Users' Attitudes and Preferences for Eye Tracking and BCI Technologies

Page 1

Abstract

Eyetrackingandbrain-computerinterface(BCI)technologiesareexamplesoftwoinnovative informationtechnologiesthatattractgreatattentionfromsmarttechnologyusersinrecentyears. Users’attitudesandpreferencesforeyetrackingandbrain-computerinterfacesareessential factorstotakeintoconsiderationwhendesigningsystemsthatusethesetechnologies.Current researchandliteratureontheprivacyissuesregardingthetwotechnologiesarealsolimitedto thetechnologicalaspect,insteadoffromtheusers’perspective.Tothisend,wedesigneda surveyforunderstandinghowpotentialusersofemergingtechnologiesperceivetheprivacyrisk andtheirbehavioralintentionsforusingeyetrackingandBCItechnologies.Thesurveyresults revealthatpotentialusersshowmoretrustandhaverelativelymorepositiveattitudestoward usingBCItechnology;however,itisimportanttonotethatthereisgreatcomplexitywithinthe users’responsesthatsuggestfurtherinvestigationintothefactorsthatcontributetousers’ perceivedriskandprivacyconcernsonspecifictechnologies.

1Introduction

Inrecentyears,developmentsandadvancesininformationtechnologieshaveenabledthewider applicationsofsmarttechnologiesandbrain-computerinterfaces(BCI)invariousfields. Assistivetechnologieshavealsogrownconsiderablytoenhanceworking,learning,anddaily livingforindividualswithdisabilities.Withinthesecategories,smarthometechnologiessuchas GoogleNestLearningThermostat,SamsungSmartThings,andPhilipsHueSmartLighting, rehabilitativetechnologiesthatareprovidedforpatientssufferingfromphysicalorcognitive impairments,andwearabletechnologyforpersonalhealthmanagementareexamplesofspecific innovationsthathavegainedgreatattentionfrompotentialusers(Cericola,2021).However, despitemoreapplicationsandtechnologicaladvancements,informationtechnologiesstillface manychallengesmeetingthedemandsoftheusersduetoprivacyrelatedissues(Chaudharyand Agrawal,2019).Researchershavenotexplicitlyaddressedtheprivacyconcernsandattitudes fromtheusers’perspective,whichisessentialtotheapplicationofinformationtechnologiesin allfields.

2Background

2.1Eyetrackingtechnology

Eyetrackingtechnologyreferstosystemsthatutilizestheprocessofmeasuringusers’gaze points,whichdiscloseswhereoneislooking.Measurementsofone’sgazepointrelyon

Users’AttitudesandPreferencesforEyeTrackingandBCITechnologies
Users’Attitudes and Preferences for Eye Tracking and BCI Technologies 1

algorithms,techniques,andIoTtoolssuchasprojectorsandcamerastotrackeyedirectionand position(Klaib,AhmadF.etal.2020).Asuccessfuleyetrackingdevicecannotewherethe users’arelookingatandthesequencethatshiftsbetweendifferentgazepositionsatanygiven time.Ashumansinvestigatevisualinformation,cuessuchasskimming,glancing,andpausing onspecificareas,andrapidmovementsduringcertaintimesareprovidedtotheeyetracking systeminrealtime(Hosfelt&Shadowen2020).

Fig.1ProcessofEyeTracking

Sincetheearly1900swhenmethodsofmeasuringone’sgazewerefirstexplored,significant advanceshavebeenmadeintheunderstandingofeyemovementmeasurements(Kroger,J.L.et al.2019).Recenttechnologicaldevelopmentsenabledtremendousgrowthinthesensor technologyfield,contributingtoinnovativeeyetrackingsolutionsthatareefficientandeasyto use.Theapplicationofeyetrackingtechnologiesexistsacrossvariousfieldssuchasresearch, marketing,anddesign.Notableexamplesofpopularrecentadoptionsincludethebroadinclusion invirtualreality(VR)headsetsandapplications(Hosfelt&Shadowen2020)andstudyingthe participants’eyemovementswhiletheyareansweringquestionsorperformingcertaintasks.

