Development Research in Practice

Page 81

BOX 3.3  CREATING DATA FLOWCHARTS: AN EXAMPLE FROM THE DEMAND FOR SAFE SPACES PROJECT (continued) FIGURE B3.3.1  Flowchart of a project data map Platform survey ID: id

Career IAT scores ID: id

Combine: • Append rows • Create a new variable indicating the corresponding instrument

Make data wider: one column per instrument

IAT scores (long) ID: id + instrument

Security IAT scores ID: id

IAT scores (tidy at id) ID: id

Advances IAT scores ID: id

Career IAT stimuli

Combine: • Append rows • Create a new variable indicating the corresponding instrument

Security IAT stimuli

Advances IAT stimuli

All stimuli

Make data wider: one column per instrument All stimuli (long) ID: id + instrument

IAT scores (tidy at id) ID: id

Platform survey and IAT ID: id

Combine: • Merge rows • 1:1 id correspondence • All rows in from scores and stimuli will match to an ID in survey • Not all rows in survey will match to an ID in scores and stimuli • Keep both matched and unmatched rows

Aggregate: take average of time and error rate per id and instrument

Source: For the complete project data map, visit the GitHub repository at https://git.io/Jtg3J. Note: IAT = implicit association test; ID = identifying variable.

Translating research design to data needs A treatment is an evaluated intervention or event, which includes things like being offered training or a cash transfer from a program or experiencing a natural disaster, among many others. A counterfactual is a statistical description of what would have happened to specific individuals in an alternative scenario—for example, a different treatment assignment outcome.

An important step in translating the research design into a specific data structure is to determine which research design variables are needed to infer which differences in measurement variables are attributable to the research design. These data needs should be expressed in the data map by listing the data source for each variable in the data linkage table, by adding columns for them in the master data set (the master data set might not have any observations yet; that is not a problem), and by indicating in the data flowcharts how they will be merged with the analysis data. It is important to perform this task before acquiring any data, to make sure that the data acquisition activities described in chapter 4 will generate the data needed to answer the research questions. Because DIME works primarily on impact evaluations, the discussion here focuses on research designs that compare a group that received some kind of treatment against a counterfactual. The key assumption is that each person, facility, or village (or whatever the unit of analysis is) has two

Chapter 3: Establishing a measurement framework

61


Turn static files into dynamic content formats.

Create a flipbook

Articles inside

Appendix C: Research design for impact evaluation

33min
pages 215-231

Appendix A: The DIME Analytics Coding Guide

24min
pages 195-210

Appendix B: DIME Analytics resource directory

3min
pages 211-214

8.1 Research data work outputs

6min
pages 190-194

Chapter 8: Conclusion

1min
page 189

7.4 Releasing a reproducibility package: A case study from the Demand for Safe Spaces project

3min
pages 184-186

7.1 Summary: Publishing reproducible research outputs

8min
pages 172-175

7.3 Publishing research data sets: A case study from the Demand for Safe Spaces project

10min
pages 180-183

7.2 Publishing research papers and reports: A case study from the Demand for Safe Spaces project

8min
pages 176-179

Chapter 7: Publishing reproducible research outputs

1min
page 171

6.1 Data analysis tasks and outputs

3min
pages 168-170

6.8 Managing outputs: A case study from the Demand for Safe Spaces project

10min
pages 163-167

6.7 Visualizing data: A case study from the Demand for Safe Spaces project

4min
pages 161-162

6.6 Organizing analysis code: A case study from the Demand for Safe Spaces project

4min
pages 159-160

6.5 Writing analysis code: A case study from the Demand for Safe Spaces project

3min
pages 157-158

6.4 Documenting variable construction: A case study from the Demand for Safe Spaces project

4min
pages 155-156

6.3 Creating analysis variables: A case study from the Demand for Safe Spaces project

1min
page 154

6.2 Integrating multiple data sources: A case study from the Demand for Safe Spaces project

9min
pages 150-153

6.1 Summary: Constructing and analyzing research data

10min
pages 146-149

Chapter 6: Constructing and analyzing research data

1min
page 145

5.7 Recoding and annotating data: A case study from the Demand for Safe Spaces project

3min
pages 140-141

5.6 Correcting data points: A case study from the Demand for Safe Spaces project

4min
pages 138-139

5.5 Implementing de-identification: A case study from the Demand for Safe Spaces project

9min
pages 134-137

5.1 Summary: Cleaning and processing research data

7min
pages 122-124

5.4 Assuring data quality: A case study from the Demand for Safe Spaces project

7min
pages 131-133

5.3 Tidying data: A case study from the Demand for Safe Spaces project

7min
pages 128-130

5.2 Establishing a unique identifier: A case study from the Demand for Safe Spaces project

7min
pages 125-127

Chapter 5: Cleaning and processing research data

1min
page 121

B4.4.1 A sample dashboard of indicators of progress

12min
pages 113-117

4.4 Checking data quality in real time: A case study from the Demand for Safe Spaces project

2min
page 112

4.3 Piloting survey instruments: A case study from the Demand for Safe Spaces project

14min
pages 106-111

4.2 Determining data ownership: A case study from the Demand for Safe Spaces project

16min
pages 100-105

B3.3.1 Flowchart of a project data map

37min
pages 81-96

B2.3.1 Folder structure of the Demand for Safe Spaces data work

36min
pages 55-72

Chapter 4: Acquiring development data

5min
pages 97-99

Chapter 3: Establishing a measurement framework

18min
pages 73-80

Chapter 1: Conducting reproducible, transparent, and credible research

35min
pages 31-46

Chapter 2: Setting the stage for effective and efficient collaboration

18min
pages 47-54

I.1 Overview of the tasks involved in development research data work

18min
pages 22-30

Introduction

2min
page 21
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Development Research in Practice by World Bank Publications - Issuu