods ............. 56 4.2.1SequentialQuadraticProgramming .................. 56 4.2.2InteriorPointMethod ............................ 59 4.3HeuristicTechniques ................................. 60
....................... 60
.............................. 61
3.4.6OptimalResultsforaMultipleRegionalReconnaissance
4.3.1Constraint-HandlingMethod
4.3.2GeneticAlgorithm
61
62
ficialBeeColony 62 4.4NumericalSimulations 63
4.3.5Arti
ficationandParameterSpeci fication 63
64
Methods 66
66
4.4.2CombineGlobalMethodswithDiscretizationScheme
4.4.3OptimalSolutionsObtainedviaDifferentOptimization
4.5AnalysisofSolutions
66
68 x Contents
4.5.2PerformanceofDifferentOptimizationMethods

5HybridOptimizationMethodswithEnhancedConvergence Ability

5.1InitialGuessGenerator ................................

5.1.1ViolationLearningDifferentialEvolutionAlgorithm

5.2InnerOptimizationSolver ..............................

5.2.1AnImprovedGradient-BasedOptimizationStrategy

5.2.2MeshRe fi

5.2.3OverallStructure

5.3SolutionOptimalityVeri

5.3.1First-OrderNecessaryConditions

5.3.2TerminalTransversalityConditions

5.3.3HamiltonianFunctionCondition

5.3.4PropertiesoftheControlVariable

5.3.5Bellman’sPrinciple

5.4SimulationResultsforaTime-OptimalEntryScenario

5.4.1OptimalSolutions

5.4.2Veri

5.4.3ComparisonwithExistingEvolutionarySolvers

5.4.4DispersionModel

5.4.5ComparisonAgainstOtherOptimalControlSolvers

6.1.2Multi-objectiveOptimalControlProblems ............

6.2AnImprovedMulti-objectiveEvolutionaryAlgorithms

6.2.1ExtendedNSGA-IIAlgorithm

6.2.2SuperiorityofFeasibleSolutionMethod

6.2.3PenaltyFunctionBasedMethod

6.2.4Multi-objectiveConstraint-HandlingTechnique

6.2.5ComputationalComplexityAnalysis

6.3Multi-objectiveTranscriptionMethods

6.3.1FuzzyPhysicalProgramming

6.3.2InteractiveFuzzyPhysicalProgramming

6.3.3FuzzyGoalProgrammingMethod

6.4SimulationResults ...................................

6.4.1Multi-objectiveSMVTrajectoryPlanning

6.4.2ParetoFrontResultsObtainedUsingMOEAs

4.6Summary 71 References 71
73
73
..... 74
77
..... 77
nement ............................... 80
............................... 81
fi cation ......................... 81
................... 81
.................. 82
83
84
85
85
85
88
ficationofOptimality
90
91
..... 94 5.5Summary .......................................... 96 References ............................................. 97 6Multi-objectiveTrajectoryOptimizationProblem ............... 99 6.1MathematicalPreliminaries ............................. 99
100
6.1.1GeneralFormulationofMulti-objectiveOptimization Problems .....................................
101
101
101
103
105
105
106
106
107
109
111
114
114
.............
.......... 115 Contents xi

6.4.3AnalysisofRelationshipsBetweenDifferent Objectives

6.4.4PerformanceoftheIFPPMethod

6.4.5PerformanceoftheFGPMethod

6.4.6ComparisonwithMOEAs

6.5PotentialApplicationsofDifferentMulti-objectiveSolutions .....

6.5.1DesignofSpacecraft/SatelliteFormationControl Schemes .....................................

6.5.2DesignofIntegratedSpacecraftGuidanceandControl Systems .....................................

6.5.3Database-BasedOnlineGuidanceStrategy

7Real-TimeOptimalGuidanceandControlStrategiesforSpace ManeuverVehicles

7.1RelatedDevelopmentofGuidanceStrategies

7.2MPC-BasedOptimalGuidanceMethods

7.2.1OverallGuidanceFramework

7.2.2NonlinearModelPredictiveControl

7.2.3LinearModelPredictiveControl

7.3SimulationStudyfortheMPC-BasedGuidanceSchemes

7.3.1ReferenceTrajectoryGeneration

7.3.2OptimalTrackingSolutions

7.3.3ComparativeAnalysis ...........................

7.4AnIntegratedGuidanceandControlAlgorithm

7.56-DOFSMVEntryTrajectoryOptimization

7.5.1RotationalEquationsofMotion

7.5.2State/Control-RelatedConstraints

7.5.3ObjectiveandOptimizationModel

7.6Bi-levelTrajectoryandAttitudeControlMethod

7.6.1Offl ineTrajectoryEnsembleGeneration

7.6.2DNN-DrivenControlScheme

7.6.3OverallAlgorithmFramework

7.7NumericalResults

7.7.1Mission/Vehicle-DependentParameterSetup

7.7.2TrajectoryEnsembleGeneration

7.7.3DNN-BasedControlResults

7.7.4ComparativeCaseStudy

117
118
122
126
127
127
128
............ 128 6.6Summary .......................................... 129 References ............................................. 129
133
133
134
134
135
137
141
.................... 141
....................... 141
146
.............. 148
................. 149
.................... 149
................... 150
.................. 151
............. 151
152
152
154
155
155
155
156
157 7.8Summary 159 References 160 xii Contents