Withincreasingapplicationsofeyetrackingtechnology,therearealsogrowingconcerns regardingtheprivacylossfromsensorsandcameras.Users’eyemovementsandbehaviorsare alsoknownasgazedatatoeyetrackers.Gazedataisnotonlyuniquetoeachindividualbutalso containssensitiveattributesabouttheusersuchasphysicalcharacteristicslikeage,ethnicity, bodyweight,etc.andsocialcharacteristicslikefears,sexualpreference,andemotionalstate (Lieblingetal.2014).Theuniquenessofanindividual'sgazedataallowsfortheapplicationof eyetrackingtechnologyinsecurityprogramsandforauthenticationpurposes(Katsini,Christina etal.2020).However,literatureandresearchoneyetrackingandgazedatahasbeenprimarily limitedtoitsinclusioninotherapplicationsinsteadofdivingintousers’obviousconcernsover theirprivacylossduringinteractionwitheyetrackingdevicesorsystems(Kroger,J.L.etal. 2019).Arelevantstudyoneyetrackingandprivacycompletedin2014thatfocusedon

Users’Attitudes and
and BCI Technologies 2
Preferences for Eye Tracking

reviewingcurrentresearchineyetrackingcametotheconclusionthatmoreattentionneedstobe divestedtotheprotectionofgazedatabypolicymakersandpractitioners(Liebling,2014).Users’ concernsandtheireffectsonusers’behavioralintentionsforusingeyetrackingtechnologies haveremainedunanswered.

2.2Brain-ComputerInterfaceTechnology

Brain-computerinterface(BCI)referstoasystemthatusesbrainsignalsasinputdataand translatestheinformationtoalanguagethatcomputersunderstandandcanproduceresponses throughexternaloutputdevicesbasedontheacquiredbraindata.Itishighlyregardedasan emergingalternativesolutiontocommunicationandcontrolofthebrain(Chaudharyand Agrawal,2019).Therecordingandmeasurementofbrainactivityareusuallycarriedoutbya devicethatutilizeselectroencephalography,alsoknownasanEEGdevice.BCItechnology establishesanuninterruptedconnectionbetweenthebrainandtheexternaldevice,anexciting qualitythatattractsgreatattentionfromhealthcareandthefieldofassistivetechnology

Fig.2WorkingofBrain-ComputerInterface

Initiallydevelopedforbiomedicalapplications,BCItechnologyhasbeenappliedtomany assistivedevices,increasingusers’qualityoflifegreatly(Mudgaletal.,2020).Forphysically disabledpatients,theuseofBCItechnologypromotestherestorationofbothphysicalmovement andcommunicationability(RaoandSchere,2010).Arecentstudyfrom2021explorestheuseof avisualBCIforpatientswithamyotrophiclateralsclerosis,aidingtheircommunicationabilities (Verbaarschotetal.,2021).Duringthepastfewyears,therehasalsobeenincreasinginterestin thewiderapplicationofBCItechnologyforhealthyindividuals(Mudgaletal.,2020).The non-medicalusesofBCIaremostcommonlybroughtupinissueslikeworkplaceperformance, mentalhealth,andmediaapplications(Blankertzetal.,2010).

3
Users’Attitudes and Preferences for Eye Tracking and BCI Technologies

BCItechnology,similartotheissuesthatusershavewitheyetracking,exhibitsgreatprivacy concernsasmoreapplicationsandinnovationshavebeentakingplaceinrecentyears.Current researchandstudiesontheprivacy,security,andtrust-relatedproblemsmostlyaimtofind solutionsforthetechnologicaldesignofBCI.Forexample,astudyfrom2014proposedatoolto blockthepossibilityof“side-channelextractionofusers’privateinformation”fromthird-parties (BonaciandChizeck,2019).Thereisanoticeabledeficiencyregardingtheresearchdoneonhow theusersperceivetheirpotentiallossofprivacyandrelatedbehavioralintentionsforusingBCI technology.

3Methods

Thegoalofoursmartlightingpodistoimproveconcentrationandfocuslevelswhilecompleting cognitivetasks.Inordertoachievethisgoal,ourinvestigationledustolookintohowusers’ attitudesandpreferenceswouldaffectthepod’sbiometricmethod.Thesurveyintroducedinitial researchtodeterminewhichmethodwouldbestsuitthedemographicofusersthatthepodis directedtowards,bytestingourhypothesisonuserpreferences.Wegaveparticipantsascenario inwhichtheycouldvisualizescenariosinthesurveybetweeneyetrackingandBCIasshownin the4Resultssection.Onlythebiometricmethodchangedbetweenthescenariosandeverything elseaboutthepoddesignwaskeptthesame.Detailsofthepod’sdesignareexplainedfurtherin Section3.1.

