234
Chapter 4: Exponential and Logarithmic Functions d) 100
2500 2000
80
1500
60
1000
40
500
0
–5
–10
33. G( x) =
20 5
15
10 x
20
100 1 + 43.3 e− 0. 0425x
0
34. C ( t) =
a) When x = 100 G(100)
100
= =
G(150) = =
C (20)
500
G(300) = =
C (50)
100 1 + 43.3 e−0.0425(150)
100 1 + 43.3 e−0.0425(300)
30 = 40.2 = = 43 0 .0 2 −30 1 ln ( 355 ) − 0.092
t
c) = =
0.0425x ] ) [ 0.0425−1.84025e − 0.0425x3 ) (1+43 .3e−
0.0425 1.8 (4025 0.0425x 0.0425 ) = ln − 00425)5 (1.8402 . = ln 1.84025 x −0.0425 = 88.66
40.2 1 + 335 e−0.092(t) 1+335 e−0.092t
74.923 = t
0.0425x
0.0425−1.84025e−0.0425x = 0 e−0.0425x =
40.2
b)
C′ ()t
The possible inflection point occurs when G′′(x) = 0 or undefined, which means the only possible inflection points occurs at
1 + 335 e−0.092(50) = 9.2046
1 + 335 e−0.092(100) = 38.884
c) e− . ( − 184025
40.2
=
C (100) =
b)
(1 + 43.3 e−0.0425x)2
40.2 1 + 335 e−0.092(20)
When t = 100
100 1 + 43.3 e−12.75 = 99.99%
· −1(1 + 43.3 e−0.0425x)−2 × (43.3 · −0.0425 e−0.0425x) 184.025 e−0.0425x
=
When t = 50
When x = 300
=
400
= 0.74164
100 1 + 43.3 e−6.375 = 91.13%
G ′ (x) ′
300
a) When t = 20
When x = 150
=
x
40.2 1 + 335 e−0.092x
100 1 + 43.3 e−0.0425(100)
100 1 + 43.3 e−4.25 = 61.82%
G′(x) = 100
200
t−2
. 4.02 ( − (1+335e −0092) .964 e−0.092t 1238 (1 + 335 e−0.092t)2
(−30.82e−. 0 092t )
d) C ′ (t) ′
=
0.092t
(e− ) [ 1+335e−0.092t ] ×((1+335e−0.092t)3 . t 113.985−76369.741e−0092)
The possible inflection point occurs when C′′(t) = 0 or undefined, which means the only possible inflection points occurs at 113.985−76369.741e−0.092t = 0 e−0.092t =
For exam and test prep, contact excellentessaywriters@gmail.com
113.985 76369.741