8StochasticTrajectoryOptimizationProblemswithChance Constraints

8.1.1Chance-ConstrainedSpacecraftTrajectory Optimization

8.1.2Chance-ConstrainedSpacecraftTrajectory Optimization:StochasticDynamics

8.2Chance-ConstrainedStochasticTrajectoryOptimization Methods

8.2.1InitialTransformationofChanceConstraints

8.2.2DiscretizedCCSOCPFormulation

8.2.3Chance-Constraint-HandlingStrategy

8.2.4DeterministicCCSOCPModel

8.3Chance-ConstrainedStochasticSpacecraftEntryTrajectory Planning:SystemModeling

8.3.1StochasticDynamicsandObjectiveFunction

8.3.2HardConstraintsandChanceConstraints

8.4SimulationStudiesandAnalysis

8.4.1ParameterSpeci

8.4.2PerformanceoftheChance-Constraint-Handling

8.4.3SensitivitywithRespecttoControlParameter c

8.4.4SensitivitywithRespecttoSampleSize

8.4.5OptimalTrajectoriesfortheStochasticEntryProblem

163
163
8.1MathematicalPreliminaries
164
166
..................
........................................... 168
........... 170
.................. 170
173
................
..................... 178
179
180
180
182
cation 182
Strategy 183
186
N 187
.... 188 8.5Summary .......................................... 189 References ............................................. 190 AppendixA:ModelingoftheTrajectoryOptimizationProblems ...... 193 AppendixB:PerformanceAnalysisofDifferentOptimization Strategies ........................................ 199 AppendixC:Multi-objectiveTrajectoryOptimizationProblem ....... 201 Contents xiii

Acronyms

Acceptableprobabilityofoccurrence

a Angleofattack

r Bankangle

b Boundaryfunction

u Controlvariable

q0 Densityoftheatmosphereatsealevel

CD Dragcoefficient

D Dragforce

c Flightpathangle

l Gravitationalparameter

w Headingangle

Isp Impulse

/ Latitude

CL Liftcoefficient

h Longitude

m Mass

U Mayercost

E Numberofequalityconstraints

I Numberofinequalityconstraints

M Numberofobjectivefunctions

J Objectivefunction

g Pathfunction

L Processcost

r Radialdistance

Re RadiusoftheEarth

X Self-rotationrateoftheEarth

x Statevariable

T Thrustforce

t Time

n Uncertainparameter

xv

V Velocity

w Weightedparameter

ABCArti ficialbeecolony

ACAntcolony

ADEMGTAdaptivedifferentialevolutionandmodi fiedgametheory

ASMAdaptivesurrogatemodel

CCChanceconstraint

CCOChance-constrainedoptimization

COVCalculusofvariation

DDPDifferentialdynamicprogramming

DEDifferentialevolution

DPDynamicprogramming

EMOEvolutionarymulti-objectiveoptimization

FGPFuzzygoalprogramming

FONCFirst-ordernecessarycondition

FPPFuzzyphysicalprogramming

FSGPFuzzysatisfactorygoalprogramming

GAGeneticalgorithm

GPGoalprogramming

gPCGeneralizedpolynomialchaos

HBVPHamiltonianboundary-valueproblem

IFPPInteractivefuzzyphysicalprogramming

IPInteriorpoint

IPSQPInterior-pointsequentialquadraticprogramming

LEOLowearthorbit

LPLinearprogramming

MCMCMarkovchainMontoCarlo

MOABCMulti-objectiveartificialbeecolony

MOEA/DMulti-objectiveevolutionaryalgorithmbasedondecomposition

MOPSOMulti-objectiveparticleswarmoptimization

MOTMulti-objectivetranscription

MOTOMulti-objectivetrajectoryoptimization

NLPNonlinearprogramming

NPGANichedparetogeneticalgorithm

NSGA-IINondominatedsortinggeneticalgorithm-II

PDFProbabilitydensityfunction

PPPhysicalprogramming

PPPIOPredator–preypigeon-inspiredoptimization

PSOParticleswarmoptimization

RORobustoptimization

SASimulateannealing

SDDPStochasticdifferentialdynamicprogramming

SDEStochasticdifferentialequation

SDPSemidefiniteprogramming

SMVSpacemaneuvervehicle

xvi Acronyms

SOCPSecond-orderconeprogramming

SOPSingle-objectiveproblem

SPPSOStrengthparetoparticleswarmoptimization

SQFStochasticquadratureformula

SQPSequentialquadraticprogramming

TSTabusearch

VLDEViolationlearningdifferentialevolution

WSWeightedsum

Acronyms xvii

Chapter1 Introduction

Abstract Formostatmosphericorexo-atmosphericspacecraftflightscenarios,a well-designedtrajectoryisusuallyakeyforstableflightandforimprovedguidance andcontrolofthespacevehicle.Amongtheseflightmissions,trajectoryoptimization forreentryvehiclesisusuallyrecognizedasachallengingproblemandithasbeen widelyresearchedforacoupleofdecades.Oneofthecurrentobjectivesisthe developmentofspacemaneuvervehiclesforadynamicmissionprofile.Thischapter brieflyoutlinesthebackgroundandcurrentdevelopmentofthereentrytrajectory designproblem.Typicalspacecraftskipentrymissionscenariosarealsointroduced. Followingthat,theoverallaimsandobjectivesofthebookwillbesummarized. Finally,thestructureoftheentirebook,togetherwithsomehighlightsofeachchapter, willbegiven.

1.1Background

Inthelastcoupleofdecades,numerousachievementsandmassiveeffortshavebeen witnessedinordertomovehumanbeingsintospace.Nowadays,aerospacescience andtechnologyhasbroughtvariouschangesinnotonlythemilitaryfieldbutalso scientificandengineeringapplications.Amongthem,thedevelopmentofspacecrafttechnologyhasattractedsignificantattention[1, 2].Sofar,severalgenerations ofspacecrafthavebeendesigned,manufactured,launched,andsuccessfullyimplementedindifferentmissionprofilessuchascommunications[3],interplanetarytravel [4],regionalreconnaissance[5],environmentalmonitoring[6],andsoon.Among them,thespacemaneuvervehicles(SMVs)willplayanincreasinglyimportantrole inthefutureexplorationofspace,sincetheiron-orbitmaneuverabilitycangreatly increasetheoperationalflexibilityandaremoredifficultasatargettobetrackedand intercepted.However,becauseofthelongdevelopmentcycle,highoperatingcost, andlimitedresources,itisusuallydesiredbyaerospaceengineersthatthespace vehiclecanfulfillthemissionwithsomeperformancemetricstobeoptimized,orin otherwords,inanoptimalornear-optimalway.Toachievethisgoal,apropertreatmentoftheflighttrajectoryforthespacevehicleisoftenrequired,andthisstimulates thedevelopmentoftrajectoryoptimizationtechniques.

