Design of guidance and control systems for tactical missiles first edition edition defu

Page 1

Visit to download the full and correct content document: https://textbookfull.com/product/design-of-guidance-and-control-systems-for-tacticalmissiles-first-edition-edition-defu/

Design of guidance and control systems for tactical missiles First Edition. Edition Defu

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Design of Guidance and Control Systems for Tactical Missiles 1st Edition Qi Zaikang (Author)

https://textbookfull.com/product/design-of-guidance-and-controlsystems-for-tactical-missiles-1st-edition-qi-zaikang-author/

Differential

Game Theory with Applications to Missiles and Autonomous Systems Guidance 1st Edition Farhan A. Faruqi

https://textbookfull.com/product/differential-game-theory-withapplications-to-missiles-and-autonomous-systems-guidance-1stedition-farhan-a-faruqi/

Analysis and design of networked control systems under attacks First Edition Yuan Yuan

https://textbookfull.com/product/analysis-and-design-ofnetworked-control-systems-under-attacks-first-edition-yuan-yuan/

Air Pollution Control and Design for Industry First Edition Cheremisinoff

https://textbookfull.com/product/air-pollution-control-anddesign-for-industry-first-edition-cheremisinoff/

Guidance, Navigation, and Control for Spacecraft

Rendezvous and Docking: Theory and Methods 1st Edition Yongchun Xie

https://textbookfull.com/product/guidance-navigation-and-controlfor-spacecraft-rendezvous-and-docking-theory-and-methods-1stedition-yongchun-xie/

Formation control of multiple autonomous vehicle systems First Edition Liu

https://textbookfull.com/product/formation-control-of-multipleautonomous-vehicle-systems-first-edition-liu/

Nonlinear

control systems using MATLAB First

Boufadene

Edition

https://textbookfull.com/product/nonlinear-control-systems-usingmatlab-first-edition-boufadene/

Variable Structure Control of Complex Systems Analysis and Design 1st Edition Xing-Gang Yan

https://textbookfull.com/product/variable-structure-control-ofcomplex-systems-analysis-and-design-1st-edition-xing-gang-yan/

Sizing and selecting air pollution control systems

First Edition Cross

https://textbookfull.com/product/sizing-and-selecting-airpollution-control-systems-first-edition-cross/

DesignofGuidanceand ControlSystemsforTactical Missiles

DesignofGuidanceand ControlSystemsforTactical Missiles

SchoolofAerospaceEngineering

BeijingInstituteofTechnology

CRCPress Taylor&FrancisGroup 6000BrokenSoundParkwayNW,Suite300 BocaRaton,FL33487-2742

c 2020byTaylor&FrancisGroup,LLC

CRCPressisanimprintofTaylor&FrancisGroup,anInformabusiness Publishedthrougharrangementwiththeoriginalpublisher,BeijingInstituteofTechnologyPress

NoclaimtooriginalU.S.Governmentworks

InternationalStandardBookNumber-13:978-0-367-26041-5(Hardback)

Thisbookcontainsinformationobtainedfromauthenticandhighlyregardedsources.Reasonableeffortshavebeenmade topublishreliabledataandinformation,buttheauthorandpublishercannotassumeresponsibilityforthevalidityofall materialsortheconsequencesoftheiruse.Theauthorsandpublishershaveattemptedtotracethecopyrightholdersofall materialreproducedinthispublicationandapologizetocopyrightholdersifpermissiontopublishinthisformhasnotbeen obtained.Ifanycopyrightmaterialhasnotbeenacknowledgedpleasewriteandletusknowsowemayrectifyinanyfuture reprint.

ExceptaspermittedunderU.S.CopyrightLaw,nopartofthisbookmaybereprinted,reproduced,transmitted,orutilized inanyformbyanyelectronic,mechanical,orothermeans,nowknownorhereafterinvented,includingphotocopying,microfilming,andrecording,orinanyinformationstorageorretrievalsystem,withoutwrittenpermissionfromthepublishers.

Forpermissiontophotocopyorusematerialelectronicallyfromthiswork,pleaseaccess www.copyright.com (http://www.copyright.com/)orcontacttheCopyrightClearanceCenter,Inc.(CCC),222RosewoodDrive,Danvers,MA 01923,978-750-8400.CCCisanot-for-profitorganizationthatprovideslicensesandregistrationforavarietyofusers.For organizationsthathavebeengrantedaphotocopylicensebytheCCC,aseparatesystemofpaymenthasbeenarranged.

TrademarkNotice: Productorcorporatenamesmaybetrademarksorregisteredtrademarks,andareusedonlyforidentificationandexplanationwithoutintenttoinfringe.

VisittheTaylor & FrancisWebsiteat http://www.taylorandfrancis.com andtheCRCPressWebsiteat http://www.crcpress.com

Tomywife,Qijie, andmydaughters,QiXiaojieandQiXiaomei, fortheirlove,understandingandsupportthroughout.

—QiZaikang

Tomywife,SunBaocai,andmydaughter,LinJiaxi, fortheirlovingsupportalltheseyears.

