Espectro electromagnético

Page 1

Universidad Autónoma de Ciudad Juárez. Instituto de Ciencias Biomédicas. Departamento de Ciencias Biológicas.

Espectro electromagnético y espectro de ligandos.

Brandon Yadier Solis Solis. Matricula: 170333

Química computacional.

14 de Noviembre del 2017.


Espectro electromagnético.1 El espectro electromagnético (o simplemente espectro) es el rango de todas las radiaciones electromagnéticas posibles. El espectro de un objeto es la distribución característica de la radiación electromagnética de ese objeto.

El espectro electromagnético se extiende desde las bajas frecuencias usadas para la radio moderna (extremo de la onda larga) hasta los rayos gamma (extremo de la onda corta), que cubren longitudes de onda de entre miles de kilómetros y la fracción del tamaño de un átomo. Se piensa que el límite de la longitud de onda corta está en las cercanías de la longitud Planck, mientras que el límite de la longitud de onda larga es el tamaño del universo mismo, aunque en principio el espectro sea infinito y continuo. Radiofrecuencia

Las ondas de radio suelen ser utilizadas mediante antenas del tamaño apropiado (según el principio de resonancia), con longitudes de onda en los límites de cientos de metros a aproximadamente un milímetro. Se usan para la transmisión de datos, a través de la modulación. La televisión, los teléfonos móviles, las resonancias

1

Pérez, Guillermo. ESPECTROMETRIA .COM, 2017, https://www.espectrometria.com/espectro_electromagntico


magnéticas, o las redes inalámbricas y de radio-aficionados, son algunos usos populares de las ondas de radio. Microondas La frecuencia súper alta (SHF) y la frecuencia extremadamente alta (EHF) de las microondas son las siguientes en la escala de frecuencia. Las microondas son ondas las suficientemente cortas como para emplear guías de ondas metálicas tubulares de diámetro razonable. La energía de microondas se produce con tubos klistrón y tubos magnetrón, y con diodos de estado sólido como los dispositivos Gunn e IMPATT. Las microondas son absorbidas por la moléculas que tienen un momento dipolar en líquidos. En un horno microondas, este efecto se usa para calentar la comida. La radiación de microondas de baja intensidad se utiliza en Wi-Fi. Rayos T

La radiación de terahertzios (o Rayos T) es una región del espectro situada entre el infrarrojo lejano y las microondas. Hasta hace poco, este rango estaba muy poco estudiado, ya que apenas había fuentes para la energía microondas en el extremo alto de la banda (ondas submilimétrica o también llamadas ondas terahertzios). Radiación infrarroja

La parte infrarroja del espectro electromagnético cubre el rango desde aproximadamente los 300 GHz (1 mm) hasta los 400 THz (750 nm). Puede ser dividida en tres partes: * Infrarrojo lejano, desde 300 GHz (1 mm) hasta 30 THz (10 μm). La parte inferior de este rango también puede llamarse microondas. Esta radiación es absorbida por los llamados modos rotatorios en las moléculas en fase gaseosa, mediante movimientos moleculares en los líquidos, y mediante fotones en los sólidos. * Infrarrojo medio, desde 30 a 120 THz (10 a 2.5 μm). Los objetos calientes (radiadores de cuerpo negro) pueden irradiar fuertemente en este rango. Se absorbe por vibraciones moleculares, es decir, cuando los diferentes átomos en una molécula vibran alrededor de sus posiciones de equilibrio. * Infrarrojo cercano, desde 120 a 400 THz (2500 a 750 nm). Los procesos físicos que son relevantes para este rango son similares a los de la luz visible. Radiación visible (luz)

La frecuencia por encima del infrarrojo es la de la luz visible. Este es el rango en el que el Sol y las estrellas similares a él emiten la mayor parte de su radiación. No es


probablemente una coincidencia que el ojo humano sea sensible a las longitudes de onda que el sol emite con más fuerza. La luz visible (y la luz cercana al infrarrojo) son absorbidas y emitidas por electrones en las moléculas y átomos que se mueven desde un nivel de energía a otro. La luz que vemos con nuestros ojos es realmente una parte muy pequeña del espectro electromagnético. Un arco iris muestra la parte óptica (visible) del espectro electromagnético; el infrarrojo (si pudiera verse) estaría localizado justo a continuación del lado rojo del arco iris, mientras que el ultravioleta estaría tras el violeta. Luz ultravioleta La siguiente frecuencia en el espectro es el ultravioleta (o rayos UV), que es la radiación cuya longitud de onda es más corta que el extremo violeta del espectro visible. Rayos X