©SpringerNatureSingaporePteLtd.2020

R.Chaietal., DesignofTrajectoryOptimizationApproachforSpace ManeuverVehicleSkipEntryProblems,SpringerAerospaceTechnology, https://doi.org/10.1007/978-981-13-9845-2_1

1

Trajectorydesignforspacevehicleshasbeeninvestigatedwidelybysome researchers.Thistypeofproblemisusuallytreatedasanoptimalcontrolproblem. Thecoreaimofthiskindofproblemistodetermineafeasiblepathortrajectory,fora givenvehicle,toachieveaprespecifiedtargetandoptimizeapredefinedperformance index.Duringthetrajectoryplanningphase,anumberofconstraintsshouldbetaken intoaccountinordertoachievethemission-dependentrequirementsandprotectthe structuralintegrity.

Duetothehighnonlinearcharacteristicsandstrictpathconstraintsoftheproblem, itisdifficulttocalculatetheoptimalsolutionusinganalyticalmethods.Therefore, numericalmethodsarewidelyappliedtocalculatetheoptimaltrajectories.Although extensiveresearchworkhasbeencarriedoutonthedesignofspacecrafttrajectories andmanynumericaloptimizationtechniquesweredeveloped,itisstillchallenging tofindageneralapproachwhichcanbeappliedtoproduceoptimalsolutionsfor differentmissionprofilesandfulfilldifferentmissionrequirements.

1.2MissionScenarios

Inthissection,abriefdescriptionofsomeongoingprojectsinthefieldofaerospace engineering,especiallyinthefieldofspacecraftreentry,isprovided.

1.2.1SkipReentryMission

Themissionscenarioinvestigatedintheskipreentryproblemfocusesontheatmosphericflight,targetingtheentryintotheatmospheredowntoapredetermined positionsetatthestartofthemission.Studiescanbefoundintheliteratureregarding theskipreentryofdeep-spacespacecraftwithhighspeedoverfirstcosmicvelocity. AgraphicalmissionillustrationcanbefoundinFig. 1.1.

Generalskipreentrycanbedividedintofivephases:initialroll,downcontrol, upcontrol,Kepler,andfinalentry.Themaindifficultyofanatmosphericentryisto dealwiththerapidchangeintheaerodynamicenvironment.Thealmostimmediate switchfromspaceflightdynamicstoatmosphericflightcontrolisachallengeto performandanalyze.

1.2.2RegionalReconnaissance

Themissionscenariooftheregionalreconnaissanceprojectinvestigatedinissimilartothegeneralskipentrymission.Itfocusesontheatmosphericskiphopping, targetingtheentryintotheatmospheredowntodifferentpredeterminedtargetpoints forobservationandgatheringofinformationofinaccessibleareas.Oncethesetarget

2 1Introduction

Fig.1.1 SMVreentrymissionprofile

pointsarereached,thespacecraftstartstheascentphase,exitingtheatmosphere andreturningbacktolowEarthorbit(LEO).Duringthemission,theSMVcan flyineithertheunpoweredexo-atmosphericflight,poweredexo-atmosphericflight, unpoweredatmosphericflight,orpoweredatmosphericflight.Theoverallmission profileisdesignedandillustratedinFig. 1.2

ItisworthnotingthatasshowninFig. 1.2,thedashedlinephasesmayrepeat severaltimes(e.g., n 1times).Thisisbecause,inthisproject,itisexpectedforthe vehicletohaveamultiple-hoptrajectoryinordertooverflydifferenttargetregions andcompletethereconnaissancemission.Therefore,basedonthemissiondefinition statedabove,thetypicalskipentryproblemcanalsobetreatedasasubproblemof theregionalreconnaissancemission.

1.3BookAimsandObjectives

Theprimaryaimofthisbookistopresentthelatestprogressthathasbeenachieved inthedevelopmentofspacecrafttrajectoryoptimizationtechniques.Specifically,the mainfocuswillbeontherecentlyproposedoptimizationmethodsthathavebeen utilizedinconstrainedtrajectoryoptimizationproblems,multi-objectivetrajectory

1.2MissionScenarios3

optimizationproblems,andstochastictrajectoryoptimizationproblems.Oneindividualobjectiveofthisbookistosummarizethemainadvantagesanddisadvantagesof applyingdifferentoptimizationmethodsinspacecrafttrajectoryoptimizationproblemsbasedontheresultsreportedinthenewlypublishedworks.Apartfromthat, wealsoputeffortsontheimprovementofthesenumericalmethodsinordertocircumventthelimitationsbroughtbytheclassictechniques.

Consequently,alltheobjectivesofthisbookcanbesummarizedasfollows:

1.Systematicallyintroducedifferentoptimizationapproachestospacecrafttrajectoryoptimizationproblems.

2.Proposeanenhancedtrajectoryoptimizationmethodinordertocircumventthe limitationsbroughtbytheclassictechniques.

3.Improvetherobustnessandstabilityofthedesignedtrajectoryoptimization approach.

4.Reducethecomputationalcomplexityoftheproposedalgorithm.

5.Presentnewmulti-objectiveapproachestosearchtheoptimaltrade-offsolution withpreferencerequirements.

4 1Introduction Earth Edge of atmosphere Final Powered Exo-atmospheric phase Ini al point (around 120km) Unpowered atmospheric phases Final posi on Target posi on 1 Powered or unpowered Exoatmospheric phases First entry point e R 80 at hkm 120 Hkm Target posi on i Dashed Phase performed n-1 Times
Fig.1.2 SMVorbitalhoppingmissionprofile

6.Providein-depthanalysisofstochastictrajectoryoptimizationproblemswiththe considerationofchanceconstraints.