—LinDefu

Contents Preface xi Authors xiii 1TheBasicsofMissileGuidanceControl 1 1.1Overview....................................... 1 1.2MissileControlMethods............................... 1 2MissileTrajectoryModels,AerodynamicDerivatives,DynamicCoefficientsand MissileTransferFunctions 7 2.1SymbolsandDefinitions............................... 7
9 2.3ConfigurationoftheControlSurfaces........................ 14 2.4AerodynamicDerivativesandtheMissileControlDynamicCoefficient...... 15 2.5TheTransferFunctionofaMissileastheObjectBeingControlled......... 20 3BasicMissileControlComponentMathematicalModels 28 3.1Seeker........................................ 28 3.2Actuator....................................... 28 3.3AngularRateGyro.................................. 29 3.4Accelerometer.................................... 30 3.5InertialNavigationComponentsandIntegratedInertialNavigationModule.... 30 4AutopilotDesign 31 4.1AccelerationAutopilot................................ 31 4.1.1Two-LoopAccelerationAutopilot...................... 31 4.1.2Two-LoopAutopilotwithPICompensation................. 35
37 4.1.4ClassicThree-LoopAutopilot........................ 44 4.1.5DiscussionofVariableAccelerationAutopilotStructures.......... 48 4.1.6HingeMomentAutopilot........................... 50 4.1.7SeveralQuestionsConcerningAccelerationAutopilotDesign....... 53 4.2Pitch/YawAttitudeAutopilot............................ 58 4.3FlightPathAngleAutopilot............................. 60 4.4RollAttitudeAutopilot................................ 61 4.5BTTAutopilot.................................... 68 4.6ThrustVectorControlandThrusterControl..................... 78 5GuidanceRadar 85 5.1Introduction...................................... 85 5.2MotionCharacteristicoftheTargetLine-of-Sight.................. 85 5.3LoopoftheGuidanceRadarControl......................... 89 5.4EffectoftheReceiverThermalNoiseonthePerformanceofGuidanceRadar... 97 vii
2.2EulerEquationsoftheMissileRigidBodyMotion.................
4.1.3Three-LoopAutopilotwithPseudoAngleofAttackFeedback.......

5.5EffectofTargetGlintonthePerformanceofGuidanceRadar............

5.6EffectofOtherDisturbancesonthePerformanceofGuidanceRadar........

5.6.1EffectofDisturbanceMomentonthePerformanceofTrackingRadar...

5.6.2EffectofTargetManeuvers..........................

6LineofSightGuidance

6.1LOSGuidanceSystem................................

6.2AnalysisoftheRequiredAccelerationfortheMissilewithLOSGuidance.....

7.2ElectromechanicalStructureofCommonlyUsedSeekers..............

7.2.1DynamicGyroSeeker............................

7.2.2StabilizedPlatform-BasedSeeker......................

7.2.3DetectorStrapdownStabilizedOpticSeeker.................

7.2.4Semi-StrapdownPlatformSeeker......................

7.3MechanismAnalysisoftheAnti-DisturbanceMomentoftheSeeker’sStabilization LoopandTrackingLoop...............................

7.4TransferFunctionofBodyMotionCouplingandtheParasiticLoop........

7.4.1TransferFunctionofBodyMotionCoupling................

7.4.2Seeker-MissileCouplingIntroducedGuidanceParasiticLoop.......

7.5.2TestingMethodsforModelingtheRealSeeker...............

7.6OtherParasiticLoopModels.............................

7.6.1ParasiticLoopModelforaPhaseArrayStrapdownSeeker.........

7.6.2ParasiticLoopDuetoRadomeSlopeError.................

7.6.3BeamControlGainError ∆KB ofthePhasedArraySeekerandtheRadome SlopeError Rdom EffectontheSeekerOutput................

7.7StabilizationLoopandTrackingLoopDesignofthePlatform-BasedSeeker....

7.7.1StabilizationLoopDesign..........................

7.7.2TrackingLoopDesign............................

8.1ProportionalNavigationGuidanceLaw.......................

8.1.1ProportionalNavigationGuidanceLaw...................

8.1.2AnalysisofProportionalNavigationGuidanceLawwithNoGuidance SystemLag..................................

8.1.3TheProportionalNavigationGuidanceCharacteristicswiththeMissile GuidanceDynamicsIncluded........................

8.2ExtendedProportionalNavigationGuidanceLaws(Optimal ProportionalNavigation,OPN)...........................

8.2.1OptimalProportionalNavigationGuidanceLaw(OPN1)withthe ConsiderationoftheMissileGuidanceDynamics..............

8.2.2OptimalProportionalNavigationGuidanceLaw(OPN2)Consideringthe ConstantTargetManeuver.......................... 187

viii Contents
101
102
102
104
105
105
107 6.3AnalysisoftheLOSGuidanceLoop......................... 111 6.4LeadAngleMethod................................. 119 7Seekers 122
122
7.1Overview.......................................
123
123
129
132
133
133
136
7.2.5StrapdownSeeker..............................
7.2.6Roll-PitchSeeker...............................
137
140
140
144
147
147
7.5ARealSeekerModel.................................
7.5.1ARealSeekerModel.............................
150
152
152
153
154
157
157
158 8ProportionalNavigationandExtendedProportionalNavigationGuidanceLaws 161
161
161
165
170
182
182

8.2.3ExtendedProportionalNavigation(OPN3)ConsideringBothConstant TargetManeuversandMissileGuidanceDynamics.............

8.2.4EstimationofTargetManeuverAcceleration................

8.2.5OntheEstimationof

8.2.6ProportionalNavigationGuidanceLawwithImpactAngleConstraint...

8.3OtherTypesofProportionalNavigationLaws....................

8.3.1GravityOver-CompensatedProportionalNavigationLaw..........