3.1Design

Users’Attitudes
4
Fig.3Exteriorlookofpod
and Preferences for Eye Tracking and BCI Technologies

Fig.4Interiorlookofpod

Fig.5Interiorlookofpod

Thepodwasmeanttobeplacedinpublicenvironmentsincludinglibraries,lounges,offices,etc. Ourinitialprototypewasrenderedhowweenvisioneditasafinaldesign.Themainstructure wouldbemadeoutofwoodandwouldbesolidontwowallsaswellasthefloorandceilingto maintainasemi-enclosedspace.Thepodcanbeenteredfromeithersidethroughasetofsliding glassdoors.Tomaintaintheuser’sprivacytheyhavetheoptionofadjustingthesettingofthe glasstomakeitfrostedandthereforemoreopaque.Insidethepod,thereisanadjustabledesk andchair.Thedeskisattachedtotheshorterendofthepodandcanberaisedandloweredtoany height.Onthetallerwall,thereareventilationpanelstoallowforanaturalcirculationofair. Thesepanelscanalsobeopenedandclosedtoadjusttothecirculationandoutsidenoiselevels. Thetechnologyofthepodwouldtakeoneoftworoutesdependingonthefinalbiometricmethod used.Withtheeyetrackingsoftwareacamerawillbecenteredaroundtheuser’seyeline.The camerawoulddetectthemovementsoftheeyefromthecenterofthedesk(whichcontainsthe higherprioritytask).Ifauser’seyemovementsarefrequentlyawayfromthecenterorforlong durationsoftime,thelightingwouldautomaticallyadjusttoabrightersettinginordertoincrease attentionanddirecttheuserbacktowardstheirmaintask.Afterasetamountoftime,thelighting willflashbrieflytoanotherspecifiedcolortoindicatethattheusershouldtakeabreak.

TheBCImethodwouldincludeanEEGheadsetthatuserswearwhileusingthepod.Theheadset wouldmeasuretheprefrontalcortexofthebraintomonitorattentionlevels.Iftheleveldropped toalowpointforanextendedperiodoftime,thelightingwouldadjustsimilarlytohowtheeye trackingsoftwarewould.Iftheuserisfocusedforasetamountoftime,thelightingwouldalso indicateacolorchangetoindicateabreakfortheuser

3.2Procedure

Throughamethodofconveniencesampling,thesurveywasdistributedthroughmanyplatforms suchase-mails,socialmedia,anduniversitygroupoutreachinordertoreachasmany respondentsaspossible.AsamplesizeofN=36wascollectedforanalysis;whichincludes

Users’Attitudes and Preferences for Eye Tracking and BCI Technologies 5

individualsofvariousbackgroundsasshowninTable1.Participantswereabletofilloutthe surveydigitallythroughadistributedlink.

Theoverallsurveywassplitintofourportionsforthemtocomplete.Sectiononeconsistedofthe demographicandIOTscalequestions.Thesequestionswerepresentedtoparticipantstogetan overallunderstandingoftheirbackgroundwithsmarttechnologydevices.Thesecondsection consistedofavideoforeyetrackingandavideoforBCI.Afterwatchingeachvideo,participants wereaskedaseriesofquestionsrelatingtotheirattitudesandpreferencestowardstherespective biometricmethod.Thethirdsectioncontainedcomparisonquestionsthatwouldaskparticipants tochoosewhichbiometricmethodbestsuitedthestatementgiven.Thefourthandfinalsection askedparticipantsaboutthepodandtheirattitudestowardsit.

3.3ParticipantDemographics

Thesociodemographicvariablesusedinthesurveyareasfollows:

Gender:Weincludedgenderasademographicvariabletoseeiftherearedifferencesinthe attitudeandpreferenceofeyetrackingandBCIbiometricmethodsamongdifferentgenders.The genderbreakdowninthestudyis47.22%femaleand52.78%male.Ourgoalwastocollecta significantamountofdatafromeachgender Theoveralldemographicvariablewasfairly balanced.