Después del ultravioleta vienen los rayos X. Los rayos X duros tienen longitudes de onda más cortas que los rayos X suaves. Se usan generalmente para ver a través de algunos objetos, así como para la física de alta energía y la astronomía. Las estrellas de neutrones y los discos de acreción alrededor de los agujeros negros emiten rayos X, lo que nos permite estudiarlos. Rayos gamma

Después de los rayos X duros vienen los rayos gamma. Son los fotones más energéticos, y no se conoce el límite más bajo de su longitud de onda. Son útiles a los astrónomos en el estudio de objetos o regiones de alta energía, y son útiles para los físicos gracias a su capacidad penetrante y su producción de radioisótopos. La longitud de onda de los rayos gamma puede medirse con gran exactitud por medio de dispersión Compton.


Espectrofotometría. La espectrofotometría es un método científico utilizado para medir cuanta luz absorbe una sustancia química, midiendo la intensidad de la luz cuando un haz luminoso pasa a través de la solución muestra, basándose en la Ley de Beer-Lambert2. Esta medición también puede usarse para medir la cantidad de un producto químico conocido en una sustancia. La ley de BOUGUER-LAMBERT-BEER también se conoce como ley de Beer-Lambert-Bouguer y fue descubierta de formas diferentes e independientes en primer lugar por el matemático y astrónomo francés Pierre Bouguer en 1729´Luego por el filósofo y matemático alemán, Johann Heinrich Lambert en 1760 y por último el físico y matemático también alemán, August Beer en el año 1852. Se puede decir que esta ley se trata de un medio o método matemático, el cual es utilizado para expresar de qué modo la materia absorbe la luz. En óptica (Rama de la física que se encarga del estudio de la luz) La ley de Beer afirma que la totalidad de luz que emana de una muestra puede disminuir debido a tres fenómenos de la física, que serían los siguientes: 1. El número de materiales de absorción en su trayectoria, lo cual se denomina concentración 2. Las distancias que la luz debe atravesar a través de las muestra. Denominamos a este fenómeno, distancia del trayecto óptico 3. Las probabilidades que hay de que el fotón de esa amplitud particular de onda pueda absorberse por el material. Esto es la absorbencia o también coeficiente de extinción.

El estudio de la interacción de la luz (u otra radiación electromagnética) con la materia es una herramienta importante y versátil para la ciencia. De hecho, gran parte de nuestro conocimiento de las sustancias químicas viene de su absorción específica o emisión de luz. El principio básico es que cada compuesto absorbe o transmite luz sobre un cierto rango de longitud de onda. Supongamos que usted mira dos soluciones de la misma sustancia, una de color más oscuro que la otra. Su sentido común le dice que la de color más oscuro es la más concentrada. En otras palabras, como el color de la solución se profundiza, se deduce que su concentración también aumenta. Este es un principio subyacente de la espectrofotometría: la intensidad del color es una medida de la cantidad de un material en solución.3

2

https://www.uv.mx/personal/aherrera/files/2014/05/L.-Ley-de-Bouguer-Lambert-Beer-0.pdf

3

Espectrofotometría, 2016-2017, https://elespectrofotometro.com/espectrofotometria/


Absorbancia. Dado que la reflexión de la luz es de un interés mínimo en espectrofotometría, se tiene que lo relevante es la absorbancia y transmitancia de la luz. El color que vemos en una muestra de solución se debe a la absorción selectiva de ciertas longitudes de onda de luz visible y transmitancia del resto longitudes de onda. Si una muestra absorbe todas las longitudes de onda en la región visible del espectro, aparecerá negro; si no absorbe ninguno de ellos, aparecerá blanco o incoloro. Vemos los distintos colores cuando las longitudes de onda radiante de la energía golpean nuestros ojos. Definimos transmitancia como la relación de la cantidad de luz transmitida a la cantidad de luz que cayó inicialmente en la superficie.