Contents ix
190
194
tgo 194
195
197
197
201 8.4TargetManeuverAccelerationEstimation...................... 203 8.5OptimumTrajectoryControlDesign......................... 216 Appendices 223 Bibliography 232 Index 233
8.3.2LeadAngleProportionalNavigationGuidanceLaw.............

Preface

Overtheyears,theauthor,QiZaikang,hasbeenengagedinteachingandscientificresearch inthefieldofmissileguidanceandcontrolsystemdesignbothathomeandabroad.Withmany textbooksalreadypublished,themotivationstowriteanewreferencebookwerethefollowing:

1.Mostoftheexistingtextbooksprimarilyaddressedtheoperatingprinciplesofmissile guidanceandcontrolsystemsandtheircontrolcomponents,leavingoutdetailsonsystem designmethods.

2.Thewidespreadapplicationofinertialnavigationandintegratedinertialnavigationonboardthemissilehasmademanynewguidanceandcontrolsolutionsfeasible.Yet,due tothelackofnecessaryhardware,thesenewsolutionscouldnotpreviouslybeapplied. Inaddition,theever-increasingdemandsforhighermissileguidanceaccuracyandfaster interceptionresponsemakeitnolongeracceptabletosimplifytheguidanceandcontrol modeltotheextentthatwasallowedinthepast.Therefore,thecurrentdesignmodel,as wellasguidanceandcontrolstrategy,hasseensignificantchangesincomparisonwith earliermissiledesign.

Againstthisbackground,theauthorshopethatthisbookcanintroduceasmanyup-to-dateguidanceandcontrolsolutionsandimproveddesignmodelsaspossible,whileatthesametimepresentingmorepracticalandvaluabledesignmethods.

DuetoQiZaikang’smanytechnicalexchangeswithasignificantnumberofWesternandRussianexpertsduringhisworkabroad,andhisdomesticengagementintherelatedscientificresearch, thisbookwillcoverthelatestpracticaltechnologiesinthefield,bothathomeandabroad,bygiving considerationtodesignconceptsofboththeEastandWest.

Thisbookcanbeusedasatextbookforundergraduateandgraduatestudentsinthisfield,as wellasahelpfulreferencebookforpracticalengineeringdesigners.

Theinnovativecontentofthisbookiscloselyrelatedtotheresearchworkoftheauthors’many graduatestudents.Theauthorswishtoextendtheirsincerethankstothemall.

Finally,theauthorswouldalsoliketoexpresstheirappreciationtoMissXuJiaoforhercontributiontothisbook.Overthepastyears,shehasworkedfull-timeonthisbook’smathematical simulations,drawings,typingandreview.Itshouldbesaidthatwithoutherdedication,thisbook couldnothavebeenfinished.

QiZaikang SchoolofAerospaceEngineering,BeijingInstituteofTechnology Beijing,China,December,2018

LinDefu SchoolofAerospaceEngineering,BeijingInstituteofTechnology Beijing,China,December,2018

xi

Authors

QiZaikang isaChiefTechnicalExpertinWeaponsGuidanceandControlTechnology.Heserves aschairandprofessorintheAircraftGuidanceandControlDesigndepartmentattheBeijingInstituteofTechnology.HeisalsotheDirectoroftheInstituteofUAVAutonomousControl.Hehas beenengagedinteachingandresearchinthefieldofaircraftsystemsdesignfor60years.Notonly hasheadvisedmanyexcellentyoungscholarsandengineers,hehasalsoservedaschiefengineer forseveraladvancedresearchandmodelscientificresearchprojects.HeisamemberoftheState CouncilAcademicDegreesCommitteeDisciplinaryAppraisalTeamofthePeople’sRepublicof Chinaandaninternationaleditorof ComputersinMechanicalEngineering

Dr.LinDefu receivedhisPhDdegreefromtheBeijingInstituteofTechnology.HeisDirectorof theInstituteofUAVAutonomousControl.Hehasmorethan20years’experienceintheoverall designandguidanceandcontrolofflightvehicles.Hehasworkedasprincipleinvestigatorfor severalkeynationalprojects.Duetohisoutstandingresearchwork,hehasbeenawardedsecond prizeintheNationalScientificInventionandNationalDefenseScienceandTechnologyAward.He hasauthoredorcoauthoredmorethan80journalpublicationsandservesasmemberofmultiple academiccommittees.

xiii

TheBasicsofMissileGuidanceControl

CONTENTS

1.1Overview

Thepurposeofmissilecontrolistomakethemissilehitthetargetattheendofitsflight.In ordertoachievethisgoal,itisessentialforthemissiletoconstantlyacquirethemotioninformation ofthetargetandofthemissileitselfinthecourseoftheflightandadoptatactic(thatisaguidance law)todecidehowtochangethemissile’svelocitydirectionbasedonthecurrentmissileandtarget relativemotion,allowingthemissiletofinallyhitthetarget.Therelationshipbetweentheangular velocity θ ofthemissilevelocityvectoranditsnormalacceleration a ofthemissile,isasfollows:

Therefore,thecommandofaguidancelawthatisgeneratedtochangethemissilevelocityvector directionisusuallythenormalacceleration ac ofthemissile.Thismissileandtargetinterception controlloopisquitedifferentfromtheconventionaltrackingcontrolloop;theformerisatimevaryingcontrolsystem,anditsanalysismethodiscompletelydifferentfromthegenerallineartimeinvarianttime-domainandfrequency-domainanalysismethod.Soaspecialterm(guidanceloop) hashistoricallybeengiventothisparticularmissilecontrolouterloop.