Age:Withage,thereisgenerallyanegativecorrelationwithacceptanceofnewertechnologyand thereforethisdemographicvariablewasincluded.Participantswereclassifiedintofiveage groups(under20,20-29,30-39,40-49,and50-59)basedonthesampleofpeoplewereceived datafrom.

Education:Theremaybeassumptionsthateducatedpeoplewhoareexposedtoadvancedand newertechnologymightaccepttechnologymoreeagerlythanlesseducatedpeople.However, withanincreaseinuser-friendlytechnology,thismaynolongerbethecase.

Familiaritywithsmarttechnology:Bygaugingparticipants’familiaritywithsmarttechnology, wegaininformationonwhetherthey’refamiliarwiththeirfunctionsineverydayuse.

Count N%

Gender Female 17 4722% Male 19 52.78%

Age (Average:28.58) Under20 12 33.33% 20-29 9 25.00% 30-39 8 22.22% 40-49 5 13.89% 50-59 2 556%

HighestLevelofEducation Master's 7 1944%

Users’Attitudes and
for
and BCI Technologies 6
Preferences
Eye Tracking

Bachelor's 9 2500%

Somecollege 15 41.67% HighSchool 3 8.33% LessthanHighSchool 2 5.56%

Table1:Demographicinformationofparticipants(N=36)

4Results

Inthefirstsectionofthesurvey,participantswereaskedhowfrequentlytheyusedIoTdevices. ThedatacollectedisshowninFig.6anddemonstratesthateveryonewasfamiliarwithsmart phonesandcomputers(100%).Amajorityofpeople(61.1%)alsousedwearabletechnologies (Themostfrequentdeviceswereairpods).Theusageofsmarthomedevicesandsmart applianceswerefairlysplitbetweenthefrequencyofuse.

Fig.6FrequencyUsageofIoTDevices

Inordertoknowaparticipant’sattitudesandpreferences,a5-pointLikertscalewasused (1=StronglyAgreeto5=StronglyDisagree).Ameanandstandarddeviationwasthencalculated foreachstatement.Inthefirstsectionofthesurvey,participantsweregivenstatementsabout theirattitudestowardssmarttechnologyingeneral(Table2).Mostpeoplestronglyagreedor somewhatagreedwiththestatement,“Itiseasyformetoquicklybecomefamiliarwithnew smartdevices.”(1.417).However,thestatementthatusesweremorelikelytodisagreewithwas

Users’Attitudes
7
and Preferences for Eye Tracking and BCI Technologies

“Itrustsmarttechnologyingeneral.”(2.583).Overall,participantsfeltmorepositiveaboutsmart technologyasmostagreedwithallofthestatements.

Constructs Item Mean SD Effort

Expectancy

Itiseasyformetoquicklybecomefamiliarwithnewsmartdevices. 1.417 0.500 Ifindsmarthomesystemseasytouse. 2.028 0.845 Performance Expectancy Usinghomeautomationtechnologywouldimprovemyqualityoflife 2000 0874 Usingsmartlearningtechnologywouldmakestudyingandschooleasier 1778 0637 Satisfaction I'mcontentwiththewayshumansinteractwithsmarttechnologycurrently 2389 1128 I'mhappywithwhatsmarttechnologycandoforus 1750 1025 Trust Itrustsmarttechnologyingeneral. 2.583 1.251

Table2:Attitudestowardssmarttechnology

Inthesecondsectionofthesurvey,usersweregivenadescriptionandvideoabouteyetracking andBCIinthecontextofthepoddesign.Afterwatchingeachvideo,participantswerethen givenstatementsabouteachrespectivebiometricmethod(asshowninTable3).Usingthesame Likertscale,themeanandstandarddeviationofeachstatementwascalculated.At-testwasused todetermineifthereweresignificantdifferencesinattitudestowardseitherofthebiometric measures.Onlythreestatementsprovedtobestatisticallysignificant.“Ithinkthesystemiseasy touse.”(1.500eyetrackingand1.861BCI)undertheSUSscaleshowedapreferenceforEye trackingbeingeasiertouse.However,onaveragethestatement“Ifindthesystemunnecessarily complex”showedthatpeoplethoughteyetrackingwasmorecomplexbutthisstatementwasnot statisticallysignificant.Withbehavioralintention,“Iplantousetechnologythattracksmy(eye movements/braindata)showedahigherpreferencetowardsusingBCIinthefuture(3.00eye trackingand1.178BCI).Underperceivedrisk,“Interactingwithasmartsystemthatanalyzes my(eyemovementsandgazepoints/braindata)”showedthatparticipantsfeltmoreatriskusing theeyetrackingmethod(2.000eyetrackingand2.944BCI).

