Download pdf Image processing for automated diagnosis of cardiac diseases 1st edition full chapter p

Page 1


Image Processing for Automated Diagnosis of Cardiac Diseases 1st Edition

Visit to download the full and correct content document: https://ebookmeta.com/product/image-processing-for-automated-diagnosis-of-cardiac -diseases-1st-edition/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Image Processing and Machine Learning, Volume 1: Foundations of Image Processing 1st Edition Cuevas

https://ebookmeta.com/product/image-processing-and-machinelearning-volume-1-foundations-of-image-processing-1st-editioncuevas/

Cardiac Arrhythmias Interpretation Diagnosis and Treatment Second Edition Eric N.Prystowsky

https://ebookmeta.com/product/cardiac-arrhythmias-interpretationdiagnosis-and-treatment-second-edition-eric-n-prystowsky/

Digital Image Processing 1st Edition A. Baskar

https://ebookmeta.com/product/digital-image-processing-1stedition-a-baskar/

Diagnosis and Management of Pediatric Diseases

Consolato M Sergi Editor

https://ebookmeta.com/product/diagnosis-and-management-ofpediatric-diseases-consolato-m-sergi-editor/

Recent Advances in AI-enabled Automated Medical Diagnosis 1st Edition Richard Jiang

https://ebookmeta.com/product/recent-advances-in-ai-enabledautomated-medical-diagnosis-1st-edition-richard-jiang/

VLSI Architecture for Signal, Speech, and Image Processing 1st Edition Durgesh Nandan

https://ebookmeta.com/product/vlsi-architecture-for-signalspeech-and-image-processing-1st-edition-durgesh-nandan/

Graph Spectral Image Processing 1st Edition Gene Cheung

https://ebookmeta.com/product/graph-spectral-imageprocessing-1st-edition-gene-cheung/

Microscope Image Processing 2nd Edition Fatima Merchant

https://ebookmeta.com/product/microscope-image-processing-2ndedition-fatima-merchant/

Handbook of Image Processing and Computer Vision Volume 2 From Image to Pattern Arcangelo Distante

https://ebookmeta.com/product/handbook-of-image-processing-andcomputer-vision-volume-2-from-image-to-pattern-arcangelodistante/

ImageProcessingfor AutomatedDiagnosisof CardiacDiseases

ImageProcessing forAutomatedDiagnosis ofCardiacDiseases

DepartmentofElectricalEngineering,CentralUniversityofHaryana, Mahendragarh,India

RajeevKumarChauhan

DepartmentofElectricalEngineering,DayalbaghEducationalInstitute, Agra,India

AcademicPressisanimprintofElsevier 125LondonWall,LondonEC2Y5AS,UnitedKingdom 525BStreet,Suite1650,SanDiego,CA92101,UnitedStates 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom

Copyright©2021ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicor mechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem,without permissioninwritingfromthepublisher.Detailsonhowtoseekpermission,furtherinformationaboutthe Publisher’spermissionspoliciesandourarrangementswithorganizationssuchastheCopyrightClearance CenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions.

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher(other thanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenour understanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecome necessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusing anyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethods theyshouldbemindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhomtheyhavea professionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliability foranyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceorotherwise,or fromanyuseoroperationofanymethods,products,instructions,orideascontainedinthematerialherein.

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary

ISBN978-0-323-85064-3

ForinformationonallAcademicPresspublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: MaraConner

AcquisitionsEditor: TimPitts

EditorialProjectManager: ChiaraGiglio

ProductionProjectManager: SojanP.Pazhayattil

CoverDesigner: MilesHitchen

TypesetbySPiGlobal,India

Contributors

MeghaAgarwal

DepartmentofElectronicsandCommunicationEngineering,JaypeeInstituteofInformation Technology,Noida,India

RajeevAgrawal

DepartmentofElectronicsandCommunicationEngineering,G.L.BajajInstituteofTechnologyand Management,GreaterNoida,India

V.AjanthaDevi

AP3Solutions,Chennai,TamilNadu,India

M.A.Ansari

DepartmentofElectricalEngineering,GautamBuddhaUniversity,GreaterNoida,India

ArunBalodi

DepartmentofElectronicsandCommunicationEngineering,AtriaInstituteofTechnology, Bangalore,India

KalpanaChauhan

DepartmentofElectricalEngineering,CentralUniversityofHaryana,Mahendragarh,India

RajeevKumarChauhan

DepartmentofElectricalEngineering,DayalbaghEducationalInstitute,Agra,India

I.Lakshmi

DepartmentofComputerScience,StellaMarisCollege,Chennai,India

RajatMehrotra

DepartmentofElectricalEngineering,GautamBuddhaUniversity,GreaterNoida,India

AmolD.Rahulkar

DepartmentofElectricalandElectronicsEngineering,NationalInstituteofTechnology,Goa,India

AnjuSaini

DepartmentofMathematics,GraphicEraUniversity,Dehradun,India

AswiniK.Samantaray

DepartmentofElectricalandElectronicsEngineering,NationalInstituteofTechnology,Goa,India

AmitSinghal

DepartmentofElectronicsandCommunicationEngineering,BennettUniversity,GreaterNoida, India

PragatiTripathi

DepartmentofElectricalEngineering,GautamBuddhaUniversity,GreaterNoida,India

T.Vani

DepartmentofComputerScience,RajeswariVedachalamGovernmentArtsCollege[Affiliatedto UniversityofMadras],Chengalpattu,TamilNadu,India

Preface

Thefieldofmedicalimageprocessingisexpandingdaily,asisitsuseinindustrialandmedicalfields. Therearemanychallengesandopportunitiesinimageprocessingmethodsandongoingresearchis examininghowtousethesemethodstoautomaticallydiagnosediseases.Thisbookexaminesthecurrentandemergingtechnologiesdevelopedfortheautomateddiagnosisofcardiacdiseases.Theconceptsoutlinedinthisbookcanbetestedforresearchpurposesandthenewadvancesinalgorithmscan beappliedinpracticalapplications.Readerswilllearnsomeofthetechniquesusefulforobtainingimagesoftheheart.Thebookpresentsbasicaswellasadvancedconceptsofimageprocessingtechniques.

Chapter1 discussesdifferentheartdiseases,includingirregularitiesthatinfluencethenormalfunctioningoftheheartvalves,theheart’selectricalsystem,andthemusclesandcoronaryarteriesofthe heart.Thefocusofthischapterisheartvalvediseases,especiallythoserelatedtothemitralvalve.In particular,thechapterexaminesthediagnosis,causes,andsymptomsofmitralregurgitation(MR).Itis shownthatechocardiographyisthesuperiorimagingtechniqueinthisdisease.

Chapter2 dealswithmachinelearning(ML)proceduresincardiovascularmultimodalimaging.In particular,thechapterproposesconvolutionneuralnetwork(CNN)modelsforfeaturingthecorrespondencesbetweenmultimodalinformation.Theseportrayalsareadditionallyexpectedtovisualizethe cardiovascularlifestructuresinmoredetailforbetterunderstandingandinvestigation.Inaddition, thechapterexamineshowquantitativeinvestigationcanbenefitwhenthesescholarlyimageportrayals areutilizedindivision,movementfollowing,andmultimodalimageregistration.

Chapter3 depictsthecardiacanatomyindetailforbetterunderstandingandstudy.Inadditiontoanatomicalstudy,thechapterdiscusseshowquantitativeresearchcanbenefitfromtheuseoftrainedimage representationsinsegmentation,motiontracking,andmultimodalimageregistration.Aprobabilistic edge-maprepresentationisimplementedtodefineanatomicalcorrespondenceinmultimodalcardiacimagesandtodemonstrateitsuseinspatialimagealignmentandanatomicallocalization.Inaddition,a novelimagesuper-resolutionsystemisimplementedtoimprovecardiaccinemaMRimages.