Withthehelpofautopilots,themissileoutputacceleration a willfollowtheaboveguidance accelerationcommand ac .Undertheassumptionsofsmallperturbation,linearizationandconstant systemparametervalue,thisautopilotloopisalineartime-invariantsystemandsodifferenttraditionalcontroltheorydesignmethodscanallbeapplied.Therefore,theautopilotloopthatactsas theguidanceinnerloophistoricallyisstillreferredtoasthecontrolloop.

Themissilepositionandvelocityinformationneededintheguidanceprocessareobtainedby aninertialnavigationorintegratedinertialnavigationsystem.Theprocessofobtainingthemissile positionandorientationinformationiscallednavigation.Itisnoteworthythatthetermnavigation heredoesnotrefertothehistoricaldefinitionofdirectingthecourseofashiporanaircraft. Fig. 1.1 showstherelationshipsbetweenthetermsnavigation,guidanceandcontrolinmissilecontrol loops.

1.2MissileControlMethods

Ithasbeenstatedbeforethatthetaskofamissilecontrolsystemistousemissilenormalaccelerationtochangethemissile’svelocitydirectionaccordingtotheguidancelawcommand.For

1
1.1Overview 1 1.2MissileControlMethods .............................................. 1
θ = a V (V isthemissilevelocity) (1.1)
1

Fig.1.1:Blockdiagramofthemissileguidanceandcontrolloops

tacticalmissilesflyingintheatmosphere,thisnormalaccelerationisgeneratedbynormalaerodynamicforces.Asweknow,whenthemissilehasanangleofattackwithrespecttoitsvelocity vector,thecorrespondingliftwillproduceanormalacceleration.However,forthemissiletomaintainasteadyangleofattack,thisangleofattackinducedaerodynamicmomentmustbebalanced bythecontrolsurfacedeflectioninducedcontrolmoment.

Whenthecenterofgravityofthemissileislocatedinfrontofthecenterofpressure,theangle ofattackgeneratedaerodynamicmomentwilldecreasetheexistingangleofattackandmeanwhile, the x-axisofthemissilebodywilltrytocoincidewiththemissilevelocityaxis.Thistypeofaerodynamiclayoutisknownasastaticallystableaerodynamicconfiguration(Fig.1.2).However,when thecenterofpressureofthemissileisinfrontofitscenterofgravity,theexistingangleofattack willcontinuouslyincreaseundertheactionofitscorrespondingdestabilizingaerodynamicmoment. Therefore,themissileisinadivergentstate.Thisaerodynamiclayoutiscalledastaticallyunstable aerodynamicconfiguration(Fig.1.3).

Fig.1.2:Missileinastaticallystableaerodynamicconfiguration

Ingeneral,therearethreetypesofaerodynamicconfigurationsforthegenerationofamissile controlmoment:

(1)Normalaerodynamicconfiguration

Inthisaerodynamicconfiguration,themissileactuatorisarrangedatthetailofthemissile(Fig. 1.4).Thebenefitofthisconfigurationisthatwhenthecontrolmomentisbalancedbytheangleof attackproducedmoment,thecontrolsurfaceincidentangleisthedifferencebetweenthecontrol

2 DesignofGuidanceandControlSystemsforTacticalMissiles

Fig.1.3:Missileinastaticallyunstableaerodynamicconfiguration

surfacedeflectionangleandtheangleofattack,whichisthemostefficientwayofusingthecontrol deflectionangle,thusallowingtheuseofalargercontrolsurfacedeflectionandlargerangleofattack formaneuvering.Butthedrawbackisthatthepositionoftheactuatorinthisconfigurationcoincides withtherearendmotor,whichplacescertainrestrictionsonthesizeoftheactuator.Inaddition, whenthemissileistomaneuver,thecontrolsurfaceforceisintheoppositedirectiontotheangle ofattackproducednormalforce,whichwillcausesometotalnormalforceloss.However,taking theseadvantagesanddisadvantagesintoaccount,thisconfigurationisstillthemostcommonlyused aerodynamicconfigurationfortacticalmissiles.

Fig.1.4:Normalaerodynamicconfiguration

(2)Canardaerodynamicconfiguration

Inthisaerodynamicconfiguration,theactuatorispositionedattheheadofthemissile(Fig.1.5). Thebenefitofthisarrangementisthatthemissilemotorcanbearrangedindependently,avoiding theneedtocontendforspacewithothersubsystems.Inaddition,whenthemissileistomaneuver, thecontrolsurfaceforceisinthesamedirectionastheangleofattackproducednormalforce, thusachievinghighermaneuveringforceutilizationefficiency.However,inthisconfiguration,the actuatorincidentangleisthesumoftheactuatordeflectionangleandthemissileangleofattack.As themaximumallowedcontrolsurfaceincidentangleislimited,alargeangleofattackmaneuvering cannotbeachieved.Therefore,nowadaysthisaerodynamicconfigurationislesscommonlyseenin missileapplications.