Constructs Item

SUS Scale

Trust

Behavioral Intention

EyeTracking BCI

Mean SD Mean SD T-Test

1.500 0.561 1.861 0.798 0.007 Ifindthesystemunnecessarilycomplex. 3.250 1.360 3.083 1.156 0.181

Ithinkthesystemiseasytouse.

Itrustsmarttechnologythattracksmy(eye movements/braindata) 2.611 1.103 2.917 1.156 0.122

Iplantousetechnologythattracksmy(eye movements/braindata)inthefuture 3000 1095 2389 1178 0015

AssumingIhadaccesstoasmartsystemthatanalyzes myeyemovementsandgazepoints,Iintendtouseit. 2.139 1.018 2.417 1.180 0.097

Users’Attitudes
8
and Preferences for Eye Tracking and BCI Technologies

Perceived Risk

Ithinkusingtechnologythattracksmy(eye movements/braindata)putsmyprivacyatrisk.

Interactingwithasmartsystemthatanalyzesmy(eye movementsandgazepoints/braindata)exposesmeto anoverallrisk.

I'mhesitanttosharemypersonaldata(withasmart systemthatincludesacamera/wearinganEEG headset).

2.528 1.000 2.583 1.105 0.389

2.000 0.956 2.944 1.170 0.001

2.917 0.996 2.917 1.228 0.500

Table3:AttitudestowardsEyeTrackingandBCI

Foreachstatementthatwasstatisticallysignificant,ananalysisofvariance(ANOVA)testwas performedtoanalyzepreferencesabouteyetrackingandBCIbetweentheageoftheparticipants usingα=0.05.Thetestwasperformedoneachbiometricmethodforeachstatement.With“I thinkthesystemiseasytouse.”,therewasnostatisticallysignificantdifferencebetweenage groupsandtheirattitudestowardsthestatement(P-valueeyetracking=0.39093andP-value BCI=0.24227).Theunder20agegrouprespondedmorestronglytowardseyetracking, agreeingthatthesystemiseasiertouse.However,acrossotheragegroupsitwasafairlyequal responseasshowninFigure7.

Fig.7Ithinkthesystemiseasytouse.

Users’Attitudes and
9
Preferences for Eye Tracking and BCI Technologies

With“Iplantousetechnologythattracksmy(eyemovements/braindata)inthefuture.”,there wasnostatisticallysignificantdifferencebetweenagegroupsandtheirattitudestowardsthe statement(P-valueeyetracking=0.10881andP-valueBCI=0.07786.).Everyagegroupexcept the30-39groupweremorelikelytoplantouseeyetrackingtechnologyinthefutureoverBCI asshowninFigure8.

Fig.8Iplantousetechnologythattracksmy(eyemovements/braindata)inthefuture.

With“Interactingwithasmartsystemthatanalyzesmy(eyemovementsandgazepoints/brain data)exposesmetoanoverallrisk.”,therewasnostatisticallysignificantdifferencebetweenage groupsandtheirattitudestowardsthestatementforeyetracking(P-value=0.07952).However, thestatementforBCIshowedstatisticalsignificancebetweengroups(P-value=0.04802).Older agegroupssuchasthe40-49and50-59feltthatBCIcouldexposethemtoanoverallrisk(40-49 =1.6and50-59=1.5).TheyoungeragegroupssuchasUnder20and20-29feltthatBCIwas lesslikelytoexposethemtoanoverallrisk(Under20=2.75and20-29=2.556).The30-39age groupfelttheleastlikelythatBCIwouldexposethemtoarisk(3.25)asshowninFigure9.

Users’Attitudes and Preferences for Eye Tracking and BCI Technologies 10

Fig.9Interactingwithasmartsystemthatanalyzes my(eyemovementsandgazepoints/brain data)exposesmetoanoverallrisk.

Thethirdsectionofthesurvey,participantsweregivencomparisonstatementsasshowninTable 4.Abinomialtestwasperformedtodetermineiftherewasahigherpreferenceforeither biometricmethod.Theonlystatementthatprovedstatisticallysignificantwas“Whichtypeof smarttechnologydoyouseeyourselfinteractingwithmoreinthefuture?”(EyeTracking= 69.4%andBCI=30.6%).