Chapter4 offersabriefdescriptionofthetheoreticalstructuresandtheirapplicationsforsegmental cardiacimaging,imageenhancement,andmultimodalimagealignment.Theseanalyticalmethods sharecommongoals:timeefficiency,quantitativeobjectiveevaluation,andenhancementandanalysis ofmultimodalimagedata.Inthissurvey,theauthorsconcentrateonhowthelearningofimagerepresentationwillaccomplishthesegoalsandimprovetheaccuracyandrobustnessofthetechniques applied.

Chapter5 describesfuzzy-baseddespecklingmethodsforechocardiographicimages.Theauthors proposeandanalyzehybridfuzzyfiltersthatintegrateanon-localmeans(NLM)filterwiththreedifferenttypesoffuzzyfilters.Theauthorscomparetheproposedmethodswithfifteendespecklingfilters onstandardtestimagesandechocardiographicimagesofthemitralvalveinthreeviews.Theperformanceofoneproposedhybridfuzzyfilter,HFF3,exhibitedthebestperformancecomparedtothe othersintermsofedgepreservationanddenoisingofspecklenoise.

Chapter6 examinesmachinelearning-basedmedicaldiagnosisasafast,non-invasive,timesaving, andaccuratemethod.Asthismethodisnon-invasive,itispreferredoverexistingmethods.Thechapter explainstheconceptofmachinelearninganditssignificanceinthemedicaldiagnosisofcardiac diseases.

Chapter7 examinestheuseofvariouswavelettransformsincontent-basedimageretrievalfordiagnosisofcardiacdiseases.Itdiscusseswaveletpropertiesandanalyzesretrievalperformanceofvariousorthogonal,bi-orthogonal,andGaborwavelettransforms.Theauthorsevaluatethedifferent wavelettransformsusingseveralcardiacimagedatabases,namely,NEMA,OASIS,andEXACT09, intermsofaverageretrievalprecision(ARP)andaverageretrievalrate(ARR).

Chapter8 illustratesbroadlyconstructedcomputer-aidedapproachesforevaluatingECGsignals. Artificialintelligencetechniquesgivepreciseandmechanicalclassificationsofheartbeatstoidentify arrhythmiasorunexpectedchangesincardiacmorphology.Thesetechniquesarealsousedforautomaticsyndromeanalysis,monitoring,andstratificationbymanagingextendedECGrecordingsfor whichdiagramandphysicalinvestigationscanbemonotonousandtimeconsuming.AIisflexible andcanbepracticallyutilizedinwearableECGdevices,assuringcompetentanddependablemonitoringoftheheartinbothclinicalandresidentialsettings.Thechapteralsoexamines3DcomputersimulationsasinfluentialapparatusesforunderstandingECGresults.

Chapter9 proposesanewregularizationmodelfordetectingECGimageboundaries.Themethod helpsthecurvetoapproachthedesiredboundarieswhilemaintainingsmoothnessforbettervisualization.Theauthorsuseregion-basedsegmentationalongwithspeckledensityasthedatafittingenergyto determineintensityinformationinlocalregions.Theproposedimprovedregularizationandfittingbasedsegmentation(IRFS)techniquewithanewregularizationmodelandfittingfunctionsuccessfully achievedtherightminimaandregionalongwithimprovedcapabilityofthecurvetodrawthedesired boundaries.

Chapter10 considersapubliclyavailabledatasetofcine-MRI(magneticresonanceimaging)imagestodetectheartfailurecaseswith(orwithout)infarction.Localtexture-basedpatternsareusedto extractrelevantinformationfromtheimage.Thechapterexaminesfourdifferenttypesofpatternbasedfeatures:localbinarypattern(LBP),localternarypattern(LTP),differenceofGaussianLTP (DoGLTP),andternaryco-occurrencepattern(LTCoP).Variousmachinelearningclassifiersare employedtodifferentiatebetweennormalheartimagesandheartfailureimages.Performancemetrics arecomputedfortheseclassificationstrategiesandadetailedcomparisonisprovidedtohighlightthe mostaccuratemethodforautomatedidentificationofheartfailure.

Chapter11 isaboutthefusionmethodadoptedinthediagnosisofcardiacdiseases.Theadvancementsinmedicalimagefusionresearchoutlinedinthischapterdemonstratetheimportanceoffusionin improvingcardiacdiagnosis,monitoring,andvisualization.Thealgorithmsusedforcardiacimagefusionmethodscanimproveimagequalityandcanbeusedindifferentapplications.Theprominentapproachestestedoncardiacimagesincludediscretewaveletstransform(DWT),principlecomponent analysis(PCA),andmaximummodel.Theperformanceofthemethodsshowsthatthecombination ofoneormoremethodsofimagefusioniseffectiveincardiacimageanalysis.

Acknowledgment

Thankstooursupporterduringtheeditingofthisbook.Editingabookisharderthanwethoughtand morerewardingthanwecouldhaveeverimagined.Thiswouldhavenotbeenpossiblewithoutthe adjustmentmadebyoursonShauryaChauhan.Hehascooperatedalotandgiveshiscontinuousemotionalsupportduringthisjourney.

Weareeternallygratefultoourparents,whotaughtusdiscipline,love,manners,respect,andso muchmorethathavehelpedustosucceedinlife.Theyeverencouragedustoworkhard.Wewouldlike tothankallourfamilymembersandfriendsfortheirdirectandindirectsupport.Thankstothedoctors andhospitalsthathaveprovidedrealimagesanddatafortheresearch.Thankyoutoallthecontributors whohaveaddedtheirresearchintheformofchaptersinthisbook.

Thankstoeveryoneinourpublishingteam.

Cardiacdiseasesandtheirdiagnosis methods

1.1 Introduction

Theheartisamuscularstructureandacentralcomponentofthevertebratecardiovascularsystem.The heartfunctionsinaclosedloopmanner,thatis,oxygenatedbloodispumpedfromthelungstothe wholebodyanddeoxygenatedbloodispumpedbackfromthelungstothebody.Thetransferofblood fromhearttothebodyiscarriedoutbythearteriesandarterioles,whilethereturningofthebloodis donethroughthevenulesandveins.Bloodtransportisvitaltobringoxygenandnutrientstothebody’s tissuesaswellastoremovecarbondioxideandwasteproducts/chemicals [1].

Thehumanheartislocatedbetweenthelungs.Becauseofslighttiltingofitsapexontheleftsideof thechest,heartrhythmorbeatingoccursinthislocationcausinganillusionthattheheartislocatedon thatside.Thesizeofahumanheartisthatofatightlyclosedfist.Itbeatsabout100,000timesinaday.

Althoughtheheartpumpsblood,deliveringoxygentotheentirebody’smusclesandorgansfor themtofunction,italsoneedsitsownoxygen-enrichedbloodtoworkproperly.Theheartfunctions asalargemuscularpumpwitharteries,veins,andvalves,andanelectricalsystem.Theelectricalsystemtriggerspulse,therebystimulatingthehearttobeat.Theheartmusclesthensqueezethebloodto pushtheoxygenatedbloodthroughouttheentirebodyinonelargearterialcircuitalsystemandthe deoxygenatedbloodthroughthepulmonaryarteriestothelungs.Thetwo,one-wayvalvescreateseparationbetweenthefourdifferentchambers,namely,theleftventricle(LV)andleftatrium(LA),and rightventricle(RV)andrightatrium(RA),forformingthedualpumpsoftheheartadjustingbothrate andflowoftheoxygenatedanddeoxygenatedbloodthroughouteachcardiaccycleorheartbeat.The moreactivityapersonperforms,themoretheheartmusclesmustworktosupplythenecessaryquantity ofbloodtothemusclestobeutilizedduringtheactivity.

Mitralregurgitation(MR)isamitralvalveinsufficiencythatcausesachangeinthesizeand/or shapeoftheLV,affectingitsfunctioningandresultingfromischemicheartdisease [2,3].MRleads tomyocardialinfarction(MI)inabout20%ofcases [4,5].TheseverityofMRincreasesaround30%in patientssufferingfromcoronaryarterydisease(CAD)withischemicLVdysfunction [6].