Fig.1.5:Canardaerodynamicconfiguration

(3)Moving-wingscheme

Withthisaerodynamicconfiguration,themissilewingcanbeturnedasacontrolsurface(Fig. 1.6),andthefullcenterofpressureispositionedinfrontofthecenterofgravity,similartothe

TheBasicsofMissileGuidanceControl 3

Fig.1.6:Moving-wingaerodynamicconfiguration

canardaerodynamicconfigurationbutwithashortcontrolarm.However,therequiredliftformissile maneuveringisessentiallyprovidedbythewingdeflection,thisisbecausethewinghasaverylarge liftingsurface.Forthisreason,theangleofattackrequiredformissilemaneuveringcouldbesmall. Therefore,itisparticularlysuitabletobeusedwhenthemissileturbineengineforcruisingflight isnotallowedtoworkatalargeangleofattack.However,duetothehigherpowerrequirement forthewingactuator,itsoperatingfrequencybandwidthislimited,andsoistheresponsespeed oftherelatedautopilot.Forthisreason,thisaerodynamicconfigurationisrarelyusednowadaysin engineeringpractice.

Fig.1.7 and Fig.1.8 showthesituationsinwhichthecontrolmomentandtheaerodynamic momentareinanequilibriumstatewhenthereisasteadystateangleofattackforstaticallystable andstaticallyunstablemissiles.

Fig.1.7:Momentequilibriumofastatically stablemissile

Fig.1.8:Momentequilibriumofa staticallyunstablemissile

Itisnoteworthythatforastaticallystablemissile,thecontrolmomentgeneratedbytheactuator deflectionangle δ willmakethemissilerotateintherequireddirectiontoproduceanangleofattack. Whentheaerodynamicstabilizingmomentthatincreaseswiththeangleofattackincreasestothe samelevelasthecontrolmoment,thecorrespondingangleofattackwillbeatanequilibriumstate. Therefore,missileswithsufficientstaticstabilitycanalsobedesignedwithoutautopilot.However, thistypeofaerodynamicfeedbacksolutionhaslessprecisemissilenormalaccelerationcontrol comparedwithanaccelerationautopilotsolution.Butforstaticallyunstablemissiles,asteadystate angleofattackcanonlybegeneratedthroughautopilotclosed-loopcontroltomaintainarequired equilibriumbetweenthecontrolmomentandaerodynamicmomentgeneratedbytheangleofattack.

Asmentionedabove,asteadystateangleofattack α isachievedwhenthecontrolmomentand theaerodynamicmomentareinequilibrium,thatis:

4 DesignofGuidanceandControlSystemsforTacticalMissiles
Mδ z · δ = Mα z · α. (Controlmoment)(Aerodynamicmoment)

Thetransferfunctionwiththeactuatordeflectionangle δ astheinputandtheangleofattack α astheoutput,shownbelow,canberegardedastheobjectbeingcontrolledfortheautopilot(Fig. 1.9).

Fig.1.9:Theobjectbeingcontrolledfortheautopilot

Themissile’sstaticstabilityisdirectlyproportionaltothedistancebetweenitscenterofgravity anditscenterofpressure,andthisdistanceissmallformissileswithlowstaticstability.Therefore, whencenterofgravityorcenterofpressureofthemissilewithlowstaticstabilitydeviatesfromits designedvalue,thevalueof Mδ z andthegainofthetransferfunction Mα z Mδ z fromtheactuator δ tothe angleofattack α willchangegreatlyfromitsdesignedvalue,whichmeansthattheopen-loopgain oftheautopilotloopwillalsochangegreatly.Thisisunacceptableforanormallydesignedcontrol loop.Therefore,toreducetheautopilotopen-loopgainchange,themissilestaticstabilityisoften takenataround4-8%.Formissilesthatmusthavealowstaticstabilityaerodynamicconfiguration forotherconsiderations,thegainfrom δ to α couldbestabilizedbydesigningapseudoangleof attackfeedbackloop.Foradetaileddiscussionofthisoption,seetheautopilotdesignsection.

Atpresent,askid-to-turn(STT)controlschemeisadoptedinmosttacticalmissiles.Thatis,in theCartesiancoordinatesystem,amissilepitchturnisachievedbythegenerationofangleofattack α,andayawturnisachievedbythegenerationofsideslipangle β,asshownin Fig.1.10

Fig.1.10:Skidtoturn(STT)polardiagram

Suchacontrolschemehasaveryfastresponse,butitisnecessarytoberollstabilized.Clearly, STTismostsuitableforaerodynamicallysymmetricalmissiles.

Anothercontrolschemeisbank-to-turn(BTT).Thisschemeisgenerallyusedforsurfacesymmetricalmissiles,especiallywhenthereisabigdifferencebetweenthepitchandyawliftsurface areasofthemissile.Inthisscheme,themissilemustturnthemainliftsurfacebyanangle φ with thehelpofarollcontrolautopilottohavethemissileangleofattackintherequiredmaneuvering direction(Fig.1.11).

TheBasicsofMissileGuidanceControl 5

Fig.1.11:Bank-to-turn(BTT)polardiagram

ForthemissilewithBTTcontrol,whenthemissilemaneuveringdirectionneedstobechanged, itispossiblethatthemissilehastorollalargerollangletoanewdirection,andclearlythisleads toaslowmissilemaneuveringresponse.Forthisreason,BTTcontrolismoresuitableformissile midcourseguidancephase.

6 DesignofGuidanceandControlSystemsforTacticalMissiles

CONTENTS

2.1SymbolsandDefinitions

2.4AerodynamicDerivativesandtheMissileControlDynamic

2.5TheTransferFunctionofaMissileastheObjectBeingControlled

2.1SymbolsandDefinitions

Theoriginofthemissilebodycoordinatesystem Oxbybzb isdefinedatthecenterofgravity ofthemissile,andeachaxisisdefinedasfollows(supposethatthemissileisanaxisymmetricor plane-symmetricrigidbody,see Fig.2.1):

Rollaxis Oxb:liesinthesymmetryplane.Pointingforwardispositive.