La ecuación de la transmitancia se define como sigue: Transmitancia = P / P0 Donde: T = Transmitancia. P = Intensidad de la luz transmitida. P0 = Intensidad de la luz incidente. La absorbancia se define como el logaritmo negativo de la transmitancia, y se observa que la absorbancia y la transmitancia tienen una relación inversa, como se muestra a continuación: Absorbancia = -log ( T ) = -log ( P ⁄ P0 ) Esto permite que diferentes espectrofotómetros con diferentes fuentes de luz produzcan lecturas de absorción independientes de la potencia de la fuente de luz. 4

4

Transmitancia y absorbancia, 2016-2017, https://elespectrofotometro.com/transmitancia-y-absorbancia/


Espectrometría infrarroja. La espectrometría de infrarrojos (espectroscopia IV) es un tipo de espectrometría de absorción que utiliza la región infrarroja del espectro electromagnético. Como las demás técnicas espectroscópicas, puede ser utilizada para identificar un compuesto o investigar la composición de una muestra. La espectrometría infrarroja se basa en el hecho de que los enlaces químicos de las sustancias tienen frecuencias de vibración específicas, que corresponden a los niveles de energía de la molécula. Estas frecuencias dependen de la forma de la superficie de energía potencial de la molécula, la geometría molecular, las masas atómicas y, posiblemente, el acoplamiento vibracional. Usos y aplicaciones

La espectrometría infrarroja se utiliza ampliamente tanto en la industria como en la investigación científica, porque es una técnica rápida y fiable para medidas, control de calidad y análisis dinámicos. Los instrumentos actuales son pequeños y pueden ser transportados, incluso para tomar medidas de campo. Con los avances en tecnología de filtrado computacional y la manipulación de los resultados, se pueden medir con precisión las muestras en una solución (el agua produce una banda larga de absorbancia en el rango de interés, lo que daría un espectro ilegible sin dicho tratamiento computacional). Algunas máquinas incluso dicen automáticamente qué sustancia está siendo analizada a través de miles de espectros de referencia almacenados en la memoria.5

5

Pérez, Guillermo, ESPECTROMETRIA .COM, 2017, https://www.espectrometria.com/espectrometra_infrarroja


Espectrometría de fluorescencia.6 La espectrometría de fluorescencia (también llamada fluorometría o espectrofluorimetría) es un tipo de espectroscopia electromagnética que analiza la fluorescencia de una muestra. Se trata de utilizar un haz de luz, por lo general luz ultravioleta, que excita los electrones de las moléculas de ciertos compuestos y provoca que emitan luz de una menor energía, generalmente luz visible (aunque no necesariamente). Una técnica complementaria es la espectrometría de absorción. Los dispositivos que miden la fluorescencia se llaman fluorómetros o fluorímetros. Teoría de la fluorescencia

Las moléculas tienen diferentes estados llamados niveles de energía. La espectrometría de fluorescencia se refiere principalmente a estados vibracionales y electrónicos. En general, las especies objeto de examen tendrán un estado electrónico basal (un estado de baja energía) de interés, y un estado electrónico excitado de mayor energía. Dentro de cada uno de estos estados electrónicos hay diferentes estados vibracionales. En la espectroscopia de fluorescencia, primero se excita la muestra mediante la absorción de un fotón de luz, desde su estado electrónico basal a uno de los distintos estados vibracionales del estado electrónico excitado. Las colisiones con otras moléculas causan que la molécula excitada pierda energía vibracional hasta que alcanza el estado vibracional más bajo del estado electrónico excitado. La molécula desciende luego a uno de los distintos niveles de vibración del estado electrónico basal, emitiendo un fotón en el proceso. Como las moléculas pueden caer a cualquiera de los diferentes niveles de vibración en el estado basal, los fotones emitidos tendrán diferentes energías y, por lo tanto, frecuencias. Así pues, mediante el análisis de las diferentes frecuencias de luz emitida por espectrometría de fluorescencia, junto con sus intensidades relativas, se puede determinar la estructura de los diferentes niveles de vibración. En un experimento típico, se miden las diferentes frecuencias de luz fluorescente emitida por una muestra, manteniendo la luz de excitación a una longitud de onda constante. A esto se le llama espectro de emisión. Un espectro de excitación se mide mediante el registro de una serie de espectros de emisión utilizando luz de diferentes longitudes de onda.

6

Pérez, Guillermo. Espectrometría de fluorescencia, 2017, https://www.espectrometria.com/espectrometra_de_fluorescencia


Instrumentos

En la espectrometría de fluorescencia se utilizan dos tipos generales de instrumentos:  

Fluorómetros de filtro. Utilizan filtros para aislar la luz incidente y la luz fluorescente. Espectrofluorómetros. Usan monocromadores de retículo de difracción para aislar la luz incidente y la luz fluorescente.