TherearemanyapproachesavailabletodiagnoseMRthatarehelpfulindeterminingseveritygrade anddysfunction [7–13].Diagnosticmethodsincludeassessmentofregurgitationvolume,orificesize, orifice,andregurgitantorificewiththehelpofechocardiographyorcatheterization.Inaddition,twodimensional(2D)contrastechocardiographyandDopplerechocardiographyareefficientwaysfor assessingMR.Wediscusstheadvantagesofthesetechniqueslaterinthechapter [14–20].

Tobegin,thischapterdiscussesdifferentheartconditionsbycategorizingheartvalvesandtheir relateddiseases,withaspecialfocusonMR.ItalsopresentsvariousdiagnosticmethodsandthequalitativeandquantitativeparametersusefulingradingMRseverity.Finally,thechapterendswithadiscussionofdifferentmodesandtechniquesofechocardiography.

1.2 Heartvalves

Thetwoatrioventricular(AV),one-wayvalvesarethinstructures,havingconnectivetissuesandendocardia.Thesevalves,namely,thebicuspid/mitralandthetricuspidAVvalvesarelocatedbetween theLAandtheLV,andtheRAandRV,respectively.Thetwosemilunar,one-wayvalvesaremadeup ofthreeflaps,eachcomposedofconnectivetissuesandendocardiumaswellasfiberstopreventthe valvesfromflappinginsideout.Theirshapesarelikeahalfmoonandthustheyarecalledthesemilunar

(SL)aorticvalveandSLpulmonaryvalve.Thesevalvesarelocatedbetweentheleftventricleandaorta andbetweentheRVandthestartofpulmonaryartery. Fig.1.1 showsthesevalves.Theheart’sone-way bloodflowismaintainedwiththehelpoffourheartvalves,eachonehavingaspecificpositiononthe exitsofthefourchambers.Thesefourheartvalvesallowonlytheone-wayflowofbloodintheforward directionsandrestrictthebackwardflowofblood.Sequenceofbloodflowisfromtheatria(rightand left)intotheventricles(rightandleft)throughtheopentricuspidandmitralvalves,respectively,as shownin Fig.1.1.Accordingtopressurechangeinthechambers,thereisanopeningorclosingof AVvalves.Theycloseduringtheventricularsystole(contraction)whentheventriclepressureincreasesthepressureinthetwoatria.Thisactionkeepsthevalvessnappedshutandpreventsbackward flowofblood.Thecontractionoftheventriclesleadstoforcedopeningofthepulmonaryandaortic valvestopumpthebloodfromtherightandleftventriclesintothepulmonaryartery(throughopen valves)towardsthelungs,andthroughtheaorticvalvetotheaortaandthebody.Attheendofcontraction,theventriclesbegintorelaxandtheaorticandpulmonicvalvesremainclosedduringthediastole.Backwardflowofbloodintotheventriclesispreventedbythesevalves.Thispatternrepeats againandagain,causingcontinuousbloodflowfromthehearttothelungsandthebody.

1.3 Mitralvalveregurgitation

Tovisualizethemitralvalve(MV),cliniciansmustchooseatechniquethatenhancestheimageaccordingtotheirvisualperceptionandthatworksinaccordancewiththekindofimage [21].Logtransformationdoesnotgivesatisfactoryresults(subjectiveassessment)inthecontrastenhancementof echocardiographicimagesduetohighwhitepixelspreading.Thiswhitespreadingoverlapstheimportantfeatures.Thereasonforthisproblemisthatmorepixelswillshiftinthehigh-intensityvaluewhen thelogtransformationisapplied.Toovercomethisproblem,thefigureof1inEq. (1.1) oflogtransformationisreplacedbyavariable,say, a.Thisoffersaflexiblewaytoanalyzetheimageatdifferent valuesof a.Thisvaluecanbechangedbycliniciansinaccordancewiththeirvisualperceptionsfor bettervisualizationoftheimage.ThenormalMVopenswhentheLVrelaxes(diastole)toallowblood flowfromtheLAandtofilltheLV(decompressed).

DuringsystoleorcontractionoftheLV,thepressureintheLVincreases.Thisincreasedpressure leadstoclosureoftheMVandrestrictsbloodflowfromleakingintotheLA.Atthistime,theblood flowstotheaorta(passingtheaorticvalve)andthebody.Theannulus,leaflets,andsubvalvularapparatusesworkinacomplexmannerfortheproperfunctioningofthevalve.Themitralleaflettissues

FIG.1.1
Classificationofheartvalves.

Table1.1Thelayersofvalvetissues:fibrosa,spongiosa,andatrialis/ventricularis [22].

LayerLocationCompositionFunction

FibrosaFacesthe LV

SpongiosaMiddle layer

Atrialis (Ventricularisfor semilunarvalves)

Facesthe LA

Highconcentrationofcollagen, thickestlayer

Highconcentrationof glycosaminoglycans(GAGs)and proteoglycans(PGs)

Highconcentrationofcollagenand elastinthinnestlayer

Bearsmostoftheloadduring coaptation

Providesshearbetweenouter supportlayersanddiffusesgasses andnutrients

Elastinallowsforstrainwhenthe valveisopen

areorganizedinthreelayers:fibrosa,spongiosa,andventricularis. Table1.1[23,24] describesthe location,composition,andfunctionsoftheselayers.

1.4 Heartdiseases

Heartdiseasesareabnormalitiesthataffectthevalves,functions,electricalsystem,muscles,andarteriesoftheheart.Somecommonheartdiseasesinclude:

•Coronaryarterydisease(CAD)

•Myocardialinfarction(MI)—aseveretypeofheartdisease

•Highbloodpressureorhypertension(HBP)

•Heartvalvedisease

•Cardiomyopathyorheartmuscledisease

•Pericarditis

•Rheumaticheartdisease(RHD)

1.4.1 Coronaryarterydisease(CAD)

CADisadiseaseinwhichadepositcalledplaquegrowsontheinsidewellsofthecoronaryarteriesand restrictsthenormaloxygenatedbloodsupplytoheartmuscles.Itisalmostoftenduetotheprogressive buildupofcholesterolandotherfattymaterials,knownasatheroscleroticplaqueoratheroma,inthe wallsofthecoronaryarteries.Thisprocessisknownasatherosclerosisandcanaffectmanyarteries,not justthoseoftheheart.Asanatheromadevelops,itmaygushintotheartery,narrowingtheartery’s interior(lumen)andpartiallyblockingbloodflow.Calciumaccumulatesinsidetheatheromaovertime. Thesupplyofoxygen-richbloodtotheheartmuscle(myocardium)becomesinadequatewhenanatheromablocksmoreandmoreofacoronaryartery.Toencouragegoodhealth,itisrecommendedto reducedietaryfatintaketonomorethan25–35%ofdailycalories.However,somedoctorsbelieve thattominimizetheriskofcoronaryheartdisease,fatmustbereducedto10%ofdailycalories.AnotherwaytomitigateriskfactorsforCADistoconsumealow-fatdietthatalsotendstolowerelevated totalandLDL(bad)cholesterollevels.

1.4.2 Myocardialinfraction(MI)

InsevereCADdisease,theplaquedepositsuddenlyblocksnormalflowofbloodandheattoheart musclessuchthattheycannotgetenoughoxygenandthusbegintodie.AnMIcausespermanentdamagetotheheartmuscleduetooxygenshortage.AnMImayresultinimpairmentofdiastolicandsystolicfunctionandcanrenderthepatientvulnerabletoarrhythmias.AnMImayalsocauseavarietyof seriouscomplications.

