Calculus for the Life Sciences Marvin L. Bittinger Solution Manuals.pdf (69)

Page 1

295

Exercise Set 5.6 23.

2

x ex dx ∫ Let

25.

u=x2 and dv = exdx. Thendu =2 xdx and v= . ex u dv u v du ∫v x2exdx = x2ex− ex· 2xdx ∫ Integration by Parts 2xexdx = ∫x2ex− ∫ Weevaluate 2 xexdx usingtheIntegrationbyPartsformula. ∫

2xex dx

x sin2xdx ∫ 2 Let u = x2 and dv = sin 2x dx. Then du = 2x dx and v = 1 − 2 cos2x. ∫ x2 sin2xdx Weevaluate Let

=

x 2 · − cos2x + 1 ∫ cos2x·2xdx 2

2xcos2xdxusingtheIntegrationbyParts

u=xanddv=2cos2xdx. Then

Let u =2 and x dv = exdx.

du = dx and v = sin 2x.

Then du=2 dx and v= . ex u dv u v ∫vdu 2xexdx = 2 x·ex− 2exdx ∫ = 2 xex − 2e x + K (2 Thus, x2exdx = x2ex− xex− ex2K + ) ∫ = x2ex −xex 2 + 2 ex + C ( C = − K ) Sincewehaveanintegral ()() wheref(x),or fxgxdx ∫ x2 , can be differentiated repeatedly to a derivative that is eventually0and (ex ),or ,canbeintegratedrepeatedly gx easily, we can use tabular integration. f(x)and

∫ 2xcos2xdx =

x2+ 

repeatedintegrals 

T ∫hus,x2 1 1 1 sin2xdx=−x2cos xsin2x− cos2x− K ∫ 2 x −2 2 4 f(x)g(x)dxwheref(x),or Sincewehaveanintegral eventually 0 and g(x), or ex, can be integrated repeatedly easily, we can use tabular integration. f(x)and

x2

x

2x  − e    ex 2   +   ex 0

We add the products along the arrows, making the alter∫natesignchanges. ∫x2exdx=x2ex−2xex+2ex+C 24. (lnx)2dx Let u = (ln x)2 and dv = dx. Then

2lnx dxandv=x. d ∫u= x (lnx)2dx=x(lnx)2−

∫ ∫2lnxdx lnxdx =x(lnx)2−2(xlnx−x+C) =x(lnx)2−2 See Example 1. = x(ln x)2 −2xlnx+2x+K where K = − 2 C

g(x)and

repeatedderivatives

ex 

∫ sin2xdx

1 = xsin2x+ cos2x+K 2

g(x)and

repeatedderivatives

xsin2x−

2x 2 0

repeatedintegrals

 + sin2x  −  1   −   1  − 4sin2x   + 1    8 cos 2x

We add the products along the arrows, making the alter∫natesignchanges. 2 ∫x2sin2xdx=−1x2cos x−5lnxdx 26.

1 1 2+2xsin2x+4cos2x+C x

Let u = ln x and dv = x−5 dx. Then du= ∫

1 x

x−4 − 4−4 . ln −4 1 x = x− ∫ − x dx − 4 4 · x =− x−4 lnx+ 1∫ x−5dx +C = x−4 x−4 4 lnx− 4 16 − 4

dxandv=

x−5lnxdx

For exam and test prep, contact excellentessaywriters@gmail.com


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Calculus for the Life Sciences Marvin L. Bittinger Solution Manuals.pdf (69) by Samuel Kisilu - Issuu