Calculus for the Life Sciences Marvin L. Bittinger Solution Manuals.pdf (89)

Page 1

Chapter 8: First Order Differential Equations

406 22.

Using the logistic growth model

c) = f′ ∫+bf bdt

7000 = P = 10 +−690e−kt 1 0 + 6 9 0 e = 6 9 8 0 k e − =8 k 7000 =8 k e − 300 10 + 690e−8k 70 3 70 3 −10

k

23.

a) y(2) = 28.9587 b) y(2) = 34.9444

23.

a) y(2) = 1.8421

ln (

40

=ebtf = bt = ef

aN b f(t) = −aN + aN e−bt+Fe−bt 0 b b = − )aN 1−e−bt+Fe−bt o ( ) b −bT + Fe−bT d) F1=− aN o b 1− e ( e) C = F0+

b) y(2) = 1.8422

F1

Technology Connection

• 586

Left to the student

3.

Page

Extended Life Science Connection 589

1.

a) Left to the student b) There is no growth rates to consider only decay due to loss of moisture c) ∫

−aN

= = =

= =

c) M = aNT = −(F1−F0p)bNT (1 −p)N = = (F1 −F0p)lnp 1− p

0 bT d) c( T) = c− e

e) c = c e−bT 0 c c0 = e−bT=p

2.

e−bT + Fe−bT o )

−aN 1 e−bT + Fe−bT o ) b ( − e−bT ) −aN 1 F1 − F0e−bT (− baN (1−p) F1 −F0p = − b = −(F1−F0p)b a (1 −p)N

c0 = K c(t) = c e−bt 0

−bT ln p − T

(1 −

baN 1−e−T(−lnp/t) +Fe−T(lnp/T) 0 − ) − baN (1−p)+F0p b a) The mass of the leafs consumed has to equal the the number of larva times the rate at which the consume the leafs times the times they spend consuming the leaves. b) F1

dc = ∫ −bdt c lnc = −bt + K c(t) = Ke−bt

lnp = b =

−aN ebt+C b −aN +Ce−bt b +C aN − b

F0

)

− 1 ln 40 ( 2070) 8 = 0.4933

Left to the student

−aNebtdt

= f

=

• Page

∫ebt

G(t) =

1 40 690 ( 3 ) − 8k =

−aN

−(pF0−F1)lnp 1− p 4.

a) M

=

a) Left to the student

=

b) There are no growth rates only decay rates due to loss of moisture and mass eaten by the larva

=

−(pF0−F1)lnp 1− p 0.324 . 0346 0307 ln 0324) − 0352 . . 0.352 [( . ) (− ) ] ( 1−0.324 0.352 0.01196grams

For exam and test prep, contact excellentessaywriters@gmail.com


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.