Yawaxis Oyb:locatedinthesymmetryplaneofthemissilebody,withupwardsasthepositive direction.

Pitchaxis Ozb:formstheright-handedrectangularcoordinatesystemtogetherwithaxes Oxb and Oyb.

Table2.1 definesthesymbolsforaerodynamicforces,momentsactingonthemissile,linear velocities,andangularvelocities,aswellasmomentsofinertia(asshownin Fig.2.1).Themoment ofinertiaaroundeachaxisisdefinedas:

Theproductofinertiaaroundeachaxisisdefinedas:

2 MissileTrajectoryModels,AerodynamicDerivatives, DynamicCoefficientsandMissileTransferFunctions
.............................................. 7
9 2.3ConfigurationoftheControlSurfaces 14
2.2EulerEquationsoftheMissileRigidBodyMotion
Coefficient 15
.. 20
Jx = mi y 2 i + z 2 i , (2.1) Jy = mi z 2 i + x 2 i , (2.2) Jz = mi x 2 i + y 2 i . (2.3)
Jyz = miyizi, (2.4) Jzx = mizi xi, (2.5) Jxy = mi xiyi. (2.6) 7

NOTE: O is the center of gravity of the missile

Fig.2.1:Definitionsofaerodynamicforce,moment,etc.,ofthemissile

Theplane Oxbyb isthepitchplaneandtheplane Oxbzb istheyawplane.Therelevantanglesare definedasfollows:

α—angleofattackinthepitchplane;

β—angleofattackintheyawplane(angleofsideslip);

αT —totalangleofattack;

λ—angleofattackplaneangle.

Therefore:

Theaxialvelocityofthemissilebody Vxb isalargebutslowlyvaryingvariable,anditsvariation isusuallylessthanafewpercentpersecond.However,theangularvelocity ωx,ωy,ωz andvelocity components Vyb, Vzb ofthepitchandyawaxesareusuallysmall.Theycanbepositiveornegative, andtheycanhavelargeratesofchanges.

8 DesignofGuidanceandControlSystemsforTacticalMissiles ybV y y M y J bX xbV T o bZ zbV yb xb zb Relative flow velocity Yb z z M z J x x M x J
tan α = tan αT · cos λ,
tan β = tan αT sin λ. (2.8)
α = arctan tan αT · cos λ , (2.9) β = arctan tan αT sin λ (2.10)
(2.7)
Thatis,

Table2.1:Definitionofsymbols

Angularvelocity(missilebody coordinatesystem)

Velocitycomponent(missilebody coordinatesystem)

Forcesactingonthemissile (missilebodycoordinatesystem)

Momentsactingonthemissile (missilebodycoordinatesystem)

2.2EulerEquationsoftheMissileRigidBodyMotion

Thesix-degree-of-freedommodelofamissilemotioninspaceconsistsofsixdynamicequations (threecenterofgravitymotiondynamicalequationsandthreerotationaldynamicalequations)and sixkinematicequations(threecenterofgravitymotionkinematicequationsandthreerotational kinematicequations).

Thecoordinatesystemsinvolvedinthestudyofmissileguidanceandcontrolproblemsinclude theearthcoordinatesystem,themissilebodycoordinatesystem,thetrajectorycoordinatesystem andthevelocitycoordinatesystem.The x-axisofthelasttwocoordinatesystemscoincideswith themissilevelocityvector.However,the y-axisofthetrajectorycoordinatesystemisinthevertical plane,andthe y-axisofthevelocitycoordinatesystemisinthelongitudinalsymmetricalplaneof themissilebody.Thetransformationbetweenthefourcoordinatesystemscanbeaccomplishedby aseriesofrotations(Fig.2.2).Detaileddescriptionsofthesecoordinatesystemscanbefoundin generalflightdynamicstextbooks.

Forexample,therotationtransformationfromtheearthcoordinatesystemtothemissilebody coordinatesystemisshownin Fig.2.3.

Inthestudyofcoordinatetransformation,itisnecessarytoknowthreebasiccoordinatesystem transformationmatrixesaboutaxes x, y, z:

MissileTrajectoryModels 9
RollaxisYawaxisPitchaxis xb yb zb
ωx ωy ωz
Vxb Vyb Vzb
Xb Yb Zb
Mx My Mz Momentsofinertia Jx Jy Jz Productofinertia Jyz Jzx Jxy

Fig.2.2:Transformationfromtheearthcoordinatesystemtoothercoordinatesystems

Fig.2.3:Relationshipbetweentheearthcoordinatesystemandthemissilebodycoordinatesystem

Rotationmatrixthatdoesrotationaboutthe x-axisbyangle ϕx:

Rotationmatrixthatdoesrotationaboutthe y-axisbyangle ϕy:

Rotationmatrixthatdoesrotationaboutthe

10 DesignofGuidanceandControlSystemsforTacticalMissiles
Lx(ϕx) =                          100 0cos ϕx sin ϕx 0 sin ϕx cos ϕx                          .
Ly(ϕy) =                          cos ϕy 0 sin ϕy 010 sin ϕy 0cos ϕy                         
z-axisbyangle
: Lz(ϕz) =                          cos ϕz sin ϕz 0 sin ϕz cos ϕz 0 001                         
ϕz