1.4ChapterLayout

Therestofthisbookisorganizedasfollows.Chapter 2 reviewsthestate-of-theartdevelopmentinspacecrafttrajectoryoptimizationproblemsandoptimalcontrol methods.Aparticularfocuswillbegiventothedesignofnumericaltrajectoryoptimizationalgorithmsandtheirapplications.Seniorundergraduatestudentsandpostgraduatestudentswhoaredoingresearchorareinterestedintrajectoryoptimization methodswillgetabetterunderstandingofthelatestdevelopmentonthistopic.

FollowingthatinChap. 3,themodelingoftheSMVtrajectoryoptimizationproblemwillbepresented.AnonlinearconstrainedoptimalcontrolformulationisconstructedandusedtosearchtheoptimaltrajectoryoftheSMV.Twosetsofflight dynamicsareestablishedinordertorepresentthemovementofthespacecraftduringtheexo-atmosphericandatmosphericflightphases.Inaddition,acoupleof interior-pointconstraintsareintroducedtoconnectthetrajectorybetweendifferent flightphases.

Chapter 4 analysestheperformanceofdifferentoptimizationstrategiesforcalculatingtheoptimaltrajectories.Twotypesofoptimizationstrategies,namelythe gradient-basedmethodandthederivative-freemethod,areappliedtosolvetheSMV trajectorydesignproblem.Theadvantagesanddisadvantagesofusingthesewelldevelopedalgorithmsarediscussedandconcludedindetail.

Chapter 5 introducesanewhybridoptimalcontrolsolvertosolvetheconstrained SMVtrajectoryoptimizationproblem.Aderivative-freealgorithm-basedinitial guessgeneratorisdesignedandappliedtodecreasethesensitivityproblem.Inaddition,animprovedgradientsolverisproposedastheinneroptimizer.Thistwo-nested structurecanoffertheusermoreflexibilitytocontroltheoptimizationprocess.

InChap. 6,theSMVtrajectoryoptimizationproblemisreformulatedandextended toamulti-objectivecontinuous-timeoptimalcontrolmodel.Multi-objectiveoptimizationevolutionarytechniquesaredesignedandappliedtocalculatetheParetooptimalsolution.Furthermore,inordertotakeintoaccountthedesigner’spreference requirements,differentmulti-objectivetransformationtechniquesarealsoproposed toproducecompromisedsolutions.

TheworkpresentedinChap. 7 focusesonthedevelopmentofreal-timeoptimal guidancestrategiesforthespacemaneuvervehicles.Twotypesofoptimalguidance strategies,namelytherecedinghorizoncontrol-basedmethodsandthedeepneural network-drivenalgorithm,areproposedtoproducetheoptimalcontrolcommandin realtime.Detailedsimulationstudieswerecarriedouttoverifytheeffectivenessand real-timeapplicabilityoftheproposedstrategies.

Chapter 8 investigatesacomputationalframeworkbasedonoptimalcontrolfor addressingtheproblemofstochastictrajectoryoptimizationwiththeconsideration ofprobabilisticconstraints.Adiscretizationtechniqueisemployedtoparametrize

1.3BookAimsandObjectives5

theuncertainvariableandcreatethetrajectoryensemble.Besides,asmoothand differentiablechanceconstrainthandlingmethodisproposedtoapproximatethe probabilisticconstraint.Simulationresultsareobtainedtopresenttheoptimalflight trajectories.Basedonthenumericalsimulation,somekeyfeaturesoftheobtained resultsarealsoanalyzed.

References

1.Betts,J.T.:Surveyofnumericalmethodsfortrajectoryoptimization.J.Guid.Control.Dyn. 21(2),193–207(1998). https://doi.org/10.2514/2.4231

2.Conway,B.A.:Asurveyofmethodsavailableforthenumericaloptimizationofcontinuous dynamicsystems.J.Optim.TheoryAppl. 152(2),271–306(2012). https://doi.org/10.1007/ s10957-011-9918-z

3.Lavaei,J.,Momeni,A.,Aghdam,A.G.:Amodelpredictivedecentralizedcontrolschemewith reducedcommunicationrequirementforspacecraftformation.IEEETrans.ControlSyst.Technol. 16(2),268–278(2008). https://doi.org/10.1109/TCST.2007.903389

4.AlonsoZotes,F.,SantosPenas,M.:Particleswarmoptimisationofinterplanetarytrajectories fromearthtojupiterandsaturn.Eng.Appl.Artif.Intell. 25(1),189–199(2012). https://doi.org/ 10.1016/j.engappai.2011.09.005

5.Chai,R.,Savvaris,A.,Tsourdos,A.,Chai,S.,Xia,Y.:Optimalfuelconsumptionfinite-thrust orbitalhoppingofaeroassistedspacecraft.Aerosp.Sci.Technol. 75,172–182(2018). https:// doi.org/10.1016/j.ast.2017.12.026

6.Bogorad,A.,Bowman,C.,Dennis,A.,Beck,J.,Lang,D.,Herschitz,R.,Buehler,M.,Blaes,B., Martin,D.:Integratedenvironmentalmonitoringsystemforspacecraft.IEEETrans.Nucl.Sci. 42(6),2051–2057(1995). https://doi.org/10.1109/23.489252

6 1Introduction

Chapter2

OverviewofTrajectoryOptimization Techniques

Abstract Thischapteraimstobroadlyreviewthestate-of-the-artdevelopmentin spacecrafttrajectoryoptimizationproblemsandoptimalcontrolmethods.Specifically,themainfocuswillbeontherecentlyproposedoptimizationmethodsthathave beenutilizedinconstrainedtrajectoryoptimizationproblemsandmulti-objectivetrajectoryoptimizationproblems.Anoverviewregardingthedevelopmentofoptimal controlmethodsisfirstintroduced.Followingthat,variousoptimizationmethodsthat canbeeffectiveforsolvingspacecrafttrajectoryplanningproblemsarereviewed, includingthegradient-basedmethods,theconvexification-basedmethods,theevolutionary/metaheuristicmethods,andthedynamicprogramming-basedmethods.In addition,aspecialfocuswillbegivenontherecentapplicationsoftheoptimized trajectory.Finally,themulti-objectivespacecrafttrajectoryoptimizationproblem, togetherwithdifferentclassesofmulti-objectiveoptimizationalgorithms,isbriefly outlinedattheendofthechapter.