Constructs Item

Behavioral Intention

Whichtypeofsmarttechnologywouldyouprefer tousetomeasureyourattentionlevelswhile usingthestudypod?

Whichtypeofsmarttechnologydoyousee yourselfinteractingwithmoreinthefuture?

Whichtypeofinteractiondoyouseeyourself usingforlongerdurationeachtime?

Whichtypeofsmarttechnologyareyoumore likelytouseforstudyingorworkingeneral?

Whichtypeofsmarttechnologyareyoumore likelytouseathome?

18 18 0.500 0.500 1.000

25 11 0694 0306 0029

19 17 0.528 0.472 0.868

18 18 0.500 0.500 1.000

18 18 0500 0500 1000

Eye Tracking BCI ET BCI Binomial Test
Users’Attitudes and
for
and BCI
11
Preferences
Eye Tracking
Technologies

SUS Scale

Social

Whichtypeofsmartsystemdoyouthinkiseasier touse?

Whichtypeofsmarttechnologyareyoumore likelytorecommendtoothers?

Whichtypeofsmarttechnologyismorelikelyto beusedbypeoplewithphysicaldisabilities?

Whichtypeofinteractiondoyouseetheelderly populationusetohelpthembettercontrolthe environment?

16 20 0.444 0.556 0.618

18 18 0.500 0.500 1.000

15 21 0417 0583 0405

21 15 0583 0417 0405

Privacy

Whichtypeofdatawouldyoubemorelikelyto sharewithsmartsystems?

Whichtypeofsmarttechnologywouldyoutrust moreintermsofyourprivacy?

17 19 0.472 0.528 0.868

19 16 0.543 0.457 0.736

Whichtypeofsmarttechnologydoyouthinkis morelikelytoexposeyoutoanoverallrisk? 15 19 0441 0559 0608

Table4:ComparisonStatements

With“Whichtypeofsmarttechnologydoyouseeyourselfinteractingwithmoreinthefuture?”, therewasnostatisticallysignificantdifferencebetweenagegroupsandtheirattitudestowards thestatement(P-value=0.39511).Theyoungeragegroupsfrom39andunderpreferredBCI overeyetrackingwhiletheolderagegroupsfrom40andoverpreferredeyetrackingasshown inFigure10.

Users’Attitudes and Preferences for Eye Tracking and BCI Technologies 12

Fig.10Whichtypeofsmarttechnologydoyouseeyourselfinteractingwithmoreinthefuture?

ThefinalsectionofthesurveyincludedstatementsaboutthepodasshowninTable5.The statement“Wouldyourecommendthepodtoafriend?”showedstatisticalsignificanceinaT-test (P-value≈0.000).Peoplewerelikelytosharethepodtoafriendandgenerallylikedtheoverall designbasedonthefreeresponsequestionsasshowninfigure11.Theyfeltthatitwouldoverall benefitawiderpopulation.

Item Mean SD

Howlikelyareyoutousethepodifitisplacedinapublicsetting(eg library,office, lounge,classroom)? 2.229 1.239

Howlikelyareyoutousethepodifitisplacedinapublictransportationstation(eg airport,trainstation,transitstation)? 2824 1336 Yes No

Wouldyourecommendthepodtoafriend? 28 7 08 02

Table5:Studypodstatements

Users’Attitudes and Preferences for Eye Tracking and BCI Technologies 13

Fig.11Wouldyourecommendthepodtoafriend?

5Discussion

Thestudyprovidesabundantinformationtohelpfurtherthedesignofthepod.Itactsasapoint fromwhichtocontinuecreatingabetterambientspacetohelpfocusattentionlevels.Itdidnot comewithoutitslimitationsandconstraints.Theoverallconfigurationofthepodwasdesigned withindividualfeaturesthatwouldbenefitusersbasedonguidelinesandprinciplesforinterior design.However,thesecombinedelementsmaynotinteractasintendedonceinuse.For example,theventilationpanelscombinedwithslidingdoorsmaycausethewrongkindofcross ventilationandmayaccidentallyincreaseoutsidenoiseinsteadofpreventingit.Thelighting biometricsthatweconductedourstudyonmayactuallyprovetobemoredistractingthana benefitifthebiometricsfailtoaccuratelymeasureattentionlevels.