Definethefollowingvariables:

V—missilebodyvelocity;

ψV ,θ—missileflightpathangle;

γV —missilesymmetricalplanedeflectionangle;

ψ, ϑ, γ—missilesyawangle,pitchangle,rollangle;

α, β—angleofattack,angleofsideslip;

Vx, Vy, Vz—velocitycomponent(earthcoordinatesystem);

Vxb , Vyb , Vzb —velocitycomponent(missilebodycoordinatesystem);

ωx, ωy, ωz—missileangularvelocitycomponent(missilebodycoordinatesystem);

Fxt , Fyt , Fzt —resultantforcecomponentactingonthemissile(trajectorycoordinatesystem);

Fxb , Fyb , Fzb —resultantforcecomponentactingonthemissile(missilebodycoordinatesystem).

Thetotalforce F actingonthemissileconsistsofaerodynamicforce R =

(missilebody coordinatesystem),thrust P =

(missilebodycoordinatesystem),andgravity G =

(earth coordinatesystem).Themomentactingonthemissilebodyis M =

(missilebodycoordinate system).Theprojectionsofrelatedcomponentsinothercoordinatesystemsareshownin Table2.2

Thesix-degree-of-freedommissilemodelcanbegiveninthetrajectoryorthemissilebody coordinatesystem.Whenthesix-degree-of-freedommodelisgiveninthetrajectorycoordinate system(Equation(2.11)),thestatevariablesofthethreedynamictranslationalandthree-rotational equationsaretakenasthevelocity V,θ,ψV (trajectorycoordinatesystem)andtheangularvelocity ωx,ωy,ωz (missilebodycoordinatesystem).Thestatevariablesofthesixkinematicequations arerespectivelytakenasthepositioncomponent x, y, z (earthcoordinatesystem)andtheEuler angle ϑ,ψ,γ (missilebodycoordinatesystem).Otherdependentderivedparametersinclude α,β and γV .

˙ x = V cos θ cos ψV , y = V sin θ, z = V cos θ sin ψV , (2.11) ˙ ϑ = ωy sin γ + ωz cos γ, ψ = (ωy cos γ ωz sin γ)/cos ϑ, γ = ωx tan ϑ(ωy cos γ ωz sin γ), sin β = cos θ[cos γ sin(ψ ψV ) + sin

(cos

V

MissileTrajectoryModels 11
          Xb Yb Zb          
          P 0 0          
          0 G 0          
          Mx My Mz          
mV = Fxt , m ˙ Vθ = Fyt , mV cos θ ˙ ψV = Fzt , Jxωx (Jy Jz)ωyωz Jyz(ω 2 y ω 2 z ) Jzx(˙ωz + ωxωy) Jxy(˙ωy ωxωz) = Mx, Jyωy (Jz Jx)ωzωx Jzx(ω 2 z ω 2 x) Jxy(˙ωx + ωyωz) Jyz(˙ωz ωyωx) = My, Jz ˙ ωz (Jx Jy)ωxωy Jxy(ω 2 x ω 2 y ) Jyz(˙ωy + ωzωx) Jzx
ωx ωzωy
z
γ
ϑ
cos β sin
) = M
,
ϑ sin γ sin(ψ ψV )] sin θ cos ϑ sin γ, sin α = {cos θ[sin ϑ cos γ cos(ψ ψV ) sin γ sin(ψ ψV )] sin θ cos ϑ cos γ}/ cos β, sin γ
=
α sin β sin ϑ sin α sin β cos
cos
+
γ cos ϑ)/ cos θ.

Aerodynamic force R

Table2.2:Relatedprojectionsindifferentcoordinatesystems

Earthcoordinatesystem Trajectorycoordinate system Missilebody coordinatesystem

Resultant force F (F = R + G + P)

Whenthesix-degree-of-freedommodelofthemissileisgiveninthemissilebodycoordinate system(Equation(2.12)),asidefromthestatevariablesofthethreetranslationaldynamicequations changingtothevelocitycomponents Vxb, Vyb, Vzb (missilebodycoordinatesystem),theremaining statevariablesarethesameasthetrajectorysystem.Thatis,thestatevariablesofthethreedynamic rotationalequationsaretakenastheangularvelocitycomponents ωx,ωy,ωz (missilebodycoordinatesystem).Thestatevariablesofthesixkinematicequationsaretakenasthepositioncomponents x, y, z (earthcoordinatesystem)andtheEulerangle ϑ,ψ,γ (missilebodycoordinatesystem), respectively.Otherusefuldependentderivedparametersare Vx, Vy, Vz, V,θ,ψV ,α,β and γV .

12 DesignofGuidanceandControlSystemsforTacticalMissiles
Lx( γv)Ly( β)Lz( α)                          Xb Yb Zb                                                   Xb Yb Zb                          Gravity G                          0 G 0                          Lz(θ)Ly(ψv)                          0 G 0                          Lx(γ)Lz(ϑ)Ly(ψ)                          0 G 0                          Thrust P Lx( γv)Ly( β)Lz( α)                          P 0 0                                                   P 0 0                         
                         Fxt Fyt Fzt                                                   Fxb Fyb Fzb                         
moment M                          Mx My Mz                          Velocity V                         Vx Vy Vz                         Ly ( ψ)Lz ( ϑ)Lx ( γ)                         Vxb Vyb Vzb                                                  Vxb Vyb Vzb                         
Aerodynamic

areshownin Table2.2), θ = arctan Vy/ V 2 x + V 2 z ,

ψV = arctan ( Vz/Vx) ,

α = arctan( Vyb /Vxb ),

β = arcsin(Vzb /V),

V = arcsin (cos α sin β sin

Typically,aerodynamicforce R andmoment M arefunctionsofMachnumberMa,angleof attack α,angleofsideslip β,three-channelcontrolsurfacedeflectionangles δx, δy, δz,andthree angularvelocities ωx, ωy, ωz.