2.1SpacecraftTrajectoryOptimizationProblems andOptimalControlMethods

Overthepastcoupleofdecades,trajectoryoptimizationproblemsintermsofreentry vehiclehaveattractedsignificantattention[1–3].Ithasbeenshowninmanypublished worksthatthetrajectorydesigncomponentplaysakeyrolewithregardtostableflight andimprovedcontrolofthespacevehicle[4, 5].Acomprehensiveoverviewofthe motivationfortheuseoftrajectoryoptimizationindifferentspacemissions,together withvariousrelatedtrajectoryoptimizationapproaches,wasmadebyConwayin 2011[6].Inthisreviewarticleandthereferencestherein,severalimportantpractical exampleswerehighlightedsuchastheorbitaltransferproblems[7, 8],thespacecraft rendezvousanddocking[9, 10],andtheplanetaryentry[11–13].Theseproblems weresummarizedinageneralformandtreatedasoptimalcontrolproblems[14].It isworthnotingthataccordingtoBetts[15],aninterchangeddesignationbetweenthe term“optimalcontrolproblems”and“trajectoryoptimizationproblems”canalways befoundintheliterature.Acompletedescriptionandanalysisofthedifferences betweenthesetwostatementscanbereferredto[16, 17].

©SpringerNatureSingaporePteLtd.2020

R.Chaietal., DesignofTrajectoryOptimizationApproachforSpace ManeuverVehicleSkipEntryProblems,SpringerAerospaceTechnology, https://doi.org/10.1007/978-981-13-9845-2_2

7

Amongtheseapplications,oneofthecurrentobjectivesisthedevelopmentof spacemaneuvervehicles(SMV)foradynamicmissionprofile[8, 18, 19].The Machnumberandtheflightaltitudeoftheentryvehiclevarylargelyduringthe wholeflightphase,theaerodynamicfeatureofthevehiclehaslargeuncertaintiesand nonlinearities[12, 20].Duetothesereasons,numericalalgorithmsarecommonly usedtoapproximatetheoptimalsolution[21–23].

Fromthecurrentdevelopmentofoptimalcontroltheory,onthewhole,thedevelopment/applicationofnumericaltrajectoryoptimizationmethodsforatmosphericor exo-atmosphericspacecraftflightscenariosleadstotwodifferenttrends.Thefirstone isthatsystemdiscretizationtendstobecomemorereliableandadaptivesuchthatit canmaximallycapturethecharacteristicsofthedynamicalsystem[14, 24].Theother isthatoptimizationbecomesmoreaccurateandcomputationallyfriendlysothatthe solutionoptimality,togetherwiththereal-timecapability,canbeimproved.Dependingontheorderofdiscretizationandoptimization,numericaltrajectoryoptimization methodscanbeclassifiedintotwomaincategories.Thatis,theso-calledindirect methods(“optimizationthendiscretization”)andthedirectmethods(“discretization thenoptimization”)[24].Theformertypeofmethodaimstoapplythecalculusof variations(COV)andsolvethefirst-ordernecessaryconditionsforoptimalitywith respecttothespacecrafttrajectoryoptimizationproblems.Successfulexampleshave beenreportedintheliteratureforaddressingproblemswithoutconsideringinequalityconstraints[25, 26].Intheseworks,thefirst-ordernecessaryconditionswere formulatedastwo-pointboundaryvaluedifferential-algebraicequations.However, intermsofproblemsinthepresenceofinequalityconstraints,thistypeofapproach mightnotbeeffective.Thisisbecauseitisdifficulttodeterminetheswitchpoints wheretheinequalityconstraintsbecomeactive,thuslimitingthepracticalapplicationofthistypeofmethod.Moreover,theHamiltonianboundaryvalueproblem (HBVP)shouldalsobeconstructedandthisprocessusuallybecomescostlydueto thecomplexityofthedynamicmodelandpathconstraints.

Asforthedirectmethod,thefirststepistodiscretizethecontrolorthestate andcontrolvariablessoastotransformtheoriginalformulationtoastaticnonlinear programmingproblem(NLP).Followingthat,differentwell-developedoptimization techniquesareavailabletoaddresstheoptimalsolutionoftheresultingstaticproblem. Comparedwiththeindirectstrategy,itismucheasiertoapplythedirectmethodto handlethespacecrafttrajectorydesignproblem.Moreover,thewayofformulating constraintstendstobemorestraightforward.Therefore,applyingthe“discretization thenoptimization”modehasattractedmoreattentioninengineeringpractice.

Fordirectmethods,onetraditionaltechniquewhichhasbeenusedinpractical problemsisthedirectmultipleshootingapproach[27–29].Inashootingmethod,only thecontrolvariablesareparametrized[30–32].Thenexplicitnumericalintegration (e.g.,theRunge–Kuttamethod)isusedtosatisfythedifferentialconstraints[33–35]. Anotherwell-developeddirecttranscriptiontechniqueisthecollocationmethods. Generally,therearetwomainkindsofcollocationschemes:localcollocationmethods andglobalcollocationmethods.Relativeworksondevelopingthelocalcollocation methodscanbefoundinliteratures.Forexample,Yakimenkoetal.[36]appliedan inversedynamicsinthevirtualdomaincollocationmethodtogenerateanear-optimal

82OverviewofTrajectoryOptimizationTechniques

aircrafttrajectory.TheworkofDuanandLi[37]presentsadirectcollocationscheme forgeneratingtheoptimalcontrolsequenceofahypersonicvehicle.

