Development Research in Practice

Page 122

BOX 5.1 SUMMARY: CLEANING AND PROCESSING RESEARCH DATA After being acquired, data must be structured for analysis in accordance with the research design, as laid out in the data linkage tables and the data flowcharts discussed in chapter 3. This process entails the following tasks. 1. Tidy the data. Many data sets do not have an unambiguous identifier as received, and the rows in the data set often do not match the units of observation specified by the research plan and data linkage table. To prepare the data for analysis requires two steps: • Determine the unique identifier for each unit of observation in the data. • Transform the data so that the desired unit of observation uniquely identifies rows in each data set. 2. Validate data quality. Data completeness and quality should be validated upon receipt to ensure that the information is an accurate representation of the characteristics and individuals it is supposed to describe. This process entails three steps: • Check that the data are complete—that is, that all the observations in the desired sample were received. • Make sure that data points are consistent across variables and data sets. • Explore the distribution of key variables to identify outliers and other unexpected patterns. 3. De-identify, correct, and annotate the data. After the data have been processed and de-identified, the information must be archived, published, or both. Before publication, it is necessary to ensure that the processed version is highly accurate and appropriately protects the privacy of individuals: • De-identify the data in accordance with best practices and relevant privacy regulations. • Correct data points that are identified as being in error compared to ground reality. • Recode, document, and annotate data sets so that all of the content will be fully interpretable by future users, whether or not they were involved in the acquisition process.

Key responsibilities for task team leaders and principal investigators • Determine the units of observation needed for experimental design and supervise the ­development of appropriate unique identifiers. • Indicate priorities for quality checks, including key indicators and reference values. • Provide guidance on how to resolve all issues identified in data processing, cleaning, and preparation. • Publish or archive the prepared data set.

Key responsibilities for research assistants • Develop code, data, and documentation linking data sets with the data map and study design, and tidy all data sets to correspond to the required units of observation. (Box continues on next page)

102

DEVELOPMENT RESEARCH IN PRACTICE: THE DIME ANALYTICS DATA HANDBOOK


Turn static files into dynamic content formats.

Create a flipbook

Articles inside

Appendix C: Research design for impact evaluation

33min
pages 215-231

Appendix A: The DIME Analytics Coding Guide

24min
pages 195-210

Appendix B: DIME Analytics resource directory

3min
pages 211-214

8.1 Research data work outputs

6min
pages 190-194

Chapter 8: Conclusion

1min
page 189

7.4 Releasing a reproducibility package: A case study from the Demand for Safe Spaces project

3min
pages 184-186

7.1 Summary: Publishing reproducible research outputs

8min
pages 172-175

7.3 Publishing research data sets: A case study from the Demand for Safe Spaces project

10min
pages 180-183

7.2 Publishing research papers and reports: A case study from the Demand for Safe Spaces project

8min
pages 176-179

Chapter 7: Publishing reproducible research outputs

1min
page 171

6.1 Data analysis tasks and outputs

3min
pages 168-170

6.8 Managing outputs: A case study from the Demand for Safe Spaces project

10min
pages 163-167

6.7 Visualizing data: A case study from the Demand for Safe Spaces project

4min
pages 161-162

6.6 Organizing analysis code: A case study from the Demand for Safe Spaces project

4min
pages 159-160

6.5 Writing analysis code: A case study from the Demand for Safe Spaces project

3min
pages 157-158

6.4 Documenting variable construction: A case study from the Demand for Safe Spaces project

4min
pages 155-156

6.3 Creating analysis variables: A case study from the Demand for Safe Spaces project

1min
page 154

6.2 Integrating multiple data sources: A case study from the Demand for Safe Spaces project

9min
pages 150-153

6.1 Summary: Constructing and analyzing research data

10min
pages 146-149

Chapter 6: Constructing and analyzing research data

1min
page 145

5.7 Recoding and annotating data: A case study from the Demand for Safe Spaces project

3min
pages 140-141

5.6 Correcting data points: A case study from the Demand for Safe Spaces project

4min
pages 138-139

5.5 Implementing de-identification: A case study from the Demand for Safe Spaces project

9min
pages 134-137

5.1 Summary: Cleaning and processing research data

7min
pages 122-124

5.4 Assuring data quality: A case study from the Demand for Safe Spaces project

7min
pages 131-133

5.3 Tidying data: A case study from the Demand for Safe Spaces project

7min
pages 128-130

5.2 Establishing a unique identifier: A case study from the Demand for Safe Spaces project

7min
pages 125-127

Chapter 5: Cleaning and processing research data

1min
page 121

B4.4.1 A sample dashboard of indicators of progress

12min
pages 113-117

4.4 Checking data quality in real time: A case study from the Demand for Safe Spaces project

2min
page 112

4.3 Piloting survey instruments: A case study from the Demand for Safe Spaces project

14min
pages 106-111

4.2 Determining data ownership: A case study from the Demand for Safe Spaces project

16min
pages 100-105

B3.3.1 Flowchart of a project data map

37min
pages 81-96

B2.3.1 Folder structure of the Demand for Safe Spaces data work

36min
pages 55-72

Chapter 4: Acquiring development data

5min
pages 97-99

Chapter 3: Establishing a measurement framework

18min
pages 73-80

Chapter 1: Conducting reproducible, transparent, and credible research

35min
pages 31-46

Chapter 2: Setting the stage for effective and efficient collaboration

18min
pages 47-54

I.1 Overview of the tasks involved in development research data work

18min
pages 22-30

Introduction

2min
page 21
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.