Development Research in Practice

Page 97

Chapter 4 Acquiring development data

Many research questions require original data because no source of publicly available data addresses the inputs or outcomes of interest for the relevant population. Data acquisition can take many forms, including primary data generated through surveys; private sector partnerships granting access to new data sources, such as administrative and sensor data; digitization of paper records, including administrative data; web scraping; data captured by unmanned aerial vehicles or other types of remote sensing; and novel integration of various types of data sets, such as combining survey and sensor data. Much of the recent push toward credibility in the social sciences has focused on analytical practices. However, credible development research depends, first and foremost, on the quality of the data acquired. Clear and careful documentation of the data acquisition process is essential for research to be reproducible. This chapter covers reproducible data acquisition, special considerations for generating high-quality survey data, and protocols for handling confidential data safely and securely. The first section discusses acquiring data reproducibly, by establishing and documenting the right to use the data. This discussion applies to all original data, whether collected for the first time through surveys or sensors or acquired through a unique partnership. The second section examines the process of acquiring data through surveys, which is typically more involved than acquiring secondary data and has more in-built opportunities for quality control. It provides detailed guidance on the electronic survey workflow, from designing electronic survey instruments to monitoring data quality once fieldwork is ongoing. The final section discusses handling data safely, providing guidance on how to receive, transfer, store, and share confidential data. Secure file management is a basic requirement for complying with the legal and ethical agreements that allow access to personal information for research purposes. Box 4.1 summarizes the main points, lists the responsibilities of different members of the research team, and supplies a list of key tools and resources for implementing the recommended practices.

CHAPTER 4: ACQUIRING DEVELOPMENT DATA

77


Turn static files into dynamic content formats.

Create a flipbook

Articles inside

Appendix C: Research design for impact evaluation

33min
pages 215-231

Appendix A: The DIME Analytics Coding Guide

24min
pages 195-210

Appendix B: DIME Analytics resource directory

3min
pages 211-214

8.1 Research data work outputs

6min
pages 190-194

Chapter 8: Conclusion

1min
page 189

7.4 Releasing a reproducibility package: A case study from the Demand for Safe Spaces project

3min
pages 184-186

7.1 Summary: Publishing reproducible research outputs

8min
pages 172-175

7.3 Publishing research data sets: A case study from the Demand for Safe Spaces project

10min
pages 180-183

7.2 Publishing research papers and reports: A case study from the Demand for Safe Spaces project

8min
pages 176-179

Chapter 7: Publishing reproducible research outputs

1min
page 171

6.1 Data analysis tasks and outputs

3min
pages 168-170

6.8 Managing outputs: A case study from the Demand for Safe Spaces project

10min
pages 163-167

6.7 Visualizing data: A case study from the Demand for Safe Spaces project

4min
pages 161-162

6.6 Organizing analysis code: A case study from the Demand for Safe Spaces project

4min
pages 159-160

6.5 Writing analysis code: A case study from the Demand for Safe Spaces project

3min
pages 157-158

6.4 Documenting variable construction: A case study from the Demand for Safe Spaces project

4min
pages 155-156

6.3 Creating analysis variables: A case study from the Demand for Safe Spaces project

1min
page 154

6.2 Integrating multiple data sources: A case study from the Demand for Safe Spaces project

9min
pages 150-153

6.1 Summary: Constructing and analyzing research data

10min
pages 146-149

Chapter 6: Constructing and analyzing research data

1min
page 145

5.7 Recoding and annotating data: A case study from the Demand for Safe Spaces project

3min
pages 140-141

5.6 Correcting data points: A case study from the Demand for Safe Spaces project

4min
pages 138-139

5.5 Implementing de-identification: A case study from the Demand for Safe Spaces project

9min
pages 134-137

5.1 Summary: Cleaning and processing research data

7min
pages 122-124

5.4 Assuring data quality: A case study from the Demand for Safe Spaces project

7min
pages 131-133

5.3 Tidying data: A case study from the Demand for Safe Spaces project

7min
pages 128-130

5.2 Establishing a unique identifier: A case study from the Demand for Safe Spaces project

7min
pages 125-127

Chapter 5: Cleaning and processing research data

1min
page 121

B4.4.1 A sample dashboard of indicators of progress

12min
pages 113-117

4.4 Checking data quality in real time: A case study from the Demand for Safe Spaces project

2min
page 112

4.3 Piloting survey instruments: A case study from the Demand for Safe Spaces project

14min
pages 106-111

4.2 Determining data ownership: A case study from the Demand for Safe Spaces project

16min
pages 100-105

B3.3.1 Flowchart of a project data map

37min
pages 81-96

B2.3.1 Folder structure of the Demand for Safe Spaces data work

36min
pages 55-72

Chapter 4: Acquiring development data

5min
pages 97-99

Chapter 3: Establishing a measurement framework

18min
pages 73-80

Chapter 1: Conducting reproducible, transparent, and credible research

35min
pages 31-46

Chapter 2: Setting the stage for effective and efficient collaboration

18min
pages 47-54

I.1 Overview of the tasks involved in development research data work

18min
pages 22-30

Introduction

2min
page 21
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Development Research in Practice by World Bank Publications - Issuu