Inrecentyears,globalcollocationtechniqueshaveattractedextensiveattentions andalargeamountofworkisbeingcarriedoutinthisfield[38].Forexample,Fahroo andRoss[39]developedaChebyshevpseudospectralapproachforsolvingthegeneralBolzatrajectoryoptimizationproblemswithcontrolandstateconstraints.In theirfollow-upwork[40],apseudospectralknottingalgorithmwasdesignedsoasto solvenonsmoothoptimalcontrolproblems.Inaddition,Bensonetal.[41]developed aGausspseudospectral(orthogonalcollocation)methodfortranscribinggeneraloptimalcontrolproblems.Inapseudospectralmethod,thecollocationpointsarebased onquadraturerulesandthebasisfunctionareLagrangeorChebyshevpolynomials. Incontrasttothedirectcollocationmethod,pseudospectralmethodusuallydivides thewholetimehistoryintoasinglemeshintervalwhereasitscounterpart,direct collocation,dividestimeintervalintoseveralequalstepsubintervalsandtheconvergenceisachievedbyaddingthedegreeofthepolynomial.Toimproveaccuracyand computationalefficiencyusingpseudospectralmethod,ahp-strategyisproposedand analyzedin[42–44].Byaddingcollocationpointsinacertainmeshintervalordividingthecurrentmeshintosubintervalssimultaneously,theaccuracyofinterpolation canbeimprovedsignificantly.

Itisworthnotingthattheprimarygoalofthisbookistopresentthelatestprogress thathasbeenachievedinthedevelopmentofspacecrafttrajectoryoptimizationtechniques.Specifically,themainfocuswillbeontherecentlyproposedoptimization methodsthathavebeenutilizedinconstrainedtrajectoryoptimizationproblems, multi-objectivetrajectoryoptimizationproblems,andstochastictrajectoryoptimizationproblems.Therefore,comparedwiththeoptimizationprocess,thediscretization processisrelativelyless-importantandwillonlybebrieflypresentedinthefollowingchapters.Adetailedandseriousattempttoclassifydiscretizationtechniquesfor spacecrafttrajectorydesigncanbefoundin[8, 17].

2.2OptimizationTechniquesandApplications

Nevertheless,allthedirectmethodsaimtotranscribethecontinuous-time-optimal controlproblemstoanonlinearprogrammingproblem(NLP)[45–47].Theresulting NLPcanbesolvednumericallybywell-developedoptimizationalgorithms.

Themainobjectiveofthissectionistoreviewthestate-of-the-artoptimization strategiesreportedintheliteratureforcalculatingtheoptimalspacecraftflighttrajectories.Basedonthereportedresults,onemaybeabletogainabetterunderstanding intermsoftheperformanceandbehaviorsofdifferentalgorithmsforaddressing variousspacevehicleflightmissions.Moreover,itispossibletoguidethereaderto improveoneofthesetechniquesinordertocircumventthelimitationsbroughtby theclassicmethods.

Intheliterature,fourtypesofoptimizationstrategiesareusuallyappliedtosolve thespacecrafttrajectoryoptimizationproblems.Specifically,thegradient-based,

2.1SpacecraftTrajectoryOptimizationProblemsandOptimalControlMethods9

Table2.1 Populardeterministicoptimizationalgorithmsavailablefortrajectoryoptimizationproblems

Deterministicoptimizationalgorithms

Sequentialquadraticprogramming(SQP)[7]

Interior-pointmethod(IP)[48]

Interior-pointsequentialquadraticprogramming(IPSQP)[49]

Linearprogramming(LP)[50]

Second-orderconeprogramming(SOCP)[47]

Semidefiniteprogramming(SDP)[51]

Dynamicprogramming(DP)[52]

Differentialdynamicprogramming(DDP)[53]

Stochasticdifferentialdynamicprogramming(SDDP)[54]

Table2.2 Popularstochasticoptimizationalgorithmsavailablefortrajectoryoptimizationproblems

StochasticOptimizationAlgorithms

Geneticalgorithm(GA)[1]

Differentialevolution(DE)[55]

Violationlearningdifferentialevolution(VLDE)[3]

Particleswarmoptimization(PSO)[10]

Predator–preypigeon-inspiredoptimization(PPPIO)[56]

Antcolony(AC)[57]

Artificialbeecolony(ABC)[37]

Simulateannealing(SA)[58]

Tabusearch(TS)[59]

convexification-based,dynamicprogramming-based,andderivative-free(heuristicbased)optimizationtechniquesareusedtocalculatetheoptimaltimehistorywith respecttothespacecraftstateandcontrolvariables.Thesealgorithmscanbefurther groupedintothedeterministicandthestochasticapproaches.

Themostpopularoptimizationmethodsamongthesetwogroupsaresummarized andtabulatedinTables 2.1 and 2.2.Itshouldbenotedthatnotalltheoptimization algorithmsundereachcategoryarelistedinthistable.Alternatively,onlysome importantexamplesarereviewedandthesetechniquesarediscussedindetailin thefollowingsubsections.Alargenumberofnumericalsimulationswerecarried outinrelatedworks.Theresultsindicatedthatthesenewlyproposedoptimization strategiesareeffectiveandcanprovidefeasiblesolutionsforsolvingtheconstrained spacevehicletrajectorydesignproblems.

102OverviewofTrajectoryOptimizationTechniques

2.2.1Gradient-BasedMethods

Oneofthemostcommonlyusedoptimizationalgorithmsforoptimizingthespacecraftflighttrajectoryistheclassicgradient-basedmethod.Amonggradient-based methods,thesequentialquadraticprogramming(SQP)methodandtheinterior-point (IP)methodareusedsuccessfullyforthesolutionoflarge-scaleNLPproblems[60]. In[61],afuel-optimalaeroassistedspacecraftorbitaltransferproblemwasfirsttransformedtoastaticNLPviaapseudospectraldiscretizationmethod.Then,thestatic NLPwassolvedbyapplyingthestandardSQPmethodtogeneratethefuel-optimal flighttrajectory.Similarly,in[7]theSQPmethodwasappliedastheprimaryoptimizertosearchthetime-optimalflighttrajectoryofalow-thrustorbitaltransfer problem.