Espectroscopia de masas. La Espectrometría de masas es una técnica analítica que permite estudiar compuestos de naturaleza diversa: orgánica, inorgánica o biológica (incluyendo biopolímeros y macromoléculas naturales o artificiales) y obtener información cualitativa o cuantitativa. Mediante el análisis por Espectrometría de masas es posible obtener información de la masa molecular del compuesto analizado así como obtener información estructural del mismo, o simplemente detectar su presencia y/o cuantificar su concentración. Para ello es necesario ionizar las moléculas, utilizando si fuera preciso una separación cromatográfica (UPLC, GC) previa, y obtener los iones formados en fase gaseosa. Este proceso tiene lugar en la fuente de ionización. Los iones generados son acelerados hacia un analizador y separados en función de su relación masa/carga (m/z) mediante la aplicación de campos eléctricos, magnéticos ó simplemente determinando el tiempo de llegada a un detector. Los iones que llegan al detector producen una señal eléctrica que es procesada, ampliada y enviada a un ordenador. El registro obtenido se denomina Espectro de masas y representa las abundancias iónicas obtenidas en función de la relación masa/carga de los iones detectados.7 La espectrometría de masas se fundamenta en la separación de partículas moleculares o atómicas por su diferente masa. El proceso de la espectrometría de masas comprende básicamente cuatro etapas:    

7 8

Ionización de la muestra. Aceleración de los iones por un campo eléctrico. Dispersión de los iones según su masa/carga. Detección de los iones y producción de la correspondiente señal eléctrica. 8

http://laboratoriotecnicasinstrumentales.es/analisis-qumicos/espectrometra-de-masas http://depa.fquim.unam.mx/amyd/archivero/masas_10832.pdf


Espectrometría de resonancia magnética nuclear.9 La espectrometría de resonancia magnética nuclear (RMN), más comúnmente conocida como espectrometría RMN, es una técnica que explota las propiedades magnéticas de ciertos núcleos. Las aplicaciones más importantes para su uso en química orgánica son la espectrometría RMN de protones y la de carbono-13. En principio, la RMN es aplicable a cualquier núcleo que posea espín. Pueden obtenerse muchos tipos de información mediante un espectro RMN. Al igual que se utiliza la espectrometría de infrarrojos para identificar grupos funcionales, el análisis de un espectro RMN unidimensional proporciona información sobre el número y tipo de entidades químicas en una molécula. El impacto de la espectrometría RMN en las ciencias naturales ha sido sustancial. Puede utilizarse, entre otras cosas, para estudiar mezclas de analitos, para comprender efectos dinámicos como el cambio en la temperatura y los mecanismos de reacción, y es una herramienta de valor incalculable para la comprensión de la estructura y función de las proteínas y los ácidos nucleicos. Este tipo de espectrometría se puede aplicar a una amplia variedad de muestras, tanto en solución como en estado sólido. Técnicas básicas de espectrometría rmn

Cuando se sitúan dentro de un campo magnético, los núcleos activos de RMN (como el 1 H, o el 13 C) absorben a una frecuencia característica del isótopo. La frecuencia de resonancia, la energía de la absorción y la intensidad de la señal son proporcionales a la fuerza del campo magnético. Por ejemplo, en un campo magnético de 21 Tesla, los protones resuenan a 900 MHz. Es común referirse a un imán de 21 T como imán de 900 MHz, aunque distintos núcleos resuenan a una frecuencia diferente en este campo. En el campo magnético terrestre, los mismos núcleos resuenan en frecuencias de audio. Este efecto se utiliza en los espectrómetros RMN y otros instrumentos. Debido a que estos instrumentos son fáciles de transportar y baratos, a menudo se utilizan para la enseñanza y el trabajo de campo.

9

Pérez, Guillermo, 2017, https://www.espectrometria.com/espectrometra_de_resonancia_magntica_nuclear



Glycerol


N,N,N',N'tetramethylethylenediamine


alpha-D-Glucose-1-phosphate


1,2-ETHANEDIOL


Seleno-L-methionine


DL-Homoserine


Uridine 5'-diphosphate


Formic Acid


S-adenosylmethionine


alpha-D-Glucose 6phosphate


Aspirin


Uridine, cyclic 2',3'benzeneboronate


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.