R = R(Ma,α,β,δx,δy,δz), M = M(Ma,α,β,δx,δy,δ

Theexactexpressionofthesefunctionsandtheirreasonablesimplificationcanbeobtained throughwindtunneltestsandtestdataanalysis.

Missileguidanceandcontrolisachievedthroughcontrolsurfacedeflection δx, δy, δz commandedbyguidanceandcontrollaws.Modelswithguidanceandcontrolwillcontainmoreequations.Forexample,themathematicalmodeloftheentiresystemwillalsoincludetheseekerdynamic mathematicalmodel,autopilotmathematicalmodel,commandguidanceradarmathematicalmodel, thecontrolsurfaceservomechanismmathematicalmodel,etc.

Theabovedynamicequationscanoftenbesimplifiedinspecificmathematicalsimulations.For example,foraxisymmetricmissiles,theircrossinertiamoment Jxy, Jyz, Jzx canbesafelyomitted. Forthree-channelcontrolmissiles,therelated ωx, ωy, ωz aresosmallthattheirproduct ωxωy, ωyωz, ωzωx, ω2 x, ω2 y , ω2 z canalsobeomitted.Furthermore,sincetheprojectionsofthevelocityvectorson themissilebodycoordinatesystem Vyb, Vzb arealsoofasmallquantity,theirproductwiththe componentof ω canalsobeomitted.Therefore,thedynamicequationsrepresentedinthemissile bodycoordinatesystemcanbesimplifiedas:

MissileTrajectoryModels 13
V
b
Vzb ωy Vyb ωz) = Fxb = Xb G sin ϑ + P, m
˙ Vyb + Vxb ωz Vzb ωx) = Fyb = Yb G cos ϑ cos γ, m(Vzb + Vyb ωx Vxb ωy) = Fzb = Zb + G cos ϑ sin γ, Jxωx (Jy Jz)ωyωz Jyz(ω 2 y ω 2 z ) Jzx(˙ωz + ωxωy) Jxy(˙ωy ωxωz) = Mx, Jyωy (Jz Jx)ωzωx Jzx(ω 2 z ω 2 x) Jxy(˙ωx + ωyωz) Jyz(˙ωz ωyωx) = My, Jzωz (Jx Jy)ωxωy Jxy(ω 2 x ω 2 y ) Jyz(˙ωy + ωzωx) Jzx(˙ωx ωzωy) = Mz, ˙ x = cos ψ cos ϑ Vxb (cos ψ sin ϑ cos γ sin ψ sin γ) Vyb + (cos ψ sin ϑ sin γ + sin ψ cos γ) Vzb , y = sin ϑ Vxb + cos ϑ cos γ Vyb cos ϑ sin γVzb , z = sin ψ cos ϑ Vxb + (sin ψ sin ϑ cos γ + cos ψ sin γ) Vyb (sin ψ sin ϑ sin γ cos ψ cos γ) Vzb , ˙ ϑ = ωy sin γ + ωz cos γ, ψ = (ωy cos γ ωz sin γ)/ cos ϑ, (2.12) γ = ωx tan ϑ(ωy cos γ ωz sin γ), V = V 2 xb + V 2 yb + V 2 zb = V 2 x + V 2 y + V 2 z
Vx, Vy
Vz
m (
x
+
(
(Expressionsof
,
α sin β cos γ cos
γ cos ϑ)/cosθ
γ
ϑ sin
ϑ + cos β sin
.
z,ωx,ωy,ωz)
mVxb = Fxb , (2.13)

Whenpresentedinthetrajectorycoordinatesystem,theabovetranslationaldynamicequations canbedescribedas:

2.3ConfigurationoftheControlSurfaces

Thesequentialnumberingofthecontrolsurfaceisshownin Fig.2.4.Thedeflectionangles δ1, δ2, δ3, δ4 generatedbyturningclockwisealongeachcoordinateaxispositivedirectionsaredefined aspositive.Therespectivedeflectionanglesaredefinedasfollows:

Rollcontroldeflectionangle: δx = 1 4 (δ1 + δ2 + δ3 + δ4)

(Whenonlyapairofactuatorsismoved,thereis δx = (δ1 + δ3)/2or δx = (δ2 + δ4)/2.)

Pitchcontroldeflectionangle: δz = 1 2 (δ1 δ3) .

Yawcontroldeflectionangle: δy = 1 2 (δ4 δ2) .

Fig.2.4:Definitionofcontrolsurfaceangles

14 DesignofGuidanceandControlSystemsforTacticalMissiles m(Vyb + Vxb ωz) = Fyb , (2.14) m( ˙ Vzb Vxb · ωy) = Fzb , (2.15) Jx ωx = Mx, (2.16) Jy · ωy = My, (2.17) Jz ωz = Mz (2.18)
m ˙ V = Fxt , (2.19) mVθ = Fyt , (2.20) mV cos θψV = Fzt (2.21)

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.