1.4.3 Highbloodpressureorhypertension(HBP)

HBPistheconditionwhentheforceofthebloodflowingthroughbloodvesselsiscontinuouslyvery high.TherearemanycausesofHBP,includingheartdisease,smoking,stress,lackofphysicalactivity, andsoon.

1.4.4 Heartvalvedisease

Improperfunctioningofvalvescreatesvalvediseases.Stenosisistherestrictionofbloodflowdueto narrowingofavalve.MRduetoincompleteclosingoftheMVisthemaintypeofheartvalvedisease.

1.4.5 Cardiomyopathyorheartmuscledisease

Cardiomyopathyisatypeofprogressivediseaseinwhichthereisanabnormalenlargement,thickening,andstiffingoftheheart.Duetotheseabnormalities,theheartmusclesarenotabletopumpblood properly.

1.4.6 Pericarditis

Pericarditisisaconditioninwhichthepericardiumbecomesinflamed.Pericarditisistypicallyacute, meaningitoccursoutofnowhereandcanlastformonths.Thedisordernormallygoesawayafterthree months,butattackscanlastforyears.

1.4.7 Rheumaticheartdisease(RHD)

RHDisachronicheartdiseasethatmayariseduetorheumaticfever,whichisastreptococcal(strepor throat)infection. Fig.1.10 showstheRHDcondition.

1.5 Mitralvalvediseases

MVdiseasesbroadlycanbeofthreetypes:(1)Mitralstenosis:whentheorificeoftheMVnarrowsand restrictsnormaldiastolicbloodflowfromtheLAintotheLV;(2)Mitralregurgitation(MR):backward bloodflowintotheLAduringsystolethatmaybeacuteorchronic;and(3)Mitralvalveprolapse:posteriordisplacementorbendingoftheanterior,posterior,orbothMVleafletstowardstheleftatrium. MRisthefocusofthischapterasitisthesecondmostcommonvalvularlesionafteraorticstenosis (AS).StudyofMRisunderstoodtocoveralltheotherMVdiseases.

1.5.1 Mitralregurgitation(MR)

MRormitralinsufficiencyisthemostcommonvalvedisorder.WhentheheartisaffectedbyMR,there isleakageofbackwardbloodflowthroughtheMVduringthecontractionandareductionintheamount ofbloodsuppliedtothebody.

IfMRdoesnotprogress,thentheamountofMRissmallandthebackwardleakagehasnosignificantconsequence.However,ifthereissignificantMR,thentheLVmustworkhardertofulfillthe oxygenatedblooddemandofthebody.Tomeetthisincreaseddemand,theheartmuscles(i.e.,myocardium)havetodomoreworkandthiscreatesasequenceofchangesinthebloodcirculationsystem. Thesetypesofchangestakealongperiodoftime,sometimesseveralyearsordecades,anddepend upontheseverityoftheregurgitation.ThecausesofMRalsodeterminehowquicklytheheartbegins tofail,thatis,theygivetheinformationoffailureintermsofweakeningofheartapparatus.Weakheart apparatusesarethesourcesofasuddenheartattack.

1.5.2 Causesofmitralregurgitation

MRmayincreasefrommildtomoderatetosevereduetovariouscardiacdiseasesorotherheartvalve abnormalities.Someoftheseinclude:

• Mitralvalveprolapse:Duetodeformationandelongationofvalveleaflets,thenormalcoaptationof theleafletsisrestricted.Thisisknownasmitralvalveprolapse.Duetothisabnormalityinvalve motion,thedirectionofbloodflowispartiallyreversed.ThebloodleaksbackwardfromtheLVto theLA.Mitralprolapsemayrangefrommildtosevere.

• Infectiveendocarditis:Sometimesheartvalvesareinfectedbybacteria,fungus,orsomeother organismsthataffectthebloodstream.Thisisknownasinfectiveendocarditis(IE).Theorganisms sticktothevalvescausinganabnormalstructure,knownasvegetation,togrow.Thisvegetation thickensthevalveandchangesitsdirection,thusrestrictingleafletsfromjoiningduringthevalve’s closingoperation.Endocarditisdevelopsfasteronpreviouslyabnormalheartvalvesthanonnormal heartvalves.

• Rheumaticfever:Rheumaticfeveroccursduetothroatinfection.Ifthisinfectionisnottreated,it cancauseinflammationoftheheartvalvesandothervalvularcomplications.Rheumaticfeveris commonindevelopingcountries.

• Congenitalheartabnormality:MRmayalsooccurinpatientsbornwithabnormalitiesoftheheart.

• Othertypesofheartdisease:Heartattacksandmuscleinjuriesandabnormalitiesmayalsolead toMR.

• Trauma:Whenthevalvechordsarebroken,thereisasuddendisplacementoftheleafletsandthus leafletsarenotabletowithstandtheirnormalposition.Theseflailedleafletsarenotabletojoin, allowingseverevalvularleakage.

1.5.3 Mitralregurgitationsignsandsymptoms

Incasesofmildandmoderateregurgitation,patientsmaynevershowsymptomsorseriouscomplications.EvenpatientswithsevereMRmayshownosignsandsymptoms,althoughsymptomsmayoccur iftheLVbecomesabnormalorifatrialfibrillationorpulmonaryhypertensionoccurs.Pulmonary

hypertensionoccurswhenbloodpressureincreasesinthepulmonaryartery.Thismakesitharderonthe rightsideofthehearttosupplyadequateoxygenatedbloodtothebody.

IftheLVisseverelyenlarged,thereisriskofseriousheartdiseaseandevenheartfailure.These patientstypicallyshowsignsofweakness,shortnessofduringwork,andcollectionoffluidinthelower legsandabdomensleadingtoswellinginthefeet.

1.5.4 Mitralregurgitationdiagnosis

MRmaybediagnosedbyusingastethoscopetolistenforaheartmurmur.Thechangeinheartsoundis duetobackflowofbloodthroughtheMV.Theremaybeotherreasonsforaheartmurmuraswell.Other recommendedtestsforMRdiagnosisinclude:

•ChestX-ray:AchestX-rayshowsapictureofthelargeheartvesselstodeterminesizeandshape.It isalsohelpfulindiagnosinglunginfectionsortheaccumulationoffluidinthelungs.IfX-rayshows enlargementoftheheart,thismayindicatesevereMR.

•Electrocardiogram(ECG):AnECGisaone-dimensionalsignalthatshowstheelectricalactivityof aheartbeat.AnECGmaybehelpfulindetectingdisturbedrhythmsrelatedtocausesofMRlike CAD.Disturbedrhythmscanalsoberelatedtootherabnormalitiesoftheheart.

•Echocardiogram:Anechocardiogramisadirectpictureoftheheart.High-frequencyultrasound wavesareusedtakeapictureoftheheart’schambersanddeterminetheirsizeandshape.Thetest cancapturemovementoftheheartvalvesaswellasthethickness,size,andmotionoftheheartwall. Thetestishelpfulfordeterminingthevolumeofbloodpumpedbytheheartperminute,alsocalled cardiacoutput.Echocardiographycanalsodetectthepressureindifferentchambersandmajor bloodvesselsoftheheart.Mostoften,echocardiographyisdonebyapplyingthetransducerfrom theoutside(i.e.,transthoracicechocardiogram(TTE)),whereassomecasesrequireinsertionofthe transducer(i.e.,transesophagealechocardiogram(TEE)).

EchocardiographyandcolorDopplerechocardiographyhavetheirownutilityintheevaluationofMR severity,however,theyeachexhibittheirownadvantages/disadvantagesandlimitations.Quantitative parametershelpclinicianstogroupMRintocategoriesofmild,moderate,andsevere.DopplerechocardiographyisamethodusedtoconfirmMR.M-modeor2DechocardiographyisnotabletodeterminethespecificsignsofMR.Continuousechocardiographicexaminationallowsthevisualizationof MRprogression.Changescanbeseenbytakingechocardiogramsatdifferenttimeintervals.Volume overloadingintheLAorintheLVistheinitialechocardiographicfeatureofMR.Volumeoverloading occursduetothestrokevolumetransferbetweenthetwochambers.However,thethicknessofthewall isnormal(becausethewallmassincreasesatthetimeofenlargement).Iftheend-diastolicdimension becomesgreaterthan5.5cm,andanoticeablehyperdynamicwallmotionisseenontheinterventricular septum,thenLVvolumeoverloadiseasilyrecognized.