AlthoughSQPmethodscanbeusedasaneffectivealgorithmtoproducetheoptimalflighttrajectory,mostoftheSQPimplementationsrequiretheexactsolution ofthesubproblem.Thismayincreasethecomputationalburdenofthesolversignificantly[49].Moreover,sincemostSOPmethodsutilizetheactivesetstrategy tohandleinequalityconstraints,thecomputationalburdenmaybeincreasedifthe activesetisinitializedinanimproperway.

ApartfromtheSQPmethod,analternativegradient-basedmethodistheinteriorpoint(IP)methoddevelopedduringthelastdecade.InvestigationsofIPcanbefound inalargeamountofwork.Toapplythismethod,theinequalityconstraintsneedtobe transcribedtoequalityconstraintsbyintroducingsomeslackvariablessuchthatthe problemcanbesolvedinasimplerform.AnapplicationoftheIPmethodinspace vehicletrajectorydesignproblemcanbefoundin[48].Inthiswork,aspaceshuttle atmosphericreentryproblemwasconsideredanddiscretizedviaashootingmethod. TheresultingstaticNLPproblemwasthenaddressedbyapplyingtheIPmethod. Simulationresultsprovidedinthisworkconfirmedtheeffectivenessofapplyingthe IPmethod.However,itisworthnotingthatfortheIPmethod,themainchallenge istodefinethepenaltyfunctionsandinitializethepenaltyfactorintheaugmented meritfunctioninordertomeasurethequalityoftheoptimizationprocess.

In[49],combiningtheadvantagesoftheSQPandIPmethods,theauthorsproposedatwo-nestedgradient-basedmethod,namedinterior-pointsequentialquadratic programming(IPSQP),forsolvingtheaeroassistedspacecrafttrajectorydesignproblem.Oneimportantfeatureofthisapproachisthataninnersolution-findingloopwas embeddedinthealgorithmframework,therebyallowingtheQPsubproblemtobe solvedinexactly.Inthisway,thedesigncanhavemoreflexibilitytocontroltheoptimizationprocessandthealgorithmefficiencycanalsobeimprovedtosomeextent. Simulationresultsandcomparativestudieswerereportedtoshowtheeffectiveness aswellasthereliabilityofthisimprovedgradient-basedmethod.

2.2OptimizationTechniquesandApplications11

2.2.2Evolutionary-BasedMethods

Inanoptimizationproblem,ifitishardtogetthegradientinformationoftheobjectivefunctionsorconstraints(i.e.,duetothehighnonlinearityinvolvedinthese functions),theclassicgradient-basedmethodmightnolongerbereliableoravailable.Inthiscase,theevolutionary-basedmethods,alsoknownasglobaloptimization methods,becometheonlywaytoproducetheoptimalsolution,asthereisnoderivativeinformationrequiredinanevolutionaryapproach.Thisindicatesthatitwillnot sufferfromthedifficultyofcalculatingtheJacobianaswellastheHessianmatrix.

Evolutionaryalgorithmsorglobaloptimizationmethodsusetheprincipleof“survivalofthefittest”adoptedtoapopulationofelementsrepresentingcandidatesolutions[6, 11, 62].Comparedwithclassicgradient-basedalgorithms,thereisno initialguessvaluerequiredbythealgorithmsasthepopulationisinitializedrandomly.Thankstothenatureoftheevolutionaryalgorithm,ittendstobemorelikely thanclassicgradientmethodstolocatetheglobalminimum[10].

Therearemanytypesofevolutionaryalgorithmsthatareavailabletoproducethe optimalsolutionofanengineeringoptimizationproblem.Forexample,thegeneric classofevolutionaryalgorithmssuchasthegeneticalgorithm(GA)anddifferentialevolution(DE),theagent-basedclasssuchastheparticleswarmoptimization (PSO)andthepigeon-inspiredoptimization(PIO),andthecolony-basedclassof algorithmssuchastheantcolonyoptimization(ACO)andtheartificialbeecolony (ABC)algorithm.Relativeworksondevelopingorapplyingtheseglobaloptimizationmethodsinspacecrafttrajectorydesignarewidelyresearchedintheliterature. In[63],aconstrainedspacecapsulereentrytrajectorydesignproblemwasaddressed byapplyingamodifiedGA.Similarly,Kameshetal.[64]incorporatedahybridGA andacollocationmethodsoastoaddressanEarth–Marsorbitaltransfertask.The authorsin[62]producedtheoptimalpathforaspaceroboticmanipulatorbyusing astandardPSOmethod.

Conwayetal.[6]combinedglobaloptimizationalgorithmswithastandard gradient-basedmethodinordertoconstructabi-levelstructuraloptimalcontrol method.Intheirlatestwork,PontaniandConway[10]utilizedamodifiedparticleswarmoptimizationalgorithmtogloballyoptimizetheflightpathofacycling spacecraft.

Anenhanceddifferentialevolutionapproachincorporatedwithaviolationdegreebasedconstrainthandlingstrategywasconstructedinourpreviousworktoapproximatetheoptimalflighttrajectory[3]ofaspacemaneuvervehicleentryproblem.In thiswork,asimplex-baseddirectsearchmechanismwasembeddedinthealgorithm frameworkinordertoimprovethediversityofthecurrentpopulation.Besides,a learningstrategywasusedtoavoidtheprematureconvergenceofthealgorithm.

Furthermore,theauthorsin[65]establishedanantcolonyinspiredoptimization algorithmsoastoplanamulti-phasespacevehicleorbitalflighttrajectory.Anautomatedapproachbasedongeneticalgorithmandmonotonicbasinhoppingwas appliedin[66]toaddressalaunchvehicleinterplanetarytrajectoryproblem.