Ourexperimentaldesignalsohaditslimitationsaswell.Althoughtherenderedvideoswere madeasaccurateaspossible,userswerenotabletoactuallyinteractwithaphysicalspace. There mayalsohavebeenquestionsabouthoweachbiometricmeasureworkedifthedefinitionsand demonstrationsprovideddidnotportrayeveryaspect.Thelightingeffectsmayalsonothave beenasaccurateasseeingitinreallife.However,thedifferencesincolorareaccurateinthe aspectofbrightnessincreasesordecreases.Intermsoftheparticipants,itwouldhavebeen beneficialtogetalargersamplesizetogetamoreaccuraterepresentationoftheadult

Users’Attitudes and Preferences for Eye Tracking and BCI Technologies 14

population.Althoughweconcludedtherewasn’tastatisticallysignificantdifferencebetween manyofthestatements,thismaynotbethecaseifalargersamplewasrepresented.Alarger samplefromtheolderadultpopulationmayhavebeenneededaswelltoreduceany discrepancies.Themethodinwhichparticipantstookthesurveymayhavealsoaffectedtheir attitudesandpreferencesatthetimethesurveywasconducted.Furthertestingonmoreaccurate lightingconditionsmaybeneededaswellfortheoveralldesignofthepod.Whenasking questionsfordifferentconstructsweonlyincluded3statementseachatmost.Includingmore statementsmightrevealmoreunderlyingattitudesandpreferencesthatmightnothavenotbeen initiallydetected.

Somefurtheranalysisthatcouldbecompletedinthefutureisgatheringmoredataandtestingif demographicdatasuchasgender,educationlevel,andIoTusageinfluencetheattitudeand preferencestowardseyetrackingandBCI.

6Conclusion

Thisstudywasdesignedtounderstandusers’attitudeandpreferencesforeyetrackingandBCI technologiesasafirststeptowardsassessingusers’behavioralintentionsforusinginformation technologieswithdifferentbiometricmethods.Forourpurposes,theresultsofthesurveyoffer helpfulinsightsintofactorsthatareimportanttoconsiderforfurtherunderstandingofeye trackingandBCI.Thesmartlightingsystemandthepoddesignprovidesexamplesfor researchershowsimilarsurveysonacceptabilityandusabilityofinformationtechnologiescould useconcretescenariostoillustrateunfamiliarconceptslikespecifictechnologies.Researchers andpractitionersinthisfieldarealsoencouragedtodivestmoreattentiontoprivacyconcerns thatarisefrominteractingwithinformationtechnologies.

7References

7.1Figures

Figure1ProcessofEyeTracking

“DiscovertheInnovationofEyeTrackingTechnology.”Tobii,July24,2015. https://www.tobii.com/group/about/this-is-eye-tracking/.

Figure2WorkingofBrain-ComputerInterface

“EEGHeadset.”EMOTIV,November25,2021.https://www.emotiv.com/glossary/eeg-headset/.

AlAbdulkarim,L.,Lukszo,Z.“ImpactofPrivacyConcernsonConsumers'AcceptanceofSmart

Users’Attitudes
15
and Preferences for Eye Tracking and BCI Technologies

MeteringintheNetherlands:RequestPDF.”ResearchGate.2011. https://www.researchgate.net/publication/221283279_Impact_of_privacy_concerns_on_c onsumers'_acceptance_of_smart_metering_in_the_Netherlands.

Belkacem,AbdelkaderNasreddine,NurainiJamil,JasonA.Palmer,SofiaOuhbi,andChao Chen.“BrainComputerInterfacesforImprovingtheQualityofLifeofOlderAdultsand ElderlyPatients.”Frontiers.Frontiers,2020. https://www.frontiersin.org/articles/10.3389/fnins.2020.00692/full.

Blankertz,Benjamin,MichaelTangermann,CarmenVidaurre,SiamacFazli,ClaudiaSannelli, StefanHaufe,CeciliaMaeder,etal.“TheBerlinBrain-ComputerInterface:Non-Medical UsesofBCITechnology.”Frontiersinneuroscience.FrontiersResearchFoundation, December8,2010.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3002462/.