1.6 Cardiacdiseasediagnosismethods

Therearevariousnoninvasiveandinvasivemethodstodiagnosethevariouscardiacdiseases.Each methodhasadvantagesandlimitations. Fig.1.2 showstheclassificationofthedifferentmethods.

Cardiac Diseases Diagnosis Methods

Noninvasive

Electrocardiogram (ECG)

Echocardiography (TT)

Stress ECG and Echocardiography

Carotid ultrasound

Nuclear Stress Test

Holter Monitor

Event Recorder

Cardiac CT scan

Cardiac MRI

Invasive

FIG.1.2

Differentcardiacdiseasesdiagnosismethods.

Cardiac Catheterization

Echocardiography (TTE)

Angiography

Electrophysiology Study

Echocardiographydetectsthesizeofthecardiacchamber,wallmotion,wallthickness,valvemotion,andanatomyofvalves,proximalgreatvessels,andpericardium.Itpresentsalivepictureofcardiacfunctionalityandanatomy.Echocardiographyisasensitivetoolfordeterminingvolumeofpleural andpericardialfluid,toidentifymasslesionsthatmaybeinsideorneartheheart.Thismodalityis effectivefordiagnosingcongenitalheartdiseasesaswellasmyocardialorvalvularpathology.Itis asafeprocedurebecauseTTEisdonewithouttheinsertionofchemicals,whichmaydamagethe myocardium.

1.6.1 Principlesofecho

Ultrasoundhashigh-frequency(>20,000Hz),pulsedsoundwaves.Whenultrasoundwavesenterthe tissues,theytransmitthroughthemandarereflectedbackbasedonacousticimpedanceofthetissues. Thedensityofthetissuetimesthevelocityatwhichsoundwavestravelthroughthetissuesistheacousticimpedance.Ultrasoundreflectiondependsuponthemismatchingoftheimpedancesbetweenthe twotissues.Thegreaterthedifference,thegreaterthereflection.Boneshavehighacousticimpedance, whereasairhaslowacousticimpedance.Therefore,bone-tissueandair-tissueinterfacesexhibitgreat mismatchofacousticimpedance,resultinginhighreflectionofultrasoundwaves.Assuch,imagingof deeperstructuresisrestrictedwhentheultrasoundbeamintersectstheair-filledandbonystructurebecausetheyreflectthebeamtoimagetheirouterstructure.Therefore,somesuitableplaceshavebeen selectedtotaketheimageoftheheart.Forechocardiography,intercostalspaceswithinthecardiac windows(wheretheheartisagainstthethorax,withoutinterveninglungs)orfromsubcostalwindows (dependinguponthespecies)areidealforimagingtheheart.

Thespeedofanultrasoundwavevariesdependinguponthetissuetypethroughwhichitispropagating.Thespeedofanultrasoundbeamisapproximately1540m/secthroughsofttissues.Basedon therelationwiththetransducer’sparameters,thesize,thickness,andlocationofthesofttissuescanbe calculatedatanypointandatanyinstant.Thereflection,refraction,andtransmissionrulesoftheultrasoundwavearethelawsofgeometricoptics.Reflection,refraction,andabsorptionoftheultrasound wavesdependuponthedifferenceofacousticimpendencesattheinterfaces.Astheultrasoundbeamis distancedfromthetransducer,itsintensitydecreasesbecauseofthescatter,divergence,absorption,and reflectionofenergyofthewaveattheinterfaceofthetissues.Whentheultrasoundbeamisperpendiculartotheimagestructures,itformsthegreatestreflectiontocreateastrongecho.Thetransducer receivesthesereflectedechoesandcreatesanimageontheultrasoundmachine.Thetransduceractsas areceiverabout99%ofthetime.Theimagesformedbythetransducercanbedisplayedonamonitor, recordedforfutureuse,orprintedonpaper.OpticalCDscanberecordedtoformadatabank.

1.6.2 Modesofechocardiography

Echocardiographycanbeclassifiedintothreemodes:M-mode,two-dimensional(2D,B-mode,orreal time),andDoppler.Onetypeofechocardiographicexaminationcreatesacomplementaryfindingfrom theothermodes.Therefore,thedifferentmodesareperformedsimultaneously.

1.6.2.1

M-modeechocardiography

AhighsamplingrateisusedinM-modeechocardiography.High-clarityimagesareobtainedfroman M-modeechocardiogram,allowingforaccuratemeasurementofcardiacdimensionsandevaluationof cardiacmotion.ItisdifficulttoplacetheM-modebeamattheexactlocationintheheartandthereforeit isdifficulttoobtainclearechoesandcarryoutcriticalmeasurements.Itisalsodifficulttoobtainmeaningfulresultsfromthecalculationsperformedontheobtainedmeasurements.Therightparasternal positionpermitsthestandardviewofM-mode.Toavoidthedisturbancegeneratedbythepapillary musclesintheLV’sfreewall,theM-modecursorshouldbepositionedwithintheheart(therightparasternalshort-axisview).TheMV,LVwall(atthelevelofthechordaetendineae),andaorticroot(aorta/ leftatrialappendage)viewsareincludedthroughthestandardM-modeview.Alinearsweepisaddedto showmotionpatterns,asshownin Fig.1.3

1.6.2.2

Two-dimensionalechocardiography

Areal-timeimageofbothdepthandwidthofaplaneoftissuesisobtainedin2Dechocardiography.Itis possibletotakeunlimitednumberofimagingplanes;however,therearesomestandardviews,which arehelpfulintheevaluationoftheextracardiacandintracardiacstructures.

Moreinformationabouttheshapeandsizeoftheheartisobtainedin2Dechocardiographythanin M-mode.2Dechocardiographyalsogivesthespatialrelationshipsoftheheart’sstructuresduringthe cardiaccycle.BothM-modeand2Drecordingsaredonesimultaneouslyforobtainingmore

FIG.1.3

ExampleofM-modedisplayofMV.

informationaboutcardiacanatomyandclinicalvalues.Thismakesechocardiographyamajordiagnostictool. Fig.1.4 showsanimageobtainedwiththehelpof2Dechocardiography.

1.6.2.3 Dopplerechocardiography

Bloodflowpatterns,velocity,anddirectionareobtainedusingDopplerimaging.ColorDopplerworks basedondetectingchangeoffrequencyofreflectedultrasoundwaves.Thephenomenonisreferredto asDopplershift.Thischangeinfrequencyoccursastheultrasoundwavesreflectoffthemovingblood cells,whichareeithermovingtowardsthetransducerorawayfromthetransducer.Inthisway,color DopplerhelpstodocumentandquantifyinsufficiencyoftheMV,alsoreferredtoasMR.Anaccurate measurementofbloodflowvelocityispossibleifthedirectionofbloodflowispreciselyparalleltothe directionoftheultrasoundbeam.Theresultsbecomeincreasinglyinaccurateastheangle θ ,shownin Fig.1.5,deviatesfromthezeroanglebetweenthebloodflowdirectionandthebeamdirection. Eq. (1.1) describestherelationshipthatdeterminesbloodflowvelocity.

where Fd istheDopplerfrequency, fo istheoriginalfrequency, V isthebloodflowvelocity, c isthelight velocity,and θ istheangleofthetransducer.

Clinically,twotypesofDopplerechocardiographyareemployedingeneral:pulsedwave(PW) Doppler,asshownin Fig.1.6,andcontinuouswave(CW)Doppler,asshownin Fig.1.7.

FIG.1.4 Apical4-chamberviewofMVtakenwith2Dechocardiography.

