Résumé intég param

Page 1

Int´egrales d´ependant d’un param`etre

Abd. ELAKILI, 2015-2016

R´esum´e de Cours – Int´egrales d´ependant d’un param`etre

1 – Convergence domin´ee pour une suite de fonctions

Th´eor`eme 1.

(Th´eor`eme de convergence domin´ee) Soit (f n )n une suite de fon ions a` valeurs dans dans

R ou C. Si : . Pour tout n ; f n est continue par morceaux et int´egrable sur I. . (f n )n converge simplement sur I vers une fon ion f continue par morceaux sur I. . Il existe une fon ion φ continue par morceaux sur I, positive et int´egrable sur I telle que : pour tout entier n, |f n | ≤ φ. (Hypoth`ese de domination) R R Alors f est int´egrable sur I et I f = lim I f n . n→+∞

2 – Int´egration terme a` terme sur un intervalle

Th´eor`eme 2. (Th´eor`eme Int´egration terme a` terme d’une s´erie de fon ions) Soit (fn )n une suite de fon ions a` valeurs dans dans R ou C. Si : . Pour tout n ; f n est continue par morceaux et int´egrable sur I. P . La s´erie f n converge simplement sur I et a pour somme une fon ion S continue par morceaux sur I. PR . La s´erie ( I |f n |) converge. +∞ +∞ +∞ R P P PR Alors La fon ion S = f n est int´egrable sur I et N (S) ≤ N (f n ) et I S = f . I n n=

n=

n=

3 – Continuit´e d’une int´egrale d´ependant d’un param´etre

Th´eor`eme 3. (Continuit´e d’une int´egrale d´ependant d’un param´etre) Soit f une fon ion a` valeurs complexe sur A × I, ou A est une partie d’une espace ve oriel norm´e de dimension finie. Si : . Pour tout x de A, t 7→ f (x, t) est continue par morceaux et int´egrable sur I. . Pour tout t de I, x 7→ f (x, t) est continue sur A. Pour des questions, demande de pr´ecisions ou explications, , ou m’appeller au    .

n’h´esitez pas a` m’envoyer un mail a` abdelakili@gmail.com


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.