Bonaci,T,RCalo,andH.J.Chizeck.“AppStoresfortheBrain:Privacy&SecurityinBrain ...,”June19,2019.https://techpolicylab.uw.edu/wp-content/uploads /2018/06/App-Stores-for-the-Brain.pdf.

Cericola,Rachel.“TheseSmartHomeDevicesCanEnhanceIndependenceforPeopleWith DisabilitiesandMobilityNeeds.”September10,2021.Wirecutter https://www.nytimes.com/wirecutter/reviews/best-assistive-smart-home-technology-for-d isabled/

Chaudhary,Poonam,andRashmiAgrawal.“EmergingThreatstoSecurityandPrivacyinBrain ComputerInterface.”SSRN,February4,2019. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3326692.

Liebling,DanielJ.MicrosoftResearch,SörenPreibuschMicrosoft Research,SörenPreibusch,LancasterUniversity,UniversityofWashington,Korea AdvancedInstituteofScienceandTechnology(KAIST),andOtherMetricsViewArticle Metrics.“PrivacyConsiderationsforaPervasiveEyeTrackingWorld.”Privacy considerationsforapervasiveeyetrackingworld|Proceedingsofthe2014ACM InternationalJointConferenceonPervasiveandUbiquitousComputing:Adjunct Publication,September1,2014.https://dl.acm.org/doi/abs/10.1145/2638728.2641688.

Katsini,Christina,YasmeenAbdrabou,GeorgeE.Raptis,MohamedKhamis,andFlorianAlt. DigitalObjectIdentifierSystem,2020.https://doi.org/10.1145/3313831.3376840.

Klaib,AhmadF.,NawafO.Alsrehin,WasenY.Melhem,HaneenO.Bashtawi,andAwsA.

Users’Attitudes and Preferences for Eye Tracking and BCI Technologies 16

Magableh.“EyeTrackingAlgorithms,Techniques,Tools,andApplicationswithan EmphasisonMachineLearningandInternetofThingsTechnologies.”ExpertSystems withApplications.Pergamon,September28,2020. https://www.sciencedirect.com/science/article/pii/S0957417420308071.

Kroger,J.L.,O.HM.Lutz,andF.Müller.“PrivacyandIdentityManagement.DataforBetter Living:AIandPrivacy.PrivacyandIdentity.”IFIPAdvancesinInformationand CommunicationTechnology,2019. https://link.springer.com/chapter/10.1007/978-3-030-42504-3_15.

Li,QianQian,DingDingandM.Conti.“Brain-ComputerInterfaceApplications:Securityand PrivacyChallenges.”IEEEXplore.2015.AccessedDecember18,2021. https://ieeexplore.ieee.org/abstract/document/7346884.

Mudgal,ShivKumar,SureshKSharma,JitenderChaturvedi,andAnilSharma.“BrainComputer InterfaceAdvancementinNeurosciences:ApplicationsandIssues.”Interdisciplinary Neurosurgery.Elsevier,February21,2020. https://www.sciencedirect.com/science/article/pii/S2214751920300098.

Naufel,StephanieandKlein,Eran2020J.“Brain–ComputerInterface(BCI...Iopscience.iop.org.”https://iopscience.iop.org/article/10.1088/1741-2552/ab5b7f/meta.

Singh,Deepika&Psychoula,Ismini&Kropf,Johannes&Hanke,Sten&Holzinger, Andreas.“(PDF)Users’PerceptionsandAttitudestowardsSmartHome...”.2018. https://www.researchgate.net/publication/325832795_Users'_Perceptions_and_Attitudes_ Towards_Smart_Home_Technologies.

Verbaarschot,Ceci,DaniëlleTump,AndreeaLutu,MarziehBorhanazad,JordyThielen,Philip vandenBroek,JasonFarquhar,etal.“AVisualBrain-ComputerInterfaceas CommunicationAidforPatientswithAmyotrophicLateralSclerosis.”Clinical Neurophysiology.Elsevier,July27,2021. https://www.sciencedirect.com/science/article/pii/S1388245721006635.

Xu,Qing,andRenéRiedl.AISElectronicLibrary(aisel)-ICIS2011proceedings: Understandingonlinepaymentmethodchoice:Aneye-trackingstudy.Accessed December18,2021.https://aisel.aisnet.org/icis2011/proceedings/humanbehavior/18.

Users’Attitudes
17
and Preferences for Eye Tracking and BCI Technologies

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.