TheDopplerphenomenon.

ExampleofaPWDoppler.

FIG.1.5
FIG.1.6

InPWDoppler,theultrasoundbeamistransmittedasshortburststoapoint(fixedasthe“sample volume”)onadistancefromthetransducer.TheadvantageofthistypeofDoppleristhatitiseasyto calculatethespectralcharacteristics,bloodflowvelocity,anddirectionfromaspecifiedpointinthe heartorbloodvessel.Themeasuredmaximumvelocityislimitedbecauseofthelimitedpulserepetitionfrequencyandisamajordisadvantage.ThetransducerusedinPWDopplersystemsalternate transmissionandreceptionofultrasound,asintheM-modetransducer(Fig.1.7).Oneoftheadvantages ofPWDoppleristhatitcanprovideDopplershiftdataselectivelyalongtheultrasoundbeamfroma smallsegment,alsoknownas“samplevolume.”

DualcrystalsareusedinCWDopplertosimultaneouslyandcontinuouslysendandreceiveultrasoundwaves.TheflowwithhighvelocitycanalsobemeasuredwithCWbecausethereisnomaximum measurablevelocity(Nyquistlimit).InCWDoppler,thevelocityanddirectionofsampledbloodflow isinthespreadform,notinthespecificarea,whichisadisadvantageofthismodality.Asitsname suggests,continuousultrasoundwavesaregeneratedwithcontinuousultrasoundreception. Fig.1.7 showstwocrystaltransducers,onecrystalforeachfunction,andthedual-functionaccomplishment.

ColorflowDopplerechocardiographyisacombinationofM-modeand2DmodalitieswiththeimagingofbloodflowandisaformofPWDoppler.Multiplescanscanbecarriedoutfortakingmultiple samplesalongthescanlinewiththistechnique.Colorcodingisassignedtothemeanfrequencyshift thatisobtainedfromdifferentvelocityanddirectionsofmanysamplevolumes.Thereareseveraltypes ofmappingavailableforthispurpose.TheBART(blueawayandredtowards)systemismostcommonlyused.Thepresenceofmultiplevelocitiesanddifferencesinrelativeflowvelocitycanbe obtained.Differentmapsthatdependoncolorandbrightnessareusedtoindicatemultiplevelocities.

Continuous Wave
FIG.1.7
ExampleofCWDoppler.

FIG.1.8

ExampleofcolorDopplerimaginginsystolicparasternallong-axisviewMR.

Fig.1.8 showsa2DimageofbloodflowintotheLAatthetimeofsystoleduringMR [25–31].The colors(redandblue)representthedirectionofagivencolorjetandthedifferentvelocities,whichcan berepresentedbyhuesfromdulltobright.Aturbulentjetshowsthemosaicpatternofmanycolors.A 2Ddisplayofflowisshownaccordingtosize,direction,andvelocity.

Meaningofcolor Thereisusefulinformationintheflowmapofanimage.Thecolorredisassigned totheflowtowardthetransducersandthecolorblueisassignedtotheflowawayfromthetransducers.

1.6.3 Two-dimensionalrecordingtechniques

TechniquesforbothM-modeechocardiographyand2Dechocardiographyaresimilar.In2Dechocardiographyastationaryultrasoundbeamisusedasaflashlight.Itilluminatesonlyasmallareaoftheheartat atime.A2Dtransducerislikeacircularsaw,whichisrotatedonthechestatthetimeofrest.Itisrotated aroundthepointusingtheindexmarkprintedonthetransducer.Theindexmarkonthetransducerrepresentstheright-handsideofthemachinedisplay.Amorecomplexmaneuverisnecessaryduring2D examinationsothatanalignedscanplaneisachievedwiththedesiredanatomicaxisoftheheart.

In2Dechocardiographytransducermanipulation,thescanplanepivotsaboutthetransduceraxis when rotating thetransducer.Forexample,therewillbeachangefromtheparasternallongaxistothe parasternalshortaxisifthereisarotationthrough90degrees. Tilting ofthetransducerformaseriesof radialplanes.Theaxisofthetransducerismovedintheplaneofthescanwhen Anglin. Oneexampleis tobringanobjecttothecenterofthefieldofviewatanedge. Fig.1.9 showsthelocationoftheplanesto accesstheheart.

FIG.1.9

Planesforaccessingthehearttoperformechocardiography.

1.6.4 Advantagesandlimitationsofechocardiography

1.6.4.1 Advantages

•portable

•doesnotrestrictclinician,nurse,ortestingequipmentaccesstosickpatients

•canbeperformedintheuprightpositioninseverelyorthopnoeicpatients

•noninvasive,safe,andsuitableforfollow-upinvestigations

•relativelycheap

•widelyavailable

1.6.4.2 Limitations

•Imagequalityisdependentonoperatorskillandpatientanatomyandposition,generallybestinthe leftlateralposition.Itmaybeseverelyimpairedbyairbetweenthechestwallandheart(e.g., hyperinflatedlungsinobstructiveairwaysdisease,patientsonmechanicalventilation,thosewith pneumothoraxorwhoaresupineorintherightlateralposition,etc.).Narrowribspacesandobesity mayalsocausetechnicaldifficulty.

•Informationisoftenqualitativeratherthanquantitative.Significantintra-andinter-observer variationisobservedwhenimagesaresuboptimal.

•Leftatrialappendage,andinadults,superiorvenacavaandmajorityofaortaandpulmonaryarteries abovevalve/rootlevel,cannotbeimaged.

•Imagequalityisgenerallyinferiortotransesophagealecho.

•Offerslimitedcapacityfordifferentiationbetweendifferenttypesoftissuesandfluids.

1.7 Resultsandanalysis

Fig.1.10 showsninecasesofMRimagedwithcolorDopplerechocardiography.Theimagesaretaken atdifferentviewsoftheheart.Themosaicpatternofcolorshowstheregurgitation. Inthenextsection,wepresentananalysisofMRfindingsbasedonregurgitantareaandvena contractawidth.

ImagesfromMR-affectedpatientstakenwithcolorDopplerechocardiography [25]

1.8 Discussion

Table1.2 showsgradesofMRseverityobtainedfromimagingbothregurgitantareaandvenacontracta width.SevereMRisdefinedasjetareagreaterorequalto10cm2.InmoderateMR,venacontracta widthshouldbegreaterthan0.5cmwhenjetareaisintherangeof3tolessthan10.Venacontracta

FIG.1.10

Table1.2SeveritygradeanalysisofMR [25,26].

Images Jetareadrawnby clinician(cm2) Venacontracta width(cm)MRseveritygrade 115.390.58Severe 210.860.61Severe 39.380.46Moderate 413.230.56Severe 59.720.46Moderate 612.940.56Severe 711.290.54Severe 811.860.54Severe 95.590.39Moderate

widthof0.3cmtolessthan0.5cmrepresentsmoderateMR.ValueslessthanmoderateconditionsindicatemildMR,whichisnotrepresentedhere.

1.9 Conclusions

Thischapterdiscussedvarioustypesofheartdisease,withafocusonMR.Itpresentedthesymptoms andcausesofMRaswellasdiagnosticmethodsforthiscondition.Echocardiographywasshowntobe superiortoothermodalities,althoughitdoessufferfromsomelimitations.

References

[1] S.S.Mader,TheCardiovascularSysteminUnderstandingHumanAnatomyandPhysiology,fifthed.,The McGraw-HillCompanies,2004,p.227(Ch.12).

[2] C.L.Reid,D.T.Kawanishi,C.R.McKay,U.Elkayam,S.Rahimtoola,P.A.Chandraratna,Accuracyofevaluationofthepresenceandseverityofaorticandmitralregurgitationbycontrast2-dimensionalechocardiography,Am.J.Cardiol.52(5)(1983)519–524.