122OverviewofTrajectoryOptimizationTechniques

Althoughtheaforementionedworkshaveshownthefeasibilityofusingheuristicbasedmethodsforaddressingspacecrafttrajectorydesignproblems,thevalidationof solutionoptimalitybecomesdifficult.Moreover,thecomputationalcomplexitydue totheheuristicoptimizationprocesstendstobeveryhigh[67].Therefore,itisstill difficulttotreatheuristic-basedmethodsasa“standard”optimizationalgorithmthat canbeappliedtosolvegeneralspacecrafttrajectoryplanningproblems.Mucheffort isexpectedtoimprovethecomputationalperformanceofthiskindofalgorithm.

2.2.3Convexification-BasedMethods

Recently,agrowinginterestcanbefoundinapplyingconvexification-basedmethods forgeneratingtheoptimalspacecraftflighttrajectories[68].Animportantfeatureof applyingthiskindofmethodisthatitcanbeimplementedwiththeoreticalguarantees withregardtothesolutionandcomputationalefficiency.Sincemostofthepractical spacecrafttrajectoryoptimizationproblemsareusuallynonconvex,inordertoapply aconvexoptimizationmethod,variousconvexificationtechniquesaredeveloped totransformtheoriginalproblemformulationtoaconvexversion.Thiscanalsobe understoodasusingaspecificconvexoptimizationmodeltoapproximatetheoriginal nonconvexformulation.Commonly,therearethreetypesofconvexoptimization existingintheliterature:

1.Linearprogrammingmodel(LP),

2.Second-orderconeprogrammingmodel(SOCP), 3.Semidefiniteprogrammingmodel(SDP).

IntermsoftheLPmodel,itshouldbenotedthatiftheconsideredproblemis relativelycomplex(i.e.,thenonlinearityofthesystemdynamics,objectives,orconstraintsishigh),thentheLPmodelmightnotbesufficientandreliabletoapproximate theoriginalproblemformulation.Ontheotherhand,asfortheSDPmodel,although ithasthemostaccurateapproximationabilityamongthethreemodelslistedabove, thetransformedconvexformulationisoftennotwell-scaled,therebyresultingin anincreasewithregardstothecomputationalcomplexity.Onthecontrary,agood balancebetweentheapproximationaccuracyandthecomputationalcomplexitycan beachievedbyapplyingtheSOCPmodel.Thisstrategyapproximatestheproblem constraintsusingthesecond-orderconesuchthatthetransformedproblemcanbe solvedwitharelativelysmallcomputingpower.

Contributionsmadetoimplementconvexification-basedoptimizationmethodsto solvespacevehicletrajectorydesignproblemscanbefoundintheliterature.For example,in[69, 70],theplanetarylandingproblemwasaddressedbyusingthe convexoptimizationmethodundertheconsiderationofnonconvexthrustmagnitude constraints.Also,in[71],theSOCPmethodwasappliedtoproducetheoptimal trajectoryofthespacecraftentryplanningproblem.Inthiswork,nonconvexcollision avoidanceconstraints,aswellasthenavigationuncertainties,werealsotakeninto accountandreformulatedintoconvexconstraintsduringtheoptimizationphase.

2.2OptimizationTechniquesandApplications13

2.2.4DynamicProgramming-BasedMethods

Themotivationfortheuseofdynamicprogramming-basedmethodsreliesontheir enhancedabilityinachievingstableperformanceandindealingwithlocaloptimal solution,thatnaturallyexistinnonlinearoptimalcontrolproblems.Inthissubsection, twotypicaldynamicprogramming-basedalgorithmsarereviewedsuchasthestandarddynamicprogramming(DP)method,andthedifferentialdynamicprogramming method(DDP).

MotivatedbytheBellman’sprincipleofoptimality,DPisproposedandapplied tosolveengineeringoptimizationproblems[52].TheprimaryideaoftheBellman’s principleisthattheoptimalsolutionwillnotdivergeifotherpointsontheoriginal optimalsolutionarechosenasthestartingpointtore-triggertheoptimizationprocess. Basedonthisprinciple,DPcalculatestheoptimalsolutionforeverypossibledecision variable.Hence,itishighlylikelytoresultinthecurseofdimensionality[54].

InordertodealwiththemaindeficiencyfacedbythestandardDP,theDDP approachhasbeendesigned[72].Inthismethod,thesolution-findingprocessis performedlocallyinasmallneighborhoodofareferencetrajectory.Subsequently, thismethodcalculatesthelocaloptimalsolutionbyusingabackwardandaforwardsweeprepeatedlyuntilthesolutionconverges.TheDDPmethodhasbeen successfullyappliedtocalculatetheoptimalsolutionofsomespacemissions.For example,in[73, 74],acomprehensivetheoreticaldevelopmentoftheDDPmethod, alongwithsomepracticalimplementationandnumericalevaluationwasprovided. In[72],aDDP-basedoptimizationstrategywasproposedandappliedtocalculate therendezvoustrajectorytonear-Earthobjects.

However,mostoftherecentDDPworkdoesnottakethemodeluncertaintiesand noisesintoaccountintheprocessoffindingthesolution.Consequently,thesolutionfindingprocessmightfailtoproduceanominalsolutionwhichcanguaranteethe feasibilityallalongthetrajectorywhenuncertaintiesormodelerrorsperturbthe currentsolution.

Accordingtoalltherelativeworksreported,itcanbeconcludedthatalthough theresultsgeneratedfrommostexistingoptimizationalgorithmscanbeacceptedas near-optimalsolutions,thereisstillroomforimprovementwithrespecttoapplying theseoptimizationstrategiesinspacecrafttrajectorydesignproblems.

2.3Multi-objectiveTrajectoryOptimizationOverview

Traditionaltrajectorydesignusuallyaimsatonesingleobjective,forexample,minimizingtheaerodynamicheating,maximizingthecrossrange,etc.However,itis worthnotingthatinmanypracticalspacecraftflightoperations,multipleperformanceindicesmustfrequentlybeconsideredduringthetrajectorydesignphase andthisbringsthedevelopmentofmulti-objectivetrajectoryoptimization(MOTO) [75–77].

142OverviewofTrajectoryOptimizationTechniques

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.