[3] M.E.Goldman,V.Fuster,T.Guarino,B.P.Mindich,Intraoperativeechocardiographyfortheevaluationof valvularregurgitation:experiencein263patients,Circulation74(1986)1–143.

[4] M.M.Guerreiro,C.Abreu-Lima,M.R.Gomes,Valueofintraoperative2-dimensionalcontrastechocardiography(2-DCE)forassessingthepresenceandseverityofmitralregurgitation,in:Proceedings1stInternationalSymposiumonEchocardiographyandDopplerinCardiacSurgery,1988,p.69.

[5] M.M.Guerreiro,F.J.Sepulveda,M.R.Gomes,Usefulnessofintraoperativeepicardial2dimensionalechocardiographyinsurgicaldecision,Int.J.CardiacImag.4(1)(1989)71.

[6]S.Zhang,J.P.MarquesdeSa,C.Abreu-Lima,M.Guerreiro,Mitralregurgitationassessmentbyautomated analysisofintracavitarycontrast2-Dechocardiograms,in:ProceedingsComputersinCardiology,1990, pp.671–674, https://doi.org/10.1109/CIC.1990.144309

[7] K.S.Dujardin,M.Enriquez-Sarano,K.R.Bailey,R.A.Nishimura,J.B.Seward,A.J.Tajik,Gradingofmitral regurgitationbyquantitativeDopplerechocardiography:calibrationbyleftventricularangiographyinroutineclinicalpractice,Circulation96(1997)3409–3415.

[8] M.Honey,J.H.Gough,S.Katsaros,G.A.Miller,V.Thuraisingham,Leftventricularcine-angiocardiographyintheassessmentofmitralregurgitation,Br.HeartJ.31(1969)596–602.

[9] S.Blumlein,A.Bouchard,N.B.Schiller,M.Dae,B.F.ByrdIII,T.Ports,E.H.Botvinick,Quantitationof mitralregurgitationbyDopplerechocardiography,Circulation74(2)(1986)306–314.

[10] F.Recusani,G.S.Bargiggia,A.P.Yoganathan,A.Raisaro,L.M.Valdes-Cruz,H.W.Sung,C.Bertucci, M.Gallati,V.A.Moises,I.A.Simpson,Anewmethodforquantificationofregurgitantflowrateusingcolor Dopplerflowimagingoftheflowconvergenceregionproximaltoadiscreteorifice,Circulation83(2)(1991) 594–604.

[11] G.S.Bargiggia,L.Tronconi,D.J.Sahn,F.Recusani,A.Raisaro,S.DeServi,L.M.Valdes-Cruz, C.Montemartini,AnewmethodforquantitationofmitralregurgitationbasedoncolorflowDopplerimaging offlowconvergenceproximaltoregurgitantorifice,Circulation84(4)(1991)1481–1489.

[12] N.Fujita,A.F.Chazouilleres,J.J.Hartiala,M.O.Sullivan,P.Heidenreich,J.D.Kaplan,H.Sakuma,E.Foster, G.R.Caputo,C.B.Higgins,Quantificationofmitralregurgitationbyvelocity-encodedcinenuclearmagnetic resonanceimaging,J.Am.CollegeCardiol.23(4)(1994)951–958.

[13] M.Enriquez-Sarano,J.B.Seward,K.R.Bailey,A.J.Tajik,Effectiveregurgitantorificearea:anoninvasive Dopplerdevelopmentofanoldhemodynamicconcept,J.Am.CollegeCardiol.23(2)(1994)443–451.

[14] F.Grigioni,M.Enriquez-Sarano,K.J.Zehr,K.L.Bailey,A.J.Tajik,Ischemicmitralregurgitation.Long-term outcomeandprognosticimplicationswithquantitativeDopplerassessment,Circulation103(13)(2001) 1759–1764.

[15] S.F.Yiu,M.Enriquez-Sarano,C.Tribouilloy,J.B.Seward,A.J.Tajik,Determinantsofthedegreeoffunctionalmitralregurgitationinpatientswithsystolicleftventriculardysfunction:aquantitativeclinicalstudy, Circulation102(12)(2000)1400–1406.

[16] G.A.Lamas,G.F.Mitchell,G.C.Flaker,S.C.SmithJr.,B.J.Gersh,L.Basta,L.Moye,E.Braunwald,M.A. Pfeffer,Clinicalsignificanceofmitralregurgitationafteracutemyocardialinfarction,Circulation96 (3)(1997)827–833.

[17] T.Kumanohoso,Y.Otsuji,S.Yoshifuku,Mechanismofhigherincidenceofischemicmitralregurgitationin patientwithmyocardialinfarction:quantitativeanalysisofleftventricularandvalvegeometryin103patients withpriormyocardialinfarction,J.ThoracicCardiovasc.Surg.125(1)(2003)135–143.

[18] B.H.Trichon,G.M.Felker,L.K.Shaw,C.H.Cabell,C.M.O’Connor,Relationoffrequencyandseverityof mitralregurgitationtosurvivalamongpatientswithleftventricularsystolicdysfunctionandheartfailure, Am.J.Cardiol.91(5)(2003)538–543.

[19] D.S.Bach,S.F.Bolling,Improvementfollowingcorrectionofsecondarymitralregurgitationinend-stage cardiomyopathywithmitralannuloplasty,Am.J.Cardiol.91(5)(1996)66–69.

[20]F.A.Tibayan,F.Rodriguez,F.Langer,D.Liang,G.T.Daughters,N.B.IngelsJr.,D.CraigMiller,Undersized mitralannuloplastyaltersleftventricularshapeduringacuteischemicmitralregurgitation,Circulation110 (11(Suppl.II))(2004)II98–II102, https://doi.org/10.1161/01.CIR.0000138395.45145.45.

[21] D.H.Adams,R.Rosenhek,V.Falk,Degenerativemitralvalveregurgitation:bestpracticerevolution,Eur. HeartJ.31(2010)1958–1966.

[22] J.D.Bronzino,BiomedicalEngineeringHandbook,vol.2,CRCPress,1999.

[23] J.A.Sethian,LevelSetMethodsandFastMarchingMethods:EvolvingInterfacesinComputationalGeometry,FluidMechanics,ComputerVision,andMaterialScience,seconded.,CambridgeUniversityPress, Cambridge,UK,1999.

[24] R.Gonzalez,R.Woods,DigitalImageProcessing,seconded.,Prentice-HallInc.,2002.

[25] K.Saini,M.L.Dewal,M.K.Rohit,Afastregion-basedactivecontourmodelforboundarydetectionofechocardiographicimages,J.DigitalImag.25(2)(2012)271–278.

[26] K.Chauhan,R.K.Chauhan,A.Saini,Enhancementandde-specklingofechocardiographicimages,in: N.Dey,A.S.Ashour,F.Shi,V.E.Balas(Eds.),SoftComputingBasedMedicalImageAnalysis,Elsevier, 2018,pp.61–79.

[27] K.Chauhan,R.K.Chauhan,Boundarydetectionofechocardiographicimagesduringmitralregurgitation,in: M.Hassaballah,K.Hosny(Eds.),RecentAdvancesinComputerVision:TheoriesandApplications,vol.804, Springer,2018,pp.281–303.

[28] M.L.Dewal,K.Saini,M.K.Rohit,Assessmentofmitralregurgitationseveritywithintensitybasedregion growing,Int.J.HybridInform.Technol.8(6)(2015)45–56.

[29] K.Saini,M.L.Dewal,M.K.Rohit,Levelsetbasedonnewsignedpressureforcefunctionforechocardiographicimagesegmentation,Int.J.Innov.Appl.Stud.3(2)(2013)560–569.

[30] K.Saini,M.L.Dewal,M.K.Rohit,Statisticalanalysisofspecklenoisereductiontechniquesforechocardiographicimages,in:ProceedingsInternationalConferenceonMethodsandModelsinScienceandTechnology,vol.1414,2011,pp.95–99.

[31] K.Saini,M.L.Dewal,M.K.Rohit,Amodifiedhybridfilterforechocardiographicimagenoiseremoval,Int. J.SignalProcess.ImageProcess.PatternRecogn.5(2)(2012)61–72.

Cardiacmultimodalimage registrationusingmachinelearning techniques

Chapteroutline

2.1 Introduction

2.1.1 Imageregistration

Imageregistration [1,2] isawaytomapinformationfromimageswiththeassistanceofareference image.Theobjectiveofsuchmappingistocoordinatetherelatedimagesbasedoncertainhighlightsto aidintheimagefusionprocess.

Imageregistrationrequirestwo3Dimages:areferenceandafloatingimage.Tobalancetheimages, thereferenceimageisfixedinspacewhilethefloatingimageischangednumericallyuntilitisenlisted

V.AjanthaDevi

tothereferenceimage,asshownin Fig.2.1.Themathematicaltransformfunction,orregistrationtransfer,isassessedfromafewcomparativepropertiesofthetwoimages.

Imageregistrationmethodsdifferinthekindofdatatheyextractfromimagesandinthewaythey decidetheregistrationtransform.Toanalyzethesetechniques,itisimportanttoaggregateimageregistrationinatypicaledge.Imageregistrationcomprisesthreesteps:(1)imagefeatureextraction, (2)registrationtransformcalculation,and(3)qualitymeasurement.

Imagesaredevelopedtoremovespecificfeaturesorboundaries,forexample,edgesormoments. Thesefeaturesarethenutilizedintheregistrationalgorithm.Theregistrationalgorithmdeterminesthe registrationtransformofthereferenceandfloatingimages.Theregistrationtransformiseitherdeterminedscientificallyorassessediterativelyusingtheregistrationalgorithm.Thefundamentalprerequisite [1] ofanyregistrationapproachisthecapacitytodecidepreciselyanddependablythedegreeand natureoffitbetweenimagesandinthismannerthelegitimacyoftheregistrationtransform.

2.1.2 Medicalimageregistration

Medicalimagingisincreasinglybeingutilized [3] fordiseasediagnosisandtreatment.Researchers fromallfields,particularlythoseinneuroscience,useimagingtoexaminemeasuresofillnessanddeterminecourseofdisease.Forresearchpurposes,itisoftenhelpfultolookatvariousimagesacquired frommultiplemodalities,ratherthanasingleimagefromonemodalityobtainedatdifferenttimes [4].

Themeasureofinformationcreatedbyeachprogressivegenerationofimagingframeworksismore prominentthanthatcreatedbythepreviousgeneration.ThispatternissettorepeatwiththedevelopmentofthemultislicehelicalCTscanandmagneticresonanceimaging(MRI) [5,6] frameworkswith higheranglequalities.Thereare,accordingly,potentialadvantagestoimprovingtherouteinwhich theseimagesareanalyzedandconsolidated,asshownin Fig.2.2.Modernizedmethodologiesoffer favorablecircumstances,particularlybyunequivocallymodifyingtheinformationindifferentpictures andarrangingthejoinedimagestoregisterthem.

2.1.3 Cardiacimageregistration

Cardiovascularimagesobtainedthroughvariousmodalitiescangivecorrespondingdata.Inthisway, thecombinationofatleasttwoco-registeredmultimodaldatasetsintoasolitaryportrayalcanhelpin

Optimization Similarity measure
transformation
FIG.2.1 Flowchartofthestudy.

Type of Diagnosing Define

Diagnosing Method Duration

Imaging method

Used to diagnose X-Ray

X-rays are quick, painless tests that produce images of the structures inside Patient body, especially bones.

CT Scan

CT scans use a series of xrays to create cross-sections of the inside of the body, including bones, blood vessels, and soft tissues. MRI

Patient will lie on a table that slides into the scanner, which looks like a large doughnut. The x-ray tube rotates around Patient to take images. Patient will lie, sit, or stand while the x-ray machine takes images. Patient may be asked to move into several positions.

MRIs use magnetic fields and radio waves to create detailed images of organs and tissues in the body.

Patient lie on a table that slides into the MRI machine, which is deeper and narrower than a CT scanner. The MRI magnets create loud tapping or thumping noises.

Ultrasound

Ultrasound uses highfrequency sound waves to produce images of organs and structures within the body.

A technician applies gel to Patient skin, then presses a small probe against it, moving it to capture images of the inside of Patient body.

PET Scan

PEt scans use radioactive drugs (called tracers) and a scanning machine to show how Patient tissues and organs are functioning.

Patient swallow or have a radiotracer injected. Patient then enter a PET scanner (which looks like a CT scanner) which reads the radiation given off by the radiotracer.

Ionizing radiationIonizing radiationMagnetic wavesSound wavesRadiotracers

· bone fractures;

· arthritis;

· osteoporosis;

· infections;

· breast cancer;

· swallowed items;

· digestive tract problems

· injuries from trauma;

· bone fractures;

· tumors and cancers;

· vascular disease;

· heart disease;

· infections;

· used to guide biopsies

Methodofdiagnosingthemedicalimage.

· aneurysms;

· Multiple Sclerosis (MS);

· stoke;

· spinal cord disorders;

· tumors;

· blood vessel issues;

· joint or tendon injuries

· gallbladder disease;

· breast lumps;

· genital/prostate issues;

· joint inflammation;

· blood flow problems;

· monitoring pregnancy

· used to guide biopsies

· cancer;

· heart disease;

· coronary artery disease;

· Alzheimer’s Disease;

· seizures;

· epilepsy;

· Parkinson’s Disease

FIG.2.2

Categorization of the methods

SEGMENTATION

myocardial identification & delineation using techniques such as thresholding, clustering, shape & appearance modeling, etc.

MODEL INDEPENDENT MODEL BASED

cardiovasculardiagnosis,asshownin Fig.2.3.Theutilizationofamultimodalimagingapproachin medicalpracticeisrestrictedbydisadvantagesinexactimageregistration.Afewmethodologieshave beencreatedtoregister3Dcardiovasculardatasets [7].Thesemethodologiescanbecategorizedby accordingtothefollowingthreekeyaspects:

• theareawherethearrangementchangeischaracterized(searchspace):Forthesearchspace,the inflexiblechangestrategyisthemosteffortlesssinceitutilizesonlysixboundaries(three translationalandthreerotational).Elasticregistrationcanbeusedaswell,however,itsmedical applicationisrestrictedbyhighcomputationalcosts [8].

• thecapacitythatdepictsthenatureofthearrangement(similaritymetricorregistrationmetric): Theresultofasimilaritymetric,whichdemonstratesdecencyofthematch,isamajorquestionin developinganenrollmenttechnique.Obviously,theproximitymetricmustbeefficientinorderto mergetoaglobalaverageforoptimalcoordination,anditmustalsobeprocessedinafairperiodof time.Variousstrategiesutilizetheseparationbetweenchosenmathematicalhighlightsofthe image,forexample,anatomicaltouristspots [9],surfacesonthechest [10,11],orheartsurfaces [12, 13],togatherinformationfromanatomicalfocusesorsurfacedivisionsandcompare.These strategiesarenotalwayseasytoperformconsideringthedisparatedatagivenbyvariousmodalities, particularlywhenadeformityinthemyocardialdividerexists.Consequently,voxel-based closenessmeasurements,forexample,usingcommondata [14–16],don’tmakeassumptionsabout theconnectionbetweenpictures.

• theoptimizationmethodologyusedtodeterminethechangethatexpandsthecharacterized comparabilitywork: Thelaststepofaregistrationcycleisoptimization,whichcanfigurethe changethataugmentsthecharacterizedsimilitudemetricandadjuststheheartdatasets.

CARDIAC IMAGING
- Gated)
Cardiac images in short-axes orientation
Image Warping feature based & intensity based feature based & intensity based
FIG.2.3
Cardiacimageregistrationandsegmentation.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.